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Abstract
In this note we prove compactness for the Cahn-Hilliard functional

without assuming coercivity of the multi-well potential.

1 Introduction

The purpose of this note is to prove compactness for the Cahn—Hilliard func-
tional (see [5], [8], [9]) without assuming coercivity of the multi-well potential
W . Precisely, for ε > 0 consider the functional

Fε : W 1,2
(
Ω;Rd

)
→ [0,∞]

defined by

Fε (u) :=

∫
Ω

(
1

ε
W (u) + ε|∇u|2

)
dx,

where d ≥ 1 and the potential W satisfies the following hypotheses:

(H1) W : Rd → [0,∞) is continuous, W (z) = 0 if and only if z ∈ {α1, . . . , α`}
for some αi ∈ Rd, i = 1, . . . , `, with αi 6= αj for i 6= j.

(H2) There exists L > 0 such that

inf
|z|≥L

W (z) > 0.

Then the following result holds.

Theorem 1.1 Let Ω ⊂ RN , N ≥ 2, be an open bounded connected set with
Lipschitz boundary. Assume that the multi-well potential W satisfies conditions
(H1) and (H2). Let εn → 0+ and let {un} ⊂W 1,2

(
Ω;Rd

)
be such that

M := sup
n
Fεn (un) <∞ (1.1)
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and
1

|Ω|

∫
Ω

un (x) dx = m for all n ∈ N (1.2)

and for some m ∈ Rd. Then there exist u ∈ BV (Ω; {α1, . . . , α`}) and a subse-
quence {unk} of {un} such that

unk → u in L1
(
Ω;Rd

)
.

For a two-well potential (` = 2), Theorem 1.1 has been proved in the scalar
case d = 1 by Modica [8] under the assumption

1

C
|z|p ≤W (z) ≤ C |z|p

for all |z| large and for some p > 2, and by Sternberg [9] for p ≥ 2; while in the
vectorial case d ≥ 2, it has been proved by Fonseca and Tartar [4] under the
assumption

1

C
|z| ≤W (z)

for all |z| large. The case of a multi-well potential ` ≥ 3 has been studied
by Baldo (see Propositions 4.1 and 4.2 in [2])), who proved compactness of a
sequence of minimizers bounded in L∞ (Ω).

An example of a double-well potential satisfying (H1) and (H2) but not
coercive is

W (z) = arctan
[
(z − α)

2
(z − β)

2
]
,

while an example of a potential satisfying (H1) but not (H2) is

W (z) = (z − α)
2

(z − β)
2
e−|z|

2

.

In the one dimensional case N = 1, the hypothesis (1.2) is not needed.
Indeed, we have the following elementary result.

Theorem 1.2 Assume that the multi-well potential W satisfies conditions (H1)
and (H2). Let εn → 0+ and let {un} ⊂W 1,2

(
(a, b) ;Rd

)
be such that (1.1) holds.

Then there exist u ∈ BV ((a, b) ; {α1, . . . , α`}) and a subsequence {unk} of {un}
such that

unk → u in L1
(
(a, b) ;Rd

)
.

On the other hand, when (1.2) holds, then condition (H2) can be weakened
to:

(H3)

∫ ∞
0

√
V (s) ds =∞, where for every s ≥ 0,

V (s) := min
|z|=s

W (z) . (1.3)
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Note that (H2) implies that
√
V (s) ≥ inf |z|≥L

√
W (z) > 0 for all s ≥ L,

and so (H3) is satisfied. On the other hand, if

W (z) ∼ c

|z|q

as |z| → ∞ for some c > 0 and 0 < q ≤ 2, then (H3) holds but not (H1).

Theorem 1.3 Assume that the multi-well potential W satisfies conditions (H1)
and (H3). Let εn → 0+ and let {un} ⊂W 1,2

(
(a, b) ;Rd

)
be such that (1.1) and

(1.2) hold. Then there exist u ∈ BV ((a, b) ; {α1, . . . , α`}) and a subsequence
{unk} of {un} and such that

unk → u in L1
(
(a, b) ;Rd

)
.

The next simple example shows that compactness fails without (1.2) or (H2).

