EXISTENCE AND REGULARITY FOR ELLIPTIC EQUATIONS UNDER
p,-GROWTH
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ABSTRACT. Under general p, g-growth conditions, we prove that the Dirichlet problem
{ S, eal(e, Du) =b(z)  ing,

u = ug on 0N

has a weak solution u € le’cq (Q) under the assumptions
n—1

1<p<g<p+1 and g<p——.

n—p

More regularity applies. Precisely, this solution is also in the class W12 (Q) N W22(Q).

loc

1. INTRODUCTION

Let ©Q be an open bounded set of R™, n > 2. We consider a locally Lipschitz continuous vector
field a : 2 x R™ — R" satisfying the ellipticity and the growth conditions

—2 n .
m(1+ 57T AP < Y af (z,9NA;, VENERT, (1.1)
ij=1
. a=2
ag,(z,6)| <M (1+]¢?) *, VEeRT, (1.2)

for some exponents ¢ > p > 1 and for constants M > m > 0. Given a right hand side b and a
boundary datum wg, we associate to the vector field a(x, &) the Dirichlet problem

n 0 i _ .
Yoy 55 (x, Du) = b(x) inQ, (1.3)
U = Ug on ).
A function u € I/Vl(l)f () is a weak solution to the differential equation in (1.3) if
/ {Z a'(z, Du) gy, (x) + b(x)go(x)} de =0, Vpe Wol’q(Q), supp ¢ € . (1.4)
=1

We emphasize that, if ¢ # p, then the definition of weak solution is well posed only in the class
Wh(Q) and it is not sufficient to assume only v € WP (). This is a main difficulty in the

loc
existence theory within this p, g—growth context; in fact, the classical existence theory does not
apply, due to the ellipticity in WP and the growth in Whi,
We prove that the Dirichlet problem (1.3) has a weak solution under the conditions on p, g
n—1
I1<p<gq<p+1 and q<pm. (1.5)
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Moreover this solution u € T/Vllog (€) is also in the class Wﬁ)coo(Q) N I/Vlif(Q), precisely see Theorem
2.1. Our bounds on the exponents p, q are quite general and in particular we do not require that
they are greater than or equal to 2.

Starting from the pioneering work by De Giorgi [7] (see also the book by Ladyshenskaya-
Ural’tseva [12]), the study of the regularity of weak solutions to the elliptic equation in (1.3),
under the so-called natural growth conditions p = q, has been the object of so many papers that it
is almost impossible to provide an exhaustive bibliography; here we mention only some relatively
more recent and relevant contributions by DiBenedetto [8], Evans [9], Manfredi [14], Tolksdorf [19],
the books by Giaquinta [10] and Giusti [11] and the review article by Mingione [18].

The study of problems with p, g-growth started in [15] and the following papers [16], [17]. In
particular, existence of weak solutions to (1.3) and their local Lipschitz continuity is obtained in
[16] whenever 2 < p < ¢ < p(n+ 2) /n. Differently from [16], we obtain the Lipschitz continuity of
the weak solutions into two steps: first by proving a priori the local boundedness of the solutions
and then, from that — as a second step — their local Lipschitz continuity. A strategy which gives
the existence of Lipschitz solutions of (1.3) under assumptions on p and ¢ substantially more general
than those actually known; i.e., in some range the bounds on p, g are new, as described with more
details later. In addition, when ¢ > 2, we prove that locally bounded weak solutions to (1.3) are
locally Lipschitz under a less strict condition than ¢ < p + 1, see Remark 6.4.

The condition ¢ < p + 1 (with or without equality), independent of the dimension n, seems to
be relevant also in other similar contexts; for instance, it appears in the papers by Bildhauer and
Fuchs [2], Choe [3], Lee Junjie [13], related to the regularity of locally bounded weak solutions. It
also appears in the recent approach to regularity for solutions to parabolic equations and systems
by Bogelein, Duzaar and Marcellini [1].

The contents of the paper is described next briefly. Section 2 is devoted to the list of the main
assumptions and the precise statement of the existence result. Section 3 is devoted to the a priori
estimate of the L°°-norm of Du in terms of LP-norm, by assuming that u is a local bounded weak
solution. In Section 4 we prove that u is locally bounded; a related result for systems can be found
in [5]; see also [4] and [6]. Section 5 is devoted to the proof of the existence result. Finally, in
Section 6 we give the specific regularity results when ¢ > 2.

2. ASSUMPTIONS AND EXISTENCE THEOREM

We study the existence and the regularity of the solutions to the Dirichlet problem

0 .
ZZ; Gxia (x,Du) =b(z) in O 2.1)
U = ug on 052,

where b € L (Q) and the functions a’(z,£) for i = 1,2,..n are locally Lipschitz-continuous

functions in € x R™, where {2 is an open subset of R™.
Let 1 < p < g and assume that there exist two positive constants m, M such that for every
&M e R for ae. x € Q) and for every 4, j:

m(L+ |67 AP < S ab (@, 6NN, (2.2)
i,j=1
jaf (2,6)] < M(1+[¢%)'T, (2.3)

atp—4

at, (2,€) = al, (0, )| < M1+ ¢, (2.4)
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gt+p—2

ab, (@,6)] < M(1+ [¢P) 5 (2.5)
Moreover, we assume
-1
ug € WH(Q), with r = p(ql) (2.6)
p —_—
Under the previous assumptions, u € VVli)Cq(Q) is a weak solution to the Dirichlet problem (2.1)
if
u—up € Wy P(Q) NWLI(Q) (2.7)
and

/Q {Z a'(z, Du) gy, () + b(;v)go(x)} dr =0, Vec€ Wol’q(Q’), (2.8)
i=1

where € is a generic open subset whose closure is contained in €.
The following existence and regularity result holds for the Dirichlet problem (2.1):

Theorem 2.1. Let us assume (2.2)-(2.6) with 1 <p < q<p+1 and, if p <n, with q < pg—:zl).

Assume that b € LP%(Q) N LY (). Then there exists a weak solution u € VV&X?(Q) to the
Dirichlet problem (2.1).

