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Introduction

This thesis collects some of the results I obtained during three years of PhD
studies at the Scuola Normale Superiore in Pisa. As the vagueness of the title
may lead to suspect, the subjects of this thesis are far from being homoge-
neous, indeed, the core of this thesis belongs to Geometric Measure Theory,
as the number of pages devoted to currents shows. Part I contains classical
results about currents and some original results related to problems with a
classical flavour, too. Part II deals with currents with coefficients in a group
and their applications: they still belong to Geometric Measure Theory, in-
deed, but are less known and less studied – most of the results presented in
this part are new.

Adopting a chronological/heuristic point of view, I should admit that
my starting point was the idea of a variational approach to the Steiner tree
problem of Section 3.2. From this idea, one has to step back to the theory of
currents with coefficients in a group and, at some point, one has to confront
with the classical theory of currents. Thus Chapter 1 is motivated by this
stratified structure of the thesis and almost every result there is well-known
and can be found in the standard literature for Geometric Measure Theory,
mainly [24], [43], [36] and [51]. The exceptions are contained in Section 1.3:
we are not able to cite any reference for some facts, that belong to folklore
anyway.

Hence, Chapter 1 is essentially a long review starting with Measure The-
ory (Section 1.1) and differential forms (Subsection 1.2.1). Despite the efforts
at making this first chapter a systematic and consistent review of the classi-
cal theory of currents, one can detect a certain insistence in some notation or
some concept: indeed, Chapter 1 serves as a toolbox for the next chapters.
For instance, the formalism of differential forms in Subsection 1.2.1 is needed
not only for the abstract definition of currents but also in Chapter 2, where
we will borrow some notation from Differential Geometry in order to deal
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with Frobenius Theorem.
Though pretty standard, Sections 1.2, 1.3 and 1.4 have another reason to

be in this thesis: they are a sample of the classical theory and they will be
a model for the theory of currents with coefficients in a group that we will
develop in Section 3.1.

We introduce currents in Subsection 1.2.2, as functionals on the space
of compactly supported smooth differential k-forms in Rd. This definition
by duality enlightens the analogy with distributions but it is abstract, it
can be made milder by the introduction of proper subsets of currents and by
approximation theorems, such as the theorems in Subsection 1.2.3. The most
important subset of currents is the class of integral currents, introduced in
[26] by Federer and Fleming: the integral representation ∫Σ⟨ω; τ⟩θ dH k (with
θ a Z-valued measurable function) allows to think of integral currents as a
class of generalized surfaces with good compactness properties, with all the
implications concerning the treatment of the Plateau problem in this wider
context. The second class of currents we have to keep in mind is the linear
subspace of normal currents, that is, currents with an integral representation

∫Rd⟨ω; τ⟩dµ (with a suitable measure µ and real multiplicity) for them and
for their boundaries. Integral currents are a subset of normal currents, the
latter playing a crucial role whenever a real vector space structure is needed.

Subsections 1.2.3 and 1.2.4 contain the fundamental theorems on (inte-
gral) currents: the Deformation Theorem 1.2.49 and the Closure Theorem
1.2.59, respectively. As I previously prompted, integral currents were intro-
duced as a generalization of surfaces for the solution of the Plateau problem,
with the mass replacing the area. Since the mass is lower semicontinuous, the
Closure Theorem 1.2.59 for integral currents is the (nontrivial) part allowing
for the application of the direct method of Calculus of Variations.

The room given to results concerning 1-currents only, in Section 1.3,
marks the fact that we are focusing on what will be useful later, namely
in Sections 3.2 and 3.3, where the main applications of the theory of cur-
rents with coefficients in a group are displayed, both of them needing 1-
currents only. Not surprisingly, 1-currents are simpler than k-currents with
k ≥ 2, so, first of all, we have a structure theorem in Subsection 1.3.1: in-
tegral 1-currents are union of countably-many loops and finitely-many open
curves, with integer multiplicities. Moreover, in Subsection 1.3.2 it appears
for the first time a serious issue regarding the commensurability between
mass-minima among different subsets of currents. We expose the problem
here: as in many variational problems, in the mass-minimization problem one
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can choose the class of currents among which one looks for the minimizer.
Since integral currents are normal currents, in general one might wonder if
the minimum of the mass among normal currents is strictly less than the
minimum among integral currents (that is, if some sort of Lavrentiev phe-
nomenon occurs). This does not happen for 1-currents, for the two minima
coincide. If k ≥ 2, on the contrary, there are counterexamples to the coinci-
dence of minima, but other problems (e.g., commensurability of minima) are
still open.

Finally, Section 1.4 introduces calibrations, a powerful tool for the study
of mass-minimizing currents. In this introduction, let me just say that a cali-
bration is a closed differential form (with certain properties) associated with
a submanifold or a normal current, guaranteeing, by its mere existence, that
this submanifold, or current, is a mass-minimizer among cobordant competi-
tors. Actually, finding a calibration for a candidate minimizer means having
solved the mass-minimization problem! As we will see later, the calibration
technique plays a prominent role in Part II.

With Chapter 2 we really start with some original results. The starting
point was a problem of decomposability of normal currents proposed by F.
Morgan in [1]: roughly speaking, we would like to write a normal current
T as the integral T = ∫LRλ dλ, on a suitable measure space L, of a family(Rλ)λ∈L of integer rectifiable currents. In doing this, we do not want to
“waste” mass and we ask that M(T ) = ∫LM(Rλ)dλ (and, possibly, that
M(∂T ) = ∫LM(∂Rλ)dλ). The problem received some partial answers, which
are recalled in Section 2.3, but the turning point is a counterexample to the
existence of such a decomposition proposed by M. Zworski in [57]. However
the proof proposed by Zworski is not correct, as pointed out by G. Alberti
(see Section 4.5 of [43]). In Chapter 2 I give a correct proof of this statement.

Zworski’s idea is to prove that there is no decomposition for the normal
current ξL d, when ξ is a non-integrable vector field. Here, non-integrability
is a synonym of non-involutive vector field: in Section 2.1 we recall the
Frobenius Theorem (which gives a necessary and sufficient condition on the
vector field ξ in order to get a foliation by means of submanifolds having
ξ as tangent space) and we explore some other useful ways of writing the
Frobenius’s involutivity condition on the vectorfield.

In Section 2.2 we show that an integral current behaves like a submani-
fold with respect to the integrability problem. In fact, if the vectorfield ξ

does not fulfill the involutivity condition of Frobenius Theorem, then there
is no integral current T to which ξ is tangent (almost everywhere). From
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this result, we get the expected conclusion in Section 2.3: since the integral
currents decomposing the normal current ξL d have ξ as a tangent vectorfield,
then ξ has to satisfy the condition of Frobenius Theorem, otherwise this
decomposition does not exist.

As I said above, the motivations of Part II and the presentation of the
results do not follow the same order, but just here I will privilege the former.
The starting point is the idea of giving a variational setting and a notion
of calibration to the Steiner tree problem, that is, the problem of finding
the shortest connected set containing n given points in Rd. A variational
approach is advantageous whenever we are able to find a calibration for
the candidate minimizers. Now the Steiner tree problem has become an
application of the theory of currents with coefficients in a group of Section
3.1, it is explored in Section 3.2 and some examples of calibrations are given
in Subsection 3.2.2. Both the theory of currents with coefficients in a group
and the new approach to the Steiner tree problem are contained in a paper
in collaboration with Andrea Marchese, see [41].

This project of replacing the Steiner tree problem with a mass-minimi-
zation problem for currents (in order to establish a notion of calibration)
presents two intertwined issues: first of all, we have to provide a variational
setting where the mass-minimization problem is actually equivalent to the
Steiner tree problem (and prove this equivalence), secondly we must give a
suitable notion of calibration on this setting and use it.

As for the first issue, from some basic examples recalled in Section 3.2
it became clear that we need integral currents with coefficients in a suitable
group, different from Z. In Section 3.2 we prove that, for every number of
points n of the Steiner tree problem in Rd, there exists a normed group G,
depending only on n and generated by g1, . . . , gn−1, such that the support
of every mass-minimizing G-current with a suitable boundary1 is a solution
of the classical Steiner problem. Vice versa, every Steiner solutions can be
endowed with a structure of 1-current with coefficients in G and this current
is a mass-minimizer.

It was the idea of using calibrations that forced us to develop a paral-
lel theory of currents with coefficients in a group, in Section 3.1. In fact,
the theory of flat G-chains is well established (see [27] and the subsequent

1By “suitable boundary” I mean something very reasonable, that is, the 0-current
concentrated on the points of the Steiner tree problem with coefficients g1, . . . , gn−1, gn,
where gn = −(g1 + . . . + gn−1).
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papers [54, 55, 19, 4]) but it lacks of an integral representation device for
G-currents. The integral representation provided in Section 3.1 allows us to
make computations and give some examples, in Subsection 3.2.2. The notion
of calibration and the question of its existence are expanded in Subsections
3.1.1 and 3.1.2. We also devote Subsection 3.2.3 and 3.2.4 to comparisons
with (analogues of) the calibration in other contexts. Subsection 3.2.4 has
actually some connections with Section 3.3, too.

Once the theory of currents with coefficients in a group with an integral
representation was developed, we noticed that these currents are an efficient
mathematical description of dislocations, as it is observed in Section 3.3 and
in the paper [13] in collaboration with Sergio Conti and Adriana Garroni,
which is a sort of theoretical support to [15]. Dislocations are defects occuring
in a crystal under the effect of an elasto-plastic stress and currents with
coefficients in Z3 are a good model for them.

After some technical results in Subsection 3.3.1, which are a completion
of the earlier Section 1.3, we focus on the problem of minimizing the energy
functional of a 1-dimensional dislocation, which is something of the form

∫γ ψ(θ, τ)dH 1 for an integral Z3-current ⟦γ, τ, θ⟧. Having in mind the direct
method in Calculus of Variations, we immediately notice that this functional
is not lower semicontinuous, thus we have to characterize its relaxation and
indeed Subsection 3.3.2 is devoted to prove that the integral of the so-called
H 1-elliptic envelope ψ is actually the lower semicontinuous envelope of the
energy functional. This result is achieved by the study of a cell problem.
Finally, in Subsection 3.3.3 we carry out explicit computations for the H 1-
elliptic envelope of a function ψ mentioned in [14].
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In this first chapter we review some facts about the theory of currents.
Clearly this presentation is not supposed to be exhaustive, we refer to [24]
for a complete treatise (or [36] and [43] for something more user-friendly).

Our aim here is to fix the notation and recall some important background
results, mainly in Section 1.1 and Section 1.2, recall the main theorems about
currents (again in Section 1.2) and discuss some additional problems, as in
Section 1.3.

1.1 Useful facts from Measure Theory

1.1.1 Measures and representation theorems

For the general Measure Theory see [21],[36] (chapters from 1 to 5) or [49]
(chapters from 1 to 8).

Here the letter µ will always denote a positive Borel measure on Rd. If
no measure is mentioned in expressions like “almost everywhere”, “negligi-
ble”, “null set” and so on, we are assuming that the measure involved is the
Lebesgue measure L d.

Concerning the notation, if f is a µ-integrable function, then we denote
by fµ the Borel measure defined by

fµ(A) = ∫
A
f(x)dµ(x) ,

for every Borel set A. In the special case of f = 1S, where S is a Borel set
and 1S is its characteristic function, we will also denote the restriction of the
measure µ to S by µ ⌞ S, i.e.

µ ⌞ S(A) ∶= 1Sµ(A) = µ(A ∩ S) ,
for every Borel set A.

Definition 1.1.1. A Borel measure µ is called Borel regular if for every µ-
measurable set A there exists a Borel set B ⊃ A such that µ(B ∖ A) = 0.
Moreover, we say that µ is locally finite if every point has a neighborhood of
finite measure. A locally finite, Borel measure is called a Radon measure.

We endow the space C 0
c (Rd) of continuous compactly supported functions

on Rd with the usual topology of uniform convergence on compact sets. A
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functional F on C 0
c (Rd) is called positive if F (ϕ) ≥ 0 for every ϕ ≥ 0. Thus,

if µ is a locally finite positive measure on Rd, then the map

ϕ↦ ∫ ϕ(x)dµ(x) (1.1.1)

is a continuous, positive, linear functional on C 0
c (Rd). Actually, every conti-

nuous, positive, linear functional on C 0
c (Rd) admits, for some positive mea-

sure µ, a representation like in (1.1.1), as we will see in Theorem 1.1.3.
Therefore it is natural to endow the space M +(Rd) of locally finite, posi-
tive Borel measures with the weak∗ topology. In particular, we say that a
sequence of locally finite positive measures (µn)n∈N on Rd converges weakly∗

to µ, and we write µn
∗⇀ µ , if

lim
n
∫ ϕdµn = ∫ ϕdµ,

for every ϕ ∈ C 0
c (Rd). As usual on a dual space of a separable space, the

weak∗ topology enjoys a sequential compactness property (Banach-Alaoglu
Theorem). We say that a family {µj}j∈J of measures is uniformly locally
bounded if for every compact set K there exists a constant CK such that
µj(K) ≤ CK for every j.

Theorem 1.1.2 (Compactness for measures). Let (µn)n∈N be a sequence
of uniformly locally bounded positive measures on Rd. Then there exists a
subsequence converging to a locally finite measure µ.

As we mentioned above, the space of locally finite positive Borel measures
M +(Rd) coincides with the subspace of positive functionals in the dual space(C 0

c (Rd))∗, thanks to Riesz Theorem.

Theorem 1.1.3 (Riesz Theorem). Let F be a continuous positive linear func-
tional on C 0

c (Rd). Then there exists a locally finite, positive Borel measure
µ on Rd such that

F (ϕ) = ∫ ϕdµ .

Since we will need it in Section 1.4, we state also a more general represen-
tation theorem. Let us consider a lattice L of functions on a metric space X,
that is a real vector space containing constants and closed under infimum.
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Theorem 1.1.4 (Representation Theorem). Let (Λ∗, ν∗) be a separable nor-
med space; we will denote by (Λ∗, ν∗) its dual space, where

ν∗(ω) = sup{⟨ω;λ⟩ ∶ λ ∈ Λ∗, ν∗(λ) ≤ 1} .
Let L be a lattice of functions on X containing a countable subset L′ such
that

∑
f∈L′

f(x) ≥ 1 ∀x ∈X .

Finally C∗ is a vector space of maps X → Λ∗ with the following properties:

f ∈ L,λ ∈ Λ∗ Ô⇒ fλ ∈ C∗ (1.1.2)

τ ∈ C∗, α ∈ Λ∗ Ô⇒ α ○ τ ∈ L, ν ○ τ ∈ L (1.1.3)

τ ∈ C∗, ν ○ τ ≥ f ∈ L+ Ô⇒ ∃ t ∈ C∗ s.t. ν ○ t = f, (ν ○ τ) t = fτ. (1.1.4)

Given a linear map F ∶ C∗ → R with

D(f) ∶= sup{F (τ) ∶ ν ○ τ ≤ f} <∞
and such that

ν ○ tn ↓ 0 Ô⇒ F (tn)→ 0

for every sequence (tn)n≥0 in C∗, we have that D is a monotone Daniell
integral and there exists a µ-measurable1 ω̂ ∶X → Λ∗ such that

ν∗(ω̂(x)) = 1 µ − a.e. x ∈X
and

F (τ) = ∫
X
⟨ω̂(x); τ(x)⟩dµ(x) ∀ τ ∈ C∗ .

Moreover ω̂ is a.e. unique.

For the proof of this theorem, see the second chapter of [24], for instance.

1.1.2 Rectifiable sets

Let k be an integer with 1 ≤ k ≤ d. With the symbol H k we denote the
k-dimensional Hausdorff measure on Rd, i.e.

H
k(A) ∶= lim

δ→0
inf {∞∑

j=1
ωk (diamBj

2
)k ∶ A ⊂ ∞⋃

j=1
Bj, diamBj ≤ δ} ,

with ωk being the volume of the unit k-dimensional ball.

1It means that ν∗ ○ ω̂ is µ-measurable.
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Definition 1.1.5. A set S ⊂ Rd is called H k-countably k-rectifiable (or
simply k-rectifiable) if S ⊂ ⋃∞j=0 Sj, where

(i) H k(S0) = 0;
(ii) Sj = Fj(Rk), for j ≥ 1, where Fj ∶ Rk → Rd is a Lipschitz function.

In the following, we will always assume the rectifiable set S to be H k-
measurable and to have H k-finite intersection with compact sets.

Definition 1.1.6. A set U ⊂ Rd is called k-purely unrectifiable if

H
k(U ∩E) = 0 ,

for every k-rectifiable set E.

Thanks to the following proposition, rectifiable sets get an handy geo-
metric structure.

Proposition 1.1.7. An H k-countably rectifiable set S can be written as

S = ∞⋃
j=1
Sj

where

(i) H k(S0) = 0;
(ii) Si ∩ Sj = ∅ if i ≠ j;
(iii) for every j ≥ 0, Sj ⊂ S̃j and S̃j is a k-dimensional submanifold of class

C 1 in Rd.

Definition 1.1.8. The map βx,r ∶ Rd → Rd is defined as

βx,r(y) ∶= y − x
r

,

for every x ∈ Rd and r > 0. This map will be useful in definitions involving
the blow up technique, jointly with the dilation map

δr(y) ∶= ry .
We will stick to this notation as far as possible.
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Definition 1.1.9. Consider a k-rectifiable set S ⊂ Rd. An approximate tan-
gent space to S at some point x ∈ S is a k-dimensional linear subspaceW ⊂ Rd

such that, for every f ∈ C 0
c ,

lim
r↓0
∫
βx,r(S)

f(y)dH k(y) = ∫
W
f(y)dH k(y) .

When the approximate tangent space exists at some point x ∈ S, it is unique
and we will denote it by TxS.

There are two important facts to remark about the definition of the ap-
proximate tangent space:

• If the set S is a submanifold of class C 1, then the tangent space and
the approximate tangent space coincide at every point. Thus there
is no ambiguity between the classical definition of TxS in Differential
Geometry and Definition 1.1.9, respectively.

• As a matter of fact, the approximate tangent space TxS exists for H k-
almost every point x of a k-rectifiable set S. See [36] (section 5.4) or
[24] (section 3.2) for the proof.

1.1.3 Functions of bounded variation

Definition 1.1.10. Let U be an open subset of Rd.

• A function f ∈ L1(U) has bounded variation in U if

sup{∫
U
f divϕdx ∶ ϕ ∈ C 1

c (U ;Rd) with ∣ϕ∣ ≤ 1} <∞ . (1.1.5)

The space of functions of bounded variation is denoted by BV (U).
• A L d-measurable set S ⊂ Rd has finite perimeter in U if 1S ∈ BV (U).
• A function f ∈ L1

loc(U) has locally bounded variation in U if (1.1.5) holds
for any V ⊂⊂ U . The space of functions of locally bounded variation is
denoted by BVloc(U).

• A L d-measurable set S ⊂ Rd has locally finite perimeter in U if 1S ∈
BVloc(U).
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The following theorem states that a BV -function is essentially a function
whose weak first partial derivatives are Radon measures. The proof is based
on Riesz Representation Theorem 1.1.4 (see, for instance, [21]).

Theorem 1.1.11. If f ∈ BVloc(U), then there exist a Radon measure µ on
U and a µ-measurable function g ∶ U → Rd such that ∣g(x)∣ = 1 for µ-a.e. x
and

∫
U
f divϕdx = −∫

U
ϕ ⋅ g dµ ∀ϕ ∈ C 1

c (U ;Rd).
We will call the measure µ above total variation of f (denoted by ∥Df∥)

and we will often denote by Df the measure g∥Df∥. Similarly, if f = 1S

for some locally finite perimeter set S, we will denote by ∥∂S∥ (perimeter
measure) its total variation and by νS ∶= −g the outward unit normal2. The
space BV (U) is naturally endowed with the norm

∥f∥BV (U) ∶= ∥f∥L1(U) + ∥Df∥(U) .
Among the properties enjoyed by BV -functions, we recall the lower semi-

continuity of the total variation and the sequential compactness of any boun-
ded subset of the space.

Theorem 1.1.12 (Lower semicontinuity of the total variation). If fj ∈
BV (U) and fj → f in L1

loc(U), then
∥Df∥(U) ≤ lim inf

j→∞
∥Dfj∥(U).

Theorem 1.1.13 (Compactness for BV -functions). Let U be an open, boun-
ded subset of Rd. If (fj)j≥1 is a bounded sequence in BV (U), i.e.

sup
j≥1
∥fj∥BV (U) <∞

then there exist a subsequence (fjh)h≥1 and a function f ∈ BV (U) such that

fjh
h→∞
Ð→ f in L1(U) .

Since a bounded variation function is an L1-function, it is not immediate
to define its restriction to a lower dimensional set. The following theorem
extend the usual notion of trace to BV functions.

2νS is called outward unit normal because, of course, in the smooth cases, νS coincides
with the unit normal of S, with the outward orientation.
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Theorem 1.1.14. Let U be an open, bounded subset of Rd with Lipschitz
boundary ∂U and outer unit normal3 ν. There exists a bounded linear map-
ping

T ∶ BV (U)→ L1(∂U)
such that

∫
U
f divϕdx = −∫

U
ϕ ⋅ d[Df] +∫

∂U
ϕ ⋅ νTf dH d−1

for every ϕ ∈ C 1(Rd;Rd).
Definition 1.1.15. The function Tf of Theorem 1.1.14 is called the trace
of f on ∂U and we will denote it simply by trace(f).

3The outer unit normal of ∂U exists at H
d−1-a.e. point thanks to Rademacher’s

Theorem.

17



1.2 An overview on currents

1.2.1 Differential forms and Stokes’s Theorem

Consider a real vector space V with finite dimension d and its dual space V ∗,
whose elements we will call covectors . The pairing of a covector w ∈ V ∗ and
a vector v ∈ V will be denoted by either ⟨w; v⟩ or w ⋅ v, when it is clear we
are dealing with the standard Euclidean product in Rd.

Definition 1.2.1. A k-covector on V is a multilinear map

F ∶ V × . . . × V´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k times

→ R ,

the space of k-covectors is denoted by T k(V ). An l-vector on V ∗ is a multi-
linear map

G ∶ V ∗ × . . . × V ∗´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
l times

→ R ,

the space of l-vectors is denoted by Tl(V ). It is also possible to consider
mixed vectors in the space T k

l (V ), in this case

H ∶ V × . . . × V´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k times

×V ∗ × . . . × V ∗´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
l times

→ R .

Remark 1.2.2. Trivially T 0(V ) = R, moreover T 1(V ) ≅ V ∗ and T1(V ) ≅
V ∗∗ ≅ V . Since usually we will be considering Rd as our ambient space, we
will often drop the distinction between the original vector space, its dual
space and the space of 1-covectors on Rd.

Definition 1.2.3. If F ∈ T k
l (V ) and G ∈ T p

q (V ), then F ⊗ G ∈ T k+p
l+q (V ),

evaluated in (v1, . . . , vk+p, w1, . . . , wl+q), is defined as

F (v1, . . . , vk, w1, . . . , wl)G(vk+1, . . . , vk+p, wl+1, . . . , wl+q) .
If (e1, . . . ,ed) is a basis for V and (φ1, . . . , φd) is the corresponding basis

for V ∗ (that is, ⟨φi;ej⟩ = δij), then a basis for T k
l (V ) is given by

ei1 ⊗ . . .⊗ eik ⊗ φj1 ⊗ . . .⊗ φjl

with each index varying in {1, . . . , d}.
18



Definition 1.2.4. A k-covector F ∈ T k(V ) is alternating if, for every choice
of v1, . . . , vk ∈ V and for every permutation σ of the set of indices {1, . . . , k},

F (vσ(1), . . . , vσ(k)) = sgn(σ)F (v1, . . . , vk) .
The vector space of alternating k-covectors is denoted by Λk(V ). The a-
nalogous definition applies to l-vectors; the space of alternating l-vectors is
denoted by Λl(V ).

When there is no room for misunderstatements, we will omit the word
“alternating”, calling k-covectors and l-vectors alternating k-covectors and
alternating l-vectors, respectively.

Definition 1.2.5. For alternating covectors (and vectors) we define the ex-
terior product ∧ ∶ Λk(V ) × Λl(V ) → Λk+l(V ) as the projection of the tensor
product ⊗ to the space of alternating covectors (and vectors).

The exterior product is a bilinear, associative and alternating map . If
w1, . . . , wk ∈ Λ1(V ), then

w1 ∧ . . . ∧wk(v1, . . . , vk) = det(⟨wi; vj⟩) .
Definition 1.2.6. Given a k-covector v ∈ Λk(V ) and an l-vector w ∈ Λl(V ),
with k ≥ l, the interior product is defined as

⟨w ⌟ v; ŵ⟩ ∶= ⟨v; ŵ ∧w⟩ ∀ ŵ ∈ Λk−l(V ) .
Viceversa, if k ≤ l, we can define

⟨v̂;w ⌞ v⟩ ∶= ⟨v ∧ v̂;w⟩ ∀ v̂ ∈ Λl−k(V ) .
Remark 1.2.7. On a d-dimensional manifold M , the same linear alge-
braic definitions are possible: simply T k

l M ∶= ∐p∈M T k
l (TpM) and Λk(M) ∶=

∐p∈M Λk(TpM). Possibly, we will change the notation for the standard basis,
that is

TpM = span(∂1, . . . , ∂d), TpM∗ = span(dx1, . . . ,dxd) .
In the case M = Rd, we keep the basis (dx1, . . . ,dxd) for the dual space.

Proposition 1.2.8. A basis for Λl(Rd) is given by

{ei1 ∧ . . . ∧ eil ∶ 1 ≤ i1 < . . . < il ≤ d} .
Analogously, a basis for the vector space Λk(M) is given by

{dxi1 ∧ . . .dxik ∶ 1 ≤ i1 < . . . < ik ≤ d} .
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For every positive integer k ≤ d, we will denote by I(d, k) the set of multi-
indices i = (i1, . . . , ik), with 1 ≤ i1 < . . . < ik ≤ d. Associate with every index
i ∈ I(d, k) we will often use the formal expression

dxi = dxi1 ∧ . . . ∧ dxik .
Once we fixed a basis, there is canonical way to identify Λl ≅ Λd−l and

Λk ≅ Λd−k.

Definition 1.2.9. The Hodge star operator Dl ∶ Λl(Rd) → Λd−l(Rd) is the
isomorphism associating

ξ ↦ ξ ⌟ dx1 ∧ . . . ∧ dxd .

Similarly, the canonical isomorphism Dk ∶ Λk(Rd)→ Λd−k(Rd) associates
ω ↦ e1 ∧ . . . ∧ ed ⌞ ω .

Remark 1.2.10. Let us notice that Dl is the unique linear map such that

Dlei ∶= (−1)σi⋀
j∉i

dxj , (1.2.1)

for every i ∈ I(d, l), where the exponent σi is defined as

σi =
l∑

h=1
((d − l) − (ih − h)) .

Therefore (Dlei) ∧ dxi = dx1 ∧ . . . ∧ dxd ∀ i ∈ I(d, l) .
Dually

D
kdxi ∶= (−1)σ′i⋀

j∉i
ej ,

for every i ∈ I(d, k), with
σ′i ∶=

k∑
h=1
(ih − h) .

