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Abstract

In this note we prove compactness for the Cahn-Hilliard functional
without assuming coercivity of the multi-well potential.

1 Introduction

The purpose of this note is to prove compactness for the Cahn—Hilliard func-
tional (see [5], [8], [9]) without assuming coercivity of the multi-well potential
W. Precisely, for € > 0 consider the functional

F. Wb (RY) — [0, o0
defined by
F. (u) := /Q (iW(u) +5|Vu|2> dz,
where d > 1 and the potential W satisfies the following hypotheses:

(Hy) W :R? — [0,00) is continuous, W (z) = 0 if and only if z € {ay,..., s}
for some a; € R, i =1,...,4, with a; # «; for i # j.

(Hz) There exists L > 0 such that

inf W (z) > 0.
|z|=L

Then the following result holds.

Theorem 1.1 Let @ C RN, N > 2, be an open bounded connected set with
Lipschitz boundary. Assume that the multi-well potential W satisfies conditions
(H1) and (Hs). Let &, — 0T and let {u,} C W2 (;RY) be such that

M :=sup F,, (up) < 00 (1.1)



and
1

@Q

and for some m € RY. Then there exist u € BV (Q;{a1,...,a4}) and a subse-
quence {un, } of {un} such that

Up (x) de =m for alln € N (1.2)

Up, — u in L' (Q;Rd) .

For a two-well potential (¢ = 2), Theorem 1.1 has been proved in the scalar
case d = 1 by Modica [8] under the assumption

1
Sl W () <Ol

for all |z| large and for some p > 2, and by Sternberg [9] for p > 2; while in the
vectorial case d > 2, it has been proved by Fonseca and Tartar [4] under the
assumption

Sl < W)

for all |z| large. The case of a multi-well potential ¢ > 3 has been studied
by Baldo (see Propositions 4.1 and 4.2 in [2])), who proved compactness of a
sequence of minimizers bounded in L ().

An example of a double-well potential satisfying (H;) and (Hz) but not
coercive is

W (z) = arctan [(z —a)?(z-B)?,
while an example of a potential satisfying (H;) but not (Hs) is
W(z)=(z—a)’(z—B)° eI,

In the one dimensional case N = 1, the hypothesis (1.2) is not needed.
Indeed, we have the following elementary result.

Theorem 1.2 Assume that the multi-well potential W satisfies conditions (Hy)
and (H). Lete, — 07 and let {u,} C W2 ((a,b) ; R?) be such that (1.1) holds.
Then there exist u € BV ((a,b);{on,...,ae}) and a subsequence {un, } of {un}
such that

Un, — w in L' ((a,b);R?).

On the other hand, when (1.2) holds, then condition (Hs) can be weakened
to:

(Hs) / V'V (s)ds = oo, where for every s > 0,
0

V (s) := min W (2). (1.3)

|z|=s



Note that (H>) implies that \/V (s) > inf|, >z /W (z) > 0 for all s > L,
and so (Hj) is satisfied. On the other hand, if

c
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W (z)

as |z| — oo for some ¢ > 0 and 0 < ¢ < 2, then (Hj) holds but not (Hy).

Theorem 1.3 Assume that the multi-well potential W satisfies conditions (Hy)
and (Hs). Let &, — 0T and let {u,} C W2 ((a,b);R?) be such that (1.1) and
(1.2) hold. Then there exist u € BV ((a,b);{oq,...,ar}) and a subsequence
{un, } of {un} and such that

Up, — u in L' ((a, b) ;Rd) .
The next simple example shows that compactness fails without (1.2) or (Hs).

Example 1.4 If condition (Hs) does not hold, then there exists {z,} C R¢ such
that |z,| — 0o and

lim W (z,) =0.
Find a sequence €, — 0 such that

1
—W (2,) — 0,

En

(e.g. €n = /W (2,)) and consider the sequence of functions u, () := z,.
Then

F., (uy) = iVV (zn)(b—a) — 0

n

but no subsequence of {u,} converge in L' ((a,b)).

Remark 1.5 [ have not been able to determine if Theorems 1.2 and 1.3 hold
in dimension N > 2 or if (Hs) is needed in Theorem 1.3.

2 Proof of Theorems 1.1 and 1.2

The proof of Theorem 1.1 will make use of the following auxiliary results. For
a proof of the following theorem see, e.g., Proposition 16.21 in [6].

Theorem 2.1 Let u € WH' (RY), N > 2. Then

sups [LN ({z € RN : |u(2)| > s})] et < 11/1\7/ |Vu (x)| dr.
s>0 ay RN

For a proof of the next theorem, see Lemma 2.6 in [1].