In particular, the WYP(Q)-norm of u is bounded by a constant depending only to n,p,q,m,
M, || Dol |10l 2 -

Moreover u € Wli’fo(Q) ﬂWi’f(Q) and for all ' € Q there exist C > 0 and «, 3,7 > 1 such that
L
[lullzo(ory < ClA + [Dul?)2||50(q),

1
1Dulle () < Ol +1DuP)E

and )
1D%ull 20y < CIIL+ D)7, .

Remark 2.2. In [16, Theorem 4.1] an analogous result has been proved under the assumptions n > 2
and2<p<g< p"T”. It easy to verify, that if n > g and p > 3 then the assumptions in Theorem
2.1 are weaker than those in [16].

The proof of this theorem is in Section 5 and it follows from a priori estimates for locally bounded
weak solutions to the equation (2.1).

3. LIPSCHITZ CONTINUITY FOR LOCALLY BOUNDED SOLUTIONS: A PRIORI ESTIMATE

Let us consider the equation
Z iai(azc, Du) = b(x) in (3.1)
= O

and let us assume the supplementary assumption: there exists € > 0 such that for every &, A € R™,
for a.e. x € Q)

n
L+ 1P TP < S ab (@ NN (3.2)
i,j=1
In this section we prove that the bounded weak solutions of (3.1) are Lipschitz continuous uniformly
w.r.t. €in (3.2).

Let us denote by B,.(x¢) , Br(zg) balls compactly contained in € of radii respectively r, R and
with the same center. Moreover, we write V (|Du|?) in place of (1 + |Dul?).
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Lemma 3.1. Let u € W24(Q) be a solution to (3.1). Assume (2.2)-(2.5), (3.2) and 1 < p < q.

loc
Then there exists a constant ¢ depending on n,p,q, m, M, but not on €, such that

[ VDU T D2yt do < (14 0+ bl ) [ VIDURE (ol 42100 do (33)
Q Q
for every n € C°(2) and every o > 0 such that the right hand side is finite.

Proof. By classical regularity results (see for example [11]), by taking into account (3.2) the weak
solution u belongs to VVE)CQ(Q) when ¢ > 2 and to I/Vlicq(Q) when 1 < ¢ < 2. Moreover (1+|Dul?)% €
Wigl ().

By considering as test function ¢ = 1, , with ¢ € C2°(Q) and integrating by parts we get

/Z% xDuuxkaxldm—/

3,j=1 @
For T' > 0 and a.e. x set:

{_ Z a;k (z, Du)tps, + b($)¢xk} dz. (3.4)
=1

Vr(z) = 14 min {|Du(z)|*, T}
and consider
Y(x) := Vifug, [n(x)]*  with a >0,
where n € C2°(12).
The function 1 can be inserted in (3.4), that becomes

/ Z aE o, D)y, (VI )y Uy, Vi~ 1174dx—|—/ Z ag x Du)uzk%umkleTﬁ dx

1,j=1 1,j=1
- 4/ Z a€ x Du)uik%uzkn Mg, V1 dx / Zaxk x, Du)tpy, (x )daEJr/ b(x)1)y, dz. (3.5)
i,7=1

Let us now consider the first integral at the right hand side:

—4urk1jumkn3n$iVﬁ = {umkzjnszf} {—4umknnxiVT§} =: ;3.
Then, by [16, Lemma 2.4] and Young inequality

2

n n
. —2
—4 2: ag, (@, D)ttt 1710, V| < E : (z, Du)AiA; V(|Du)] 5|5
ij=1 =1

Z ak (&, Du)AiAj + e[V (| Dul?)] 7 |22,

l\’)\r—t

By (3.5) we get

/ Z ag T, D)y, Uy, (V)2 V™ Ytde + = / Z af z Du)umk%uzkszTU dx
7] 1 ,j 1

Sc/[V(Du|2)]q2 Tumkn |D77|2dx—/2a$k x, Du)tpy, (x dx—I—/b )y, do.
Q

If we sum on k =1, ..., n, by taking into account that

V1), Zuxkuxﬂ»‘k = (V1) (V1)a;
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we get

/ Z aé x, Du)(Vr)w;(Vr)a, Vi~ Yptde + = / Z aE x Du)umk%um%VTﬁ dx
3,j=1 1,5,k=1

<c / V(| Dul?) Ve Dif? d — a / kZ i (a2, DUV (Vi) de

/Z xDuVTuxkxn dr — 4 /Z

x Du “mm nszT dm+ch”L°°(suppn)/ ‘Dq/;|dl‘
i,k=1 i,k=1

with ¢ independent of «.
By (2.2) and (2.5) the above inequality implies

m / V(1 Duf?)] "2 V| D?ul?y da
Q

am p=2_
5 [ UDRF VD) Pt de +

<e / V(| Dul?) 4V Dl da + ac / V(IDu)) 5 VE D(Vi)ln' da
Q Q
e /Q V(| Dul?)

LB et
+C/Q[V(\Du|2)]q4p T173|D77|da:+c|]b||Loo(5uppn)/Q|D¢d:z: =Lh+DL+L+1i+15 (3.6

q+p

VT ]D2u|77 dx

Let us estimate the right hand side in (3.6).
Estimate of I5.
q+2

Since [V (|Dul?)]“% |D(Vy)| = V. * |D(Vi)| ae. then
—2_a=l a+2  a—1
B =ac [ {v(oapy v iowae {75} o
Q

gm/[V(IDurz)]"szﬁIID(VT)IQn‘*dHca/VTgmn‘*dw- (37)
Q Q

Estimate of I3.

=3
2

f=c [ {IvQoupE v 0} {v(Duplivie | o
<7 /Q[quuR)]”fvﬁmuy?m dr + /Q[vumm%vw da. (38)

Estimate of I.
Taking into account that a.e.