Moreover Dl and Dd−l are inverse to each other.
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Definition 1.2.11. An l-vector v is called simple if there exist v1, . . . , vl ∈ V
such that

v = v1 ∧ . . . ∧ vl .
Analogously, a k-covector w is called simple if there exist w1, . . . , wk ∈ V ∗
such that

w = w1 ∧ . . . ∧wk .

Remark 1.2.12. In general, k-covectors (and l-vectors, as well) are not
simple: for example, the 2-vector

v ∶= e1 ∧ e2 + e3 ∧ e4 ∈ Λ2(R4)
is not. If it were simple, then there should be v1, v2 ∈ R4 such that v = v1∧v2.
But then v∧v = (v1∧v2)∧(v1∧v2) = 0, on the contrary, an easy computation
shows that v ∧ v = 2(e1 ∧ e2 ∧ e3 ∧ e4) ≠ 0.
Remark 1.2.13. Simple unit vectors are the correct formalism to represent
homogeneous k-dimensional oriented planes4. In fact, it turns out that the
simple vector v = v1∧. . .∧vk is null if and only if the vi are linearly dependent.
Moreover if Span{v′1, . . . , v′k} = Span{v1, . . . , vk}, then v′1 ∧ . . . ∧ v

′
k = λ(v1 ∧

. . . ∧ vk) for some λ ∈ R.
Definition 1.2.14. In addition to the Euclidean norm ∣ ⋅ ∣, on Λk(Rd) and
Λk(Rd) we are going to consider the mass norm ∥ ⋅ ∥ on k-vectors and the
comass norm ∥ ⋅ ∥∗ on k-covectors defined as follows:

∥w∥∗ ∶= sup{∣⟨w; v⟩∣ ∶ v is a simple k − vector with ∣v∣ = 1} ,
∥v∥ ∶= sup{∣⟨w; v⟩∣ ∶ ∥w∥∗ = 1} .

Remark 1.2.15. From the definition above, it is clear that, if a k-vector v
is simple, then the Euclidean norm ∣v∣ and the mass norm ∥v∥ coincide.
Definition 1.2.16. A differential k-form ω on Rd is a k-covectorfield, that
is a map

ω ∶ Rd → Λk(Rd) .
4We will call homogeneous or linear k-plane a k-dimensional linear subspace of Rd and,

when V is a linear k-plane and x ∈ Rd, the set x + V will be called an affine k-plane. We
will often use simply the word “k-plane”, when there is no ambiguity.
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Using the standard basis of Λk(Rd), we can write ω as

ω(x) = ∑
i∈I(d,k)

ωi(x)dxi ,
where the coordinates ωi are real valued functions on Rd. We will say that
a differential k-form has a certain regularity, when the coordinate functions
have that regularity. As usual, the support of a differential k-form ω is defined
as the closure of the set {x ∈ Rd ∶ ω(x) ≠ 0} and we will denote it as supp(ω).
Definition 1.2.17. The exterior derivative of a differential k-form ω of class
C 1 is the differential (k + 1)-form:

dω(x) = ∑
i∈I(d,k)

dωi ∧ dxi,

where

dωi(x) = d∑
j=1

∂ωi

∂xj
(x)dxj .

Definition 1.2.18. A k-form ω is said to be closed if dω = 0. Moreover, if
there exists a (k − 1)-form ψ such that dψ = ω, then ω is an exact k-form.

Remark 1.2.19. One can check, by means of a simple computation, that
d2 ≡ 0. Since d2 ≡ 0, an exact form is always closed.

Definition 1.2.20. Given a k-form ω ∈ Λk(Rd), one can always define the
differential Dω ∈ Λ1(Rd)⊗Λk(Rd) as

Dω ∶= d∑
j=1
∑

i∈I(d,k)

∂ωi

∂xj
(x)dxj ⊗ dxi .

Analogously, given an l-vectorfield ξ ∈ Λl(Rd), we defineDξ ∈ Λl(Rd)⊗Λ1(Rd)
as

Dξ ∶= d∑
j=1
∑

i∈I(d,l)

∂ξi

∂xj
(x)ei ⊗ dxj .

Remark 1.2.21. Given a k-form ω, its exterior derivative dω is the image
of Dω under the linear map induced by the exterior multiplication

Λ1(Rd)⊗Λk(Rd) ∧
Ð→ Λk+1(Rd) .

This is precisely the meaning of Definition 1.2.17.
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Definition 1.2.22. Given an l-vectorfield ξ ∶ Rd → Λl(Rd), we define divξ as
the image of Dξ(x) under the linear map induced by interior multiplication

Λl(Rd)⊗Λ1(Rd) ⌞
Ð→ Λl−1(Rd) .

This means

divξ = d∑
j=1

∂ξ

∂xj
⌞ dxj .

Remark 1.2.23. We suggest Section 4.1.6 of [24] for a more detailed de-
scription of Definition 1.2.22. Nevertheless, it will be useful for coming com-
putations to see how Definition 1.2.22 works in coordinates. Assume the
l-vectorfield ξ ∈ Λl(Rd) is written as

ξ(x) = ∑
i∈I(d,l)

ξi(x)ei ,
thus

divξ(x) = ∑
i∈I(d,l)

d∑
j=1

∂ξi

∂xj
(x)ei ⌞ dxj = ∑

i∈I(d,l)

l∑
h=1
(−1)h−1 ∂ξi

∂xih
(x)eı̂h , (1.2.2)

where eı̂h is a contraction of the (l − 1)-vector
eı̂h ∶= ei1 ∧ . . . ∧ eih−1 ∧ eih+1 ∧ . . . ∧ eil .

Notice that, if l = 1, then (1.2.2) coincides with the usual definition of the
divergence.

Proposition 1.2.24. Consider a smooth l-vectorfield ξ ∶ Rd → Λl(Rd), then
d (Dlξ) = (−1)d−lDl−1(divξ) . (1.2.3)

Proof. Thanks to (1.2.2), the right-hand side of (1.2.3) becomes

(−1)d−lDl−1 (divξ) = ∑
i∈I(d,l)

l∑
h=1
(−1)d−l+h−1 ∂ξi

∂xih
Dl−1(eı̂h) ;

on the opposite side we can compute

d (Dlξ) = ∑
i∈I(d,l)

l∑
h=1

∂ξi

∂xih
dxih ∧Dl(ei)
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and the thesis is equivalent to prove that

dxih ∧Dl(ei) = (−1)d−l+h−1Dl−1(eı̂h) , (1.2.4)

for every i ∈ I(d, l) and for every h = 1, . . . , l. Clearly, it is just a matter of
sign, indeed

dxih ∧Dl(ei) = (−1)αi ⋀
j∉(i∖h)

dxj

Dl−1(eı̂h) = (−1)βi ⋀
j∉(i∖h)

dxj .

Thanks to (1.2.1), we get

αi = σi + (ih − h) ,
while

βi = σı̂h =
h−1∑
s=1
((d − l + 1) − (is − s)) + l∑

s=h+1
((d − l) − (is − s))

= σi + (ih − h) − (d − l) + (h − 1) .
This proves the claim in (1.2.4).

Remark 1.2.25. As it happens for usual differentiation, there are useful
formulas for the exterior derivative and for the divergence of a product. The
most popular one is the following

d (ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)k1ω1 ∧ dω2 , (1.2.5)

for every pair of forms ω1 ∈ Λk1(Rd) and ω2 ∈ Λk2(Rd). Given a vectorfield
ξ ∈ Λl(Rd) and a form ω ∈ Λk(Rd), with k > l, we have that

d(ξ ⌟ ω) = ξ ⌟ dω + (−1)k−ldivξ ⌟ ω . (1.2.6)

Moreover, consider a pair of vectorfield ξ1 ∈ Λl1(Rd) and ξ2 ∈ Λl2(Rd), thus
div(ξ1 ∧ ξ2) = divξ1 ∧ ξ2 + (−1)l1ξ1 ∧ divξ2 .

This formula can be easily deduced from the analogous property of the ex-
terior derivative stated in (1.2.5), through (1.2.3): indeed

Dl1+l2−1(div(ξ1 ∧ ξ2)) = (−1)d−(l1+l2)d (Dl1+l2(ξ1 ∧ ξ2)) ,
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but, by definition,

Dl1+l2(ξ1 ∧ ξ2) = ξ1 ⌟Dl2(ξ2) = −ξ2 ⌟Dl1(ξ1) ,
so

Dl1+l2−1(div(ξ1 ∧ ξ2)) = divξ1 ⌟Dl2ξ2 + (−1)l1ξ1 ⌟Dl2−1(divξ2) (1.2.7)

= Dl1+l2−1(divξ1 ∧ ξ2) + (−1)l1Dl1+l2−1(ξ1 ∧ divξ2) ,
where (1.2.7) is motivated by (1.2.6).

Remark 1.2.13 establishes a one-to-one correspondence between simple
k-vectors with unit Euclidean norm and oriented k-dimensional vector sub-
spaces of Rd. This fact motivates the following definition.

Definition 1.2.26. An orientation of a k-dimensional surface S of class C 1

is a continuous map τS ∶ S → Λk(Rd) such that τS(x) is a simple unit k-vector
spanning TxS for every x ∈ S. If there exists an orientation of S, then there
is a canonical orientation for the boundary of S, namely the one satisfying

τS(x) = ν(x) ∧ τ∂S(x) for every x ∈ ∂S , (1.2.8)

where ν is the outer normal to ∂S.

Definition 1.2.27. We define the integral of a differential k-form ω on an
oriented k-surface S as follows:

∫
S
ω = ∫

S
⟨ω(x); τS(x)⟩dH

k(x) .
Theorem 1.2.28 (Stokes’s Theorem). For every oriented surface S of di-
mension k and for every (k − 1)-form of class at least C 1, the following
relation holds:

∫
∂S
ω = ∫

S
dω , (1.2.9)

where the orientation of ∂S has been clarified in (1.2.8).

See [36] or [38] or any other textbook about the integration on manifolds
for the proof.
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Remark 1.2.29. Stokes’s Theorem 1.2.28 is a generalization of the Funda-
mental Theorem of Calculus and it summarizes, with the notation of differ-
ential forms, the Gauss-Green Theorem (for ω ∈ Λ1(R2)), the Curl Theorem
(for ω ∈ Λ1(R3)) and the Divergence Theorem, in fact, if ξ ∈ Λ1(Rd), then

∫
S
⟨ν; ξ⟩ = ∫

S
D1ξ = ∫

∂S
d(D1ξ) = (−1)d−1∫

∂S
divξ

thanks to Proposition 1.2.3.

Finally we define the pull-back of a differential k-form on Rd′ under a
smooth map f ∶ Rd → Rd′ .

Definition 1.2.30. For any simple k-vector v = v1 ∧ . . . ∧ vk ∈ Λk(Rd) and a
point x ∈ Rd, define the push-forward of v as the simple k-vector

df♯(v) =Df(x)v1 ∧ . . . ∧Df(x)vk .
This map is extended to all k-vectors by linearity. Then, for any differential
k-form ω on Rd′ , define its pull-back f ♯ω on Rd by

⟨f ♯ω(x); v⟩ = ⟨ω(f(x)); df♯(v)⟩ ∀x ∈ Rd ∀ v ∈ Λk(Rd) . (1.2.10)

We conclude this subsection with a clarification on the topology of the
space of smooth compactly supported differential k-forms on U , denoted by
Dk(U), where U ⊂ Rd is an open subset.

Definition 1.2.31. Consider a sequence (ω(n))n≥1 of smooth compactly sup-
ported k-forms on U . In coordinates we will write

ω(n)(x) = ∑
i∈I(d,k)

ω
(n)
i
(x)dxi

for every n ≥ 1. We have a limit

ω(n) Ð→ ω as n→ +∞

if the following conditions are satisfied for a fixed compact subset K ⊂ U :
(i) suppω

(n)
i
⊂K for any i ∈ I(d, k) and for any n ≥ 1;

(ii) Djω
(n)
i
Ð→ Djωi uniformly in K for every i ∈ I(d, k) and for every

choice of the multi-index j.

The topology induced on Dk(U) by the convergence in Definition 1.2.31
is locally convex and follows the definition of the topology on the space D(U)
of smooth compactly supported functions.
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1.2.2 Currents

Currents are the right way to generalize submanifolds, providing compact-
ness properties for some bounded subsets of currents and a “good behavior”
in limit processes, namely lower semicountinuity of the mass, which is the
concept that generalizes the area of a submanifold. At first, they appeared
in [50] and [20], but the theory was fully developed in the sixties with the
works of H. Federer and W. Fleming (see [26],[24]).

Definition 1.2.32. Let U ⊂ Rd be an open subset, the dual of the space of
k-forms Dk(U), endowed with the topology in Definition 1.2.31, is denoted
by Dk(U) and it is called the space of k-dimensional currents (or simply k-
currents). As usual Dk(U) is endowed with its weak∗ topology. In particular
we will say that a sequence of k-currents (Tn)n∈N converges to a k-current T ,

and we write Tn
∗
⇀ T , if they converge in the weak∗ topology, that is:

⟨Tn;ω⟩→ ⟨T ;ω⟩
for every ω ∈ Dk(U).

Notice that we will use both notations T (ω) and ⟨T ;ω⟩ for the action of
T ∈ Dk(U) on a test form ω ∈ Dk(U).
Remark 1.2.33. Since a smooth, compactly supported differential 0-form is
a function in the class C∞c (U), the space D0(U) of 0-currents coincides with
the space of distributions5 and the topology is the same, as well. Roughly
speaking, a k-current is a distribution carrying a higher dimensional geome-
trical structure.

Example 1.2.34. The simplest example of a k-current on Rd is the one
defined by integration of a L d-measurable map ξ ∶ U → Λk(Rd) with ∣ξ∣ ∈
L1(U). In fact, we can set

∀ω ∈ Dk(U), Tξ(ω) ∶= ∫
U
⟨ω(x); ξ(x)⟩dL d(x) .

Obviously the Lebesgue measure L d can be replaced by a measure µ. Thus,
it is also possible to define a k-current associated with an oriented k-dimen-
sional surface S of class C 1: we will denote such a current by [S]. If τ is
the tangent k-vector carrying the orientation of S, then

∀ω ∈ Dk(U), [S](ω) ∶= ∫
S
⟨ω(x); τ(x)⟩dH k(x) .

5See [9] for an o verview on distributions.
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This motivates some authors to use the terminology “generalized surfaces”
when they introduce currents.

By duality, the operations for differential forms in definitions 1.2.5 and
1.2.6 have their counterpart for currents. If ξ ∈ C∞(U ; Λh(Rd)), then

∀Φ ∈ Dk+h(U), ⟨T ∧ ξ;Φ⟩ ∶= ⟨T ; ξ ⌟Φ⟩ .
Analogously, if T ∈ Dk(U) and ψ ∈ C∞(Rd,Λh(Rd)), with h ≤ k, then

∀ϕ ∈ Dk−h(U), ⟨T ⌞ ψ;ϕ⟩ ∶= ⟨T ;ψ ∧ϕ⟩ .
As for measures, if A ⊂ Rd and T ∈ Dk(U), by T ⌞A we mean T ⌞1A ∈ Dk(U).

Moreover, if f ∶ U ⊂ Rd → U ′ ⊂ Rd′ is a proper smooth map, then it
is possible to define the push-forward of a k-current T on U ⊂ Rd as the
k-current f♯T on Rd′ defined by

⟨f♯T ;ω⟩ = ⟨T ; f ♯ω⟩ ,
for any ω ∈ Dk(U ′).
Definition 1.2.35. The support of a k-current T in Dk(U), with U ⊂ Rd, is
the set

supp(T ) ∶= Rd ∖⋃{W ⊂ U, W open ∶ ω ∈ Dk(U), supp(ω) ⊂W ⇒ T (ω) = 0}.

Definition 1.2.36. The boundary ∂T of a k-current T is the (k−1)-current
defined by ⟨∂T ;ϕ⟩ = ⟨T ; dϕ⟩ ,
for every ϕ ∈ Dk−1(U).
Remark 1.2.37. The definition of boundary given in 1.2.36 is a natural one,
as the following facts suggest.

• It is immediate to see that ∂2T = 0, because d2ϕ = 0 for every ϕ ∈
Dk−2(U).

• By Stokes’s Theorem (see Theorem 1.2.28), Definition 1.2.36 agrees
with the usual definition of boundary if S is an oriented surface of class
C 1 and T = [S] (meaning that ∂[S] = [∂S]).
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• The boundary operator commutes with push-forward, in fact ∂(f♯T ) =
f♯(∂T ).

Definition 1.2.38. Given an open set V ⊂ U , the mass of a current T in V
is the quantity

MV (T ) = sup{⟨T ;ω⟩ ∶ ω ∈ Dk(V ), ∥ω(x)∥∗ ≤ 1 for every x} .
We recall that, by ∥ ⋅ ∥∗, we mean the comass norm of Definition 1.2.14.
When U = V , we just write M(T ).
Remark 1.2.39. If S is an oriented k-dimensional surface of class C 1 and[S] is the associated current, we have M([S]) =H k(S). Therefore the mass
can be considered a natural extension to k-currents of the notion of k-volume.

Remark 1.2.40. It is easy to show that the mass is lower semicontinuous
with respect to the weak∗ topology, i.e.

Tn
∗
⇀ T Ô⇒ MV (T ) ≤ lim inf

n→∞
MV (Tn) ,

for any sequence (Tn)n≥1 and for any open subset V ⊂ U .
Remark 1.2.41. In Definition 1.2.32 we endowed Dk(U) with a topology
which is stronger than the one induced by the comass norm

sup
x∈U
∥ω(x)∥∗ .

Therefore a current may have (even locally) infinite mass. As an example,
consider the 0-current T on R such that

T (ϕ) = ϕ′(x0) ∀ϕ ∈ D(U) ,
with x0 ∈ U . Concerning D ′(U), it turns out that a distribution has finite
mass if and only if it has order 0 (in the example above, the distribution has
order 1).

If a k-current T has locally finite mass, then, by means of Riesz Theorem
1.1.4, it can be represented by integration, as in Example 1.2.34. So there
exist a positive finite measure µT on Rd and a Borel measurable map τ ∶ Rd →

Λk(Rd) with ∥τ∥ = 1 µT -a.e., such that

⟨T ;ω⟩ = ∫
Rd
⟨ω(x); τ(x)⟩ dµT (x) ,
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for every ω ∈ Dk(Rd). The mass of T equals the mass6 of the measure µT ,
which we will often call total variation measure associated with T . Sometimes
µT is also denoted by ∥T ∥. Moreover the orientation τ is the Radon-Nikodym

derivative dT /d∥T ∥ (sometimes τ is also denoted by
Ð→
T ).

Definition 1.2.42. A k-current T ∈ Dk(U) is called normal if both T and
∂T have finite mass, i.e. M(T ) <∞ and M(∂T ) <∞. The space of normal
k-currents is denoted by Nk(U).
Remark 1.2.43. As we observed above, thanks to Riesz Theorem 1.1.4, a
normal current admits an integral representation for both the current itself
and its boundary.

Now we focus on rectifiable and integral currents, which are the kinds
of currents we are really interested in, we postpone to Subsection 1.2.3 the
missing definitions about special sets of currents.

Definition 1.2.44. Given a k-rectifiable set Σ, an orientation7 τ of the set
Σ and a real-valued function θ such that ∫Σ θ(x)dH k(x) < ∞, we define
T = ⟦Σ, τΣ, θ⟧ as

⟨T ;ω⟩ = ∫
Σ
⟨ω(x); τΣ(x)⟩ θ(x)dH k(x) . (1.2.11)

A k-current T is called rectifiable if T admits a representation as in (1.2.11).
The function θ is often called multiplicity of the current ⟦Σ, τ, θ⟧.

A rectifiable current whose multiplicity takes only integral values is called
an integer multiplicity rectifiable current . The abelian group8 of integer mul-
tiplicity rectifiable k-currents is denoted by Rk(U).

If both T and ∂T are integer multiplicity rectifiable currents, then T is
called an integral current and the corresponding space is denoted by Ik(U).

6Let us recall that we are considering Λk(R
d) endowed with the mass norm of Definition

1.2.14.
7An orientation τΣ of Σ is a Borel function such that, for every x ∈ Σ, τ(x) is a

simple unit k-vector spanning the approximate tangent space TxΣ. We recall that every
k-rectifiable set Σ admits a weak tangent field.

8The set of integer multiplicity rectifiable currents is not a real vector space. We will
denote by italic capital letters abelian groups and by blackboard bold (double struck)
letters real vector spaces, sticking to the notation in [24].
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Remark 1.2.45. If T is a rectifiable k-current with multiplicity θ ∈ L1(U ;R),
then we can compute its mass through the equality

M(T ) = ∫
Σ
∣θ(x)∣dH k(x) . (1.2.12)

Remark 1.2.46. An integer multiplicity rectifiable 0-current T in Rd admits
the following representation:

T = k∑
i=1
miδxi

,

where xi are points in Rd, mi ∈ Z and δxi
is the Dirac mass at xi. This means

that the action of T on a smooth compactly supported function ϕ ∶ Rd → R

is

⟨T ;ϕ⟩ = k∑
i=1
miϕ(xi) .

1.2.3 Polyhedral chains and approximation theorems

In the previous subsection, we introduced currents in a very abstract way, as
the elements of a dual space with a slightly complicated topology. After that,
we defined smaller subgroups of Dk(U) with better representation properties.
It is also possible to go through the theory of currents in the other way,
starting from the simplest objects (polyhedral chains of Definition 1.2.47)
and getting back the to whole abstract space by completion with respect to
a suitable norm (the flat norm in Definition 1.2.53). Following this outline,
we will complete the picture of the relevant subgroups of Dk(Rd) and the
ways they relate to each other, exploiting the Deformation Theorem 1.2.49
and Approximation Theorems 1.2.51 and 1.2.57.

Definition 1.2.47. We define Pk(Rd) ⊂ Dk(Rd) as the additive subgroup
generated by all k-dimensional oriented simplexes in Rd. The currents in
Pk(Rd) are called integral polyhedral chains .

The vector space generated by Pk(Rd) is the space of polyhedral chains
and it is denoted by Pk(Rd).
Remark 1.2.48. Connecting Definition 1.2.47 and Definition 1.2.44, a poly-
hedral current T ∈ Pk(Rd) is nothing but a rectifiable current of the form

T = n∑
i=1
⟦Si, τi, θi⟧ ,
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where Si is a k-dimensional simplex in Rd, τi is a constant orientation of Si

and θi is a constant multiplicity.

Theorem 1.2.49 (Deformation Theorem). Fix ε > 0 and consider the lattice
Ldk,ε with step ε and dimension k ≤ d. Consider a normal current T ∈ Nk(Rd).
Then we can write

T = P +R + ∂S , (1.2.13)

where

• P ∈ Pk(Rd) is not only a polyhedral k-chain with support in Ldk,ε, but it
is written as

P = ∑
F ∈Ld

k,ε

⟦F, τF , θF ⟧
with constant coefficients θF ∈ R. Moreover

M(P ) ≤ CM(T ) and M(∂P ) ≤ CM(∂T ) ;
• R ∈ Dk(Rd) has M(R) ≤ εCM(∂T );
• S ∈ Nk+1(Rd) has M(S) ≤ εCM(T ).

The constant C depends only on k and d. Moreover

supp∂P ∪ suppR ⊂ [supp∂T ]2ε√d

suppP ∪ suppS ⊂ [suppT ]2ε√d .

Finally, if T ∈ Rk(Rd) is an integer multiplicity rectifiable current, then so
are P and S. If ∂T ∈ Rk−1(Rd), then R ∈ Rk(Rd) and, if ∂T ∈ Pk−1(Rd),
then R ∈Pk(Rd).

See Chapter 7 of [36] for the proof of the Deformation Theorem 1.2.49
and for the proof of the following isoperimetric inequality, as well.

Theorem 1.2.50 (Isoperimetric Inequality). Consider a compactly suppor-
ted boundary Γ ∈ Rk−1(Rd), with k ≥ 2. Then there exists T ∈ Ik(Rd) such
that ∂T = Γ and

M(T )k−1 ≤ CM(Γ)k .
The constant C depends only on k, d.
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Among the consequences of the Deformation Theorem 1.2.49, we will
especially need some polyhedral approximation results. We list them here,
starting from the simplest one.

Theorem 1.2.51 (Weak Polyhedral Approximation Theorem). Consider a
normal current T ∈ Nk(Rd). Then there exist a sequence (εn)n≥1 of real
numbers with εn → 0 and a sequence (Pn)n≥1 of polyhedral chains of the form

Pn = ∑
Fn∈Ld

k,εn

⟦Fn, τFn
, θFn
⟧

with constant coefficients θFn
∈ R, such that

Pn
∗
⇀ T in U

and ∂Pn
∗
⇀ ∂T , too. Moreover, if T ∈ Rk(Rd), then we can choose every

polyhedral current Pn with integer multiplicities θFn
∈ Z.

The proof of this theorem can be found in [36] (Theorem 7.9.2).

Theorem 1.2.52 (Strong Polyhedral Approximation Theorem). Consider
an integral current T ∈ Ik(U), with U ⊂ Rd, and fix ε > 0. Then there exist
a bi-Lipschitz map f ∈ Lip(Rd;Rd) and an integral polyhedral chain P such
that

M(f♯T − P ) +M(f♯(∂T ) − ∂P ) ≤ ε (1.2.14)

and ∣∇f(x) − Id∣ + ∣f(x) − x∣ ≤ ε ∀x ∈ Rd . (1.2.15)

Moreover, f(x) = x whenever dist(x, suppT ) ≥ ε.
This theorem can be found in 4.2.20 of [24], but, since we will use it only

in the 1-dimensional case, we will prove it in 1.3.1 in the simpler case of
1-dimensional currents.

We interrupt the list of approximation theorems in order to introduce
another useful norm on the space of currents, the flat norm, whose essence
has been anticipated by the decomposition (1.2.13) in Deformation Theorem
1.2.49.

Definition 1.2.53. If T is a k-current, then its flat norm is

∥T ∥♭ ∶= inf{M(R)+M(S) ∶ T = R+∂S, with R ∈ Dk(Rd) and S ∈ Dk+1(Rd)} .
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Remark 1.2.54. Obviously ∥T ∥♭ ≤ M(T ), so the flat norm is weaker than
the mass. In a certain sense, the flat norm gives a more geometric notion
of distance between surfaces then the mass norm. For example consider the
1-current T = [I1]−[I2] in R2, where I1 and I2 are two parallel segments with
same orientation, same length l and ε is the (Hausdorff) distance between
them. Then the flat norm of T does not exceed lε, confirming the intuition
that the two segments are close together, while M(T ) = 2l, independently
from the Hausdorff distance ε.

The importance of the flat norm is due the fact that (at least in the
space of integral currents Ik(Rd)) it metrizes the weak∗ topology in the ball{M(T ) ≤ 1}. See Theorem 3.1.2 of [51] or Section 8.2 of [36] for the proof.