Example 1.4 If condition (H2) does not hold, then there exists {zn} ⊂ Rd such
that |zn| → ∞ and

lim
n→∞

W (zn) = 0.

Find a sequence εn → 0 such that

1

εn
W (zn)→ 0,

(e.g. εn :=
√
W (zn)) and consider the sequence of functions un (x) :≡ zn.

Then
Fεn (un) =

1

εn
W (zn) (b− a)→ 0

but no subsequence of {un} converge in L1 ((a, b)).

Remark 1.5 I have not been able to determine if Theorems 1.2 and 1.3 hold
in dimension N ≥ 2 or if (H3) is needed in Theorem 1.3.

2 Proof of Theorems 1.1 and 1.2

The proof of Theorem 1.1 will make use of the following auxiliary results. For
a proof of the following theorem see, e.g., Proposition 16.21 in [6].

Theorem 2.1 Let u ∈W 1,1
(
RN
)
, N ≥ 2. Then

sup
s>0

s
[
LN

({
x ∈ RN : |u (x)| ≥ s

})]N−1
N ≤ 1

α
1/N
N

∫
RN
|∇u (x)| dx.

For a proof of the next theorem, see Lemma 2.6 in [1].
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Theorem 2.2 Let A,Ω ⊂ RN be open sets and let 1 ≤ p < ∞. Assume that
A is bounded and that Ω is connected and has Lipschitz boundary at each point
of ∂Ω ∩ A. Then there exists a linear and continuous operator T : W 1,p (Ω) →
W 1,p (A) such that, for every u ∈W 1,p (Ω),

T (u) (x) = u (x) for LN a.e. x ∈ Ω ∩A,∫
A

|T (u) (x)|p dx ≤ C
∫

Ω

|u (x)|p dx,∫
A

|∇T (u) (x)|p dx ≤ C
∫

Ω

|∇u (x)|p dx,

where C > 0 depends only on N , p, A, and Ω.

We are now ready to prove Theorem 1.1.
Proof of Theorem 1.1. In view of (1.1) and (H2) for every n ∈ N, we have

M ≥ 1

2

∫
Ω

√
W (un (x))|∇un (x) | dx (2.1)

≥ c
∫
{|un|≥L}

|∇un (x) | dx,

where c := 1
2 inf |z|≥L

√
W (z) > 0. Construct a C1 function f : Rd → Rd such

that f (z) = z if |z| ≥ 2L and f (z) = 0 if |z| < L. By the chain rule, for every
n ∈ N the function vn := f ◦un belongs to W 1,2

(
Ω;Rd

)
and for all i = 1, . . . , N

and for LN -a.e. x ∈ Ω,

∂vn
∂xi

(x) =

d∑
j=1

∂f

∂z(j)
(un (x))

∂ (un)
(j)

∂xi
(x) ,

where we write z =
(
z(1), . . . , z(d)

)
. Since ∂f

∂z(j)
(z) = 0 if |z| < L, it follows that∫

Ω

|∇vn (x) | dx =

∫
{|un|≥L}

|∇vn (x) | dx (2.2)

≤ Lip f

∫
{|un|≥L}

|∇un (x) | dx ≤ c−1M Lip f.

Let r > 0 be so large that Ω ⊂ B (0, r) and set A := B (0, 2r). By Theorem 2.2
we may extend each function vn to a function in W 1,1

(
A;Rd

)
, still denoted vn,

in such a way that∫
A

|vn (x)| dx ≤ C
∫

Ω

|vn (x)| dx, (2.3)∫
A

|∇vn (x)| dx ≤ C
∫

Ω

|∇vn (x)| dx ≤ Cc−1M Lip f, (2.4)
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where C depends only on r, N , and Ω. By the Poincaré inequality,∫
A

|vn (x)− cn| dx ≤ C
∫
A

|∇vn (x)| dx, (2.5)

where cn := 1
|Ω|
∫

Ω
vn (x) dx and again C depends only on r, N , and Ω. Note

that, since f (z) = z if |z| ≥ 2L,

|cn| =
1

|Ω|

∣∣∣∣∫
Ω

f ◦ un dx
∣∣∣∣ =

1

|Ω|

∣∣∣∣∣
∫
{|un|>2L}

un dx+

∫
{|un|≤2L}

f ◦ un dx
∣∣∣∣∣

=

∣∣∣∣∣m+
1

|Ω|

∫
{|un|≤2L}

(f ◦ un − un) dx

∣∣∣∣∣ ≤ |m|+ 4L.