(V) [V V(I Dup)]2 = {\D(VTW;* [V<|Du\2>]”f} {2 V(1Dup)] 7" }
then by the Young inequality it holds true that
IDVOIVE V(DuP)2 < ZIDVOPVE V(DU + VRV (1 Duf)] 2
Thus,
(Dy| < VR~ | DEVE)|[V(IDuf) 0 + VR [ D?uly® + 4| Dol VATV (| Duf))
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am_ . =2 o 2-p
< e V(D)) [ DVE) P + ac VRV (1 Du)) 7
m. . =2 ot
+ VRV (DR D2l 4 VRV(DUP)] ot + 4Dl V(DuP) . (3.9)
Collecting (3.6)—(3. 9) we get

am _ m p=2_ .
& [ UDBIF Ve D0 Pt de + 5 [ IVADURI S VRID P do
< / VADUPEVEP D de+ ¢ (1) [ [V(DuP)IEven' de
Q Q
+e [ VDR Vi Dyl da
Q

o1 )l [ {VIDUP)F VDR + V(DU 0P Dyl | da
= J1+Jo+ J3+ Jy.
Taking into account that 2 — p < ¢ and ¢ > 1 then we can majorize the right hand side as follows
Ji+ Jo 4+ J3 4 Ju < (14 a+ [[b] Lo supp)) C/Q[V(!DUIQ)]%O‘(U4 +1°| Dnf?) da
By passing to the limit, as 7' goes to infinity we obtain (3.3). (]

From now on, we deal with locally bounded solutions w.
Moreover we consider a cut-off function n € C2°(Bs(x)) such that

2
Bgs(mg) €, 0<n<1, n=1in By(xg) witht <s, |Dn|< Pt (3.10)
s_

Lemma 3.2. Let u € VVlf)Cq(Q) N L2 () be a weak solution to (3.1). Let Q' € Q.
Under the assumptions in Lemma 3.1 there exists c, independent of €, such that for every cut-off

function n € C°(Bs(xg)) satisfying (3.10) and every o > 0 we have

| wapap ety do
e (1+at [blle)t (1+ 1l
2\1g+a—E2—1 2\1d4a—1
— [, (vUDuyre s p gt do

whenever the right hand side is finite.

Proof. For the sake of simplicity, we introduce the notation
kap = (1+a+[bllLe(ar)) -

Moreover, notice that if 7 is as in (3.10), then n* + n?|Dn|? < (d(ls#)(g)yn? By Lemma 3.1

(3.3) holds.
Let us estimate the right hand side in (3.3). By an integration by parts we get

(fa—,bt():z/B[ (|Du| )] Ita Qd (fo‘_’bt§2/B [V(|Du‘2)}%+a_1 <1+Zuxkuack) 77261.7)

s k=1

kap ¢ a— kap 940
=_ QZ/ V(| Dul?)] 3+ 1uxk772)x udaz+( mnp /BS[V(\DuP)]zJr L? da
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q abc 44,3
<l |3+ 0 =1 52255 [ WODUPE DI DUP R do
kap c 2L +a—11 2, .2
0l [ V(DU D2uly? da
(s—1) Bs
b Sl [ VODUPIE by de 228 [ (Dt @)
(s—1)3" " [, (s —1)% J,
where [[ulloe = (@)

By the Young inequality we can estimate the first two integrals in the right hand side

ide. The first
one gives
3
-1 (D ~2|D(|Dul?)|n?
ety o= 1] [ v 0Dur DD a2 s
/ {[V(\Dm )55 D (| DuP) }x
Bs
«fehaeltle 19 4 o | y(up)tre-i-C7 o5 L da
(s —1t)2
1

< — [ V(D) D(IDuf?)n’ da
16 /p,

ek lull% g 2 a?
W (5 +oa— 1) /B [V(|DU|2)]q+ 271 dx

Thus, by the inequality |D(|Dul?)|* < 4|Du|*|D?ul?* < 4V (|Dul?)|D*ul* and (% + a — 1)2 < ck?
with ¢ > 0 depending on ¢, but not on «a, we get

k
76 allulloo 19, 1’ / (| Duf?))3 2| D(|Duf?)|n? do
(s =)
1 v K llu
< / [V(|Du|?)] 2 Y D?u?n* dx + Kap 4l / [V (| Dul?))ere=5" da. (3.13)
4 /B, (s=t)* Jg,
Analogously, the second term in the right hand side of (3.12) gives

Ckab

bl [ VDR DRl da

< [ {waoape st} {2 v pai e R L a

)2
1 212 +ta—1{P2, 12 4 ¢ abH“Hgo 2\1g+a—E—1
<7 [ V(Dul)]> |D7ul"n" dx + - [V(|Dul)] 27 dx. (3.14)
B -

s

As far as the last term in the right hand side of (3.12) is concerned, we have

¢ kap Chay diam € e
(S—t)2/ [ (|Du| )]‘H-a 1772de (5—1,‘)3/ [V(’Du|2)]g+a 17]2d$.

Therefore, by (3.3) and by (3.12)—(3.14) we get

1

32 +a ey lull% e
2/ V(D)7 " !DQu\2n4dx§M1/ [V (| Duf?))ete 2  da

s
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ckz2b|]uH2 ckap q 1
+/ V(|Du?))ete 2V dp 4 —2 / V(|Dul?)|2 1 2 dx,
s [ vy et [ wpue)
that implies (3.11). O

Remark 3.3. Observe that when o =0 and ¢ < p+ 1, (3.11) becomes:

(1+a+ bl @) (1 + ”W\%w(n/))

/ V(IDul?)*2 | D?uf?n! da < c / V(|Dul?)]*T da.
Bs

(s —t)! B,
In the following two results 2* is the Sobolev exponent, i.e.,
2n_ ifn>3
s if n>
2 { any p>2 ifn=2. (3.15)

Lemma 3.4. Let u € Wﬁ)g(Q) N L2 () be a weak solution to (3.1). Let Q' € Q. If the as-
sumptions in Lemma 3.1 hold, then there exists a constant ¢ such that for every cut-off function
n € C°(Bs(xo)) satisfying (3.10) and every o > 0 we have

{/Bt[V(IDuP)](gm)Qg dg:}2/2*

c (1 +a+ Hb”Loo(Q/))G 1+ HUH%OO(Q/)
< = t>4( ) [ Wapups it G

whenever the right hand side is finite.