Theorem 2.2 Let A, C RY be open sets and let 1 < p < co. Assume that
A is bounded and that Q is connected and has Lipschitz boundary at each point

of 0Q N A. Then there exists a linear and continuous operator T : WP (Q) —
WP (A) such that, for every u € WP (Q),

T (u)(x) =u(x) for LY ae 2€QNA,
[1rw@rasc [ u@r
A Q
/ VT (w) ()| da < o/ Vu (@) da,
A Q
where C > 0 depends only on N, p, A, and Q.

We are now ready to prove Theorem 1.1.
Proof of Theorem 1.1. In view of (1.1) and (Hs) for every n € N, we have

M > %/Q\/W (o @)V () | dar (2.1)

> C/ |Vu, (z) | dz,
{lun|=L}

where ¢ := L inf|,>7 /W (2) > 0. Construct a C' function f : R — R? such
that f (z) = z if |z| > 2L and f (2) = 0 if |2] < L. By the chain rule, for every
n € N the function v,, := f ou,, belongs to W2 (Q; Rd) and foralli=1,...,N
and for LN-a.e. x € Q,

. 0@
O0n 1y =3 2 () P (o

8.’L‘i . 82(3) 8$i
J=1
where we write z = (1), ..., 2(9). Since ;2L (2) = 0if |2| < L, it follows that
Vo, (z) | dz = / Von (@) | da (2.2)
Q {lun|=L}
<Lipf |V, (z)|dz < ¢ *M Lip f.
{lun|>L}

Let r > 0 be so large that Q C B (0,7) and set A := B(0,2r). By Theorem 2.2
we may extend each function v, to a function in W1! (A; Rd), still denoted v,,,
in such a way that

/A|vn (z)| dz < C/Q |vp, ()| dz, (2.3)

/ Vo, ()] de < C/ |V, (z)| de < Ce™* M Lip f, (2.4)
A Q



where C' depends only on r, NV, and 2. By the Poincaré inequality,

/ lon (2) — 0] da < c/ Vo, (2)] dx, (2.5)
A A
where ¢, := ﬁ fQ vp, () dz and again C' depends only on 7, N, and Q. Note
that, since f (z) = z if |z| > 2L,
o = — / Foupdy| = / dz + / found
Cn| = 747 OUp dT| = 747 Up AT O Up AT
12/ |/ 10 | S{jun 521} {lun|<2L}
1
=|m+ = (f oup —uy) dz| < |m|+4L.
191 juni<2Ly

Consider a cut-off function ¢ € C° (4;]0,1]) such that ¢ = 1 in B (0,r) and
define

Wy, = @ (Vy — Cp) -

Then w, € W (RY) and by (2.5),
/ [Vw, (z)| dx < Lipap/ [vn, — ¢n| da +/ |V, (z)] dz (2.6)
RN A A

< (CLipp+ 1)/ [V, (2)] dz.
A

Applying Theorem 2.1 to |w,|, we obtain

No1 1
sups [LY ({z e RY : |w,|(z) > s})] ¥ < W/ |V |wy| (z)| dz
5>0 Qp RN

< Cl/ [Vu, () |dz < Cs,
{lun|>L}

where we have used (2.2), (2.4), and (2.6).
Fix s; > 2(Jm|+4L) + 1. Using the facts that ¢ = 1 in B(0,r), that
f(2) =z if |z| > 2L, and that |c,| < |m| + 4L, for s > s; we have

(2€Q: |up(2)| > s} ={zeQ: |vn(m)|25}c{m69: |vn(x)—cn|z§}
C{xERN: \wn|(x)2§},

and so o
LY ({z e Q: |uy (2)] 2 8}) < —5

N—-1

V2]

for all s > s;. Hence,

_ o0 N (fe e (0 s <
/{un|>81}|un(as)d:c/ LY {z € Q: |uy (z)] > s}) d

51

> 1 N -1
SC/ ~—dr = —,
s1 SN—l

N —
51

"



which shows that {u,} is bounded in L' (;R?) and equi-integrable.

In view of Vitali’s convergence theorem, it remains to show that a subse-
quence converges in measure to some function v € BV (Q;{aq,...,ar}). This
is classical (see e.g. [2] or [4]). =

Remark 2.3 Theorem 1.1 continues to hold if in place of (1.2) we assume that
Up =g on N (2.7)

for all n € N and for some function g € L* (0 {cu,...,a}). In this case, by
Gagliardo’s trace theorem (see, e.g. Theorem 15.10 in [6]) there exists a function
w e WHEH (RN \ Q;R?) such that w = g on 0Q. Extend each u, to be w outside
Q. We can now apply Theorem 2.1 directly to f ou, € WhH! (RN;Rd) without
introducing the constants c,, the function , and without using Theorem 2.2.