Theorem 1.2.55. Let (Tn)n≥1 be a sequence of integer multiplicity rectifiable
currents with

sup
n
(M(Tn) +M(∂Tn)) <∞ .

Then
Tn

∗
⇀ T ⇐⇒ ∥T − Tn∥♭ → 0 .

Definition 1.2.56. Finally, we define the subgroup of flat chains as

Fk(Rd) ∶= {T = R + ∂S ∶ R ∈Rk(Rd), S ∈Rk+1(Rd)} .
Moreover

Fk(Rd) ∶= Pk(Rd)♭ . (1.2.16)

Copying the scheme from [24] 4.1.24, we resume the spaces we introduced
with

Pk(Rd) ⊂ Ik(Rd) ⊂ Rk(Rd) ⊂ Fk(Rd)
∩ ∩ ∩ ∩

Pk(Rd) ⊂ Nk(Rd) ⊂ Fk(Rd) ∩ {M(T ) <∞} ⊂ Fk(Rd) = Pk(Rd)♭ .
We conclude this subsection with an approximation theorem which sum-

marizes the role played by polyhedral chains at the base of the theory of
currents, thanks to the flat norm.

Theorem 1.2.57 (Polyhedral Approximation Theorem). Let T be a normal
k-current in Rd and ε > 0. Then there exists a polyhedral k-current P such
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that ∥T −P ∥♭ ≤ ε and M(P )+M(∂P ) ≤M(T )+M(∂T )+ ε. Moreover, if ∂T
is polyhedral it is possible to take ∂P = ∂T and if T is integral it is possible
to take P integral such that

inf {M(R) +M(S) ∶ T − P = R + ∂S, R ∈Rk(Rd) and S ∈Rk+1(Rd)} ≤ ε .
The first half of the theorem is stated and proved in [24], 4.2.24: it is a

subtle consequence of Deformation Theorem 1.2.49. The second half of the
theorem, concerning the approximation of integral currents, proceeds from
Strong Polyhedral Approximation Theorem 1.2.52 (see [24], 4.2.21).
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1.2.4 Compactness results for currents

We conclude this section of recap on currents with some essential results of
compactness.

The compactness is an immediate consequence of the compactness the-
orem for Radon measures together with the fact that, given a sequence of

normal currents (Tn)n≥1 in Nk(U), if Tn ∗
⇀ T , then ∂Tn

∗
⇀ ∂T .

Theorem 1.2.58 (Compactness theorem for normal currents). Let (Tn)n≥1
be a sequence of normal k-currents on U ⊂ Rd such that MV (Tn)+MV (∂Tn)
is uniformly bounded for every open subset V ⊂⊂ U . Then there exists a
subsequence (Tnj

)j≥1 weakly converging to a normal k-current.

The main theorem for integral currents is the Closure Theorem. Actually
the theorem is stated and exploited as a compactness result for Ik(U), but let
us point out that, given a sequence of integral currents (Tn)n≥1, the existence
of a converging subsequence (Tnj

)
j≥1 and a limit current T ∈ Fk(U) is a

consequence of Theorem 1.2.58. Thus the nontrivial point is that the limit
T is an integral current and this is why the following result is known with
the name of Closure Theorem.

Theorem 1.2.59 (Closure Theorem). Let (Tn)n≥1 be a sequence of integral
k-currents on U ⊂ Rd such that MV (Tn)+MV (∂Tn) is uniformly bounded for
any open subset V ⊂⊂ U . Then there exist an integral k-current T ∈ Ik(U)
and a subsequence (Tnj

)j≥1 such that

Tnj

∗
⇀ T as j →∞ .

This theorem was firstly proved in [26] by means of the structure theory
for sets of finite Hausdorff measure. Among the alternative proofs which
came after, let us mention [53] and [5], the latter introducing the slicing
technique. The same proof by slicing can be found in [36], Section 8.1.

As a consequence of the Closure Theorem 1.2.59, plus the Weak Poly-
hedral Approximation Theorem 1.2.51, we are able to prove that Rk(U) ∩
Nk(U) = Ik(U), that is, an integer multiplicity rectifiable current turns out
to be an integral current, when its boundary has finite mass. See also Theo-
rem 7.9.3 in [36].

Theorem 1.2.60 (Boundary rectifiability Theorem). Let T be an integer
multiplicity rectifiable current with M(∂T ) < ∞. Then ∂T is an integer
multiplicity rectifiable current.
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Historically, integral currents were introduced by Federer and Fleming as
a framework for the Plateau’s problem, that is, find the k-dimensional area-
minimizing surface spanning a prescribed boundary. Thus currents are meant
as a generalization of surfaces and the Closure Theorem above guarantees the
existence of a mass-minimizing solution.

Theorem 1.2.61. Let Γ ⊂ U be the boundary of an integral k-current in
U ⊂ Rd, with 1 ≤ k ≤ d. Then there exists a current minimizing the mass
among all integral currents T ∈Ik(U) satisfying ∂T = Γ.
Proof. We apply the direct method of Calculus of Variations to integral k-
currents. Indeed, let m be the infimum of M(T ) among integral k-currents
with ∂T = Γ and let (Tn)n≥1 be a minimizing sequence, that is limn→∞ (Tn) =
m. Since M(Tn) is bounded and M(∂Tn) is constant, we can apply Theorem
1.2.59 to the sequence9 (Tn)n≥1 and find a subsequence converging to an
integral current T . By the continuity of the boundary operator we still have
∂T = Γ and by lower semicontinuity of the mass (see Remark 1.2.40) we have
M(T ) ≤m.

It is worth mentioning that, in [30], the Plateau’s problem for hypersur-
faces is solved without the Closure Theorem above, using a result of decom-
position of normal currents, instead. We will come back to the subject of
decomposition of normal currents in Chapter 2.

9Actually, we could state this theorem with Γ being the boundary of an integer mul-
tiplicity rectifiable k-current S. Indeed, we could apply Theorem 1.2.59 to the sequence
Tn − S, which has no boundary.
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1.3 Some results for 1-currents

We have no choice but to notice that 1-dimensional currents are nicer than
k-dimensional currents, with k ≥ 2. In some cases it is just a matter of sim-
plicity: as we underline in Theorem 1.3.2, 1-dimensional rectifiable currents
have a handy structure, and some statements are easier to prove. But there
are also some facts, holding for 1-currents, which are no longer valid in higher
dimension, as we will see in Subsection 1.3.2. The aim of this Section is to
establish these special results for 1-currents only. Their usefulness will be
clear in Chapter 3.

1.3.1 The structure of 1-currents

We start with the proof of the Strong Polyhedral Approximation Theorem
1.2.52: having at least the 1-dimensional case proof is important for the
possible extension of the result to 1-dimensional currents with coefficients in
a group. We formulate this density result on Rd, the local version can be
easily deduced using an extension lemma. It will be important that a current
T without boundary can be approximated by polygonal currents without
boundary, so we insert the possibility of the boundary being preserved in
the statement, with (1.3.2). This possibility holds true only in dimension
1, because of the peculiar structure of rectifiable 0-currents (see Example
1.2.46).

Theorem 1.3.1 (1d Strong Polyhedral Approximation Theorem). Consider
a 1-current T ∈ I1(Rd) and fix ε > 0. Then there exist a bi-Lipschitz map
f ∈ Lip(Rd;Rd) and an integral polyhedral 1-current P ∈P1(Rd) such that

M(f♯T − P ) ≤ ε (1.3.1)

and
∂P = ∂T . (1.3.2)

Moreover ∣∇f(x) − Id∣ + ∣f(x) − x∣ ≤ ε ∀x ∈ Rd , (1.3.3)

and f(x) = x whenever dist(x, suppT ) ≥ ε.
The proof follows closely the one in [24] 4.2.19.
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Proof. By standard arguments on rectifiable sets, we are able to cover Rd by
a countable family F of C 1-curves, up to a ∥T ∥-null set. We denote by λ a
real parameter in the interval (0,1), which will be chosen at the end of the
proof.

Step 1: We fix a point x0 ∈ γ ∈ F such that x0 ∉ supp ∂T and that, for some
θ0 ∈ Z ∖ {0},

lim
r→0

∥T − S∥(Qτ
r(x0))

r
= 0 , (1.3.4)

where S is the current defined by ⟨S,ϕ⟩ = ∫γ θ0⟨ϕ(x), τ(x)⟩dH 1(x), and
Qτ

r(x0) is the cube of side 2r, center in x0 and one side parallel to the vector
τ , which is the tangent to γ in x0.

Without loss of generality we can assume x0 = 0 and Tan0γ = Re1, where e1
is the first unit vector of the canonical basis of Rd. We denote by Qr the
cube of center 0, side 2r and sides parallel to the coordinate directions. Let
ε′ > 0 be a small parameter chosen later. For r sufficiently small, we have
that Qr ∩ supp ∂T = ∅ and that the set γ ∩Qr is the graph of a C 1 function
g ∶ (−r, r) → Rd−1 with g(0) = 0 and ∥g∥C 1 < ε′. The function g̃ ∶ (−r, r) → Rd

defined as g̃(x1) = (0, g(x1)) obeys
∥Dg̃∥L∞((−r,r)) < ε′ and ∥g̃∥L∞((−r,r)) < ε′r .

We define the function f ∈ C 1(Rd;Rd) as
f(x) = x − ψ(x)g̃(x1) ,

where ψ ∈ C∞c (Qr; [0,1]) obeys ψ ≡ 1 on Qλr and

∥∇ψ∥L∞ ≤ 2

(1 − λ)r .
For 2ε′ < 1−λ the function f is bi-Lipschitz and maps γ∩Qλr into the segment(Re1)∩Qλr. Moreover for sufficiently small ε′ (on a scale set by λ and ε) one
has

∣f(x) − x∣ + ∣∇f(x) − Id∣ ≤ ∣ψ(x)g̃(x1)∣ + ∣ψ(x)∇g̃(x1)⊗ e1∣
+ ∣g̃(x1)⊗∇ψ(x)∣
< ε′ (r + 1 + 2

(1 − λ)) < ε (1.3.5)
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Figure 1.1: The action of f on T in the proof of Theorem 1.3.1. The inner
cube is Qλr, the outer one Qr.

and ∥f−1∥C 1 ≤ 1 + ε . (1.3.6)

Step 2: We let P be the polyhedral current defined by

⟨P,ϕ⟩ = θ0∫(−λr,λr)e1⟨ϕ,e1⟩ dH 1 .

With S as in (1.3.4), by definition of P and f we have

M(S ⌞Qr − f
−1
♯ P ) = ∣θ0∣H 1 (γ ∩ (Qr ∖Qλr)) .

Since γ is a C 1 curve,

lim
r→0

H 1(γ ∩ (Qr ∖Qλr))
2r

= (1 − λ) .
Using a triangle inequality and (1.3.5) we obtain

M (f♯ (T ⌞Qr) − P ) ≤M (f♯((T − S) ⌞Qr)) +M (f♯(S ⌞Qr − f
−1
♯ P ))

≤ (1 + ε)M ((T − S) ⌞Qr) + (1 + ε)M (S ⌞Qr − f
−1
♯ P)

and, recalling (1.3.4),

lim sup
r→0

M (f♯ (T ⌞Qr) − P )
2r

≤ (1 + ε)(1 − λ)∣θ0∣ .
Since, again by (1.3.4), ∥T ∥ (Qr) /(2r)→ ∣θ0∣, for r sufficiently small

M (f♯ (T ⌞Qr) − P ) < 2(1 − λ)∥T ∥ (Qr) . (1.3.7)
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Step 3: By [24, Th. 4.3.17] for H 1-almost every point in supp T ∖ supp ∂T
there is a θ0 with the property (1.3.4), and therefore an rx ∈ (0, ε/√d) satis-
fying both

Q
τ(x)
rx (x) ∩ supp ∂T = ∅

and the property (1.3.7) with Qr replaced by Q
τ(x)
rx (x). Using Morse’s cover-

ing Theorem, we cover ∥T ∥-almost all the set Rd with a countable family of
disjoint cubes Qτn

rn(xn) with τn = τ(xn) and sides 2rn, with rn < rxn
; each of

these cubes has positive distance from supp ∂T . Then we have a polyhedral
1-current Pn with support in Qτn

rn(xn) and a bi-Lipschitz map fn ∶ Rd → Rd

satisfying (1.3.5), (1.3.6) and (1.3.7).

We choose a finite subfamily such that

N(λ)∑
n=1
∥T ∥(Qτn

rn
(xn)) ≥ λM(T ). (1.3.8)

and define
f = f1 ○ . . . ○ fN(λ) .

Since fn(x) = x outside Qτn
rn(xn) for all n and the cubes are disjoint the

condition (1.3.5) still holds and f(x) = x outside an ε-neighbourhood of
suppT . Moreover, we have

∂f♯T = f♯∂T = ∂T ,
because f is the identity map in a neighbourhood of ∂T .

We define the polyhedral current

P =
N(λ)∑
n=1

Pn ,

write

f♯T − P =
N(λ)∑
n=1
(f♯ (T ⌞Qτn

rn
(xn)) − Pn) + f♯(T ⌞ ∞⋃

n>N(λ)
Qτn

rn
(xn))

and, recalling (1.3.7) and (1.3.8), conclude that

M(f♯T − P ) < 2(1 − λ)M(T ) + (1 − λ)M(T ) = 3(1 − λ)M(T ) . (1.3.9)
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Step 4: We did not obtain the thesis yet: indeed P is polyhedral, but in
general ∂P does not coincide with ∂T . Notice that the current f♯T − P has
multiplicity in Z and hence it is an integral 1-current. We can apply the
Deformation Theorem in [24, Th. 4.2.9] to f♯T − P in order to represent it
as

f♯T − P = P̂ +R + ∂S .

Here P̂ ,R are polyhedral 1-currents satisfying

M(P̂ ) ≤ ĉ(M(f♯T − P ) + ε̃M(∂(f♯T − P )))
and

M(R) ≤ ε̃cRM (∂(f♯T − P)),
for some ε̃ arbitrarily small, where ĉ, cR > 0 are geometric constants.

Then P = P + P̂ +R is a polyhedral 1-current with ∂P = ∂f♯T = ∂T and

M(f♯T − P ) ≤ M(f♯T − P ) +M(P − P )
≤ 3(1 − λ)M(T ) +M(P̂ +R)
≤ 3(1 + ĉ)(1 − λ)M(T ) + ε̃(ĉ + cR)M (∂(f♯T − P )) .

We first choose a λ ∈ (0,1) such that the first term is less than 1
2ε, then ε̃

such that the second term is also less than 1
2ε, and conclude.

As a consequence of the Theorem 1.3.1 we easily recover Theorem 1.2.57:
any current T ∈ I1(Rd) can be approximated by sequences of polyhedral
currents10 (Pn)n≥1 in the weak∗ topology for currents. Moreover M(Pn) →
M(T ) and, if T is closed, then we can choose a sequence with ∂Pn = 0 for
every n ≥ 1.

The approximation results proved above allow us to characterize the sup-
port of 1-currents without boundary as the countable union of loops. This
characterization can be found in [24], subsection 4.2.25.

Theorem 1.3.2 (Structure of closed integral 1-currents). Let T ∈ I1(Rd)
with ∂T = 0. Then there are countably many oriented Lipschitz closed curves
γi with tangent vector fields τi ∶ γi → Sd−1 and multiplicities θi ∈ Z such that
T = ⟦γi, τi, θi⟧, that is

⟨T ;ω⟩ = ∞∑
i=1
θi∫

γi

⟨ω; τi⟩dH 1 , (1.3.10)

10We recall that the currents Pn have support on a finite number of segments.
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for every ω ∈ D1(Rd). Further,
∞∑
i=1
∣θi∣H 1(γi) =M(T ) . (1.3.11)

Proof. From the density of polyhedral currents there is a sequence of closed
integral polyhedral currents (with a finite number of segments) Pn ∈P1(Rd)
such that

Pn
∗
⇀ T and M(Pn)→M(T ) . (1.3.12)

Each Pn can be decomposed into the sum of finitely many polyhedral loops,

Pn =
Jn∑
j=1
Cj,n , (1.3.13)

such that
Jn∑
j=1

M(Cj,n) =M(Pn) ≤M , (1.3.14)

for some M > 0.
We can assume these loops Cj,n to be ordered by mass, starting with

the biggest one. Moreover we can assume (up to extracting a subsequence)
that the currents Cj,n have multiplicity 1 and that for every j they weakly
converge to some closed 1-current Cj. Parametrizing each polygonal curve
by arc length, and eventually passing to a further subsequence, we see that
each converges to a closed Lipschitz curve. Let us denote by T̃ the current

T̃ = ∞∑
j=1
Cj

We need to show that T̃ = T . If M(T ) = 0 there is nothing to prove. Other-
wise we fix δ > 0 and observe that by (1.3.14) we have M(Ci,n) < δ for all
i >M/δ. We write

⟨Pn;ω⟩ = ∑
i≤M

δ

⟨Ci,n;ω⟩ + ∑
i>M

δ

⟨Ci,n;ω⟩ . (1.3.15)

In the first sum of the right hand side we can take the limit as n → ∞ and
get ∑i≤M

δ
⟨Ci;ω⟩.
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The second sum in (1.3.15) can be estimated as follows. For every i >M/δ
and for every n we fix a point xni ∈ suppCi,n = γi,n and using the fact that
γi,n is a closed curve we have

∣ ∑
i>M

δ

⟨Ci,n;ω⟩∣ = ∣ ∑
i>M

δ

∫
γi,n

⟨ω − ω(xni ); τni ⟩dH 1∣
≤ ∑

i>M
δ

sup
γi,n

∣ω − ω(xni )∣M(Ci,n)
≤ δ∥ω∥Lip ∑

i>M
δ

M(Ci,n) ≤ δM∥ω∥Lip .
(1.3.16)

Then we get

∣⟨T − ∑
i≤M

δ

⟨Ci;ω⟩∣ ≤ o(1) + ∣⟨Pn − ∑
i≤M

δ

⟨Ci,n;ω⟩∣ ≤ o(1) + δM∥ω∥Lip

which implies T = T̃ and hence

T = ∞∑
j=1
τjH

1 ⌞ γj ,

with γj = suppLj and τj the corresponding tangent vector.

This theorem is saying that we are allowed to consider an integral 1-
current as the formal sum of a finite number of open Lipschitz curves and a
countable number of Lipschitz loops, with multiplicities in Z. So we conclude
the subsection with its useful corollary.

Corollary 1.3.3. Let T be an integral 1-current in Rd, then

T = K∑
k=1

Tk +∑
ℓ≥1
Cℓ , (1.3.17)

with

(i) Tk and Cℓ are integral 1-currents associated to oriented simple Lipschitz
curves with finite length, for k = 1, . . . ,K and ℓ ≥ 1;

(ii) ∂Cℓ = 0 for every ℓ ≥ 1.
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Moreover

M(T ) = K∑
k=1

M(Tk) +∑
ℓ≥1

M(Cℓ) (1.3.18)

and

M(∂T ) = K∑
k=1

M(∂Tk) . (1.3.19)

1.3.2 Relating normal and rectifiable 1-currents

There is a series of open and very interesting problems concerning currents:
in the 1-dimensional case we have more advanced answers, thanks to the
simpler structure of 1-currents. Among them, we find the problem of the
decomposition of a normal current in a sum of integral currents which pre-
serves the mass and, related to the existence of a decomposition, the problem
of commensurability among mass-minimizing currents belonging to different
subgroups of Dk(U). Here we do not insist on the k-dimensional formulation
of these problems, because we will examine them afterwards, in Chapter 2
and in Chapter 3, respectively. We limit ourselves to a self-contained expo-
sition of the 1-dimensional results.

Given a compact measure space (L,λ) and a family of 1-currents {Tx}x∈L
in Rd, such that

∫
L
M(Tx)dλ(x) < +∞ ,

we denote by

T ∶= ∫
L
Tx dλ(x)

the 1-current T satisfying

⟨T ;ω⟩ = ∫
L
⟨Tx, ω⟩dλ(x) ,

for every smooth compactly supported 1-form ω.

Proposition 1.3.4. Every normal 1-current T in Rd can be written as

T = ∫ M

0
Tx dx ,

where Tx is an integral current with M(Tx) ≤ 2 and M(∂Tx) ≤ 2 for every x,
and M is a positive number depending only on M(T ) and M(∂T ). Moreover

M(T ) = ∫ M

0
M(Tx)dt .
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The first result of this kind has been stated and proved in [52]: the so-
called solenoidal 1-currents11 can be decomposed in elementary solenoids.
See [45] for the generalization of Proposition 1.3.4 to metric spaces.

The following fact is probably in the folklore, unfortunately we were not
able to find any literature on it. In the proof, it will be made clear where a
decomposition result for normal currents is needed.

Theorem 1.3.5. Consider the boundary of an integral 1-current in Rd, re-
presented as

B0 = −
N−∑
i=1
aiδxi

+

N+∑
j=1
bjδyj , ai, bj ∈ N . (1.3.20)

If we denote

MN(B0) ∶=min{M(T ) ∶ T is a normal current , ∂T = B0}
and

MI(B0) ∶=min{M(T ) ∶ T is an integral current∂T = B0} ≥MN(B0) ,
then the minima of the mass of 1-currents with boundary B0 among normal
1-currents and among integral 1-currents coincide, that is

MN(B0) =MI(B0) .
Proof. Let us assume that the minimum among normal currents is attained
at some current T0, that is

M(T0) =MN(B0) .
Let {Th}h∈N be an approximation of T0 made by polyhedral 1-currents,

such that

• M(Th)→M(T0) as h→∞,

• ∂Th = B0 for all h ∈ N,
• the multiplicities allowed in Th are only integer multiples of 1

h
.

11Roughly speaking, a solenoidal 1-current is a normal current which can be represented
by a divergence-free Borel vectorfield.
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The existence of such a sequence is a consequence of the Polyhedral Ap-
proximation Theorem 1.2.57. Thanks to Corollary 1.3.3, it is possible to
decompose such a Th as a sum of two addenda:

Th = Ph +Ch , (1.3.21)

so that
M(Th) =M(Ph) +M(Ch) ∀h ≥ 1

and

• ∂Ch = 0, so Ch collects the cyclical part of Th;

• Ph does not admit any decomposition Ph = A+B satisfying ∂A = 0 and
M(Ph) =M(A) +M(B).

It is clear that Ph is the sum of a certain number of polyhedral currents
P

i,j
h each one having boundary a non-negative multiple of − 1

h
δxi
+ 1

h
δyj and

satisfying
M(Ph) =∑

i,j

M(P i,j
h ) .

We replace each P i,j
h with the oriented segment Qi,j

h , from xi to yj having the

same boundary as P i,j
h (therefore having multiplicity a non-negative multiple

of 1
h
). This replacement is represented in Figure 1.2.

yj

P
i,j
h

Q
i,j
h

Ch

xi

Figure 1.2: Replacement with a segment
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Since this replacement obviously does not increase the mass, there holds
M(Ph) ≥ M(Qh), where Qh = ∑i,jQ

i,j
h . In other words we can write Qh =∫LQλ

h dλh, as an integral of currents, with respect to a discrete measure λh
supported on the finite set L of unit multiplicity oriented segments with the
first extreme among the points x1, . . . , xN− and second extreme among the
points y1, . . . , yN+ . It is also easy to see that the total variation of λh has
eventually the following bound from above

∥λh∥ ≤ M(Th)
mini≠j d(xi, yj) ≤

M(T0) + 1
mini≠j d(xi, yj) .

Hence, up to subsequences, λh converges to some positive measure λ on L

and so the normal 1-current

Q = ∫
L
Qλ dλ

satisfies
∂Q = B0 (1.3.22)

and
M(Q) ≤M(T0) =MN(B0) .

In order to conclude the proof of the theorem, we need to show that Q
can be replaced by an integral current R with same boundary and mass
M(R) = M(Q) ≤ MN(B0). Since L is the set of unit multiplicity oriented
segments Σij from xi to yj, we can obviously represent

Q =∑
i,j

kijΣij with kij ∈ R ,

and, again, thanks to (1.3.22),

N−∑
i=1
kij = bj and

N+∑
j=1
kij = ai .

If kij ∈ Z for any i, j, then Q itself is integral and then we are done; if not,
let us consider the finite set of non-integer multiplicities

KR∖Z ∶= {kij ∶ i = 1, . . . ,N−, j = 1, . . . ,N+} ∖Z ≠ ∅ .
We fix k ∈KR∖Z and we choose an index (i0, j0), such that k is the multiplicity
of the oriented segment Σi0j0 in Q. It is possible to track down a non-trivial
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cycle Q in Q with the following algorithm: after Σi0j0 , choose a segment from
xi1 ≠ xi0 to yj0 with non-integer multiplicity, it must exist because B0 = ∂Q
is integral. Then choose a segment from xi1 to yj1 ≠ yj0 with non-integer
multiplicity and so on. Since KR∖Z is finite, at some moment we will get a
cycle. Up to reordering the indices i and j we can write

Q = n∑
l=1
(Σiljl −Σil+1jl) .

We will denote by

α ∶= min
l
(kiljl − ⌊kiljl⌋) > 0

β ∶= min
l
(kil+1jl − ⌊kil+1jl⌋) > 0 .

Finally notice that both Q−αQ and Q+βQ have lost at least one non-integer
coefficient; in addition, we claim that either

M(Q − αQ) ≤M(Q) or M(Q + βQ) ≤M(Q) . (1.3.23)

In fact we can define the linear auxiliary function

F (t) ∶=M(Q) −M(Q − tQ) =∑
l

(kiljl − t)d(xil , yjl) + (kil+1jl + t)d(xil+1 , yjl)
for which F (0) = 0, so either

F (α) ≥ 0 or F (−β) ≥ 0 .
Since KR∖Z is a finite set, iterating the procedure we illustrated for the re-
moval of Q finitely many times we obtain an integral current without increas-
ing the mass.
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1.4 Calibrations

We introduce here a very important tool in the study of area-minimizing
currents. Classically a calibration ω associated with a given oriented k-
submanifold S ⊂ Rd is a unit closed k-form taking value 1 on the tangent
space of S. As it will be clear from Theorem 1.4.3, the very aim of the
definition of a calibration is to provide a sufficient condition of minimality.

1.4.1 Definition and usefulness of calibrations

We give the definitions in a very general setting, our purpose is to give some
interesting examples not only in Rd, but also in the complex space Cd.

Definition 1.4.1. Given a d-dimensional Riemannian manifold X, we say
that a k-dimensional smooth differential form ω is a calibration associated
with a k-dimensional integral current S ∈ Ik(X) if the following properties
hold:

(i) the form ω restricted to the (a.e. defined) tangent plane of S coincides
with its volume form, that is12 ⟨ω; τS⟩ = ∥τS∥;

(ii) the form ω is closed, that is dω = 0;
(iii) for every other k-section τ ∈ TX, the form ω does not exceed the volume

form, that is ⟨ω; τ⟩ ≤ ∥τS∥.
Definition 1.4.2. Given a d-dimensional Riemannian manifold X and a
pair of k-dimensional integral currents S and T , we say that S is cobordant
to T if their sum is the boundary of a k + 1-dimensional integral current
R ∈Ik+1(X), that is ∂R = S − T .
Theorem 1.4.3. Consider a d-dimensional Riemannian manifold X and
a k-dimensional integral current S ∈ Ik(X), if there exists a calibration
ω associated with S, then S is a mass-minimizing current among integral
currents in its cobordism class.