Proof. Let n be a cut-off function as in Lemma 3.2. By the Sobolev imbedding Theorem

([ pimaensaf ™ < (vompnan)” )
< [ [p (vapuyEsd)

< e L WODUENE e de g et 4 o) [ (VDRSS DD P de

= (s—Ct)Q/B V(I Du)2 0 do + (1 + ) / V(| Duf?)] 5o~ D2uf?! da

Thus, using (3.11) to estimate the last integral we get

{/Bt[V(!DuP)](QM)Q; dx}w?* < (s—ct)Q/B V(|Dul2)] 5+ da

c(L+ o+ [Ibll oo () (1 + [[ullf e qry)

S

and the claim follows. O

Consequence of the above lemma is the Lipschitz regularity estimate for weak solutions to (3.1)
under the assumptions (3.2) and ¢ < p+ 1.
Theorem 3.5. Let u € VVI})C‘J(Q) N L2 (Q) be a weak solution to (3.1), with 1 <p < q¢<p+1.

loc

Assume also that (2.2)-(2.5) and (3.2). Then u € W;=>°(9).

loc
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Precisely, fizred Q' € Q, there exists a constant ¢ depending on n,p,q, m, M, but independent of e,
such that for every B,(xg) C Br(zo) C Q' the following estimate holds:

S 1
].+ b %) T 3 ]. + %) T P p
By (o) (R—r) Br(=0)

The exponent § is equal to % if n > 3 and it is any number greater than % ifn=2.

Proof. We start using Lemma 3.4, with Q" = Br(xo). Let us write | - [|oo in place of || - || oo (B (x0))-
If g <p+1, then
qg—1
1< —X
S =

(RS
(VRS

q_

By (3.16) it follows that

. 2/2* 6 6 2
o) (L4 ) (14 [Hloe)®(1 + w2 1o
{ [ wapupyEes an) ™ < — | wpupyEeas,
(3.18)

s

Let us define two sequences, () and (ay), such that
n R—r q p [ 2* k=l P
rE =7+ — an ap == | — — =,
F k1 P\ 2 2
In particular, (ag) is a strictly increasing and positive sequence solution to the difference equation
E+ars = (5+ak) 7,
a1 = 0.

Let us define X, = ||V(|Du|2)||L%+ak(B X Then
Tk

Xk+1 — {/B [V(‘Du|2)]§+ak+l dx}7+ak+1 _ {/B [V(‘DU’Q)](g+ak)% d.ilf}

Thus, (3.18) can be rewritten as:
sohton o (14 ap) (14 [1b]loo)®(1 + [lull3)
S (e — Tet1)

S
|
+
Q
Eal

Tk+1

B+Ozk
2
X2

Therefore,
Xir1 < e Xk, (3.19)

where

o= & (14 11blloo) (1 + [Jul|2)2% 27\ | (%)™
(R—r)* 2 '
By iteration, ‘
Xi+1 < (szlck) Xl.
Notice that

i

; 1 e (14 [1Blloe)® (1 + [Jul|? )24 /2+\ %
x5 b (MR (5

k=1 2 ( 2
has a finite limit as ¢ goes to co. Precisely, since

1

2 L+ o)1+ ull2) 5T = (1 + [[bllo)®(1 + uf2)}
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with § = 2 if n > 3 and ¢ is any number greater than % if n = 2, then when 4 goes to co we have

sup[V(|Duf?)] < ¢ <<1 + [[blloo) (1 + ruuzo>>‘5 ( /BR[V(' Duf?)} d$>§

(R—r)*
that implies (3.17). O

r

4. BOUNDEDNESS AND LIPSCHITZ CONTINUITY FOR W14 SOLUTIONS
In this section we prove the local boundedness of weak solutions.

Theorem 4.1. Assume (2.2), (2.3) and (2.5), with 1 < p < q. Moreover, if p < n assume also
q<pi=.

Ifu e W;)C‘J(Q) is a weak solution to (3.1), then u is locally bounded.
Moreover, fized Q' € Q, there exist C1 > 0 such that for every Br(xo) C Q' and 0 < p < R,

1\ 7 140
1+ b oo )P P
sup Jul < ¢ L l=@) [ ey (1)
Bp(xo) (R—p)rT Br(z0)
h O 04D ‘“ : y (a=1)
with 0 = %;,_pq, here p* = %, if p<mn, and p* is any v > %, else.

First we recall the following result, see Lemma 1 in [19].

Lemma 4.2 (Lemma 1 in [19]). Assume (2.2), (2.83). Then there exists a positive constant ¢ such
that

n

> (@i (@,8) —a'(z,0) (& —G) = ¢ =P if p=2 (4.2)
=1
> (@' (z,) —a'(2,0)) (& — G) = c (L+ 4] + KP)’%Q E—¢® if p<2. (4.3)

i=1
The above lemma implies that we are considering a monotone operator:

n

> (ai(@,8) —ai(@,Q) (& —C) =0 for every £,¢ € R". (4.4)
i=1
We are ready to provide a proof of Theorem 4.1.

Proof of Theorem 4.1. First of all we prove that (2.3) implies that for fixed zy € 2 and for every
1=1,2,...,n,n€R"” and a.e. x € ()

‘ai(%ﬁ)’ < é(l + ’77‘2)(12;1 (45)
with C depending on Q,n, ¢, M and zg. Precisely,
_ , 1
C = |al($0,0)\ + M [diamQ + nmax {1’ 1}:| .
q —

Indeed, consider
1
a'(2,0) = a(a0,0) + [ (e +t(a ~ 20),0). — z0) di
0
thus, by (2.5),

sup |a(z,0)| < |a’(xg,0)| + M diam Q =: M.
€S
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Then by (2.3)

la! (. n>r<M+Z|mr/ 3 xtn>|dt<M+Mn|n|/ (1+ )3 dt.
7j=1

Then (4.5) holds when ¢ > 2. If 1 < ¢ < 2 we get

1 1
q=2 _ _ 1 _
In] / (1+ [tn|*) =" dt < [ 1/ 2 dt = ——n|*”!
0 0 q—1

and also in this case (4.5) follows.
Moreover, by Lemma 4.2 for n = 0, for suitable 0 < € < ¢, we get:

S a2, > clel + > al(@,0)¢ > (e — )¢ — AT (4.6)

i=1 i=1
To construct a sequence of test functions we consider an approximation of the identity function
id : Ry — R by an increasing sequence of C' functions g;, : R, — R, such that

0 forall t € [0, 5] , ) 2
= < < < - . .
9k (t) { k forall t > k. 0<gp(t) =2 and g}t <gp(t)+, mRy  (47)
The last inequality can be assumed since the restriction of g; to the interval {k 1 k:] can be seen

as a smooth approximation of the linear function G(t) = Jéii—{)lzl (t — m), whose graph is the

0) and (k, k) and Gy, satisfies G}, (£)t < Gi(t) + +

line of the plane connecting (= £

k+1°
Fixed v > 0 let ®;, : Ry — R be the increasing function defined as

P, (1) == gi(t*).
Consider Bg,(z9) € 2, 0< p < R < Ry and let n € C°(Q) be a cut-off function, such that
O<n<l, n=1linB,  swpn€Br  |Dyl<p—
p

Let u e W, ’q(Q) be a weak solution and define the following sequence of test functions:

loc
Pk () = Ppy (|ulz))ulz)[n(z))",
where p = 27 (qg - 1).
Notice that by (4.7) we easily get

e ()t < pv {(I)k,u(t) + z} <qu {@ky(t) + 2} .