We now turn to the proof of Theorem 1.2. The argument below is likely
well-known. We present it for the convenience of the reader.
Proof of Theorem 1.2. Without loss of generality, we can assume that each
function u,, is absolutely continuous.

Since the set A,, := {z € (a,b) : |uy, (z)| > L} is open, we may write it as

A, = U (ak,n» bk,n) .

k

Moreover, by (1.1) and (Has), for every n € N, we have
b
Me, > / W (un () do = |4, inf W ().

and so its complement (a,b) \ A,, is nonempty for all n sufficiently large. Fix
any such n. If A, is empty, then |u, (z)| < L for all x € (a,b). Otherwise, let
x € (Gk.n,bi,n). Then at least one of the endpoints, say ax ., is not an endpoint
of (a,b) and so |uy, (ak,n)| = L. By the fundamental theorem of calculus,

Up (%) = Up (ag.n) + /J o' (t) dt.

ag,n

Hence,

wp fu @<L+ [ (0]de<Laet,
€ (ak,n,bk,n) {lun|>L}

where we have used (2.1). This shows that {u,} is bounded in L> ((a,b) ; R?).
We can now continue as in Lemma 6.2 of [3]. m

Finally, we prove Theorem 1.3.
Proof of Theorem 1.2. Without loss of generality, we can assume that each
function u,, is absolutely continuous. In view of (1.1) and (1.3), for every n € N
we have

b b
M > %/ W (un (2))|uy, (z) | do > %/ V (Jun| ()] |un () | da.



Using the area formula for absolutely continuous functions (see, e.g., Theorem
3.65 in [6]), we obtain

b
M2 5 [V Tl @l @)1 do = 5 [ V) card un [~ ({53) ds
a R
1 max|un |

> V'V (s)ds,

2 min|uy, |

where card is the cardinality and |u,| " ({s}) = {z € (a,b: |u, (z)| = s)}. By
(1.2) and the intermediate value theorem, there exists z,, € (a,b) such that

m

1 b
un(xn):b_a/ Uy () dx:b

_a.

Hence, |u, (z,)] = g, which implies that

1 max|un |

M > 5 V'V (s)ds.

b—a

By (Hs) there exists R > 0 such that f\Rﬂ V'V (s)ds > 2M. In turn, |u, (2)| <
b—a

R for all © € (a,b) and all n € N. This shows that {u,} is bounded in
L* ((a,b);R?). m

Remark 2.4 Observe that in Theorems 1.2 and 1.8 we can replace (Hy) with
the weaker hypothesis

(Hy) W :R? — [0,00) is continuous and for every r > 0 the set
{z€ B(0,r): W(2) =0}
has finitely many elements.

Indeed, if {u,} C W2 ((a,b);R?) is such that (1.1) holds, then by Theorem
1.2 or 1.8, there exists R > 0 such that |u, ()| < R for all x € (a,b) and all
n € N. Find S € (R,2R) such that V (S) > 0. Note that such S exists, since
otherwise we would have V (s) = 0 for all s € (R,2R), which would imply that
{z € B(0,2R) : W (2) = 0} has infinitely many elements and would contradict

(Hy). Define
Lo [WE i<
1(2) = W(ﬁS) if 2] > 8.

Since |uy, (z)] < R < S for all x € (a,b) and all n € N, we have that

b
1
M2 E )= [ (W) +enlid?) de

n



The function Wy satisfies hypotheses (Hy) and (Hs). Hence, we may now apply
Theorem 1.2 to find u € BV ((a,b);{a1,...,a¢}) and a subsequence {un,} of
{un} such that

Up,, — u in L' ((a,b);RY) .

Here {a1,...,ap} are the zeros of W in B (0, s).
In view of the previous remark, we can prove a compactness result for N =1

and bounded domains for the functional studied in the classical paper of Modica
and Mortola [7].

Corollary 2.5 Let e, — 07 and let {u,} C W2 ((a,b); R?) be such that

b
/ (1 sin? (1uy, ) + en|ul, () |2> de < M

En

and (1.2) hold. Then there exist u € BV ((a,b);{a1,...,as}) and a subsequence
{tun, } of {un} such that
Up, — u in L' (a,b).

Here, {a3,...,ap} C Z.

Proof. It is enough to observe that the function W (z) = sin® (72) satisfies
(H3) and (H4) ]

Remark 2.6 I am not aware of any compactness result for N > 2 for the

functional
1
/ < sin? (7u) + 5|Vu|2) dz,
Q \ &

when (1.2) holds. Note that W (z) = sin? (n2) satisfies (Hs) and (H,) but not
(Hy) and (Ha).
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