12We stick to the notation introduced in Section 1.2, so ∥⋅∥ is the mass norm of Definition
1.2.14.
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Proof. Consider a competitor T ∈ Ik(X) with ∂R = S − T for some R ∈
Ik+1(X). Therefore13

M(S) (i)= S(ω) = R(dω) + T (ω) (ii)= T (ω) (iii)≤ M(T ) . (1.4.1)

Remark 1.4.4. We have a simpler case of the theorem above when S is a
genuine submanifold of X and we look for area-minimizing submanifolds in
the cobordism class of S. Thus (1.4.1) becomes

vol(S) (i)= ∫
S
ω
(ii)= ∫

T
ω
(iii)≤ ∫

T
dvolT = vol(T ) ,

for every submanifold T ⊂X with ∂R = S ⊔T for some compact submanifold
R ⊂X one dimension higher. Here the equality ∫S ω = ∫T ω is no longer a con-
sequence of the definition of boundary of a current, but truly a consequence
of the Stokes’s Theorem.

Remark 1.4.5. From line (1.4.1), it is clear that M(S) =M(T ) if and only
if T (ω) = M(T ). Thus, a calibration associated with an integral current S
“calibrates” simultaneously all the mass-minimizers for the given cobordism
class of S.

Remark 1.4.6. From the proof of Theorem 1.4.3 it is clear that a calibrated
integral current S is a mass-minimizer not only among integral currents, but
also among normal currents in its cobordism class. Indeed, the inequality in
(1.4.1) still holds if the competitor T ∈ Nk(X) has an integral representation.

The remark above is not trivial, since mass-minima among normal cur-
rents and among integral currents do not coincide, in general, as [] and []
show. See also Subsection 3.1.2 for a detailed discussion of the matter in the
context of currents with coefficients in a group.

An outstanding example of use of the calibration technique is the following
observation, due to H. Federer (see [24], 5.4.19).

Theorem 1.4.7. In Cd a complex submanifold S is always area-minimizing.

13We think that line (1.4.1) is more incisive with a direct reference to the reason of each
equality or inequality: Roman numerals above each equality or inequality correspond to
those in Definition 1.4.1.
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Proof. As a real orthonormal basis for the tangent bundle of Cd ≅ Rd + iRd

we choose {dx1,dy1, . . . ,dxd,dyd}. We define the Kähler form

ω ∶= d∑
j=1

dxj ∧ dyj . (1.4.2)

We claim that the form ωk/k! is a calibration for every complex submanifold
S ⊂ Cd of real dimension 2k and the equality in (1.4.1) holds if and only
if S is complex. Property (ii) is trivial, since ω has constant coefficients.
Properties (i) and (iii) - and the characterization of the equality case - are
a consequence of the Wirtinger’s inequality, which is stated in the following
lemma.

Lemma 1.4.8 (Wirtinger’s inequality). Consider the Kähler form ω defined
in (1.4.2), then for every 2k-dimensional real subspace V ⊂ Cd we have that

ωk

k! ∣V
≤ dvolV . (1.4.3)

Moreover, equality in (1.4.3) holds if and only if V is a complex subspace.

Proof. If we denote by J the multiplication by i ∶=√−1 in Cd, we can write

ω(u, v) = ⟨Ju; v⟩ ∀u, v ∈ Cd ≅ Rd + iRd .

Thanks to Cauchy-Scharz inequality

∣ω(u, v)∣ ≤ ∣u∣∣v∣ ∀u, v ∈ Cd ≅ Rd + iRd , (1.4.4)

thus we have to characterize the equality case. Fix a 2k-dimensional real
subspace V ⊂ Cd, the matrix representing ω∣V is skew-symmetric, so ω∣V has
a canonical form: we can represent it with a 2k × 2k block diagonal real
matrix, with k blocks of the form

( 0 λk
−λk 0

) .
We will call {e1, f1, . . . ,ek, fk} the basis of V for such a representation of ω∣V ,
and {dξ1,dη1 . . . ,dξk,dηk} will denote the associated dual basis. With this
notation

ωk

k! ∣V
= 1

k!
(λ1dξ1 ∧ dη1 + . . . + λkdξk ∧ dηk)k = λ1 . . . λk dvolV .
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Notice that (1.4.4) implies ∣λj ∣ ≤ 1 for every j = 1, . . . , k, thus
ωk

k!
= ±dvolV ⇐⇒ ∣λj ∣ = 1 ∀ j = 1, . . . , k .

The latter condition holds if and only if J(V ) = V , meaning that V is a
complex subspace.

The proof above is a reinterpretation of [24], 1.8.2. See also [23].

Remark 1.4.9. Theorem 1.4.7 can be generalized to every Kähler manifold
X. Indeed, by definition, a complex manifold X is a Kähler manifold if the
Kähler form ω ∶= ∑d

j=1 dxj ∧ dyj (in the coordinates of each chart) is closed.
Moreover, Wirtinger’s inequality (1.4.3) remains true in a general Kähler
manifold.

Remark 1.4.10. Actually, in the case of the Kähler structure for complex
manifolds, it is possible to make a link between complex submanifolds and
currents calibrated by the Kähler form: structure theorems by King ([35])
and by Harvey and Shiffman (see [32]) state that a 2k-dimensional current
T with a.e. complex tangent planes can we written as

T =∑
j

⟦Vj, τj, nj⟧ ,
where nj ∈ N and Vj are complex submanifolds.

As we just saw, calibrations are a powerful tool for the theory of mass-
minimizing currents (and area-minimizing submanifolds, respectively). No-
netheless, it can be very hard – or even impossible! – to find a calibration
for a given current, whom we suspect to be a minimizer. The approach
suggested by Harvey and Lawson in [31] is reversed: it is not difficult to find
a closed k-form ω with comass norm less or equal than 1 (choose a form with
constant coefficients and possibly rescale it, for instance!), then the problem
becomes to find a submanifold, or a current, for which ω is a calibration.
The following definition can help to figure out the new problem: G is the set
of candidate calibrations, provided we endow it with some properties.

Definition 1.4.11. Consider a d-dimensional Riemannian manifold X and
the Grassmannian of k-dimensional tangent planes Gr(k, TX). Fix a subset
G ⊂ Gr(k, TX). We say that a k-dimensional submanifold S ⊂ X is a G -
submanifold if, for every x ∈ S, TxS ∈ Gx, where Gx is the intersection of G

with the fiber on x if Gr(k, TX). Analogous definitions may be given for
integer rectifiable currents, integral currents, chains, ecc.
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Remark 1.4.12. With the formalism of the definition above, we can see
complex submanifolds of a Kähler manifold as G -submanifolds, where

G = ⋃
x∈X

Gx = ⋃
x∈X
{τx ∈ Gr(2k, TX) ∶ ⟨ω(x); τ(x)⟩ = 1}

and ω is the Kähler form.

1.4.2 Existence of calibrations

The existence of a calibration is a sufficient condition for a manifold to be a
minimizer; one could wonder whether this condition is necessary as well. In
general, a smooth (or piecewise smooth) calibration might not exist; never-
theless, one can still search for some weak calibration, for instance a differ-
ential form with bounded measurable coefficients.

A duality argument due to H. Federer ensures that a weak calibration
exists for mass-minimizing normal currents. Therefore an equivalence prin-
ciple between minima among normal and integral 1-currents is sufficient to
conclude that a calibration exists. This equivalence principle has been stated
in Theorem 1.3.5 for 1-currents only. As we already noticed, for k-currents
with k ≥ 2 this equivalence principle does not hold in general.

The remainder of this section is devoted to Federer’s argument on the
existence of a generalized calibration for normal currents, in the sense of
Theorem 1.4.16. See [25] for the original and detailed proof.

Definition 1.4.13. Fix an arbitrary subset Γ ⊂ Nk(Rd), for any T ∈ Nk(Rd)
we define

MΓ(T ) ∶= inf {M(S) ∶ S ∈ Nk(Rd) and S − T ∈ Γ} .
Heuristically, we fixed a family Γ of admissible differences – for our pur-

poses Γ will be the family of k-boundaries – and we look for the “smallest”
mass M(S), where S is close – in the Γ sense – to the current T ∈ Nk(Rd).
Remark 1.4.14. If Γ is a convex cone, then MΓ ∶ Nk(Rd)→ [0,∞] is convex
and positively 1-homogeneous.

Definition 1.4.15. Given a subset Γ ⊂ Nk(Rd), as in Definition 1.4.13, we
consider the dual space Hom(Nk(Rd);R) with the following norm

MΓ(α) ∶= inf{r ∶ α(T ) ≤ rMΓ(T ) with T ∈ Nk(Rd)} .
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From now on we will set Γ = Bk(Rd), the set of boundaries in Nk(Rd), so
that the infimum of the mass is calculated among cobordant currents. Thus
we get

MΓ(T ) =M(T0)
where T0 is a mass-minimizing normal current, cobordant to T .

Theorem 1.4.16. If T ∈ Nk(U) is a mass-minimizer in its cobordism class,
then there exists a functional φ ∈ Hom(Nk(Rd),R) such that

(i) φ(T ) =M(T );
(ii) φ is “closed”, that is

φ(∂R) = 0 ∀R ∈ Nk+1(U) ;
(iii) φ has unit norm with respect to Definition 1.4.15.

Proof. Notice that MΓ is convex and positively 1-homogeneous as we stated
in Remark 1.4.14, so, by Hahn-Banach Theorem, there exists

φ ∈ Hom(Nk(Rd),R)
such that

(i) φ(T ) =M(T );
(ii) φ ≤MΓ.

Therefore

∀R ∈ Nk+1(Rd) φ(∂R) ≤MΓ(∂R) = inf {M(S) ∶ S ∈ Zk(Rd)} =M(0) = 0 .
Finally, property (iii) comes from the bound φ ≤MΓ together with the defi-
nition of MΓ(φ).
Remark 1.4.17. We stated Theorem 1.4.16 in an abstract way, proving the
existence of a so-called flat cochain (see [24], 4.1.19, [25] and [56]) playing
the role of a generalized calibration. This was done in order to preserve the
analogy with Definition 3.1.15 in Subsection 3.1.1. Nonetheless it is possible
to improve the result of Theorem 1.4.16 by means of the Representation
Theorem 1.1.4: there exist bounded Lebesgue measurable differential forms
ωφ ∈ Λk(Rd) and ω̂φ ∈ Λk−1(Rd) such that
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1. φ(ξL d) = ∫Rd⟨ωφ(x); ξ(x)⟩dx for every ξ ∈ Cc(Rd; Λk(Rd));
2. φ (∂(ζL d)) = ∫Rd⟨ω̂φ(x); ζ(x)⟩dx for every ζ ∈ Cc(Rd; Λk+1(Rd));
3. ∫Rd⟨ωφ; divζ⟩ + ⟨ω̂φ; ζ⟩ = 0 for every ζ ∈ C 1

c (Rd; Λk+1(Rd)).
This cannot be considered as an actual representation for the generalized
calibration φ, since it works only for very special currents, but it is the best
we can expect.
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Chapter 2

Decomposition of currents
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2.1 Frobenius Theorem on the integrability

of vector fields

One of the most important theorems in Differential Geometry fully answers
to this question: under which conditions a given k-dimensional simple vector
field ξ = τ1 ∧ . . . ∧ τk ∈ C∞(Rd; Λk(Rd)) represents the tangent vector field of
a smooth manifold M?

Definition 2.1.1. A k-dimensional simple vector field ξ = τ1 ∧ . . . ∧ τk, with
τ1, . . . , τk ∈ C 1(Rd; Λk(Rd)), is integrable if, for every point x0 ∈ Rd, there
exist an open neighborhood U ∋ x0 and a k-dimensional submanifold M ∋ x0
such that

TxM = span{τ1(x), . . . , τk(x)}
for every x ∈ U ∩M . We will say that ξ is completely integrable if, for every
x0 ∈ Rd, there exist an open neighborhood U ∋ x0 and a C 2-function1 F ∶ U →

Rd−k such that its level sets {F = p} are k-submanifolds with span{τ1, . . . , τk}
as tangent space.

Roughly speaking, a completely integrable vector field is a tangent field for
a local foliation of Rd in C 2-submanifolds. Obviously, a completely integrable
vector field is integrable.

We recall the definition of the Lie bracket in (2.1.1) in a convenient co-
ordinate version.

Definition 2.1.2. Given a vector field X ∶ U ⊂ Rd → Rd of class C 1, we
represent its action on a smooth function f ∶ U → R as X(f) = ∇Xf ∶=⟨∇f ;X⟩ = ∑d

i=1
∂f

∂xi
Xi. If X ≡ ei for some i ∈ {1, . . . , d}, then we also write

∇if = ∂f

∂xi
.

Given two C 1-vector fields X,Y ∶ U → Rd their Lie bracket is [X,Y ] ∶=
XY − Y X and [X,Y ](f) = ∇X∇Y f −∇Y∇Xf . In coordinates

[X,Y ]h = ⟨∇Yh;X⟩ − ⟨∇Xh;Y ⟩ = d∑
i=1
(∂Yh
∂xi

Xi −
∂Xh

∂xi
Yi) , with h = 1, . . . , d .

1From this perspective, it is clear that this problem and the problem of the existence
of a potential F ∶ U ⊂ Rd

→ R for a given map f ∶ U → Rd, with ∇F = f , are related and
we refer to them as integrability problems.
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The proof of the following theorem characterizing integrable vector fields
can be found in [38] or in any other book about the basics of smooth mani-
folds.

Theorem 2.1.3 (Frobenius Theorem). A k-dimensional simple vector field
ξ = τ1 ∧ . . . ∧ τk, with τ1, . . . , τk ∈ C 1(Rd; Λk(Rd)), is completely integrable if
and only if [τm, τn](x) ∈ span{τ1(x), . . . , τk(x)} (2.1.1)

for every x ∈ Rd and for every m,n = 1, . . . , k.
Let us remark that condition (2.1.1) does not depend on the choice of

τ1, . . . , τk, but only on their product ξ = τ1 ∧ . . .∧ τk. This fact will be a clear
consequence of Corollary 2.1.5. We will say that a vector field ξ = τ1∧ . . .∧τk
is involutive if (2.1.1) is satisfied and we will spend the remainder of this
section characterizing the involutivity condition in convenient ways.

Lemma 2.1.4. Consider a k-dimensional simple vector field ξ = τ1 ∧ . . .∧ τk,
with τ1, . . . , τk ∈ C 1(Rd; Λk(Rd)), then2

divξ ∧ τm ∧ τn = −ξ ∧ [τm, τn] , (2.1.2)

for every m,n = 1, . . . , k.
Proof. We need to find a connection between the Lie bracket [τm, τn] and
divξ ∧ τm ∧ τn. Using the isomorphism D of Definition 1.2.9 and Proposition
1.2.24, we can write

Dk+1 (divξ ∧ τm ∧ τn) = (divξ ∧ τm ∧ τn) ⌟ dx1 ∧ . . . ∧ dxd
= (τm ∧ τn) ⌟Dk−1 (divξ)
= (−1)d−k (τm ∧ τn) ⌟ d(Dkξ) .

Moreover, for any multi-index3 i ∈ I(d, d − k − 1), we can write

⟨τm ∧ τn ⌟ d (Dkξ) ;ei1 ∧ . . . ∧ eid−k−1⟩
= ⟨d (Dkξ) ,ei1 ∧ . . . ∧ eid−k−1 ∧ τm ∧ τn⟩
= d−k−1∑

h=1
(−1)h−1⟨∇ih(Dkξ);eı̂h ∧ τm ∧ τn⟩ (2.1.3)

+ (−1)d−k−1⟨∇τm(Dkξ);ei ∧ τn⟩ (2.1.4)

+ (−1)d−k ⟨∇τn(Dkξ);ei ∧ τm⟩. (2.1.5)

2The divergence divξ has been defined in Definition 1.2.22.
3Remember that by eı̂h we mean the (k−1)-vector eı̂h = ei1 ∧ . . .∧eih−1 ∧eih+1 ∧ . . .∧eik ,

with i = {i1, . . . , ik}.
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Since ⟨Dkξ;eı̂h ∧ τm ∧ τn⟩ ≡ 0 for any h = 1, . . . , d− k − 1, then (2.1.3) becomes

d−k−1∑
h=1
(−1)h−1⟨Dkξ;eı̂h ∧ ( ∂τm∂xih

∧ τn − τm ∧
∂τn

∂xih
) ⟩

= d−k−1∑
h=1
(−1)h−1⟨dx1 ∧ . . . ∧ dxd;eı̂h ∧ ( ∂τm∂xih

∧ τn − τm ∧
∂τn

∂xih
) ∧ ξ⟩ = 0 .

Also ⟨Dkξ;ei ∧ τm⟩ ≡ 0 ≡ ⟨Dkξ;ei ∧ τn⟩, then we conclude through (2.1.4) and
(2.1.5) that

−⟨Dk+1(divξ ∧ τm ∧ τn);ei⟩ = ⟨Dkξ;ei ∧ (∇τmτn −∇τnτm)⟩
= ⟨Dkξ;ei ∧ [τm, τn]⟩
= ⟨dx1 ∧ . . . ∧ dxd;ei ∧ [τm, τn] ∧ ξ⟩
= ⟨Dk+1 ([τm, τn] ∧ ξ) ;ei⟩ ,

for every multi-index i ∈ I(d, d − k − 1). The thesis follows, since Dk+1 is an
isomorphism.

Corollary 2.1.5. Consider a k-dimensional simple vector field ξ = τ1∧. . .∧τk,
with τ1, . . . , τk ∈ C 1(Rd; Λk(Rd)). Involutivity holds if and only if

divξ ∧ τm ∧ τn = 0 for every m,n = 1, . . . , d . (2.1.6)

Lemma 2.1.6. Given a non-involutive simple k-vectorfield ξ = τ1 ∧ . . . ∧ τk,
with τ1, . . . , τk ∈ C 1(Rd; Λk(Rd)), there exist an open subset U ⊂ Rd and a(k − 1)-form α such that, in U , we have

⟨dα; ξ⟩ ≠ 0 (2.1.7)

and ⟨α; η⟩ = 0 (2.1.8)

whenever η is a simple (k − 1)-vectorfield representing at each point a linear
subspace of ξ.

Proof. Since ξ is non-involutive, Lemma 2.1.4 provides us a pair of indices(m,n) and an open subset U ⊂ Rd where

−divξ ∧ τm ∧ τn = ξ ∧ [τm, τn] ≠ 0 .
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For every point x ∈ U , we get a basis for Rd by completing the set of lin-
early independent vectors {τ1, . . . , τk, [τm, τn]} with unit orthonormal vectors
ν1, . . . , νd−(k+1). For the sake of brevity, we denote by N the (d − k − 1)-
vectorfield ν1 ∧ . . . ∧ νd−(k+1). We claim that

α ∶= Dd−k+1(τm ∧ τn ∧ ν1 ∧ . . . ∧ νd−(k+1))
satisfies (2.1.7) and (2.1.8) at the same time and we devote the remainder of
this proof to prove this claim.

Concerning (2.1.7), we can compute

⟨dα; ξ⟩ = (−1)k−1⟨dx1 ∧ . . . ∧ dxd; ξ ∧ div (τm ∧ τn ∧N)⟩ (2.1.9)

= ⟨dx1 ∧ . . . ∧ dxd; divξ ∧ τm ∧ τn ∧N⟩ ≠ 0 ; (2.1.10)

where (2.1.9) is a consequence of (1.2.3) and the equality in (2.1.10) is allowed
by Proposition 1.2.25, because ξ ∧ τm = ξ ∧ τn ≡ 0.

Finally, if η is a (k − 1)-vectorfield with spanη ⊂ spanξ, then
⟨α; η⟩ = ⟨dx1 ∧ . . . ∧ dxd; η ∧ τm ∧ τn ∧N⟩ = 0

because η ∧ τm ∧ τn ≡ 0.

2.2 Non-integrability for integral currents

Consider a non-involutive k-vectorfield ξ in Rd, as above. We may wonder
if the non-involutivity property is strong enough to prevent not only the
existence of a surface with tangent field ξ, but also the existence of an integral
current with such a tangent field. The answer is affirmative, as we state in
Theorem 2.2.6. We begin with the key theorem.

Theorem 2.2.1. Let ξ be a continuous k-dimensional vector field on Rd and
let R ∈ Ik(Rd) be a k-dimensional integral current with R = ⟦Σ, ξ, θ⟧. If
∂R = ⟦Σ′, η, θ′⟧, then

span η(x) ⊂ span ξ(x) H
k−1-a.e. x ∈ Σ′ . (2.2.1)

The proof of Theorem 2.2.1 is based on the blow up technique and can be
essentially split in two lemmata: Lemma 2.2.4 deals with the possibility of
doing the blow up at H k−1-a.e. point of Σ′ (remember that ∂R = ⟦Σ′, η, θ′⟧),
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while Lemma 2.2.5 draws some conclusions about the structure of the blow
up current. Lemma 2.2.4 is proved by means of a family of “projections”
on a k-dimensional space and Lemma 2.2.3 deals with the blow up of these
projected currents. We recall that we denote

βx,r(y) ∶= r−1(y − x) .
Moreover, we will repeatedly need Theorem 4.3.17 of [24]. We briefly recall
it here, adapting the notation to ours.

Theorem 2.2.2. Let S = ⟦Γ, γ, g⟧ be a h-dimensional rectifiable current,
then H h-a.e. y ∈ Γ we have that

lim
r→0

βy,r♯S = γH
h ⌞ TyΓ ,

where
γ ≡ gγ

is the orientation of S at y, multiplied by the multiplicity g of the current S
at y.

Lemma 2.2.3. Let P be a normal k-current in Rk, then, for H k−1-almost
every y0 ∈ Rk we have that

M(P ⌞Br(y0)) = O(rk) . (2.2.2)

We will denote by G the set of points where (2.2.2) holds, i.e.,

G ∶= {y0 ∶ lim sup
r→0

M (βy0,r♯P) < +∞} .
Proof. First of all, let us remark that Theorem 2.2.2 cannot be applied
straight to P , because we need a result for H k−1-a.e. y, H k-almost ev-
erywhere is not enough!

Since P is a k-dimensional normal current in Rk, then its multiplicity p
is a BV -function and we have that4

−∫
Br(y0)

p(y)dy r→0
Ð→ p̃(y0) H

k−1 − a.e. y0 ∈ Rk , (2.2.3)

4See Section 5.3 in [21] for the results concerning approximated limits and traces of
BV -functions.
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where p̃ is the precise representative of p. Moreover, since ∣dp∣ is a finite
measure, we have that5

∣dp∣ (Br(y0)) = O(rh) (2.2.4)

for H h-a.e. y0.
Thus, let us fix a point y0 such that both (2.2.3) and (2.2.4) (with h = k−1)

hold. We claim that y0 is a point in G. In fact, thanks to the Poincaré
inequality, we get

M(P ⌞Br(y0)) ≤ ∫
Br(y0)

∣p(y)∣dy
≤ ∫

Br(y0)
∣p(y) − (−∫

Br(y0)
p)∣ dy + ωk ∣p̃(y0)∣ rk + o(rk)

≤ cr∫
Br(y0)

∣dp∣ +O(rk) = O(rk)
Finally notice that, by construction, H k−1(Rk ∖G) = 0.
Lemma 2.2.4. Let ξ be a continuous k-dimensional vector field on Rd and
let R ∈ Ik(Rd) be a k-dimensional integral current with R = ⟦Σ, ξ, θ⟧ and
∂R = ⟦Σ′, η, θ′⟧. Then for H k−1-a.e. x ∈ Σ′ we have that

lim sup
r→0

M(βx,r♯R) < +∞ . (2.2.5)

Proof. We cover Σ′ with a family of balls Bρi(xi) = Vi such that there exists
an orientation preserving linear map whose restriction πi ∶ Vi → Rk has the
following properties:

(i) πi has maximal rank k on span ξ(x) for every x ∈ Vi;
(ii) πi has rank k − 1 on span η(x) for every x ∈ Σ′ ∩ Vi;
(iii) the pushforward πi♯(R ⌞Bρi(xi)) is an integral current.

The first property is easy to fulfill, since ξ is continuous. Property (ii) can be
obtained by a Lusin-type argument on η, possibly getting the thesis (2.2.5)
H k−1-a.e. x ∈ Σ′ ∩Kε, where the compact set Kε is arbitrarily large in Σ′

5In some sense, this is equivalent to apply Theorem 2.2.2 to ∂P , getting M(∂P ⌞
Br(y0)) = O(r

k−1) for H
k−1-a.e. y0.
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(that is H k−1(Σ′ ∖Kε) < ε for any ε > 0), and then passing to the limit. The
existence of a linear map with maximal rank on both ξ(xi) and η(xi) is a
trivial fact in Linear Algebra. The third property holds, provided we chose
the right ρi: indeed, the slicing process (πi)♯ (R ⌞Bρ(xi)) gives an integral
current for almost every ρ (see Chapter 7.6 for this kind of results).

We will denote by Pi the integral current (πi)♯ (R⌞Vi) = ⟦πi(Σ∩Vi), πi, θ♯i⟧,
with boundary ∂Pi = ⟦Γi, γi, p

′
i⟧. Let us remark that, since πi is not changing

the orientation, then
θ♯i(y) = ∑

x∈π−1
i
(y)
θ(x) > 0 . (2.2.6)

Thanks to Lemma 2.2.3, we have that

M(Pi ⌞Br(y0)) = O(rk)
for every y0 ∈ Gi, with H k−1(Γi ∖Gi) = 0.

Now we have to step back from Rk to the original space Rd with the
original current R ⌞ Vi to prove that M(R ⌞ Br(x)) = O(rk) for H k−1-a.e.
x ∈ Σ′. Firstly, let us notice that

H
k−1 (π−1i (Γi ∖Gi) ∩Σ′) = 0 .

Assume by contradiction that H k−1 (π−1i (Γi ∖Gi) ∩Σ′) > 0. Since by con-
struction πi has rank k −1 on the approximate tangent space to Σ′ in H k−1-
a.e. point of Σ′ ∩Vi, then we can apply the Area Formula (see Section 3.3 in
[21]) to πi, and we get that

0 <H
k−1 (πi (π−1i (Γi ∖Gi) ∩Σ′)) ≤H

k−1(Γi ∖Gi) ,
contradicting the fact that H k−1(Γi ∖Gi) = 0.

Moreover, thanks to (2.2.6), there exists a number δi > 0 such that for
every x0 ∈ π−1i (y0) ∩Σ′ and for every r with δir < ρi, we have that

M(R ⌞Bδir(x0)) ≤M(Pi ⌞Br(y0)) = O(rk) .
Lemma 2.2.5. Consider a normal k-current in Rd, written as R = ξµ, where
ξ is an orientation and µ is a finite measure, and assume that there exist a
point x0 ∈ Σ and a sequence (rn)n≥1, with rn → 0 as n →∞, such that there
exists the limit

R0 ∶= lim
n→∞

βx0,rn ♯
R .