Consider a cut-off function ϕ ∈ C∞c (A; [0, 1]) such that ϕ = 1 in B (0, r) and
define

wn := ϕ (vn − cn) .

Then wn ∈W 1,1
(
RN
)
and by (2.5),∫

RN
|∇wn (x)| dx ≤ Lipϕ

∫
A

|vn − cn| dx+

∫
A

|∇vn (x)| dx (2.6)

≤ (C Lipϕ+ 1)

∫
A

|∇vn (x)| dx.

Applying Theorem 2.1 to |wn|, we obtain

sup
s>0

s
[
LN

({
x ∈ RN : |wn| (x) ≥ s

})]N−1
N ≤ 1

α
1/N
N

∫
RN
|∇ |wn| (x)| dx

≤ C1

∫
{|un|≥L}

|∇un (x) | dx ≤ C2,

where we have used (2.2), (2.4), and (2.6).
Fix s1 > 2 (|m|+ 4L) + 1. Using the facts that ϕ = 1 in B (0, r), that

f (z) = z if |z| ≥ 2L, and that |cn| ≤ |m|+ 4L, for s ≥ s1 we have

{x ∈ Ω : |un (x)| ≥ s} = {x ∈ Ω : |vn (x)| ≥ s} ⊂
{
x ∈ Ω : |vn (x)− cn| ≥

s

2

}
⊂
{
x ∈ RN : |wn| (x) ≥ s

2

}
,

and so

LN ({x ∈ Ω : |un (x)| ≥ s}) ≤ C

s
N

N−1

for all s ≥ s1. Hence,∫
{|un|>s1}

|un (x) | dx =

∫ ∞
s1

LN ({x ∈ Ω : |un (x)| ≥ s}) ds

≤ C
∫ ∞
s1

1

s
N

N−1
dτ =

N − 1

s
1

N−1
1

,
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which shows that {un} is bounded in L1
(
Ω;Rd

)
and equi-integrable.

In view of Vitali’s convergence theorem, it remains to show that a subse-
quence converges in measure to some function u ∈ BV (Ω; {α1, . . . , α`}). This
is classical (see e.g. [2] or [4]).

Remark 2.3 Theorem 1.1 continues to hold if in place of (1.2) we assume that

un = g on ∂Ω (2.7)

for all n ∈ N and for some function g ∈ L1 (∂Ω; {α1, . . . , α`}). In this case, by
Gagliardo’s trace theorem (see, e.g. Theorem 15.10 in [6]) there exists a function
w ∈W 1,1

(
RN \ Ω;Rd

)
such that w = g on ∂Ω. Extend each un to be w outside

Ω. We can now apply Theorem 2.1 directly to f ◦ un ∈ W 1,1
(
RN ;Rd

)
without

introducing the constants cn, the function ϕ, and without using Theorem 2.2.

We now turn to the proof of Theorem 1.2. The argument below is likely
well-known. We present it for the convenience of the reader.
Proof of Theorem 1.2. Without loss of generality, we can assume that each
function un is absolutely continuous.
Since the set An := {x ∈ (a, b) : |un (x)| > L} is open, we may write it as

An =
⋃
k

(ak,n, bk,n) .

Moreover, by (1.1) and (H2), for every n ∈ N, we have

Mεn ≥
∫ b

a

W (un (x)) dx ≥ |An| inf
|z|≥L

W (z) ,

and so its complement (a, b) \ An is nonempty for all n suffi ciently large. Fix
any such n. If An is empty, then |un (x)| ≤ L for all x ∈ (a, b). Otherwise, let
x ∈ (ak,n, bk,n). Then at least one of the endpoints, say ak,n, is not an endpoint
of (a, b) and so |un (ak,n)| = L. By the fundamental theorem of calculus,

un (x) = un (ak,n) +

∫ x

ak,n

u′ (t) dt.

Hence,

sup
x∈(ak,n,bk,n)

|un (x)| ≤ L+

∫
{|un|≥L}

|u′n (t) | dt ≤ L+ c−1M,

where we have used (2.1). This shows that {un} is bounded in L∞
(
(a, b) ;Rd

)
.