Moreover, ®; is in C*(R.), bounded and with bounded derivative; thus ¢, € W4, with

supp ¢k € Br.
From now on, we write ¢, and ®;, instead of ¢y, and @y,
Let us insert ¢ in (2.8), we obtain

Z/B (, Du)ug, ®r(|ul)n “dx—i—Z/ (x, Du)uCI)/(|u\)| |uxﬂ7 Hdx

—uZ [, e Dumlu oo [ byt e

Br
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We estimate the first term of the right hand, by applying the monotone property (4.4). For a.e.

x € Br, N {n # 0}, by (4.4), we have for £ = Du(z) and ( = —2uu(zx) Dﬁ?gj),

—2uu
e D)™t = St g ()
n n
17“ —2u D77 —2u Ny, : —2u Dn
<3 {Z (2, Du)uy, +Z ( >< ” —Zal T, p Uz, ¢ -

=1

So we obtain

Z/B (2, Du)ug, @ (|u))n de+2/ (, Du)u(bk(\uD‘ a1 "y
<32 [ o () B 53 [ ot (5 22 o e

—/ () (ul)u” da. (4.8)
Bgr

By (4.6) there exist positive constants ¢, C' such that
Z/ (, Du)ug, Pr(|u|) “dm—l—Z/ (2, Du)ug, ® (|u])|u|n dx
Br
>c [ IDuP(ul)de—C [ (@ulful) + B ul) " do.
BR BR

Therefore, using also (4.5), inequality (4.8) implies that there exists C' > 0 such that

/B |DulP®y(ul)f d < C / <<1>k jul) + 2) i

g g—1
~ uDn 2\ 2 ~ uDn 2\ 2
+C 1+|— O (Jul)nt dx + C 14+ |— | Du| P (|u])n* dx
Br Br
+ bl [ @il luly da
Br

Since q% < Ll we have

é<1+

and by Young inequality

& <1 .
p(¢g=1) , _plg=1)

IDUIPU + ent + cluDn| »- - 0T

uDn 2
n

q
2 q N (¢g—1) p(g—1)
) ot < (1 + [uDy| )2 #=4 < C'max{1, ‘Dyﬂpqul H1+ |u\ )2(=1)

g—1

D 2 B _1 w _1y_
o > |Duln < c[Dulnsn* %) + c|Dulys [uDpy|?~ Ly )7t
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then by the properties of 77 and by recalling that u = [%(q — 1) we get

2 p(g—1)
/ | DulPdy(Jul) do < c/ <<I>k(|u|) + ) D da + C()/ (1 4+ [uf?) 5678 @y (|u) da
BR BR k (R_ p)ﬁ BR
c o, Pla=1) o, Pla=1)
+ D / (1 + |ul®)2e=D q’k(\u|)d9€+c\|bHLw(Q/)/ (1 + |ul*) 2= @k (|ul) dx
min{l, (R —p)} »~* /Br Br

Since ®p(u) — |u[P” as k goes to 400 passing to the limit we get

pr(g—1)

c(1 4+ ||bl| 7o (g—1)
[ D) < (1 [l ) [ oarp R pas )
Br min{l, R — p} »-T /Br

Observe that if p < n then the assumption ¢ < p:;—:; implies p% < p*.

Inequality (4.9) is analogous to the inequality (4.33) of [5], then by a careful application of the
Sobolev embedding theorem and the classical Moser’s iteration method we obtain that u is locally
bounded with the following estimate:

q

L\ p*—q Lo
14 ||b]| poory) P . P
sup |u| < C (L ol q(g)) {/ (1 + Jul)? da:}
Bp(zo) (R—p)r—t Br(zo)
with 6 as in the statement. The Sobolev imbedding gives (4.1). O

By collecting Theorem 3.5 and 4.1, we have

Theorem 4.3. Let u € Wlig(Q) be a weak solution to (3.1), with 1 <p<q<p+1 and, if p<n,
assume also q < pZ—:;. If (2.2)-(2.5) and (3.2) hold, then u € VV&)’:O(Q)

Moreover, fized Q' € ), there exist C,«,d,~v > 0, independent of € in (3.2), such that such that for
every By.(xg) C Br(xg) C ' the following estimate holds:

14y

1+ |6 oo () P P
sup |Du| < C( 1ol (?)) / (1+ |Du|2)§ dz . (4.10)
By (z0) (R—r) Br(z0)

5. PROOF OF THE EXISTENCE RESULT
First we state a preliminary result, see also Lemma 4.4 of [16].

Lemma 5.1. Under the assumption (2.2), (2.3) and (2.6) there exists a costant C such that for
every &,m € R™ and for a.e. x € €,

!E\psc{(lﬂmz)m+Za"(w,€)(§i—m)}- (5.1)

i=1

Proof. Fixed xg € (), we have that for every ¢ = 1,2,...,n, every n € R" and a.e. = € (2, inequality
(4.5) holds.
Let p > 2, by (4.2) and the Young inequality, for all e > 0 we obtain

€17 < e(l€ = nlP + nl) < {Z(ai(%ﬁ) —a'(z,m) (& —mi) + !n!”}

i=1

qg—1

=< C{W’ + Y a (@ &)(& —m) + e(n, g, M, wo, diam Q) (1 + [n|*) = (|¢] + IUI)}
i=1
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n

c{<1+m2>’5+2 i, £) (& — ) + o1+ 2 ED + e(l€] + [n]) }

i=1
thus if € is small enough we get (5.1).