Then R0 has constant orientation ξ(x0).
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Proof. We simply notice that, for every k-dimensional covector ν orthogonal
to ξ(x0) (that is, ⟨ν, ξ(x0)⟩ = 0) and for every ϕ ∈ D , we get

R0 ⌞ ν(ϕ) = R0(ϕ ∧ ν) = lim
n→∞

βx0,rn♯
R(ϕ ∧ ν) = 0 .

We are now ready to prove Theorem 2.2.1.

Proof of Theorem 2.2.1. Fix a point x0 ∈ Σ′ satisfying (2.2.5) in Lemma
2.2.4. Thus there exists a sequence (rn)n≥1, with rn → 0 as n → ∞, such
that

lim
n→∞

βx0,rn ♯
R = R0 ∈Ik(Rd) .

Recalling Lemma 2.2.5, we get a constant orientation ξ(x0) for R0. We claim
that ∂R0 ⌞ ν = 0 for every ν ∈ Λ1(Rd) such that ξ(x0) ⌞ ν = 0, indeed

∂R0 ⌞ ν(ϕ) = ∂R0(ϕ ∧ ν) = −R0(ν ∧ dϕ) = −R0 ⌞ ν(dϕ) = 0 . (2.2.7)

On the other hand the orientation of ∂R0 is η(x0) by means of Theorem
2.2.2, thus (2.2.7) means that span η(x0) ⊂ span ξ(x0).
Theorem 2.2.6. Let ξ = τ1∧. . .∧τk be a k-dimensional simple vector field on
Rd, with τ1, . . . , τk ∈ C 1(Rd), and let T ∈ Ik(Rd) be a k-dimensional integral
current with R = ⟦Σ, ξ, θ⟧, then

[τm, τn](x) ∈ span{τ1(x), . . . , τk(x)}
for every pair m,n = 1, . . . , k and for every x in the closure of the set of points
of positive density of Σ.

Proof. Choose a (k −1)-form α satisfying (2.1.7) and (2.1.8) of Lemma 2.1.6
for some open set U ⊂ Rd. Therefore,

0 ≠ ⟨T ⌞U ; dα⟩ = ⟨∂T ⌞U ;α⟩ ,
because of 2.1.7. But then Theorem 2.2.1 and condition (2.1.8) imply

⟨∂T ⌞U ;α⟩ = 0
and this is a contradiction.
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Remark 2.2.7. The spirit of the question arised in this section and answered
by Theorem 2.2.6 is more or less this: consider a non-involutive k-dimensional
simple vector field ξ = τ1 ∧ . . . ∧ τk, for which weak notion of k-dimensional
surface (weaker than a submanifold, of course) the conclusions of the Frobe-
nius Theorem hold? We provided the answer for integral k-currents. When
the vector field in analysis is the horizontal distribution of the Heisenberg
group Hd, i.e.

τi = ∂xi
− xd+i∂x2d+1

τd+i = ∂xd+i
+ xi∂x2d+1

i = 1, . . . , d
in R2d+1, there is a rich literature on the subject starting from [7]. Being
an important example of space endowed with a non-involutive vector field,
we try to sketch the state of the art in the case of the first Heisenberg
group H1. In [7] it is proved that, if Σ is a 2-dimensional Lipschitz graph
in H1, then Σ satisfies a suitable non-horizontality6 condition which brings
us back to Frobenius Theorem. Moreover, if Σ is the image of a function
in W 1,1

loc (Ω,R3) (with Ω ⊂ R2) with maximal rank Jacobian matrix, then we
have non-horizontality, too, and this is proved (in the more general case
of k-dimensional horizontal distributions in Hd with d < k ≤ 2d) in [40].
The picture is completed by a different result of horizontality in [7]: it is
proved that there exists a BV -function defined in the square (0,1)2 ⊂ R2

whose graph is contained in the so-called Heisenberg square QH , which is
an horizontal fractal introduced by Balogh and Tyson in [8]. Moreover, this
graph is 2-dimensional in a suitable sense.

2.3 Decomposition of normal currents

As we anticipated in Subsection 1.3.2, an interesting problem in the theory
of currents concerns the decomposition of a normal current by means of a
family of integral currents. This problem firstly appeared in [1], formulated
by F. Morgan. More precisely, given a normal current T ∈ Nk(Rd), we ask
whether there exists a family of integral currents (Rλ)λ∈L, where L is a suit-
able measure space, such that

6By “non-horizontality” we mean a suitable property, too technical for the scope of
this remark, catching the fact that Σ cannot have the horizontal distribution as a tangent
distribution.
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(i) T = ∫LRλ dλ, i.e., for every ω ∈ Dk(Rd), we can write

T (ω) = ∫
L
Rλ(ω)dλ ;

(ii) M(T ) = ∫LM(Rλ)dλ;
(iii) M(∂T ) = ∫LM(∂Rλ)dλ.
Condition (ii) and (iii) recall (1.3.18) and (1.3.19), respectively, from Corol-
lary 1.3.3: they express the requirement of a decomposition where no mass is
wasted someway. In the analysis below, we will discuss also weaker versions
of the problem: we can drop condition (iii), and we can also change the type
of “decomposing” currents, saying we are satisfied with a family of rectifiable
currents, instead of the family of integral ones. We agree that, when we do
not specify the type of currents to which the decomposing family belongs, we
will always be looking for a decomposition into integral currents; otherwise,
we will always specify the type of the decomposing currents.

When the dimension of the normal current is 1, it is known that there
exists a decomposition satisfying (i) and (ii): see Proposition 1.3.4 and [52] or
[45] for the proof (while a decomposition satisfying (i), (ii) and (iii) may not
always exist). When the codimension of the normal current is 1, there exists
a decomposition in rectifiable currents satisfying (i) and (ii) (as pointed out
by G. Alberti), too. In the special case of codimension 1 with an integer
rectifiable boundary, there exists a decomposition satisfying (i), (ii) and (iii),
thanks to an observation by M. Zworski in [57], and we will see the core of
this argument at the end of this section.

The existence of a decomposition for normal currents with rectifiable
boundary in codimension 1 is an isolated result. Indeed, in general the search
for a decomposition by means of integral currents is actually too strong: we
claim that any normal current of the form ξL d cannot be decomposed into
integral currents satisfying (i) and (ii), provided ξ is non-involutive. This
claim follows from Lemma 2.3.1 and Theorem 2.2.6.

In [57], M. Zworski exhibited this very same counterexample, claiming
that, in general, a normal current has no decomposition satisfying (i) and
(ii), even if we allow the decomposing currents to be rectifiable only. However
the proof in [57] does not work, as pointed out by Alberti (see Section 4.5 of
[43]). There is a gap in the argument, possibly due to a misunderstanding
when referring to the Federer Flatness Theorem 4.1.15 in [24]. We propose
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the same counterexample for the problem of decomposing a normal current
with a family of integral currents satisfying (i) and (ii) (at page 66) and the
results we got in Section 2.2 fill the aforementioned gap. Lemma 2.3.2 is a
piece of Zworski’s argument, but it can also be read and proved as a classical
result on the decomposition of vector-valued measures, as we do in Lemma
2.3.1.

Lemma 2.3.1. Consider a vector-valued measure µ = ξ∣µ∣, where
ξ ∈ C∞(Rd; Λk(Rd))

is a smooth k-vector field and assume that

(i) µ = ∫L µλ dλ, where (L,λ) is a measure space;

(ii) ∥µ∥ = ∫L ∥µλ∥dλ.
Then, for λ-a.e. µλ, we have that

µλ = ξ∣µλ∣ .
Proof. For every λ ∈ L we can write

µλ = (fλξ + νλ) ∣µλ∣ ,
where fλ is a real-valued function and νλ is an orthogonal (with respect to
ξ) k-vector field. Consider the family of measures

µ̂λ ∶= fλξ∣µλ∣ for every λ ∈ L ,
we claim that

µ = ∫
L
µ̂λ dλ .

Indeed, given any smooth and compactly supported test covector field w ∈
C∞c (Rd;T k(Rd)), we can split it as w = ŵξ∗ + wν , where ξ∗ ∈ Tk(Rd) is the
dual element of ξ in the biorthogonal system of Tk(Rd) and T k(Rd), that
is, ⟨ξ∗, ξ⟩ = ∥ξ∥2, ⟨ξ∗, ν⟩ = 0 whenever ν ∈ Tk(Rd) is orthogonal to ξ and⟨wν ; ξ⟩ = 0, then we can compute

⟨µ,w⟩ = ∫ ⟨ŵξ∗ +wν ; ξ⟩d∣µ∣ = ⟨µ; ŵξ∗⟩
(i)= ∫

L
⟨µλ; ŵξ

∗⟩dλ = ∫
L
∫ ⟨ŵξ∗; fλξ + νλ⟩d∣µλ∣dλ

= ∫
L
∫ ⟨ŵξ∗ +wν ; fλξ⟩d∣µλ∣dλ = ∫

L
⟨µ̂λ;w⟩dλ .
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Therefore, we can estimate

∥µ∥ ≤ ∫
L
∥µ̂λ∥dλ ≤ ∫

L
∥µλ∥dλ (ii)= ∥µ∥ ,

meaning that ∥µ̂λ∥ = ∥µλ∥ for almost every λ. We can conclude that νλ(x) = 0
for µλ-a.e. x and a.e. λ.

For the sake of completeness, we also state the analog of Lemma 2.3.1 in
the version given in [57].

Lemma 2.3.2. Consider the normal current T ∶= ξL d ∈ Nk(Rd) given by
the smooth vector field ξ ∈ C∞(Rd; Λk(Rd)) and assume that

(i) T = ∫LRλ dλ, where (L,λ) is a measure space and {Rλ}λ∈L ⊂Rk(Rd);
(ii) M(T ) = ∫LM(Rλ)dλ.

Then, for λ-a.e. Rλ, we have that

Rλ = ⟦Σλ, ξ, θλ⟧ ,
for some rectifiable set Σλ ⊂ Rd and some θλ ∈ L1(Rd).
Theorem 2.3.3. Consider the normal current T ∶= ξL d ∈ Nk(Rd) given by
the smooth non-involutive vector field ξ ∈ C∞(Rd; Λk(Rd)). Then there exist
no measure space L and no family of integral currents (Rλ)λ∈L such that (i)
and (ii) at page 66 hold.

The proof of this theorem is a consequence of Lemma 2.3.1 and Theorem
2.2.6.

As we said before, we conclude this section with an explanation of the
existence of the decomposition for a (d−1)-dimensional normal current with
integer rectifiable boundary (see also [57]). Indeed, if N is a closed normal(d−1)-current, then N is the boundary of a normal d-current associated with
a suitable function7 f ∈ BV (Rd), that is N = ∂ (f(x) e1 ∧ . . . ∧ ed). Applying
the Coarea Formula8, we get

N = ∫ ∂ (e1 ∧ . . . ∧ ed ⌞ {f ≥ s}) ds ,
7This result is related to the comparison between currents and distributions in Remark

1.2.33: the function f has bounded variation because N has finite mass, implying that
divf is a distribution of order 0.

8For the Coarea Formula see [21], or [28] for the original paper.
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with L = L1(R). Moreover

M(N) = ∫ M (∂ (e1 ∧ . . . ∧ ed ⌞ {f ≥ s})) ds .
More generally, if ∂N ∈ Rd−2(Rd), then we can reduce to the previous case
thanks to this result due to R. Hardt and J. Pitts (see [30]).

Theorem 2.3.4 (Hardt-Pitts decomposition). Consider a compactly sup-
ported normal current N ∈ Nd−1(Rd) with rectifiable boundary ∂N ∈Rd−2(Rd).
Then there exists an integral current R ∈ Id−1(Rd) with the same boundary
∂R = ∂N and

M(N −R) =M(N) +M(R) .
Moreover, for ∥R∥-a.e. x ∈ Rd, we have that the orientation of R−N at x coin-
cides with the orientation of R at x. Finally, if N−R = ∂ (f(x) e1 ∧ . . . ∧ ed),
then

Dd−1∥N −R∥(x) =Dd−1∥R∥(x) = f(x) − f(x) ∈ Z
for ∥R∥-a.e. x ∈ Rd, where f and f are the approximate lower and upper
limits of f , respectively.

As we announced at the end of Subsection 1.2.4, Theorem 2.3.4 provides
an alternative solution to the Plateau’s problem for integral currents in codi-
mension 1, without invoking the Closure Theorem 1.2.59.
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Part II

Currents with coefficients in a
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Chapter 3

Currents with coefficients in a

group
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Currents with coefficients in a group were introduced by W. Fleming.
There is a vast literature on the subject: let us mention only the seminal
paper [27], the work of B. White [54, 55], and the more recent papers by T.
De Pauw and R. Hardt [19] and by L. Ambrosio and M. G. Katz [4].

In the aforementioned works, the set of flat G-chains is obtained by com-
pletion: they define polyhedral G-chains as the additive group generated by
oriented simplexes with multiplicities in G (compare with Definition 1.2.47).
The group G is required to be a normed abelian group such that its norm
makes it a complete metric space. The group of flat G-chains is the smallest
group containing the polyhedral G-chains and closed under the flat norm (see
Definition 1.2.53). The most important theorems about currents still hold in
the context of G-chains: in [54] we can find the analog of Deformation Theo-
rem 1.2.49. In [55] a closure theorem for flat G-chains is proved, provided G
satisfies the following property: any non-constant continuous path in G has
infinite length. Let us remark that discrete groups fulfill this property.

We will need a different approach toG-chains, or currents with coefficients
in G. Since we are interested in the calibration technique, we need an integral
representation for currents with coefficients in a group. In Section 3.1 we
provide definitions for currents over a coefficient group, with some basic
examples. We also restate the main theorems in this new framework and we
conclude the section by investigating the existence of calibrations for mass-
minimizing currents with coefficients in G.

In Section 3.2 we analyze the Steiner tree problem by means of currents
with coefficients in a suitably chosen group G. Section 3.1 and Section 3.2
are both drawn from [41].

In Section 3.3, following [13], we discuss an application of currents with
group coefficients to models of crystals dislocations.

3.1 Definitions and main theoretical results

This first part of the section may seem a pretty tedious repetition of Section
1.2, but we actually need it in order to fix the notation and clarify some
choices.

Fix an open set U ⊂ Rd and a normed vector space (E, ∥ ⋅ ∥E) with finite
dimension m ≥ 1. We will denote by (E∗, ∥ ⋅∥E∗) its dual space endowed with
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the dual norm ∥f∥E∗ ∶= sup
∥v∥E≤1

⟨f ; v⟩ .
Definition 3.1.1. We say that a map

ω ∶ Λk(Rd) ×E → R

is an E∗-valued k-covector in Rd if

(i) ∀ τ ∈ Λk(Rd), ω(τ, ⋅) ∈ E∗, that is ω(τ, ⋅) ∶ E → R is a linear function.

(ii) ∀ v ∈ E, ω(⋅, v) ∶ Λk(Rd)→ R is a (classical) k-covector.

Sometimes we will use ⟨ω; τ, v⟩ instead of ω(τ, v), in order to simplify the
notation. The space of E∗-valued k-covectors in Rd is denoted by Λk

E(Rd)
and it is endowed with the comass norm

∥ω∥ ∶= sup{∥ω(τ, ⋅)∥E∗ ∶ ∣τ ∣ ≤ 1, τ simple} . (3.1.1)

Remark 3.1.2. Fix an orthonormal system of coordinates in Rd, (e1, . . . ,ed),
as usual, with its corresponding dual base in (Rd)∗ given by (dx1, . . . ,dxd).
Consider a complete biorthonormal system for E, i.e., a pair

(v1, . . . , vm) ∈ Em; (w1, . . . , wm) ⊂ (E∗)m
such that ∥vi∥E = 1, ∥wi∥E∗ = 1 and ⟨wi; vj⟩ = δij . Given an E∗-valued k-
covector ω, we denote

ωj ∶= ω(⋅, vj).
For each j ∈ {1, . . . ,m}, ωj is a k-covector in the usual sense. Hence the
biorthonormal system (v1, . . . , vm), (w1, . . . , wm) allows to write ω in “com-
ponents”

ω = (ω1, . . . , ωm) ,
in fact we have

ω(τ, v) = m∑
j=1
⟨ωj; τ⟩⟨wj; v⟩ .

In particular ωj admits the usual representation

ωj = ∑
1≤i1<...<ik≤d

a
j
i1...ik

dxi1 ∧ . . . ∧ dxik , j = 1, . . . ,m.
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Definition 3.1.3. An E∗-valued differential k-form in U ⊂ Rd, or just a
k-form when it is clear which group we are referring to, is a map

ω ∶ U → Λk
E(Rd);

we say that ω is C∞-regular if every component ωj is so (see Remark 3.1.2).
We denote by C∞c (U,Λk

E(Rd)) the vector space of C∞-regular E∗-valued k-
forms with compact support in U .

We are mainly interested in E∗-valued 1-forms, nevertheless we analyze
k-forms in wider generality, in order to ease other definitions, such as the
differential of an E∗-valued form and the boundary of an E-current.

Definition 3.1.4. We define the differential dω of a C∞-regular E∗-valued
k-form ω by components:

dωj = d(ωj) ∶ U → Λk+1(Rd) , j = 1, . . . ,m ,

Moreover, C∞c (U,Λ1
E(Rd)) has a norm, denoted by ∥ ⋅ ∥, given by the supre-

mum of the comass norm of the form defined in (3.1.1). Hence we mean

∥ω∥ ∶= sup
x∈U
∥ω(x)∥ . (3.1.2)

Definition 3.1.5. A k-dimensional current T in U ⊂ Rd, with coefficients in
E, or just an E-current when there is no doubt on the dimension, is a linear
and continuous function

T ∶ C∞c (U,Λk
E(Rd))Ð→ R ,

where the continuity is meant with respect to the locally convex topology on
the space C∞c (U,Λk

E(Rd)), built in analogy with the topology on C∞c (Rn),
with respect to which distributions are dual. This defines the weak∗ topology
on the space of k-dimensional E-currents. Convergence in this topology
is equivalent to the convergence of all the “components” in the space of
classical1 k-currents, by which we mean the following. We define for every
k-dimensional E-current T its components T j, for j = 1, . . .m, and we write

T = (T 1, . . . , Tm),
1In the sequel we will use “classical” to refer to the usual currents, with coefficients in

R or possibly in Z.
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denoting ⟨T j;ϕ⟩ ∶= ⟨T ; ϕ̃j⟩ ,
for every (classical) compactly supported differential k-form ϕ on Rd. Here
ϕ̃j denotes the E∗-valued differential k-form on Rd such that

ϕ̃j(⋅, vj) = ϕ, (3.1.3)

ϕ̃j(⋅, vi) = 0 for i ≠ j . (3.1.4)

It turns out that a sequence of k-dimensional E-currents Th weakly∗ con-

verges to an E-current T (in this case we write Th
∗
⇀ T ) if and only if the

sequence of the components T j
h converge to T j in the space of classical k-

currents, for j = 1, . . . ,m.

Definition 3.1.6. For a k-current T over E we define the boundary operator

⟨∂T ;ϕ⟩ ∶= ⟨T ; dϕ⟩ ∀ϕ = (ϕ1, . . . , ϕm) ∈ C∞c (U,Λk−1
E (Rd))

and the mass
M(T ) ∶= sup

∥ω∥≤1
⟨T ;ω⟩.

As one can expect, the boundary ∂(T j) of every component T j is the
relative component (∂T )jof the boundary ∂T .

Definition 3.1.7. A k-dimensional normal E-current in U ⊂ Rd is an E-
current T withM(T ) < +∞ andM(∂T ) < +∞. Thanks to the Riesz Theorem,
T admits the following representation:

⟨T ;ω⟩ = ∫
U
⟨ω(x); τ(x), v(x)⟩dµT (x) , ∀ω ∈ C∞c (U,Λk

E(Rd)) .
where µT is a Radon measure on U and v ∶ U → E is summable with respect
to µT and ∣τ ∣ = 1, µT -a.e. A similar representation holds for the boundary
∂T .

Definition 3.1.8. A rectifiable k-current T in U ⊂ Rd, over E, or a rectifiable
E-current is an E-current admitting the following representation:

⟨T ;ω⟩ ∶= ∫
Σ
⟨ω(x); τ(x), θ(x)⟩dH

k(x), ∀ω ∈ C∞c (Rd,Λk
E(U))

where Σ is an H k-rectifiable set contained in U , τ(x) ∈ TxΣ with ∣τ(x)∣ = 1
for H k-a.e. x ∈ Σ and θ ∈ L1(U ;E). We will refer to such a current as
T = ⟦Σ, τ, θ⟧. If B is a Borel set and ⟦Σ, τ, θ⟧ is a rectifiable E-current, we
denote by T B the current ⟦Σ ∩B, τ, θ⟧.
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Consider now a discrete subgroup G < E, endowed with the restriction of
the norm ∥ ⋅ ∥E. If the multiplicity θ takes only values in G, and if the same
representation holds for ∂T , we call T a rectifiable G-current. Pay attention
to the fact that, in the framework of currents over the coefficient group E,
rectifiable E-currents play the role of (classical) rectifiable current, while
rectifiable G-currents correspond to (classical) integral currents. Actually
this correspondence is an equality, when E is the group R (with the euclidean
norm) and G is Z.

Example 3.1.9. Let E = Rd and let G be the additive subgroup generated by
m elements g1, . . . , gm. Given m+ 1 points p1, . . . , pm, pm+1 ∈ R2, consider the
cone C over (p1, . . . , pm) with respect to pm+1: if Σr is the oriented segment
from pr to pm+1, r = 1, . . . ,m, then

C = m⋃
r=1

Σr .

We can define a rectifiable G-current supported on C as

⟨T ;ω⟩ ∶= − m∑
r=1
∫
Σr

⟨ω(x); τr(x), gr⟩dH
1(x),

where τr is the unit tangent vector to Σr, pointing towards pm+1. It is
easy to see that, denoting gm+1 = −(g1 + . . . + gm) we can represent the 0-
dimensional rectifiable G-current ∂T with the points p1, . . . , pm+1 with multi-
plicities g1, . . . , gm+1, respectively. From now on we will denote such a current
as g1δp1 + . . . + gm+1δpm+1 .

Proposition 3.1.10. Let T = ⟦Σ, τ, θ⟧ be a rectifiable E-current, then

M(T ) = ∫
Σ
∥θ(x)∥G dH

1(x) .
Since the mass is lower semicontinuous, we can apply the direct method

of the Calculus of Variations for the existence of minimizers with given boun-
dary, once we provide the following compactness result. Here we assume for
simplicity that G is the subgroup of E generated by v1, . . . , vm. A similar
argument works for every discrete subgroup G.

Theorem 3.1.11. Let (Th)h≥1 be a sequence of rectifiable G-currents such
that there exists a positive finite constant C satisfying

M(Th) +M(∂Th) ≤ C for every h ≥ 1 .
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Then there exists a subsequence (Thi
)i≥1 and a rectifiable G-current T such

that
Thi

∗
⇀ T.

Proof. The statement of the theorem can be proved component by compo-
nent. In fact, let T 1

h , . . . , T
m
h be the components of Th. Since (v1, . . . , vm) and(w1, . . . , wm) is a biorthonormal system, we have

M(T j
h) +M(∂T j

h) ≤M(Th) +M(∂Th) ≤ C ,

hence, after a diagonal procedure, we can find a subsequence (Thi
)i≥1 such

that (T j
hi
)
i≥1 weakly∗ converges to some integral current T j, for every j =

1, . . . ,m. Denoting by T the rectifiable G-current, whose components are
T 1, . . . , Tm, we have

Thi

∗
⇀ T.
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3.1.1 Generalized calibrations

As we recalled in the introduction to this chapter, our interest in calibrations
is the reason why we have chosen to provide an integral representation for
E-currents, in fact the existence of a calibration guarantees the minimality of
the associated current, as we will see in Proposition 3.1.13. As it happened
for the definitions on currents, the model for this theory is the well-known
standard case (E = R and G = Z), which can be found in Section 1.4.

Definition 3.1.12. A smooth calibration associated with a k-dimensional
rectifiable G-current ⟦Σ, τ, θ⟧ is a smooth compactly supported E∗-valued
differential k-form ω, with the following properties:

(i) ⟨ω(x); τ(x), θ(x)⟩ = ∥θ(x)∥G for H k-a.e. x ∈ Σ;
(ii) dω = 0;
(iii) ∥ω∥ ≤ 1, i.e., ∥⟨ω; τ⟩∥E∗ ≤ 1, for every simple k-vector τ with ∣τ ∣ = 1.
Proposition 3.1.13. A rectifiable G-current T which admits a smooth cal-
ibration ω is a minimizer for the mass among the normal E-currents with
boundary ∂T .

Proof. Fix a competitor T ′ which is a normal E-current associated with the
vectorfield τ ′, the multiplicity θ′ and the measure µT ′ , with ∂T ′ = ∂T . Since
∂(T − T ′) = 0, then T − T ′ is a boundary of some current S in Rd, and then

M(T ) = ∫
Σ
∥θ∥G dH

k (3.1.5)

(i)= ∫
Σ
⟨ω(x); τ(x), θ(x)⟩dH

k = ⟨T ;ω⟩ (3.1.6)

(ii)= ⟨T ′;ω⟩ = ∫
Rd
⟨ω(x); τ ′(x), θ′(x)⟩dµT ′ (3.1.7)

(iii)≤ ∫
Rd
∥θ′∥G dµT ′ =M(T ′) , (3.1.8)

where each equality (respectively inequality) holds because of the correspond-
ing property of ω, as established in Definition 3.1.12. In particular, equality
in (ii) follows from

⟨T − T ′;ω⟩ = ⟨∂S;ω⟩ = ⟨S; dω⟩ = 0.
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Remark 3.1.14. If T is a rectifiable G-current calibrated by ω, then every
mass minimizer with boundary ∂T is calibrated by the same form ω. In fact,
choose a mass minimizer T ′ = ⟦Σ′, τ ′, θ′⟧ with boundary ∂T ′ = ∂T : obviously
we have M(T ) =M(T ′), then equality holds in (3.1.8), which means

⟨ω(x); τ ′(x), θ′(x)⟩ = ∥θ′(x)∥G for H
k − a.e. x ∈ Σ′ .

In Definition 3.1.12 we intentionally kept vague the regularity of the form
ω. Indeed ω has to be a compactly supported2 smooth form, a priori, in
order to fit Definition 3.1.5. Nevertheless, in some situations it will be useful
to consider calibrations with lower regularity, for instance piecewise constant
forms. As long as (3.1.6)-(3.1.8) remain valid, it is meaningful to do so; for
this reason we introduce the following very general definition.

Definition 3.1.15. A generalized calibration associated with a k-dimensional
normal E-current T is a linear and bounded functional φ on the space of nor-
mal E-currents satisfying the following conditions:

(i) φ(T ) =M(T );
(ii) φ(∂R) = 0 for any (k + 1)-dimensional normal E-current R;

(iii) ∥φ∥ ≤ 1.
Remark 3.1.16. The thesis in Proposition 3.1.13 is still true, since for every
competitor T ′ with ∂T = ∂T ′, there holds

M(T ) = φ(T ) = φ(T ′) + φ(∂R) ≤M(T ′) ,
where R is chosen such that T − T ′ = ∂R. Such R exists because T and T ′

are in the same homology class.