We can now continue as in Lemma 6.2 of [3].
Finally, we prove Theorem 1.3.

Proof of Theorem 1.2. Without loss of generality, we can assume that each
function un is absolutely continuous. In view of (1.1) and (1.3), for every n ∈ N
we have

M ≥ 1

2

∫ b

a

√
W (un (x))|u′n (x) | dx ≥ 1

2

∫ b

a

√
V (|un| (x))| |un|′ (x) | dx.
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Using the area formula for absolutely continuous functions (see, e.g., Theorem
3.65 in [6]), we obtain

M ≥ 1

2

∫ b

a

√
V (|un| (x))| |un|′ (x) | dx =

1

2

∫
R

√
V (s) card |un|−1

({s}) ds

≥ 1

2

∫ max|un|

min|un|

√
V (s) ds,

where card is the cardinality and |un|−1
({s}) = {x ∈ (a, b : |un (x)| = s)}. By

(1.2) and the intermediate value theorem, there exists xn ∈ (a, b) such that

un (xn) =
1

b− a

∫ b

a

un (x) dx =
m

b− a.

Hence, |un (xn)| = |m|
b−a , which implies that

M ≥ 1

2

∫ max|un|

|m|
b−a

√
V (s) ds.

By (H3) there exists R > 0 such that
∫ R
|m|
b−a

√
V (s) ds > 2M . In turn, |un (x)| <

R for all x ∈ (a, b) and all n ∈ N. This shows that {un} is bounded in
L∞

(
(a, b) ;Rd

)
.

Remark 2.4 Observe that in Theorems 1.2 and 1.3 we can replace (H1) with
the weaker hypothesis

(H4) W : Rd → [0,∞) is continuous and for every r > 0 the set

{z ∈ B (0, r) : W (z) = 0}

has finitely many elements.

Indeed, if {un} ⊂W 1,2
(
(a, b) ;Rd

)
is such that (1.1) holds, then by Theorem

1.2 or 1.3, there exists R > 0 such that |un (x)| < R for all x ∈ (a, b) and all
n ∈ N. Find S ∈ (R, 2R) such that V (S) > 0. Note that such S exists, since
otherwise we would have V (s) = 0 for all s ∈ (R, 2R), which would imply that
{z ∈ B (0, 2R) : W (z) = 0} has infinitely many elements and would contradict
(H4). Define

W1 (z) :=

{
W (z) if |z| < S,

W
(
z
|z|S

)
if |z| ≥ S.

Since |un (x)| < R < S for all x ∈ (a, b) and all n ∈ N, we have that

M ≥ Fεn (un) =

∫ b

a

(
1

εn
W1(un) + εn|u′n|2

)
dx.
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The function W1 satisfies hypotheses (H1) and (H2). Hence, we may now apply
Theorem 1.2 to find u ∈ BV ((a, b) ; {α1, . . . , α`}) and a subsequence {unk} of
{un} such that

unk → u in L1
(
(a, b) ;Rd

)
.

Here {α1, . . . , α`} are the zeros of W in B (0, s).

In view of the previous remark, we can prove a compactness result for N = 1
and bounded domains for the functional studied in the classical paper of Modica
and Mortola [7].

Corollary 2.5 Let εn → 0+ and let {un} ⊂W 1,2
(
(a, b) ;Rd

)
be such that∫ b

a

(
1

εn
sin2 (πun) + εn|u′n (x) |2

)
dx ≤M

and (1.2) hold. Then there exist u ∈ BV ((a, b) ; {α1, . . . , α`}) and a subsequence
{unk} of {un} such that

unk → u in L1 (a, b) .

Here, {α1, . . . , α`} ⊂ Z.

Proof. It is enough to observe that the function W (z) = sin2 (πz) satisfies
(H3) and (H4).

Remark 2.6 I am not aware of any compactness result for N ≥ 2 for the
functional ∫

Ω

(
1

ε
sin2 (πu) + ε|∇u|2

)
dx,

when (1.2) holds. Note that W (z) = sin2 (πz) satisfies (H3) and (H4) but not
(H1) and (H2).
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