Let now consider 1 < p < 2. By the Young inequality with complementary exponents % and 52
fore >0

&P < e —alP+ o) < e (P + (€ — ) B+ 1 + )5

—2
U+ )+ 1+ €2+ )T le =l + (1 + 2+ In)E }
Therefore, by (4.3), for small € we get
!é\”gc{ L+ 2+ (a'(@.) —a'(a,m)) (& — m)}

=1

and we conclude by proceeding as above. O
We now turn to prove our existence result.

Proof of Theorem 2.1. Fixed 0 < € < 1, let us consider the following Dirichlet problem

Yoy 8%,- [ai(:c, Du) +€(1 + ]Du\Z)q%Q u%} =b(z) in (5.2)
u—ug € Wyl (Q). '

By Lemma 4.2 the differential operator associated to {ai} is monotone. We can apply the theory

of monotone operators to prove the existence of a unique solution u. € W19(Q) to the problem
(5.2).
Now we split the proof into steps:

STEP 1. By Lemma 5.1, we prove the boundedness of {u.} in W1P(Q). More precisely, there
exists a constant C independent of ¢, such that

[[uell1p < Ch. (5.3)

In fact, set a'(z,&) = a (:U &) +e(l+ €)' T 5 The functions a! satisfy the assumptions of
Lemma 5.1 with constants m’ = m, M’ = M + 1. Thus, by Lemma 5. 1 applied to a! with & = Du,,
1n = Duyg, give the inequality below with constants independent of e:

9 p(g—1) LI
/ |DucP dx < ¢ /(1 + |Dug|?) 2= dx + Zai(m, Due) Dy, (ue — ug) dz p .
Q Q

=1

Since u, is the weak solution to (5.2), by Young and Sobolev inequalities we obtain

(¢—1) P
/]Due\pd:n§c{/(1—|—|Duo|2)g(Zq’1) dac—l—cT/ ]b|p€1 dac—l—T/ |u€—u0]pdm}
Q Q Q Q
Sc{/(l—i—\Duo] )2 5G-D) da:+cT/ |b|z7plda:+7'/ |DuE—Du0|pdx},
Q

for any 7 > 0; if 7 is small enough the inequality above easily implies (5.3).
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STEP 2. We claim that for every ' € Q the sequence {u.} is bounded in L. Precisely, by
Theorem 4.1 there exists constants C' and 8 independent of ¢ such that,

1460
HUEHLOO(Q/) < C (/ <1 + ‘Du€‘2)§> d$> P
Q

As already noticed, the functions a’ satisfy the assumptions of Lemma 5.1 with constants m’ = m,
M’ = M + 1. Therefore, by Step 1 the right hand side is bounded uniformly w.r.t. e.

STEP 3. Here we prove that for every open sets Q" € ' € Q) the sequence {Du.} is bounded in
L>(Q"). Precisely, there exists a costant Co independent of € such that

P

| Duell oy < Ca (1+ Ifuel| ) ( /Q (1+|Dul?) dm) . (5.4)

with the right hand side bounded uniformly w.r.t. € by the previous steps. The exponent - is
positive and it is vy = % if n > 3, otherwise ~ is any number greater than 1%’

Indeed, since a!(x, &) satisfy the assumptions of Theorem 3.5 and {u.} are bounded w.r.t. the
WP(Q) and L°°(£Y') norms, we can apply Theorem 3.5 so obtaining the claim by a covering
argument.

STEP 4. We claim that for every Q" € Q' € Q there exists a constant C3 independent of € such
that, if p > 2,

/” D% di < Cy (14 e o)) /9(1 | DuP) da (5.5)
and, if p < 2,

2—p

| 1%l e < € (14 uclteian) (14 1Duleion) © [ 1+1Du de. (650)

Also in this case, the constant Cj is independent of e.
This claim follows by Lemma 3.2, precisely by Remark 3.3, and by taking into account that
g <p+1, so we get

l/‘(1+\Lh%p)ﬂfyp2u42dxfgc(14-\uﬂimayot/k14_uh%p)§dm
Qr Q

If p > 2 we immediately conclude. Otherwise, since by Step 3 we have that {Du.} € L>(9"),
estimate (5.4) implies (5.6).

STEP 5. Now, we conclude the proof, by studying the limit ¢ — 0 of w,.
By the previous steps the sequence {uc} is bounded in VVlif(Q) N WE®(Q). Therefore there

loc
exists a subsequence, that we still denote by u., that converges in the strong topology of VV&)C2 to
a function v and we have that

u € (ug + WyP) N Wh® nw22(q)

loc loc
with Du, that converges to Du a.e. in ).
Let ' € Q and let ¢ € Wy('). By definition of weak solution we have that

A {Z (&, Duc) e, (2) + b(m)so(x)} dz =0,

i=1
and we can go to the limit as € goes to 0. We obtain that « is a locally Lipschitz continuous weak
solution to the Dirichlet problem (2.1).
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Finally the estimates (5.3), (5.4) and (5.5) hold for u by the lower semicontinuity of the norms.
U

6. LOoCAL LIPSCHITZ REGULARITY OF LOCALLY BOUNDED SOLUTIONS

In this section we prove the Local Lipschitz regularity for locally bounded weak solutions to (3.1)
when ¢ > 2 with two type of estimates: in Theorem 6.2 we estimate the L°°-norm of the gradient
with its LP-norm, and in Theorem 6.3 we prove an analogous result, using the L? norm in place of
the LP one.

The starting point is the following lemma analogous to Lemma 2.8 in [16]; the main difference
is that now it can be 1 < p < 2.