As we will show by some examples (see 3.2.6 and 3.2.7), an easy way to
“build” a calibration is to search it among piecewise constant forms. So we
have to establish a compatibility condition which brings piecewise constant
forms back to Definition 3.1.15. Since this definition has a practical aim, we
allow ourselves to treat the case of 1-currents in R2 only.

2Since we will always deal with currents that are compactly supported, we can easily
drop the assumption that ω has compact support.
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Definition 3.1.17. Fix a 1-dimensional rectifiable G-current T in R2, T =⟦Σ, τ, θ⟧. Assume we have a collection {Cr}r≥1 which is a locally finite, Lip-
schitz partition of R2, i.e., ⋃r≥1Cr = R2, the boundary of every set Cr is a
Lipschitz curve and Cr ∩Cs = ∅ whenever r ≠ s. Assume moreover that ∂Cr

is a connected set for every r and that Cr contains the connected non-empty
interior of its closure. Let us consider a compactly supported piecewise con-
stant E∗-valued 1-form ω with

ω ≡ ωr on Cr

where ωr ∈ Λ1
E(R2) for every r. In particular ω ≠ 0 only on finitely many

elements of the partition. Then we say that ω represents a compatible cali-
bration for T if the following conditions hold:

(i) for almost every x ∈ Σ, ⟨ω(x); τ(x), θ(x)⟩ = ∥θ(x)∥G;
(ii) for H 1-almost every point x ∈ ∂Cr ∩ ∂Cs we have

⟨ωr − ωs; τ(x), ⋅⟩ = 0,
where τ is tangent to ∂Cr;

(iii) ∥ωr∥ ≤ 1 for every r.

We will refer to condition (ii) with the expression of compatibility condition
for a piecewise constant form.

Proposition 3.1.18. Let ω be a compatible calibration for the rectifiable G-
current T . Then T minimizes the mass among the normal E-currents with
boundary ∂T .

Proof. Firstly we see that a suitable counterpart of Stokes’s Theorem 1.2.28
holds. Namely, given a component ωj of ω and a classical integral 1-current
T = ⟦Σ, τ,1⟧ in R2, without boundary, then the quantity

⟨ωj;T ⟩ ∶= ∫
Σ
⟨ωj(x); τ(x)⟩dH

1(x)
is well defined, and we claim that it is equal to zero. The fact that it is well
defined is a direct consequence of the compatibility condition (ii) in Definition
3.1.17. To prove that it is equal to zero, note that it is possible to find at
most countably many unit multiplicity integral 1-currents Ti = ⟦Σi, τi,1⟧ in
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R2, without boundary, each one supported in a single set Cr, such that

∑i Ti = T . Since
∫
Σi

⟨ωj(x); τi(x)⟩dH
1(x) = 0

for every i, then the claim follows from (ii). As a consequence we have that
there exists a family of Lipschitz functions φj ∶ R

2 → R such that for every
(classical) integral 1-current S with M(∂S) ≤ 2 (in particular ∂S = δxS

− δyS ,
and xS = yS if and only if ∂S = 0) there holds:

⟨ωj;S⟩ = φj(xS) − φj(yS), for every j.

In fact it is sufficient to choose φj(0) = 0 and

φj(x) = ∣x∣∫ 1

0
⟨ωj(tx); x∣x∣ ⟩ dt.

Moreover it is easy to see that every φj is constant outside of the support of
ωj, so we can assume, possibly subtracting a constant, that φj is compactly
supported.

Now, take a 2-dimensional normal E-current T . Let {T j}j be the com-
ponents of T . For every j, use the decomposition given by Proposition 1.3.4,
in order to write Sj ∶= ∂T j = ∫ Mj

0 S
j
t dt. Then we have

⟨ω;∂T ⟩ =∑
j
∫ Mj

0
⟨ωj;Sj

t ⟩ dt =∑
j
∫ Mj

0
φj(xSj

t
) − φj(ySj

t
) dt.

Since for every j we have

0 = ∂(∂T j) = ∫ Mj

0
δx

S
j
t

− δy
S
j
t

dt,

then, for every j, we must have

∫ Mj

0
g(x

S
j
t
) − g(y

S
j
t
) dt = 0,

for every compactly supported Lipschitz function g, in particular for every
φj. Hence we have ⟨ω;∂T ⟩ = 0.

We postpone the examples of calibrations to Section 3.2.
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3.1.2 The equivalence between minima and the exi-

stence of a calibration

Once we established that the existence of a calibration is a sufficient condition
for a rectifiable G-current to be a mass-minimizer, we may wonder if the
converse is also true: does a calibration (of some sort) exist for every mass-
minimizing rectifiable G-current?

Let us step backward: does it occur for classical integral currents? The
answer is quite articulate, but we can briefly summarize the state of the art
we will rely upon. See also [12] for an overview of this problem of duality
between minima and calibrations.

Remark 3.1.19. An actual calibration cannot exist for every minimizer.
In fact there are currents which minimize the mass among integral currents
with a fixed boundary, but not among normal currents (in some cases the
two problems have different minima). This means that such integral cur-
rents cannot be calibrated, in fact the existence of a calibration proves the
minimality among normal currents.

Remark 3.1.20. For every mass-minimizing classical normal k-current T ,
there exists a generalized calibration φ in the sense of Definition 3.1.15. More-
over, by means of the Riesz Representation Theorem, φ can be represented
by a measurable map from U to Λk(Rd). This result is contained in [25].

In particular, Remark 3.1.20 provides a positive answer to the question
of the existence of a generalized calibration for mass-minimizing integral
currents of dimension k = 1, because minima among both normal and integral
currents coincide, as we proved in Theorem 1.3.5. It is possible to apply the
same technique in the class of normal E-currents, therefore we have the
following proposition.

Proposition 3.1.21. For every mass minimizing normal E-current T , there
exists a generalized calibration.

In order to guarantee the existence of a generalized calibration also for
1-dimensional mass-minimizing rectifiable G-currents, we need an analog of
Proposition 1.3.5 in the framework of G-currents. Namely, we need to prove
that the minimum of the mass among 1-dimensional normal E currents with
the same boundary coincides with the minimum calculated among rectifiable
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G-currents. Here the boundary is of course a 0-dimensional rectifiable G-
current. This is a well-known issue for classical k-dimensional currents: for
k ≥ 2 it is not even known whether the two minima are commensurable,
i.e., whether or not there exists a constant C such that, for every fixed(k − 1)-dimensional integral boundary B, the minimum of the mass among
integral k-currents with boundary B is less then C times the minimum among
normal k-currents with the same boundary. From the argument used in the
proof of Proposition 1.3.5 we realize that the equality of the two minima in
the framework of 1-dimensional E-currents is equivalent to the homogeneity
property in Remark 3.1.22. This property, which is trivially verified for
classical integral currents, seems to be an interesting issue in the class of
rectifiable G-currents. In Example 3.1.23 we exhibit a subset M ⊂ R2 such
that, if our currents are forced to be supported on M , then the homogeneity
property does not hold. In other words, we can say that equality of the
two minima does not hold in the framework of 1-dimensional E-currents on
the metric space M . We can see the same phenomenon if we substitute the
metric space M with the metric space R2 endowed with a density, which is
unitary on the points of M and very high outside.

Thus, we want to know whether the analog of Theorem 1.3.5 holds also in
the framework of 1-dimensional E-currents. Fix a 0-dimensional rectifiable
G-current R in U ⊂ Rd. Do the minima for the mass among 1-dimensional
normal E-currents and rectifiable G-currents with boundary R coincide?

Remark 3.1.22. The answer to the previous question is positive if and only
if the following is true: given R = ∑n

i=1 giδxi
with ∥gi∥G = 1 and T a rectifiable

G-current which is mass-minimizer with ∂T = R, then for every k ∈ N we
have that

min{M(S) ∶ S rectifiable G − current, ∂S = kR} = kM(T ) . (3.1.9)

Notice that, using the notation introduced in Theorem 1.3.5, (3.1.9) can be
meaningfully written as

MI(kR) = kMI(R) . (3.1.10)

The condition 3.1.10 is clearly necessary to have the equality of the two
minima. It is also sufficient, in fact one can approximate a normal E-current
with polyhedral currents with coefficients in QG.
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Figure 3.1: Metric space in the Example 3.1.23

Example 3.1.23. Consider the metric space3 M ⊂ R2 given4 in Figure 3.1.
Consider a group G ⊂ R2 which has three elements g1, g2, g3 ∈ G such that∥g1∥E = ∥g2∥E = ∥g3∥E = 1 and g1+g2+g3 = 0. Such a group exists and we will
analyze with all the details in Section 3.2. Let R ∶= g1δp1 + g2δp2 + g3δp3 . We
will show that (3.1.10) does not hold even when k = 2. In fact it is trivial to
prove that

MI(R) = 12 .
Nevertheless, concerning MI(2R), it is shown in Figure 3.2 that

MI(2R) ≤ 23 < 24 = 2MI(R) .
Remark 3.1.24. One can expect a behavior like that in Example 3.1.23 in
the metric space R2 endowed with a density which is very high outside of the
subset M ⊂ R2. To be precise, let us consider a bounded continuous function

3For currents in metric spaces, see [5].
4The length of each segment is explicitly declared in Figure 3.1, note that the set is

symmetric with respect to the vertical axis.
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Figure 3.2: Counterexample to (3.1.10)

W ∶ R2 → R, with W ≡ 1 on M and W >> 1 out of a small neighborhood of
M . For any couple (x0, x1) ∈ R2, the distance on (R2,W ) is given by

d(x0, x1) = inf {∫ 1

0
∣γ′(t)∣W (γ(t))dt ∶ γ(0) = x0 and γ(1) = x1} .

3.2 The Steiner tree problem revisited

The classical Steiner tree problem consists in finding the shortest connected
set containing n given distinct points p1, . . . , pn in Rd. Some very well-known
examples are shown in Figure 3.3.

The problem is completely solved in R2 and there exists a wide literature
on the subject, mainly devoted to improving the efficiency of algorythms for
the construction of solutions: see, for instance, [29] and [16] for a survey of
the problem. The recent papers [46] and [47] witness the current studies on
the problem and its generalizations.

Our aim is to rephrase the Steiner tree problem with an equivalent mass
minimization problem by replacing connected sets with 1-currents with coef-

86



p4

p3

p1

p2

O

p1

p2

p3 O

Figure 3.3: Solutions for the vertices of an equilateral triangle and a square.

ficients in a more suitable group than Z, in such a way that solutions of one
problem correspond to solutions of the other, and vice-versa. The use of cur-
rents allows to exploit techniques and tools from the Calculus of Variations
and the Geometric Measure Theory, such as calibrations.

Let us briefly point out a few facts suggesting that classical integral poly-
hedral chains might not be the correct environment for our problem. First,
one should make the given points p1, . . . , pn in the Steiner problem corre-
spond to some integral polyhedral 0-chain supported on p1, . . . , pn, with suit-
able multiplicities m1, . . . ,mn. One has to impose that m1 + . . . +mn = 0
in order for this 0-chain to be the boundary of a compactly supported 1-
chain. In the example of the equilateral triangle, see Figure 3.3, the condition
m3 = −(m1 +m2) forces to break symmetry, leading to the minimizer in Fig-
ure 3.4. The desired solution is instead depicted in Figure 3.3. In the second
example from Figure 3.3, we get the “wrong” non-connected minimizer even
though all boundary multiplicities have modulus 1; see Figure 3.4.

These examples show that Z is not the right group of coefficients. In this
section we recast Steiner problem in terms of a mass minimization problem
over currents with coefficients in a discrete group G, chosen only on the basis
of the number of boundary points. As we already said, this construction
provides a way to pass from a mass minimizer to a Steiner solution and
viceversa.

This new formulation will permit to initiate a study of calibrations as a
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Figure 3.4: Solutions for the mass minimization problems among polyhedral
chains with integer coefficients

sufficient condition for minimality; this is the subject of Subsection 3.2.2. In
examples 3.2.6 and 3.2.7, we will exhibit calibrations for the problem on the
right of Figure 3.3 and for the Steiner tree problem on the vertices of a regular
hexagon plus the center. It is worthwhile to note that our theory works for the
Steiner tree problem in Rd and for currents supported in Rd; we made explicit
computations only on 2-dimensional configurations for simplicity reasons.

3.2.1 The equivalence between the Steiner problem

and a mass-minimization problem

We now establish the equivalence between the Steiner tree problem and a
mass minimization problem in a family of G-currents. We first need to choose
the right group of coefficients G. Once we fix the n points in the Steiner
problem, we look for a subgroup (G, ∥⋅∥G), of a normed vector space (E, ∥⋅∥E),
(where ∥ ⋅∥G is the restriction to G of the norm ∥ ⋅∥E) satisfying the following
properties:

(P1) there exist g1, . . . , gn−1 ∈ G and h1, . . . , hn−1 ∈ E∗ such that (g1, . . . , gn−1)
with (h1, . . . , hn−1) is a complete biorthonormal system for E and G is
additively generated by g1, . . . , gn−1;

(P2) ∥gi1 + . . . + gik∥G = 1 whenever 1 ≤ i1 < . . . < ik ≤ n − 1 and k ≤ n − 1;
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(P3) ∥g∥G ≥ 1 for every g ∈ G ∖ {0}.
For the moment we will assume the existence of G and E. The proof of their
existence and an explicit representation, useful for the computations, will be
given later in this section.

The next lemma has a fundamental role: through it, we can give a nice
structure of 1-dimensional rectifiable G-current to every suitable competitor
for the Steiner tree problem. From now on we will denote gn ∶= −(g1 + . . . +
gn−1).
Lemma 3.2.1. Let B be a connected 1-rectifiable set with finite length in Rd,
containing p1, . . . , pn. Then there exists a connected set B′ ⊂ B containing
p1, . . . , pn and a 1-dimensional rectifiable G-current TB′ = ⟦B′, τ, θ⟧, such that

(i) ∥θ(x)∥E = 1 for a.e. x ∈ B′,
(ii) ∂TB′ is the 0-dimensional G-current g1δp1 + . . . + gnδpn

Proof. Since B is a connected set of finite length, then B is connected by
paths of finite length (see Lemma 3.12 of [22]). Consider a simple path B1

contained in B going from p1 to pn. In analogy with Example 3.1.9, associate
it with a current T1 with constant multiplicity −g1 and orientation going from
p1 to pn. Repeat this procedure keeping the ending point pn and replacing at
each step p1 with p2, . . . , pn−1. To be precise, in this procedure, as soon as a
new path Bi intersects an other path Bj (i > j), then the remaining part of Bj

must coincide with the remaining part of Bi. The set B′ = B1∪ . . .∪Bn−1 ⊂ B
is a connected set containing p1, . . . , pn and the 1-dimensional rectifiable G-
current T = T1+. . .+Tn−1 satisfies the requirements of the lemma, in particular
condition (i) comes from (P2). ◻

Via the next lemma, we can say that mass minimizers for our problem
have connected supports. In its proof we will need Corollary 1.3.3 on the
structure of integral 1-currents. As we said in Section 1.3, it allows us to
consider an integral 1-current as a countable sum of oriented simple Lipschitz
curves with integer multiplicities.

Lemma 3.2.2. Let T be a 1-dimensional rectifiable G-current, such that ∂T
is the 0-current g1δp1 + . . . + gnδpn. Then there exists a rectifiable G-current

T̃ = ⟦Σ̃, τ̃ , θ̃⟧ such that

(i) ∂T̃ = ∂T = g1δp1 + . . . + gnδpn;
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(ii) M(T̃ ) ≤M(T ) and the equality holds only if T̃ = T ;
(iii) the support of T̃ is a connected 1-rectifiable set containing {p1, . . . , pn}

and it is contained in the support of T ;

(iv) H 1(supp(T̃ ) ∖ Σ̃) = 0.
Proof. Let T j = ⟦Σj, τ j, θj⟧ be the components of T , for j = 1, . . . , n−1 (with
respect to the biorthonormal system (g1, . . . , gn−1), (h1, . . . , hn−1)).

For every j, we can use Corollary 1.3.3 and write

T j =
Kj∑
k=1

T
j
k +∑

ℓ≥1
C

j
ℓ .

Notice that, for every j = 1, . . . , n − 1, if θjk denotes the multiplicity of T j
k ,

then, by (1.3.18), we have

Kj∑
k=1
∣θjk∣ ≤ ∣θj ∣ H

1−a.e. on supp(T j). (3.2.1)

We choose T̃ the rectifiable G-current whose components are

T̃ j ∶=
Kj∑
k=1

T
j
k .

Again, because of (1.3.18), we have supp(T̃ ) ⊂ supp(T ) (the cyclic part of
T j never cancels the acyclic one).

Property (i) is easy to check. Property (ii) is a consequence of (3.2.1) and
of the following property of the norm ∥ ⋅ ∥G: if θ = ∑n−1

j=1 θ
jgj and θ̃ = ∑n−1

j=1 θ̃
jgj

(with 0 ≤ θ̃j ≤ θj when θj ≥ 0 and 0 ≥ θ̃j ≥ θj otherwise), then ∥θ̃∥G ≤ ∥θ∥G
(this property follows from the fact that (g1, . . . , gn−1), (h1, . . . , hn−1) is a
complete biorthonormal system for E).

Property (iv) is also easy to check, because the corresponding property
holds for every T j

k and therefore for every component T̃ j.

It remains to prove property (iii). By construction T̃ is a finite sum
of oriented curves with multiplicities; since we are considering curves with
ending points (closed sets), supp(T̃ ) has a finite number of (closed) connected
components far apart: consider S a connected component of supp(T̃ ) and the
related restriction T̃ S. Notice that S has positive distance from any other
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connected component of supp(T̃ ). We want to prove that either S contains all
the pi’s or none of them. Assume by contradiction that S contains a proper
subset of {p1, . . . , pn}, let us relabel the points such that S ⊃ {p1, . . . , pñ},
with 1 ≤ ñ < n, and pj ∉ S if j > ñ. Thus ∂(T̃ S) is the 0-current associated
with p1, . . . , pñ with multiplicities g1, . . . , gñ. Then we can choose an element
w ∈ E∗ such that w(gj) = 1 for j = 1, . . . , ñ and take ϕ ∈ C∞c (Rd,Λ1

E(Rd)) a
smooth E∗-valued 1-form such that

ϕ ≡ w on S

ϕ ≡ 0 on supp(T̃ ) ∖ S .

Then 0 = T̃ S(dϕ) = ∂(T̃ S)(ϕ) = ñ, which is clearly a contradiction.
Therefore there is no boundary for the restriction of T̃ to every connected
component of its support, but one. Possibly replacing T̃ by its restriction to
this non-trivial connected component, we get the thesis.

Theorem 3.2.3. Assume that T0 = ⟦Σ0, τ0, θ0⟧ is a mass-minimizer among
rectifiable 1-dimensional G-currents with boundary

B = g1δp1 + . . . + gnδpn .
Then S0 ∶= supp(T0) is a solution of the Steiner tree problem. Conversely,
given a set C which is a solution of the Steiner problem for the points
p1, . . . , pn, there exists a canonical 1-dimensional G-current, supported on
C, minimizing the mass among the currents with boundary B.

Proof. The existence of T0 is a direct consequence of Theorem 3.1.11. More-
over, since T0 is a mass minimizer, then it must coincide with the current T̃0
given by Lemma 3.2.2. In particular, Lemma 3.2.2 guarantees that S0 is a
connected set.

Let S be a competitor for the Steiner tree problem and let S′ and TS′

be the connected set and the rectifiable 1-current given by Lemma 3.2.1,
respectively. Hence we have

H
1(S) ≥H

1(S′) (i)= M(TS′) (ii)≥ M(T0) (iii)≥ H
1(Σ0) (iv)= H

1(S0) ,
in fact

(i) thanks to the second property of Lemma 3.2.1 and Proposition 3.1.10,
we obtain

M(TS′) = ∫
S′
∥θS′(x)∥G dH

1(x) =H
1(S′) ;
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(ii) we assumed that T0 is a mass-minimizer;

(iii) from property (P3), we get

M(T0) = ∫
Σ0

∥θ0(x)∥G dH
1(x) ≥ ∫

Σ0

1dH
1(x) =H

1(Σ0) ;
(iv) is property (iv) in Lemma 3.2.2.

To prove the second part of the Theorem, apply Lemma 3.2.1 to the set
C. Notice that with the procedure described in the lemma, the rectifiable
G-current TC′ is uniquely determined, because for every point pi, C contains
exactly one path from pi to pn, in fact it is well-known that solutions of the
Steiner tree problem cannot contain cycles. By Lemma 3.2.2 TC′ is a solution
of the mass minimization problem.

Eventually, we give an explicit representation for G and E. Let e1, . . . ,en
be the standard basis of Rn; we consider on Rn the seminorm

∥u∥⋆ ∶= max
i=1,...,n

u ⋅ ei − min
i=1,...,n

u ⋅ ei .

We now take the quotient

E ∶= Rn

Span{e1 + . . . + en}
and denote by π the projection of Rn onto E. According to the relation in
the quotient, we get [(u1, . . . , un)] = [(u1 + c, . . . , un + c)], for every c ∈ R and
for every u = (u1, . . . , un) ∈ Rn (here [u] denotes the element of the quotient
associated with the vector u ∈ Rn). Since ∥u∥⋆ = ∥u+ v∥⋆ for every u ∈ Rn, v ∈
Span{e1 + . . .+ en}, then it is well defined the corresponding seminorm ∥ ⋅ ∥E
induced on E and it is actually a norm. Moreover ∥ ⋅ ∥⋆ is constant on every
fibre. For the sake of completeness, we remark that, with this notation, the
dual space E∗ can be represented as E∗ = {(z1, . . . , zn) ∈ Rn ∶ ∑n

i=1 zi = 0} and
its dual norm ∥ ⋅ ∥E∗ coincides with 1

2∥ ⋅ ∥1. In fact, for every [u] ∈ E with∥[u]∥E = 1 we can choose a representative u, such that ∣ui∣ ≤ 1
2 , i = 1, . . . , n

and then

∥z∥E∗ = sup
∥[u]∥E=1

n∑
i=1
ziui = 1

2

n∑
i=1
∣zi∣ .

The choice of E as a quotient is motivated by the idea that the sum of
the coefficients ei must be zero, for boundary reasons. Anyway, we find that
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a slightly different representation of E, would ease computations later and
we would rather introduce G with this new representation. Consider

F ∶= {v ∈ Rn ∶ v ⋅ en = 0} ⊂ Rn

and the homomorphism φ ∶ Rn → F such that

φ(u1, . . . , un) ∶= (u1 − un, . . . , un−1 − un,0) ; (3.2.2)

the seminorm ∥ ⋅ ∥⋆ is a norm on F .
The homomorphism φ in (3.2.2) induces an isometrical isomorphism φ̃ ∶

E → F defined by the relation φ̃○π = φ: in fact, if v ∈ E and u ∈ π−1(v), then∥v∥E = ∥u∥⋆ = ∥φ(u)∥⋆ = ∥φ̃(v)∥⋆. For every i = 1, . . . , n−1, define gi = φ̃−1(ei)
and define gn = −(g1 + . . . + gn−1). Let G be the subgroup of E generated by
g1, . . . , gn−1. For every i = 1, . . . , n−1 denote by hi the element of E∗ satisfying
hi(gj) = δij . The pair (g1, . . . , gn−1), (h1, . . . , hn−1) is a biorthonormal system.
With these coordinates, an element v ∈ E has unit norm ∥v∥E = 1 if and only
if ∥v∥E = ∥φ̃(v)∥⋆ = max

i=1,...,n−1
(vi ∨ 0) − min

i=1,...,n−1
(vi ∧ 0) = 1 . (3.2.3)

The norm ∥ ⋅ ∥E∗ of an element w = w1h1 + . . . wn−1hn−1 ∈ E∗ can be char-
acterized in the following way: let us abbreviate wP ∶= ∑n−1

i=1 (wi ∨ 0) and
wN ∶= −∑n−1

i=1 (wi ∧ 0) and λ(v) =maxi=1,...,n−1(vi ∨ 0) ∈ [0,1], then
∥w∥E∗ = sup

∥v∥E=1

n−1∑
i=1
wivi = sup

∥v∥E=1
[λ(v)wP + (1 − λ(v))wN]
= sup

λ∈[0,1]
[(λwP + (1 − λ)wN] = wP ∨wN . (3.2.4)

Notice that, recalling the notation of Section 3.1, m = n − 1. Properties
(P1), (P2) and (P3) are easy to check.

In the sequel, we will fix both the normed space E and the group G,
where n is the number of points in the corresponding Steiner tree problem
that we want to solve.

Remark 3.2.4. We already know that the elements g1, . . . , gn are the mul-
tiplicities of the n points in the boundary, for the Steiner tree problem. The
definition we just gave does not seem to be “symmetric”, in fact gn has,
in a certain sense, a privileged role, while the n points in the Steiner tree
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problem have of course all the same importance. To restore this lost symme-
try, one may note that the group E is represented in Rn as the hyperplane
P ∶= {x1 + . . . + xn = 0} with a norm which is a multiple of the norm induced
on P by the seminorm ∥ ⋅ ∥⋆ on Rn. Here g1, . . . , gn are the orthogonal pro-
jections on P of e1, . . . ,en−1 and −(e1 + . . . + en−1) respectively. It is easy to
see that these points of π are the vertices of an (n − 1)-dimensional regular
tetrahedron. In particular the unit elements of G are the vertices of a convex(n−1)-dimensional polyhedron which is symmetric with respect to the origin.
The vertices of the polyhedron are all the points of the form gi1+ . . .+gik with
1 ≤ i1 < . . . < ik ≤ n−1 and their inverses. It is clear that in this representation
the role of the pi’s is perfectly symmetric.

3.2.2 Examples

After the theoretical preliminaries, we can give some examples: we solve
some Steiner tree problems converting them in mass-minimization problems
and then building suitable calibrations.

We need a short digression on the representation of a E∗-valued 1-form
ω; we will consider d = 2, all our examples being for the Steiner tree problem
in R2. Remember that in Section 3.2 we fixed a basis (h1, . . . , hn−1) for E∗,
dual to the basis (g1, . . . , gn−1) for E. We will represent

ω = ⎛⎜⎝
ω1,1 dx1 + ω1,2 dx2

⋮

ωn−1,1 dx1 + ωn−1,2 dx2

⎞⎟⎠ ,

so that, if τ = τ1e1 + τ2e2 ∈ Λ1(R2) and v = v1g1 + . . . + vn−1gn−1 ∈ E, then
⟨ω; τ, v⟩ = n−1∑

i=1
vi(ωi,1τ1 + ωi,2τ2) .

Example 3.2.5. Consider the vector space E and the group G defined in
Section 3.2 with n = 3; let

p0 = (0,0), p1 = (1/2,√3/2), p2 = (1/2,−√3/2), p3 = (−1,0)
(see Figure 3.3). Consider the rectifiable G-current T supported in the cone
over (p1, p2, p3), with respect to p0, with piecewise constant weights g1, g2, g3 =
−(g1 + g2) on Σ1,Σ2,Σ3 respectively (recall Example 3.1.9 for notation and
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orientation). This current T is a minimizer for the mass. In fact, a constant
G-calibration ω associated with T can be represented as

ω ∶= ( 1
2 dx1 +

√
3
2 dx2

1
2 dx1 −

√
3
2 dx2

) .
Condition (i) is easy to check and condition (ii) is trivially verified because
ω is constant. To check condition (iii) we note that, for the general vector
τ = cosαe1 + sinαe2, we have

⟨ω; τ, ⋅⟩ = ( 1
2 cosα +

√
3
2 sinα

1
2 cosα −

√
3
2 sinα

) .
In order to calculate the comass norm of ω, we could stick to the method
explained in Section 3.2, but for n = 3 computations are simpler. Since the
unit ball of E is convex, and its extreme points are the unit points of G,
then it is sufficient to evaluate ⟨ω; τ, ⋅⟩ on ±g1,±g2,±(g1 + g2)(remember that∥g1 − g2∥E = 2). We have

∣⟨ω; τ, g1⟩∣ = ∣⟨ω; τ,−g1⟩∣ = ∣sin(α + π
6
)∣ ≤ 1 ,

∣⟨ω; τ, g2⟩∣ = ∣⟨ω; τ,−g2⟩∣ = ∣sin(α + 5

6
π)∣ ≤ 1 ,

∣⟨ω; τ, g1 + g2⟩∣ = ∣⟨ω; τ,−(g1 + g2)⟩∣ = ∣ cosα∣ ≤ 1 .
One may notice that, for every x ∈ R2, the E∗-covector ω(x) can be

represented as a map from R2 to itself, since E∗ and R2 coincide as vector
spaces. Moreover, with a suitable choice of a basis for E∗ this map is the
identity. It turns out that the form ω has unit norm because the Euclidean
unit ball is contained in the unit ball of E∗. One may be led to believe that
for the same reason the cone on the vertices of a regular tetrahedron centered
at the baricenter is the Steiner minimizer for the 4 vertices. This is not the
case, and the analog of the form ω is not a calibration in this case, because
its norm is bigger than one. In fact the Euclidean unit ball is not contained
in the unit ball of E∗ in dimension larger than 2.

An interesting way to generalize this result will be recalled in Remark
3.2.10.
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p1
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p3 p0

g3

g1

g2

Figure 3.5: Solution for the problem with boundary on the vertex of an
equilateral triangle

Both calibrations in Example 3.2.6 and in Example 3.2.7 are piecewise
constant 1-forms (with values in normed vector spaces of dimension 3 and 6,
respectively), that is why we established a compatibility condition in Defini-
tion 3.1.17.

Example 3.2.6. Consider the points

p1 = (1,1), p2 = (1,−1), p3 = (−1,−1), p4 = (−1,1) ∈ R2.

The length-minimizer graphs for the classical Steiner tree problem5 are those
represented in Figure 3.3. We associate with each point pj with j = 1, . . . ,4
the coefficients gj ∈ G, where G has “dimension” m = 3: let us call

B ∶= g1δp1 + g2δp2 + g3δp3 + g4δp4 .
This 0-dimensional current is our boundary. Intuitively our mass-minimizing
candidates among 1-dimensional rectifiable G-currents are those represented

5In dimension d > 2, an interesting question related to this problem is the following:
is the cone over the (d − 2)-skeleton of the hypercube in Rd area minimizing, among
hypersurfaces separating the faces? The question has a positive answer if and only if d ≥ 4
(see [11] for the proof).
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in Figure 3.6: these currents Thor, Tver are supported in the sets drawn, re-
spectively, with continuous and dashed lines in Figure 3.6 and have piecewise
constant coefficients intended to satisfy the boundary condition ∂Thor = B =
∂Tver.

g1

g2g3

g4

g1g4

g2

g1 + g2

g1 + g4 g1g4

g3

g3 g2

Tver

ω1

ω3

ω2ω4
Thor

part.

Figure 3.6: Solution for the mass minimization problem

In this case, a compatible calibration for both Thor and Tver is defined
piecewise as follows (the notation is the same as in Example 3.2.5 and the
partition is delimited by the dotted lines):

ω1 ≡
⎛⎜⎜⎜⎝

√
3
2 dx1 +

1
2dx2(1 − √3

2 )dx1 − 1
2dx2

(−1 + √3
2 )dx1 − 1

2dx2

⎞⎟⎟⎟⎠
ω2 ≡

⎛⎜⎜⎝
1
2dx1 +

√
3
2 dx2

1
2dx1 −

√
3
2 dx2

−1
2dx1 − (1 −

√
3
2 )dx2

⎞⎟⎟⎠

ω3 ≡
⎛⎜⎜⎝
(1 − √3

2 )dx1 + 1
2dx2√

3
2 dx1 −

1
2dx2

−
√
3
2 dx1 −

1
2dx2

⎞⎟⎟⎠ ω4 ≡
⎛⎜⎜⎜⎝

1
2dx1 + (1 −

√
3
2 )dx2

1
2dx1 − (1 −

√
3
2 )dx2

−1
2dx1 −

√
3
2 dx2

⎞⎟⎟⎟⎠
It is easy to check that ω satisfies both condition (i) and the compatibility
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condition of Definition 3.1.17. To check that condition (iii) is satisfied, we
can use formula (3.2.4).

Example 3.2.7. Consider the vertices of a regular hexagon plus the center,
namely

p1 = (1/2,√3/2), p2 = (1,0), p3 = (1/2,−√3/2),
p4 = (−1/2,−√3/2), p5 = (−1,0), p6 = (−1/2,√3/2), p7 = (0,0)

and associate with each point pj the corresponding multiplicity gj ∈ G, where
G is the group with dimensionm = 6. A mass-minimizer for the problem with
boundary

B = 7∑
j=1
gjδpj

is illustrated in Figure 3.7, the other one can be obtained with a π/3-rotation
of the picture.

g1g6

g2

g3g4

g5
g7

Figure 3.7: Solution for the mass minimization problem

Let us divide R2 in 6 cones of angle π/3, as in Figure 3.7; we will label
each cone with a number from 1 to 6, starting from that containing (0,1)
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and moving clockwise. A compatible calibration for the two minimizers is
the following

ω1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
√
3
2 dx1 +

1
2dx2√

3
2 dx1 +

1
2dx2

0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
ω2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
dx2√

3
2 dx1 −

1
2dx2

0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
ω3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0√

3
2 dx1 +

1
2dx2
−dx2
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

ω4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0√

3
2 dx1 −

1
2dx2

−
√
3
2 dx1 −

1
2dx2

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
ω5 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
−dx2

−
√
3
2 dx1 +

1
2dx2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
ω6 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

dx2
0
0
0
0

−
√
3
2 dx1 −

1
2dx2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.2.5)

Again, it is not difficult to check that ω satisfies both condition (i) and
the compatibility condition of Definition 3.1.17. To check that condition (iii)
is satisfied, we use formula (3.2.4).

Remark 3.2.8. We may wonder whether or not the calibration given in
Example 3.2.7 can be adjusted so to work for the set of the vertices of the
hexagon (without the seventh point in the center): the answer is negative, in
fact the support of the current in Figure 3.7 is not a solution for the Steiner
tree problem on the six points, the perimeter of the hexagon minus one side
being the shortest graph, as proved in [34].

Remark 3.2.9. In both Examples 3.2.6 and 3.2.7, once we fixed the group
G and we decided to look for a piecewise constant calibration for our candi-
dates, the construction of ω was forced by both conditions (i) of Definition
3.1.12 and the compatibility condition of Definition 3.1.17. Notice that the
calibration for the Example 3.2.7 has evident analogies with the one exhib-
ited in the Example 3.2.5. Actually we obtained the first one simply pasting
suitably “rotated” copies of the second one.
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3.2.3 Comparisons with calibrations in other settings

With the following remarks we intend to underline the analogies and the
connections with calibrations in similar contexts. See Chapter 6 of [43] for
an overview on the subject of calibrations.

Remark 3.2.10 (Clusters with multiplicities). In [42], F. Morgan applies
flat chains with coefficients in a group G to soap bubble clusters and im-
miscible fluids, following the idea of B. White in [53]. The model (in Rd

for m immiscible fluids) associates to each fluid a coefficient fi ∈ G, where
G ≅ Zm ⊂ R ⊗ G ≅ Rm throughout the paper. Naturally, we are looking
for least-energy interfaces, that is a minimizing (d−1)-dimensional flat chain
with coefficient in G. The mass norm is induced by the largest norm in R⊗G

such that ∥fi∥G = ai ∀ i ∈ {1, . . . ,m}
and ∥fi − fj∥ = aij ∀ i, j .

Concerning soap bubble clusters, we choose ai = aij = 1; hence, if m = 2, the
unit ball is pictured in Figure 3.8.

1

1
−1

R2

−1

Figure 3.8: Unit ball in F. Morgan’s model for soap bubble clusters

Following the idea in [42], a calibration for a rectifiable m-chain T in Rd

is a homomorphism
ω ∶ G→ C

∞(Rd,Λm(Rd))
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with the following properties:

(i) ⟨T⃗ (x);ω(g)(x)⟩ = ∥g∥G for a.e. x ∈ supp(T );
(ii) ω(g) is a closed differential m-form for every g ∈ G;
(iii) ∥ω(g)∥ ≤ ∥g∥G for every g ∈ G.
These properties guarantee that T is a mass-minimizer among flat chains
with the same boundary; the proof is by all means analogous to the one given
in Proposition 3.1.13. Notice that this definition for the calibration works
truly well in the case of a free abelian group Zm, because we are considering
homomorphisms with values in a vector space and every finite order subgroup
is trivialized by such a homomorphism. As F. Morgan shows in Proposition
4.5 of [42], in this framework it is easy to prove a generalization of Example
3.2.5: consider a cone C = ∑n

i=1 givi in Rd of unit vectors vi with coefficients
in G = span{gi} and assume that

∣ n∑
i=1
λi∥gi∥Gvi∣ ≤ ∥ n∑

i=1
λigi∥

G

∀λi ≥ 0 ,

then C is a minimizer because it admits a calibration with constant coeffi-
cients.

Remark 3.2.11 (Paired calibrations for the tetrahedron). It is worth men-
tioning another analogy between the technique of calibrations (for currents
with coefficients in a group) illustrated in this paper and the technique of
paired calibrations in [37]. We confine our attention on a specific exam-
ple: consider the 1-skeleton of the tetrahedron in R3, centered in the origin,
then the truncated cone over the skeleton is the surface with least area among
those separating the faces of the tetrahedron. In [37] this is obtained through
paired calibrations.

We sketch here a way to get this result through currents with coefficients
in a group6. Put

g1 ∶= p2 − p1 g2 ∶= p3 − p2 g3 ∶= p4 − p3
g4 ∶= p4 − p2 g5 ∶= p4 − p1 g6 ∶= p3 − p1 ,

6Notice that the theory of currents with coefficients in a group has been stated for
every dimension k. Of course, the equivalence with the Steiner tree problem of Section
3.2 has no meaning in dimension k ≥ 2.
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Figure 3.9: 1-skeleton of the tetrahedron and mass-minimizing current

where pi ∈ R3 are the vectors directed from the baricenter of the tetrahedron
to the centers of the faces, with labels as in Figure 3.9. The points pi are the
vertices of the dual tetrahedron with unit edges. Notice that the Euclidean
norm of pj − pi is 1 for any i ≠ j. This choice of gi will be made clear in
few lines, but let us remark that the coefficients gi coincide with those of
the paired calibration in [37]. If G ⊂ R3 is the additive group generated by{p1, p2, p3} and it is endowed with the Euclidean norm in R3, let us assign
a (constant) coefficient gi to each segment of the skeleton, as illustrated in
Figure 3.9. Thus the identity is a calibration for the 2-current in the right side
of Figure 3.9, that is the truncated cone on the 1-skeleton of the tetrahedron
with coefficients g1, . . . , g6 on each piece of plane7.

Following an idea of Federer (see [25]), in [42] and [37] (and in [11] and
[12], as well) one can observe the exploitment of the duality between minimal
surfaces and maximal flows through the same boundary. We examined this
very same duality in Subsection 3.1.2, but we conclude with a remark closely
related to this idea.

Remark 3.2.12 (Covering spaces and calibrations for soap films). In [12]
Brakke develops new tools in Geometric Measure Theory for the analysis of

7The orientation in each flat piece of the cone is determined by the orientation of the
corresponding segment in the 1-skeleton of the tetrahedron, as shown in Figure 3.9. Let
us finally point out that the boundary of the truncated cone with coefficients g1, . . . , g6
has no support out of the 1-skeleton of the tetrahedron because the sum of the coefficients
on the edges of the cone gives 0.
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soap films: as the underlying physical problem suggests, one can represent a
soap film as the superposition of two oppositely oriented currents. In order
to avoid cancellations of multiplicities, the currents are defined in a covering
space and, as stated in [12], the calibration technique holds valid.

Let us remark that cancellations between multiplicities were a significant
obstacle for the Steiner tree problem, too. The representation of currents in
a covering space goes in the same direction of currents with coefficients in a
group, though, as in Remark 3.2.11, a sort of Poincaré duality occurs in the
formulation of the Steiner tree problem (1-dimensional currents in Rd) with
respect to the soap film problem (currents of codimension 1 in Rd).
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3.2.4 Comparison with the BV theory

This subsection has to be considered as a completion of Subsection 3.2.3.
With the same intent of comparing the existing literature and our way to
treat the Steiner tree problem, this subsection is devoted to the theory of
partitions of an open set Ω in a finite number of sets of finite perimeter. This
theory was developed by Ambrosio and Braides in the papers [2, 3], which
we refer to for a complete exposition.

The interest in minimizing interface energies depending on the partition
of a domain Ω arises from Physics. Consider, as examples, crystals or immis-
cible fluids, where the energy may depend, respectively, on the orientation
of the interface between fluids and their densities, or some other constant of
proportionality varying for each pair of fluids.

Our motivation for this parenthesis is twofold: on the one hand we would
like to stress the analogy between minimal partitions and the Steiner problem
discussed above; on the other hand, for section 3.3, it will be useful to bear
in mind some results about relaxation of integral functionals depending on
the partition of Ω.

If H = {η1, . . . , ηn} is a finite subset of Rm, we will consider BV functions
u ∶ Ω → H, that is, u is a function separating Ω in a finite number of finite
perimeter sets, namely {u = ηi} with i = 1, . . . , n.

We define the jump set of a function u ∈ BV (Ω,H) as the union of
essential boundaries8 of level sets, that is

J(u) ∶= n⋃
i=1
∂∗ ({u = ηi}) .

Since for each point x in Ω ∖ J(u) there exists a unique value ηi for which
x has density 1 in {u = ηi}, we will refer to this essential value ηi of u in x
with the same notation u(x). Moreover, by standard results on sets of finite
perimeter, for H d−1-almost every point x in the jump set J(u) there exist
u+, u− ∈H and a normal direction ν ∈ Sd−1 such that

lim
r↓0

r−dH d ({y ∈ Br(x) ∣ ⟨y − x, ν⟩ > 0, u+ ≠ u(y)}) = 0
and analogously

lim
r↓0

r−dH d ({y ∈ Br(x) ∣ ⟨y − x, ν⟩ < 0, u− ≠ u(y)}) = 0 .
8By definition, the essential boundary ∂⋆A of a Borel set A ⊂ Ω is the set of points of Ω

satisfying lim supr→0 r
−d

H
d(A ∩Br(x)) > 0 and lim supr→0 r

−d
H

d((Ω ∖A) ∩Br(x)) > 0
at the same time.
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We are interested in the study of variational problems defined by a func-
tional depending on an integral on the interfaces of a partition of the domain
Ω ⊂ Rd: since the (finite perimeter) sets of the partition are the levels of a
BV function u ∶ Ω→H, we can represent such a functional as

F(u) = ∫
J(u)

f(x, u+, u−, ν)dH d−1(x) . (3.2.6)

Naturally, we want to minimize the functional (3.2.6) among BV functions
with values in H, thus, in sight of the direct method of Calculus of Varia-
tions, a first important result in [2] is a closure result under Γ-convergence9

- under a reasonable equicontinuity condition on the sequence of functions
(integrands).

Paper [3] is devoted to characterize the lower semicontinuity of the func-
tional (3.2.6). Let us open a small parenthesis to enlighten the efforts to
characterize the lower semicontinuity in other classical contexts: for varia-
tional functionals of the type L(u) = ∫ΩL(x, u(x),Du(x))dx it is well known
that sequential lower semicontinuity (in the weak* W 1,∞-topology) is equiv-
alent to quasiconvexity of the Lagrangian L, that is

L(A) ≤ −∫
Ω
L(A +Dϕ)dx ∀ϕ ∈ C∞c (Ω;Rm) .

Concerning functionals defined on partitions of Ω, Ambrosio and Braides
introduced the BV -ellipticity, as it is recalled in the following definition.

Definition 3.2.13. Fix a point x ∈ Ω, i ≠ j ∈ {1, . . . , n} and ν ∈ Sd−1, we
define

u(x) ∶= { ηi if⟨x − x, ν⟩ > 0
ηj if⟨x − x, ν⟩ ≤ 0 .

A function f ∶ H ×H × Sd−1 → [0,+∞) is BV -elliptic if, for every i ≠ j and
every ν ∈ Sd−1, we have

∫
J(u)∩Ω

f(i, j, ν) ≤ ∫
J(u)∩Ω

f(u+, u−, νu)
for every u ∈ BV (Ω;H) with the same trace of u on ∂Ω. A function f ∶

Ω ×H ×H × Sd−1 → [0,+∞) is BV -elliptic if f(x, ⋅, ⋅, ⋅) is so for every x ∈ Ω.
9For an overview on Γ-convergence, see [10].
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As we suggested above, BV -ellipticity holds if and only if the functional
is lower semicontinuous with respect to the convergence in measure (see [3],
Thm. 2.1, for further details).

If the integrand f is not BV -elliptic, one can naturally define the BV -
elliptic envelope E(f) as the greatest BV -elliptic function less or equal than
f . It is possible to see that not only E(f) coincides with

inf {∫
J(u)

f(u+, u−, νu)dH d−1 ∣u ∈ BV (Ω,H), same trace of u on ∂Ω} ,
but also E(f) provides a representation of the integrand for the relaxed
functional

inf {lim inf
h→+∞

∫
Ω∩J(uh)

f(u+h, u−h, νuh
)dH d−1(x) ∣uh → u in measure} ,

that is, the greatest lower semicontinuous functional less than F(u).
We conclude this short excursus on functionals defined on partitions with

the changes for the Dirichlet problem: in fact, assume g ∶ ∂Ω → H to be a
Borel function and consider

F̃(u) ∶= { F(u) if trace(u) = g
+∞ otherwise .

This case does not distance itself from the original one: in [3] it is proved
that, under reasonable equicontinuity assumptions on the integrands fh, if
Fh do Γ-converge to ∫ f(x, u+, u−, νu)dH d−1, then the functionals F̃h do
Γ-converge to

∫
J(u)

f(x, u+, u−, νu)dH d−1(x) +∫
∂Ω
f(x, trace(u), g, νΩ)dH d−1(x) ,

for every u ∈ BV (Ω,H).
Once we treated the Dirichlet problem it is easy to link the theory of

minimization of functionals defined on partitions with the Steiner problem,
albeit only in dimension d = 2 (later we will see why).

Consider a Steiner problem on points x1, . . . , xn ∈ ∂Ω, where Ω is a convex
open subset of R2. We can choose H = {η1, . . . , ηn}, with a distance10 d in H

10We will often assume that H ⊂ Rm, with dist(ηi, ηj) = ∣ηi −ηj ∣. Clearly (3.2.7) holds if
{η1, . . . , ηn} are the vertices of a regular m-dimensional tetrahedron in Rm. See Remark
3.2.4 to deepen the analogy with our group G in Section 3.2.
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Figure 3.10: Boundary data

and the property

d(ηi, ηj) = 1 ∀ i ≠ j, i, j ∈ {1, . . . , n} . (3.2.7)

The boundary datum g ∶ ∂Ω → H is defined as follows: the set ∂Ω ∖{x1, . . . , xn} consists of n connected components, namely C1, . . . , Cn, we set
g ≡ ηi for each Ci.

If the integrand f = f(x, ηi, ηj, ν) is nothing but 1 = ∣ηi − ηj ∣, then the
problem of minimization of the functional F in (3.2.6) is equivalent to the
Steiner problem, whose solution coincides with the jump set J(u) of a mini-
mizer u; in fact it is immediate to notice that H 1(J(u)) = F(u). Therefore
we find again the existence of the minimizer for the Steiner problem via
Ambrosio-Braides result in [2].

Let us point out analogies and differences between the two methods:

• condition (3.2.7) is a transcription of condition (P2) with k = 1;
• the other conditions on the group coefficients are useless here, connec-
tion being “forced” by the boundary data.

Actually the relationship between the Steiner problem and the theory of
functionals on partitions is more complex in dimension d > 2, where a sort
of Poincaré duality occurs. The latter is a problem in codimension 1 and
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its actual counterpart in minimal surfaces is the problem illustrated in [37]:
given a polyhedron Ω ⊂ Rd (the convex set of the partition problem, roughly
speaking) what about the surface with boundary in the (d − 2)-skeleton of
Ω (the edges) minimizing the area and separating the faces at the same
time? Let us notice that separation of faces is a way to select the homology
class to work in. For this kind of “dual” problem (with respect to ours) the
existence of a minimizer is guaranteed by the Ambrosio-Braides partition
theory. Moreover, in [37], calibration-like method is proposed and applied in
some interesting examples.

The equivalent of a calibration for functionals on partitions is given by a
special class of Null Lagrangians, that is, a functional depending only on the
boundary behavior of a BV function (see [17] for further explanations).

Proposition 3.2.14. Consider a set H = {η1, . . . , ηn} ⊂ Rm satisfying condi-
tion (3.2.7), then consider a functional F defined on partitions of Ω, F(u) =
∫J(u) ∣u+ −u−∣dH 1, and a BV -function u ∶ Ω→H. Assume that V ∶ Ω×H →

Rd is a vector field with the following properties:

(i) for every x ∈ J[u],
[V (x, u+) − V (x, u−)] ⋅ ν(x) = 1 ;

(ii) marking vi(x) ∶= V (x, ηi), i = 1, . . . , n,
divxV (x, ηi) = divvi(x) = 0 ;

(iii) for every i, j = 1, . . . , n,
∣vi(x) − vj(x)∣ ≤ 1 .

Then V defines a Null Lagrangian and, as it happens in Proposition 3.1.13,
u is a minimizer for F among BV functions with values in H and the same
trace of u on ∂Ω.

Proof. Thanks to properties of V listed above

F(u) (i)= ∫
Ω
div(V (x, u(x)))dx = ∫

Ω
div(V (x, u′(x)))dx

(ii)= ∫
Ω
Vu(x, u′(x)) ⋅ ∇u′(x)dx

= ∫
J[u′]
(V (x, (u′)+(x)) − V (x, (u′)−(x))) ⋅ ν(x)dH d−1(x)

(iii)≤ ∫
J[u′]
∣(u′)+ − (u′)−∣dH d−1(x) = F(u′) .
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Ω uver ≡ η1

uver ≡ η3

uver ≡ η4 uver ≡ η2

uhor ≡ η1 Ω

uhor ≡ η4 uhor ≡ η2

uhor ≡ η3

Figure 3.11: Minimizers

where u′ is a competitor in BV (Ω;H}) with the same trace as u on ∂Ω.

In order to seal the similarity of the Null Lagrangian problem with the
calibration for the Steiner tree problem, consider the trace u0 in Figure 3.10.
The minimizers of the functional F̃ are showed in Figure 3.11. As a matter of
fact, the minimizers uor, uver admit a Null Lagrangian vector field, satisfying
a compatibility condition and clearly related to the calibration ω defined
above.
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3.3 Dislocations of crystals

Currents with coefficients in a group turned out to be a useful tool in the
study of some models for dislocations in crystals. The purpose of the follow-
ing lines is only to sketch a rough picture of the context, the subject being
really wide. For an introduction to crystal dislocations from both physical
and mathematical point of view, see [44, 33, 48].

A crystal is a solid (a metal, for instance, but there are many other classes
of nonmetallic solids) whose atoms are arranged in a 3d-periodic pattern. It
is a quite complex material, due to the structures at many different scales.
As we will see throughout this section, dealing with crystals needs methods
built around the explicit consideration of multiple scales simultaneously: the
microscopic scale (atoms), the mesoscopic scale and the macroscopic scale.

Under the effect of a stress, a crystal undergoes a deformation, which can
be either elastic or elastoplastic. In the latter, the (plastic) main mechanism
competing with the elastic deformation is the slip on the so-called slip planes.
The slip not being uniform causes topological defects in the crystal lattice,
called dislocations. By definition, a dislocation is a line on the slip plane
separating regions undergoing different slips. The attention is often restricted
to a single slip plane.

b

dislocation core

Figure 3.12: Burgers circuit and dislocation core in section.
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For each dislocation we can identify a dislocation core and a Burgers
vector, often denoted by b, representing the magnitude and direction of the
lattice distortion (see Figure 3.12). Roughly speaking, the Burgers vector
is a label, recording the topological information about the distortion of the
crystal lattice. Since the deformation is represented by means of a lattice,
then b ∈ Z3. In formulas, if u ∶ Ω ⊂ R3 → R3 is a deformation including the
dislocation phenomenon, we can study the Lebesgue decomposition of the
deformation gradient

Du = ∇uL
3 + [u]⊗ ndH

2 ⌞Σ = βelast + βplast , (3.3.1)

where the absolutely continuous part ∇u is the diffuse elastic distortion and
the singular part [u]⊗n is the slip along slip planes. Decomposition (3.3.1)
means that, from a mathematical point of view, dislocations may be under-
stood as singularities of the dislocation density µ = curl∇u.

A fundamental goal in the study of crystal dislocations is to get a continu-
um model taking into account the underlying discrete or hybrid semidiscrete
structure (possible models in [6, 39]): choosing a variational approach , this
may be faced with the Γ-convergence11 of the energy functional Fε (ε is
microscale) to some functional F , preserving the same relevant features of
Fε.

For better clarity let us mention that the plastic slip for a straight dislo-
cation, along the direction t ∈ S2 and with Burgers vector b, is

β0 = 1

r
Γ0(θ) ,

with curlβ0 = b ⊗ tH 1 ⌞ γ. We omit, in these circumstances, the linear
elasticity term of the energy.

In general, an admissible plastic slip β has the form

β = b⊗ νH
2 ⌞Σ ,

where Σ is a 2-dimensional rectifiable subset of Ω, ν is (almost everywhere)
its normal and b is Borel measurable. The distribution of dislocations is
described by

µ = s⊗ tdH
1 ⌞ γ ,

11See [10] and [18] for an introduction to Γ-convergence.
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where γ is a 1-dimensional rectifiable subset of Ω, t ∶ γ → S2 is (almost
everywhere) its tangent vector and s belongs to the set of Burgers vectors.