Lemma 6.1. If ¢ > 2, 1<p<gq and (2.2)-(2.5) hold then a weak solution u € VVI})’CQ(Q) to (3.1)
satisfies

n

/ Z (1 + |, [*) 277 D, [ d < ¢ (14 7) / (" + 0?1 Dnf?) Y (1 + ug,|?) 2 da
Q

i=1
for every n € C’(?O(Q) and every v > 0 such that the right hand side is finite.
Proof. Fixed v > 0 define the odd and Lipschitz function g, : R — R by
gurll) = H(1+ 8l [t <k

and extended to R linearly as a function in C'(R). As a test function in

/ﬂ {Z a'(z, Du) gy, + b(:c)go} dx =0

i=1
consider the function
¢ =A_p(n"gyk(Apuw)),
_ [f(athes)—f(z)

where Ay, is the difference quotient in the direction es defined by Ay, f(x) = =
Then,

// nt 9, 1 (Apu) (1 + |Du + thARDul?) "z |AhDu]2d:Udt
// nt g, 1 (Dpu)(1 + |Du + thA, Dul?)? dzdt
+// 40?1 D) | gy 1 (Apw)| (1 + |Du+thAhDu|2)% dxdt

g2
// n*|Dn |297’ (Apu) (1 + | Du 4 thADul?) "5 7 da
¥,k

for every n € C°(€2) and every v > 0 such that the right hand side is finite.
Notice that if p < 2 the Young inequality implies
IALDul” < ¢(1+|Du + thAyDul?)2 + ¢(1 + |Du + thAhDu|2)pTi2 |ApDul?.
Thus, for any p > 1, there exist Duy, € Lfgicn{zp} and DAju converges a.e. to Dug,.
From now on, analogous calculations as those in [16] allow to conclude. O

We state now the first regularity result of this section.
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Theorem 6.2. Let u € LS (2) N T/Vlog(Q) be a weak solution to (3.1). Assume (2.2)-(2.5).
Ifg>2and1 <p<q<p+1, thenuec W (Q).
Moreover, fived ) € Q, there exists a constant ¢ depending on the L -norm of b in €', such that

for every By, (x¢) C Br(zg) C Q' the following estimate holds:

1
(1+ HUHLOO(Q/))>6 » Z
sup |[Du| < c< / 14 |Dul”)?
[Dud (R—r)? Br(x0) (1+1Duf)* d

By (o)
The exponent § is equal to 2 zfn > 3 and it is any number greater than 2 zfn =2.

Proof. Consider zg € Q and R > 0, such that Br := Bg(z9) C Q' € Q. Fix also 0 < r < R. Define
V 1 ]0,00) = [1,00), V(t) = (1 +t) and let n € C°(Bs(xg)), 7 < s < R, be a cut-off function
satisfying the following assumptions

2
0<n<1, n=1in Bi(zo) withr <t <'s |D77|§—t.
S_

We split the proof into different steps.
By Lemma 6.1 and the assumptions on 7, we get

/Zl+\u V541 D2y 2 s < ” / Zl+\ux| B 2de (6.1)
éz 1

Bs =1
for some constant ¢ possibly depending on diam €V'.
In this step we prove that there exists ¢ independent of -, such that

STEP 1.

STEP 2.
1 11 2
Z 1_'_‘“ p+’Y 1|Dux |2 4d < ( +’Y) ( +HuHoo)
B (s —t)*
s i=1
n 1
></ {Z(l—i— |, |2) 7 1+Z (14 |ug,)?) _2} de. (6.2)
Bs =1 i=1

Let us estimate the right hand side in (6.1). By an integration by parts we get

s—t / Z + ug, [2) 2 70? da

Bs =1

6 +7 c(

D Z (1 + Jug,|2) 2D 0P, g, da + ———~ ( / Z (1+ Jug,|?) 27192 d
BSZ 1 S?/_

5(1+’Y NL4y—1 2 c +’Y $-1,2 g
‘(—wZ}/ (@ hun P8 u?) wdo S0 Z T

_ 1) C((l t) ) / (1+ ‘uxi|2)%+’y*%‘(’umi‘2)%"?72 da

q
<clull (4 + .

c(1+
( ,Y ]uHooZ/ (14 |ug, )2 Yug,o, [n? da
n

+4 (1+7 I IIOO/ Z (1 + ug, 2) 3+~ 277da:+c(( ))/ Z(1+’Uxi\2)%+771772d50

( Bs =1 s =1
(6.3)
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where [Ju||ooc = HuHLoo(Q/).

Let us now write all the constants as ¢, that may vary from line to line. By the Young inequality
we can estimate the first two integrals in the right hand side. The first one gives

q 1+ a3
il (347 -1) =2 / Zlﬂux, VT3 (g, ) o

:i/s{(l—i_‘u“’ e | (g, | )xi’nz} X

c(14+7) llullw (q g 3 (B2 o1
X{M(gﬂ—l)(muwuu N g

< Z / (4l 2572 (s, ), P de
1 2
+ C( +’7) HUH / Z 1 + |u q-‘r'Y—*—l de'

(s —t)4 B, =

Thus, by the inequality |(|us,[*)z,]? < 4|ug,|*|u > < 4(1 + |ug, [*)|Dug, [* and (§ +~ — 1)2 <
(14 ~)? with ¢ > 0 depending on ¢, but not on v, we get

q c(l+v - a3
el (5 +7-1) f_t) /B D0t s B )

1 2
/ Zl+|u 54971 Duy, 0t da +(+7)u”/ Zl+|u 122" e (6.4)
S

Szl (_ Szl

Analogously, the second term in the right hand side of (6.3) gives
c(l+ = a4
Huunw Z/B (1 + Jug, )37 1 D2ul? de

<Z / (U 27 g} { ) )>||u||oo<1+|uxl| o) ] g

Z/ 1+‘U ) +’Y_1|Duxi’2774d$+ ( HUH Z/ +|U Q+7 5—1 d$ (6 5)

By (6.1) and by (6.3)-(6.5) we get

4;

1 - 1 2
2/ Z 1+ |ug,|?) 2 Duy, [*n* dao < at 2;1) (]S / Z + lug, [2)7TT 5 dg

- B, =3

(142 ully it gy 4 €) P
( —t Zl—i—\u dr + =10 (s — 1) Zl—i—\u 2ndx
52 1 sZ 1
_|_
) [ 3204 a2
Bs i=1

that implies (6.2).



EXISTENCE AND REGULARITY FOR ELLIPTIC EQUATIONS 19

STEP 3. In this step we prove that there exists ¢, possibly depending on R, but not on +, such
that

(g0 smrsers }

Bt j=1

1 (1 2
< C( +7)° E _;r /|5 / Z 1 g )5 4 (1 Jug, 2T 75 (1 + \“wilz)%”_%} dx.
Bs =1

(6.6)
By the Sobolev imbedding Theorem

{/Bs ((1 + ’u$i‘2)§+%7]2)2* dx}2/2 / ‘D ((1 § ) )’2 o

C
S(S_t)z/BuHum)ﬂn do+ (149 [ (1 ua 572D (s [P do

(14 |ug, [ 2P Dug, |*n* da.