Such plastic slip may be interpreted as an L-valued 1-currents, where L
is a lattice in R3, and the variational problem has the form

E0(µ) = { ∫γ ψ(b⊗ t)dH 1 µ ∈M(R3)
+∞ otherwise

(3.3.2)

The approach via 1-currents needs some generalization of well-known facts
about classical currents. This generalizations and adjustments are treated in
[13] and are fully exploited in [15].

3.3.1 Some technical results on Zm-valued 1-currents

In the case of crystal dislocations, we will consider currents with coefficients
in Zm ⊂ Rm, which is the group where the Burgers vector takes values in.
Actually, a significant part of the theory of Zm-valued currents can be done
componentwise, reducing to the classical theory, nevertheless we already es-
tablished some useful theorems in Section 3.1.

For the sake of brevity, we will denote by R1(Rd,Zm) the set of rectifiable
1-currents. Consistently with Section 3.1, we say that a rectifiable 1-current
is polyhedral if its support γ is the union of finitely many segments and θ is
constant on each of them. We denote by P1(Rd;Zm) the set of polyhedral 1-
currents. Alternatively, one can interpret rectifiable 1-currents as measures:
we denote byMdf(Ω) the set of all divergence-free measures µ ∈M (Ω;Rn×n)
of the form

µ = θ ⊗ τdH 1 ⌞ γ

where γ is a 1-rectifiable set contained in Ω, τ ∶ γ → Sd−1 its tangent vector,
and θ ∶ γ → Zm. With this identification the total variation of µ coincides
with the mass of T , M(T ) = ∥µ∥(Ω).

We start with an extension lemma, that can be found in various forms in
the literature. We sketch here the argument for the case of interest, in which
the closedness is preserved.

Lemma 3.3.1. Let Ω ⊂ Rd be a bounded Lipschitz open set. For every
closed 1-current T ∈ R1(Ω;Zm) with finite mass there is a closed 1-current
ET ∈ R1(Rd;Zm) with ET ⌞ Ω = T and M(ET ) ≤ CM(T ). The constant
depends only on Ω.
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Proof. Step 1. We first extend T to a neighborhood of Ω.
Choose a function N ∈ C1(∂Ω;Sd−1) such that N(x) ⋅ ν(x) ≥ α > 0 for

almost all x ∈ ∂Ω, where ν is the outer normal. For ρ > 0 sufficiently small
the function g ∶ ∂Ω × (−ρ, ρ) → Rd, g(x, t) = x + tn(x), is bi-Lipschitz. Let
Dρ = g(∂Ω × (−ρ, ρ)) and f ∶ Dρ → Dρ be defined by f(g(x, t)) = g(x,−t).
Then f is bi-Lipschitz and coincides with its inverse.

We define T̃ = T − f#T ⌞ (Dρ ∖Ω). Let ϕ ∈W 1,∞
0 (Ω ∪Dρ). Then

⟨T̃ ,Dϕ⟩ = ⟨T,Dϕ⟩ − ⟨f♯T,Dϕ⟩ = ⟨T,Dϕ −D(ϕ ○ f)⟩ = 0 (3.3.3)

since ϕ −ϕ ○ f ∈W 1,∞
0 (Ω).

Step 2. Let γ̃ and θ̃ be the support and the multiplicity of T̃ . Since

M(T̃ ) ≥ ∫ ρ

0
( ∑
x∈γ̃∩∂(Ωs)

∣θ̃(x)∣)ds (3.3.4)

we can choose12 s ∈ (0, ρ) such that

∑
x∈γ̃∩∂(Ωs)

∣θ̃(x)∣ ≤ CM(T ) , (3.3.5)

with a constant depending only on Ω. In particular, the sum runs over
finitely many points x1, . . . , xM . The points x1, . . . , xM , with multiplicity
θ̃(x1), . . . , θ̃(xM) and positive orientation if γ̃ exists Ωs at xi, is the boundary
of T̃ ⌞Ωs. For each i = 2, . . . ,M , let γi be a Lipschitz curve in Rd ∖Ω which
joins x1 with xi and has length bounded by C(Ω). Let τi be the tangent
vector, with the same orientation as γ̃ in xi. We set

⟨ET,ϕ⟩ = ⟨T̃ ⌞Ωs, ϕ⟩+ M∑
i=2
θ̃(xi)∫

γi

⟨Dϕ, τi⟩dH 1 ∀ϕ ∈ C∞c (Rd,Rd). (3.3.6)
Since T was closed one can see that ET is also closed and the proof is
concluded.

Another result we need to recall is a strong polyhedral approximation re-
sult, like Theorem 1.3.1: an integral current T can be approximated through
a current f♯T , where f is a bi-Lipschitz map and it is close to the identity
(see (1.3.3)) and P is a polyhedral current with the same boundary of T .
The same density result of Theorem 1.3.1 can be obtained for 1-currents

12As usual, Ωs = ⋃x∈ΩBs(x).
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with vector-valued multiplicity working componentwise. We formulated this
density result on Rd, the local version can be easily deduced using the above
extension lemma.

Finally, let us remind that we already proved compactness in Theorem
3.1.11. With the same argument of Theorem 1.3.2, we get that a rectifiable
1-current with coefficients in Zm can be represented as the sum of finitely
many paths and countably many loops with multiplicities in Zm.

3.3.2 The energy relaxation and the H 1-ellipticity

In this section we consider the relaxation of functionals of the form

E(µ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫
γ
ψ(θ, τ)dH 1 if µ = θ ⊗ τH 1 ⌞ γ ∈Mdf(Rd,Zm)

+∞ otherwise.

We shall show that the relaxation is

Ē(µ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫
γ
ψ̄(θ, τ)dH 1 if µ = θ ⊗ τH 1 ⌞ γ ∈Mdf(Rd,Zm)

+∞ otherwise.

where, for b ∈ Zm, t ∈ Sd−1,

ψ̄(b, t) = inf {∫
γ
ψ(θ, τ)dH 1 ∶ µ ∈Mdf(Rd) ,

supp(µ − b⊗ tH 1 ⌞ (Rt)) ⊂ B1/2(0)}. (3.3.7)

We call the function ψ̄ the H 1-elliptic envelope of ψ and say that ψ is H 1-
elliptic if ψ̄ = ψ. We use for the localization the notation

E(µ,Ω) = ∫
γ∩Ω

ψ(θ, τ)dH 1 (3.3.8)

where µ = θ ⊗ τH 1 ⌞ γ ∈Mdf(Rd), and the same for Ē.

Lemma 3.3.2 (Truncated energy). For every h, l > 0, let us define the trun-

cated energy on the parallelepiped Rl,h = (− l
2 ,

l
2
) × (−h

2 ,
h
2
)n−1 as

e(l, h) ∶= inf { lim inf
k→∞

l−1E(µk,Rl,h) ∶ µk ∈Mdf(B1/2),
µk

∗
⇀ b⊗ tH1 ⌞ (Rt ∩Rl,h)} , (3.3.9)

with t = e1, for simplicity. Then e does not depend on l and h.
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Proof. The thesis is obtained through the following remarks.

(i) With a rescaling argument we get that

e(l, h) = e(λl, λh) ∀λ ∈ (0,1) . (3.3.10)

(ii) It is also immediate to notice that

e(l, h) ≤ e(l,H) whenever h ≤H , (3.3.11)

by definition.

(iii) Moreover

e( l
p
, h) ≤ e(l, h) ∀p ∈ N ∖ {0} (3.3.12)

with a selection argument13.

Thus our claim is proved, because

e( l
p
, h) (3.3.12)≤ e(l, h) (3.3.10)= e( l

p
,
h

p
) (3.3.11)≤ e( l

p
, h) ∀p ∈ N ∖ {0} .

In the following we will simply denote by e the truncated energy in (3.3.9).

Proposition 3.3.3 (Cell problem). Given ψ ∶ Zm × Sd−1 → [0,∞) Borel
measurable with ψ(b, τ) ≥ c∣b∣ and ψ(0, ⋅) = 0, the energy density ψ̄ defined by
(3.3.7) satisfies:

(i) For every sequence µk ∈Mdf(B1/2) with µk
∗
⇀ b⊗ tH 1⌞(Rt∩B1/2) one

has

ψ̄(b, t) ≤ lim inf
k→∞

Ē(µk,B1/2) . (3.3.13)

(ii) The function ψ̄ is subadditive in its first argument, i.e.,

ψ̄(b + b′, t) ≤ ψ̄(b, t) + ψ̄(b′, t). (3.3.14)

13Assume p = 2, then (3.3.12) is obtained choosing for each k the half part of Rl,h with
energy less than 1

2
E(µk,Rl,h).
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(iii) The function ψ̄ obeys
ψ̄(b, t) ≤ C ∣b∣ (3.3.15)

for all b and t.

(iv) The function ψ̄ is Lipschitz-continuous in the sense that

∣ψ̄(b, t) − ψ̄(b′, t′)∣ ≤ c∣b − b′∣ + c∣b∣ ∣t − t′∣ . (3.3.16)

with C depending only on ψ;

Proof. 1:

Consider a sequence µk
∗
⇀ µ = b ⊗ tH1 ⌞ (Rt ∩ B1/2). Without loss of

generality we can assume t = e1.
We begin modifying the sequence, represented as µk = θk ⊗ τkH1 ⌞ γk.

Rn−1

B1/2

Rl,H

e1

µk

Rl,H

Rn−1

µk

e1

Rl,2h

Rl,h

l

2h

Figure 3.13: The construction for the truncated energy.

Choose14 some parameters h <<H and l ∈ (0,1). Since µk
∗
⇀ µ then

lim
k→∞

E(µk,Rl,H ∖Rl,h) = 0.
14In order to remain in B1/2 we imply l2 + (n − 1)h2 ≤ 1.
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We denote by γ○k the union of connected components of the rectifiable set
γk (that is, the support of µk) with a non-trivial intersection with Rl,h.
Since

H1 (γk ∩Rl,H ∖Rl,h)Ð→ 0 as k → +∞ ,

then γ○k ⊂ Rl,2h, definitely.
Consider µ○k ∶= µk ⌞ γ

○
k: this new sequence of vector-valued measures satisfies

µ○k
∗
⇀ µ

with suppµ○k ⊂ Rl,2h and ∂µ○k = 0.
As a consequence of the definition of the truncated energy in Lemma 3.3.2
we get

lim inf
k→∞

E(µ○k,Rl−2h) ≥ (l − 2h)e ,
thus

lim inf
k→∞

E(µ○k, Sh) ≤ 2he ,
with Sh ∶= Rl,2h ∖Rl−2h,2h.

2h

Rn−1

µk

l

Rl,2h

Rl,h

Sh µ○○
k

Rn−1

l − 2h

Figure 3.14: Passing from µk to µ○○k .

As we drew in Figure 3.14, we head to the conclusion squeezing the mea-
sure µ○k out of Sh through the projection f ∶ Rl,2h → Rl,2h. We mean that
f∣Rl−2h,2h

≡ id, while, writing Rl,2h ∋ x = (x1, x′),
f∣Sh
(x1, x′) = (x1,( l

2h
−
1

h
x1)x′) .

Let us define
µ○○k ∶= f♯(µ○k) .
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Thus
E(µ○○k , Sh) ≤ CE(µ○k, Sh)

and

E(µ○○k ,Rl,h)Ð→ e +O (h
l
) . (3.3.17)

Finally we deal with the boundary which we possibly changed through
the projection: this is the last step, because (3.3.17) is what we needed as
h/l → 0. We write

∂µ○○k = θ′ (δl/2e1 − δ−l/2e1) .
Indeed, the measure

µ○○○k ∶= µ○○k + θ′ ⊗ tH1 ⌞ (Re1 ∖Rl,h)
satisfies ∂µ○○○k = 0, but at the same time

µ○○○k

∗
⇀ b⊗ tH1 ⌞ (Re1 ∩B1/2) + θ′ ⊗ tH1 ⌞ (Re1 ∖Rl,h) ,

thus θ′ = b.
2: This property follows easily from 1 by approximating the measure(b+ b′)⊗ tH 1 ⌞ (Rt∩B1/2) with to measures supported on disjoint segments

converging to Rt ∩B1/2 and multiplicity b and b′ respectively.
3: Set

M = n∑
i=1

n∑
j=1
(ψ(ej, ei) + ψ(ej,−ei) +ψ(−ej, ei) + ψ(−ej,−ei)) . (3.3.18)

Let t ∈ Sd−1. For notational simplicity assume t ⋅ ei ≥ 0, b ⋅ ej ≥ 0 for all i, j.
Choose a piecewise affine curve γ joining −t/2 with t/2 such that its tangent
vector takes values in {ei}. From the definition one obtains

ψ̄(ej, t) ≤ ∫
γ
ψ(ej, τ)dH 1 ≤ n∑

i=1
ψ(ej, ei) (3.3.19)

From 2 one then obtains

ψ̄(b, t) ≤ n∑
j=1
∣b ⋅ ej ∣ψ̄(ej, t) ≤ n∑

j=1
∣b ⋅ ej ∣ n∑

i=1
ψ(ej, ei) ≤ n∣b∣M . (3.3.20)

4: From 2 and 3 we obtain

ψ̄(b, t) ≤ ψ̄(b′, t) + c∣b − b′∣ . (3.3.21)
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Construct now γ as the curve that joins −t′/2 with t′/2, then t−t′/2, extended
t-periodic. Let γj be a copy of γ scaled down by a factor j, τj its tangent

vector. Then µj = b⊗ τjH 1 ⌞ γj
∗
⇀ b⊗ tH 1 ⌞ (tR). By 1 we obtain

ψ̄(b, t) ≤ ψ̄(b, t′) + ∣t − t′∣ψ̄(b, t − t′∣t − t′∣ ) ≤ ψ̄(b, t′) + c∣b∣ ∣t − t′∣ . (3.3.22)

Lemma 3.3.4. Assume that ψ ∶ Rm × Sd−1 → [0,∞) obeys
∣ψ(b, t) −ψ(b′, t′)∣ ≤ c∣b − b′∣ + c(1 + ∣b∣) ∣t − t′∣ . (3.3.23)

Let µ = θ ⊗ τH 1 ⌞ γ, µ′ = θ′ ⊗ τ ′H 1 ⌞ γ′, with τ and τ ′ the tangent vectors
and γ, γ′ one-rectifiable. Then

∣E(µ) −E(µ′)∣ ≤ C ∣µ − µ′∣(Rd) , (3.3.24)

where E(µ) = ∫γ ψ(θ, τ)dH 1. Further, if f ∶ Rd → Rd is bi-Lipschitz then

∣E(µ) −E(f#µ)∣ ≤ CE(µ)∥Df − Id∥L∞ (3.3.25)

Proof. The first estimate follows from the properties of ψ, considering sep-
arately the sets γ ∩ γ′, γ ∖ γ′ and γ′ ∖ γ. The second one follows from the
change of variables formula.

Theorem 3.3.5 (Relaxation). Let ψ and ψ̄ be as in Proposition 3.3.3. Then
the energy

Ē0(µ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫
γ
ψ̄(θ, τ)dH 1 if µ ∈Mdf(R3)

+∞ otherwise.

is the lower semicontinuous envelope of

E0(µ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫
γ
ψ(θ, τ)H 1 if µ ∈Mdf(R3)

+∞ otherwise.

with respect to the weak convergence in Mdf(R3), i.e.,
∫
γ
ψ̄(b, t)dH 1 = inf {lim inf

j→∞
∫
γj

ψ(θj, τj)dH 1 ∶ µj
∗
⇀ µ} (3.3.26)

where µ = θ ⊗ τH 1 ⌞ γ and µj = θj ⊗ τjH 1 ⌞ γj ∈Mdf .
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Proof. Upper bound. Let µ ∈Mdf . By Theorem 1.3.1 there is a sequence of
polygonal measures µk and a sequence of bi-Lipschitz maps fk such that

µk
∗
⇀ µ , ∥Dfk − Id∥L∞ → 0 , and ∥µk − (fk)#µ∥→ 0 . (3.3.27)

By Lemma 3.3.4 one easily obtains

lim
k→∞

Ē(µk) = Ē(µ) . (3.3.28)

Therefore it suffices to prove the upper bound for polygonal measures.
Let µ ∈ Mdf , polygonal. Then γ is a finite union of disjoint segments

γi, i = 1, . . . ,N . Let bi, ti be the corresponding vector multiplicity and
orientation. For each i consider a sequence µi ∶ N→Mdf(R3) such that

lim
k→∞

E(µi,k,B1/2(0)) = ψ̄(bi, ti) , supp(µi,k − bi ⊗ tiH
1 ⌞ (Rti)) ⊂ B1/2(0) .

(3.3.29)
The recovery sequence is obtained covering each γi with an increasing number
of small balls and gluing scaled and translated copies of µi,k.

Lower bound. Let µ ∈Mdf(R3), and µk
∗
⇀ µ. We identify µ and µk with

the corresponding currents T,Tk ∈R1(Rd;Zm).
We shall approximate the limit T by a polygonal current, and show that

there is a small modification of the sequence (Tk) which converges to the
polygonal current. On this sequence the lower semicontinuity will follow
from (3.3.13).

We fix ε > 0 and apply the density theorem to T , let f and P be the
resulting bi-Lipschitz map and polygonal current. We define

T̃k = (f−1)#(Tk −Q), where Q = T − f#P . (3.3.30)

It is easy to see that T̃k
∗
⇀ P and that ∂T̃k = 0. From Lemma 3.3.4 we have

Ē(T̃k) ≤ (1 +Cε)Ē(Tk) +Cε . (3.3.31)

We can cover a (1−ε)-fraction of the support of P with finitely many disjoint
balls, centered on it. In each ball P is supported on a segment and has

constant multiplicity and T̃k
∗
⇀ P . By (3.3.13) the statement follows.

Remark 3.3.6. Notice that for d = 2 this reduces to the concept of BV-
ellipticity for vector-valued partition problems in [2],[3].

As in that case, the conditions of Proposition 3.3.3 do not completely
characterize the H 1-ellipticity.
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3.3.3 An example

We focus here on the 2-dimensional case, with an explicit function ψ borrowed
from [14] (see (1.8) for the definition).
Consider multiplicities of the form θ = (θ1, θ2) ∈ Z2 and a tangent vector field
τ = (cosα, sinα) ∈ S1, we define

ψc(θ, τ) ∶= 1

4π(1 − ν) θ (
2 − 2ν sin2α ν sin(2α)
ν sin(2α) 2 − 2ν cos2α

) θ ,
with a parameter ν ∈ (−1,1/2). First of all, we observe that

ψc(θ, τ) = 1

4π
θ [(2 − 2ν)Id + 2ν ( cos2 α sinα cosα

sinα cosα sin2α = 1
2πψ(θ, τ) )]

= 1

4π(1 − ν) (2(1 − ν)∣θ∣2 + 2ν(θ ⋅ τ)2) =
1

2π
ψ(θ, τ) , (3.3.32)

where
ψ(θ, τ) = ∣θ∣2 + η(θ ⋅ τ)2

and η = ν
1−ν < 1 (because ν < 1/2).

Without loss of generality we can assume η ∈ [0,1): indeed, if ν < 0, we
can rewrite (3.3.32) as

ψc(θ, τ) = 1

2π(1 − ν) (∣θ∣2 − ν(θ ⋅ τ⊥)2) =
1

2π(1 − ν)ψ′(θ, τ) ,
where ψ′(θ, τ) = ∣θ∣2+η′(θ ⋅τ⊥)2 differs from ψ for the constant η′ ∶= −ν ∈ [0,1)
and for the rotation on τ . In what follows, we focus on ψ with η ∈ [0,1) and
we neglect the differences between ψ and ψ′.

Remark 3.3.7. If θ1 ≥ ∣θ2∣ and θ1 ≥ 2, then
ψ(θ, τ) ≥ ψ(θ − e1, τ) + ψ(e1, τ) .

Proof. A simple computation leads to the estimate

ψ(θ, τ) −ψ(θ − e1, τ) − ψ(e1, τ)
= ∣θ∣2 − ∣θ − e1∣2 − 1 + η ((θ ⋅ τ)2 − (θ ⋅ τ − τ1)2 − τ 21 )
= 2(θ1 − 1) + 2η (θ1τ 21 + θ2τ1τ2 − τ 21 )
= 2(θ1 − 1)(1 + ητ 21 ) + 2ηθ2τ1τ2
≥ 2(θ1 − 1) − ∣θ2∣ = 2θ1 − ∣θ2∣ − 2 ≥ 0 ,
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where the hypothesis on θ1 have been used in the last line together with
η ∈ [0,1).

If b ∈ Z2 and t ∈ S1, we want to compute the relaxation15

ψ̄(b, t)= inf{∫
γ
ψ(θ, τ)dH 1 ∶ curl (θ ⊗ τH 1 ⌞ γ − b⊗ tH 1 ⌞ (−1/2,1/2)t)= 0}

The computation of the infimum above can be considerably simplified by the
following remarks.

(1) Thanks to the density result in Subsection 3.3.1, we can assume γ to be
the union of finitely many segments, with θ constant on each of them.

(2) We can further assume that θi ∈ {−1,0,1} (i = 1,2) almost everywhere.
In fact, suppose θ1 ≥ 2 and θ1 ≥ ∣θ2∣ on the segment [s′, s′′] × {0}. The
measure θ⊗τH 1⌞([s′, s′′]×{0}) has energy ψ(θ, τ)(s′′−s′). We replace
it by the sum

(θ−e1)⊗τH 1⌞([s′, s′′]×{0})+e1⊗τ ′H 1⌞σ′+e1⊗τ
′′
H

1⌞σ′′ , (3.3.33)

where σ′ and σ′′ are the segments connecting (s′,0) and ((s′+s′′)/2, ǫ)
and ((s′+s′′)/2, ǫ) and (s′′,0), respectively, and τ ′, τ ′′ are their tangent
vectors. Thanks to Remark 3.3.7 the energy of the new measure (3.3.33)
is not higher than ψ(θ, τ)(s′′ − s′): in fact the new energy is

ψ(θ − e1, τ)(s′′ − s′) +ψ(e1, τ ′)H 1(σ′) + ψ(e1, τ ′′)H 1(σ′′)
= ψ(θ − e1, τ)(s′′ − s′) +ψ(e1, τ)(s′′ − s′) +O(ǫ) .

(3) Finally we can assume that

θ1θ2 ≥ 0 on segments with τ1τ2 < 0
θ1θ2 ≤ 0 on segments with τ1τ2 > 0 .

In fact, if θ1θ2τ1τ2 > 0, then
ψ(θ, τ) = ∣θ∣2 + η∣θ ⋅ τ ∣2 = ψ((θ1,0), τ) +ψ((0, θ2), τ) + 2ηθ1θ2τ1τ2

> ∣θ∣2 + η∣θ ⋅ τ ∣2 = ψ((θ1,0), τ) +ψ((0, θ2), τ) − 2ηθ1θ2τ1τ2
= ψ((−θ1, θ2), τ) .

15It is implied that, in the infimum of below, γ is a 1-dimensional rectifiable set in B1/2

with tangent τ almost everywhere and the multiplicity θ belongs to L1(γ,Z2).

122



We decompose the support γ of a measure θ ⊗ τH 1 ⌞ γ in

γ1 ∶= {x ∈ γ ∶ θ1 = 0}
γ2 ∶= {x ∈ γ ∶ θ2 = 0}
γ+ ∶= {x ∈ γ ∶ θ1θ2 > 0}
γ− ∶= {x ∈ γ ∶ θ1θ2 < 0} .

Let us notice that the curves above are pairwise disjoint. We define16

T1 ∶= ∫
γ1

θ1τ dH
1

T2 ∶= ∫
γ2

θ2τ dH
1

T+ ∶= ∫
γ+

θ1τ dH
1

T− ∶= ∫
γ−

θ1τ dH
1

and

Θ⊗ T ∶= ∫
γ
θ ⊗ τ dH 1 = ( T1 + T+ + T−

T2 + T+ − T−
) ∈ R2×2 .

With this notation

E(θ ⊗ τH 1 ⌞ γ) = ∫
γ1

ψ(e1, τ)dH 1 +∫
γ2

ψ(e2, τ)dH 1

+ ∫
γ+

ψ(e1 + e2, τ)dH 1 +∫
γ−

ψ(e1 − e2, τ)dH 1 .(3.3.34)

Remark 3.3.8. Consider b ∈ R2 and γ̂ a union of simple curves with tangent
vector τ(x), then

∫
γ̂
ψ(b, τ(x))dH 1(x) ≥ ψ (b, τ̂∣τ̂ ∣) ∣τ̂ ∣

where τ̂ ∶= ∫γ̂ τ(x)dH 1(x).
16The illusory asymmetry in the definition of N+,N− is motivated by the fact that θ1 = θ2

on γ+ and θ1 = −θ2 on γ−.
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Proof. Since the map τ ↦ η(b ⋅ τ)2 is convex and −∫γ̂ τ = τ̂H 1(γ̂)−1, then, by
Jensen inequality,

∫
γ̂
ψ(b, τ)dH 1 ≥H

1(γ̂)⎛⎝∣b∣2 + η (b ⋅
τ̂

H 1(γ̂))
2⎞
⎠ =∶ h(L) , (3.3.35)

with L =H 1(γ̂) and h(l) ∶= l∣b∣2 + l−1ηb ⋅ τ̂ .
This function h is increasing in our interval of interest, since it has a global
minimum at l0 = √η ∣b⋅τ̂ ∣∣b∣ ≤ ∣τ̂ ∣ (and it is increasing afterwards) and we have
that

L = ∫
γ̂
∣τ ∣ ≥ ∣∫

γ̂
τ ∣ = ∣τ̂ ∣ ≥ l0 . (3.3.36)

Thus we can conclude that

∫
γ̂
ψ(b, τ)dH 1

(3.3.35)≥ h(L) (3.3.36)≥ h(∣τ̂ ∣) = ∣τ̂ ∣ψ (b, τ̂∣τ̂ ∣) .
The equality holds if and only if τ is constant along γ.

Coupling this remark with (3.3.34) we get

E(θ ⊗ τH 1 ⌞ γ) ≥ f(T1, T2, T+, T−) , (3.3.37)

where f ∶ R2 × . . . ×R2 → R is the function

f(z1, z2, z3, z4) = ∣z1∣ψ (e1, z1∣z1∣) + ∣z2∣ψ (e2,
z2∣z2∣)

+ ∣z3∣ψ (e1 + e2, z3∣z3∣) + ∣z4∣ψ (e1 − e2,
z4∣z4∣) .

and equality in (3.3.37) holds if and only if τ is constant in each of the four
subsets of γ.

We conclude that

ψ̄(b, t) =min{f ∶ T1 + T2 + T− = b1T, T2 + T+ − T− = b2T} .
This is a 4-dimensional minimization problem with constraint.
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n daných bodu̇. Časopis pro pěstováńı matematiky a fysiky 63 (1934),
223–235.

[35] King, J. R. The currents defined by analytic varieties. Acta Math.
127, 3-4 (1971), 185–220.

[36] Krantz, S. G., and Parks, H. R. Geometric integration theory.
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