£

Therefore, (6.2) implies

( 1 2\247% ad ¢ 2\2+y, 2
(1 + fug, [7) 3721 dx §m i (1 + [ug, [7)2 0" da

E]

2) ’
c(L+7)° 1+ [Jull)  mebrege1 o el
(s— ) /BS{Z(”'%") 200 ) }d.

i=1

a

By using the inequality Y ;" y¢ < (3o, y)® with a = 2*/2 > 1, the Minkowski’s inequality
with exponent 2*/2, and using (6.2) to estimate the last integral in the chain of inequalities above,
we get
2/2*

n

2/2* n %
/ {Z(lﬂum\?)(é’“)%dx} < / {Zn4<1+|um|2>’z’“} dz
Be (i Bs Li=1

=1

n . 2/2*
2 {[, (o) )
=1 s

and the claim follows.

STEP 4. Iteration.
Since ¢ < p+ 1 then

Q
|
—
(VRS

By (6.6) it follows that

2/2*
2 c(1+7)°(1 + Jull3) o
{/ Z + |ug, | 'Y)de} < o /Zl—Hu Y da.

321

Now, the proof follows the same scheme of the proof of Theorem 3.5. O

In the next result we prove an estimate of the L>-norm of the gradient with its L%-norm. This
can be obtained also for some g > p + 1.
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Theorem 6.3. Let u € L () N W.29(Q) be a weak solution to (3.1) and let (2.2)-(2.5) hold.

loc loc
If n =2, assume q < p+ 2; if instead n > 3,
q<p+2 ifp>n—2
n .
Q<m(17+1) ifp<mn-—2.

Then u € W,5°().
Moreover, fivred Q' € Q, there exists a constant ¢ depending on the L*-norm of b in Q', such that

for every By(xz¢) C Bgr(zo) C ' the following estimate holds:
o
1 =+ ||w|| 7000 v® q q
sup |Du| <¢ (W) / (1+ ]Du\2)g dx
Br(z0) (R—r) Br(zo)

Proof. If ¢ < p+ 1 the thesis follows by Theorem 6.2.
Let us assume that ¢ > p + 1. The first four steps of the proof are the same of Theorem 6.2;
only the last one changes.

for some © > 1.

STEP 4. Iteration.
By the assumption ¢ > p+ 1,

p_q-1 p
5 < 5 <q 5 1.
Thus, by (6.6) we get
" 2/2* 6 2
{/ [V(|Du\2)}(g+7)27 dx} < C(1+')(/'>S (1752”“”00)/ [V(‘Du|2)]q7%71+7 dr. (67)
Bz - s

Let us denote

2 D 2%
A= -—=|1+—=])-1
2*—2[(1 2<+2> ]

where 2 is the Sobolev exponent (3.15), and define two sequences, (r;) and (7x), as follows:

LEBIr L 2 k_1+>\ (6.8)
rE=7 n = — — . .
k ok—1 83 9 2
An easy computation shows that 7, solves the difference equation
M= % + 1.
Moreover,
- P—q -2
1 = & —+1-2>0 < < 1). 6.10
Jim g = +oo 5+ 1< 5P+ (6.10)

If n = 2, since ¢ < p+ 2 we can choose 2* as any number y > 2 such that g < %(p + 1); this
is possible, because
. 2-p . 2-p

lim ——(p+1)=p+1, lim ——(p+1)=2(p+1).

Jim 5D =p Jm S =2p+1)
If instead n > 3 the last inequality in (6.10) becomes ¢ < —"5(p + 1); which is true by the
assumptions on p and gq.
Moreover ~; > 0 for all &k since ¢ < p + 2.
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Let us define

Xi = V(IDuP)l, = [V (DuP)| , k=1

‘I***1+’Yk( L(§+’Yk 1 T(Brk)

where 7 is defined coherently with (6.8). We remark that at each step of the iteration below, the

+’s in (6.7) take the non-negative values ~y; with k£ > 1, but not the negative value .

Reasoning as in the proof of the previous theorem, inequality (6.7) can be rewritten as

e (14 7)1 + Jlull3,)
(rr = rrga)?

X§+’Yk X}g%-i-%q)%’ k> 1.

k+1 —

Taking into account that (6.9) implies

Crw)s | a-p-1

S+w 5+
we get that
Xpp < X% k>, (6.11)
where
1
o = § 20 JullS) <2>6k A g —4—P—1
m=nt \2 | .
By iteration, (6.11) implies
o 1+6; i (146;
Xip1 < < k=10~ “en (i J)) Xy sma(1+6s) (6.12)

with the position Hj _it1(1+60;) = 1. Without loss of generality we can assume ¢ > 1. Then
(6.12) implies

1+6; 1+6;
X7,+1<(k11g (+))le(+)- (6.13)
It is easy to see that
O =152, (1 + 6;) < oo. (6.14)
indeed,
g—p—1
lo 1(1+65) log [ 1+
5 (- Z ° ( E+; )
since 7y goes to +oo due to the assumption ¢ <p+1+ ﬁ’ we obtain
—p—1 —p—1 —-p-—1
10g(1+qpp >qup :ejf\/ — a-p =T
R A N &
thus (6.14) follows.
This fact, together with (6.13), implies
Xiy1 < (Hf_ycf) X7 (6.15)

Since

Zlog (cr) = 1 log e 2% (1 + Jlull%,) (2*>6k
k P % + Yk (R — 7“)4 2
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that obviously converges as i goes to oo, because of the definition of 7y, see (6.8). If we define
Y= ﬁ%, by letting i go to oo in (6.15) we get

2

20

splv(pu) < o (LEIENT V(DR ds )|

r

that implies

o}

14‘WMmeq)W@< N F
sup |[Du| < ¢ < / 1+ |Dul?)? d:c) )
B ’ ‘ (R_r)Q Bgr ( ‘ ’ )

T

O

Remark 6.4. In [16, Theorem 2.1] an analogous Lipschitz estimate has been proved without assuming
the a priori boundedness, under the assumptions: n =2 and 2 <p<g,orn>3and 2<p<g¢g <

p5. For instance, if n > p 4 2 the assumptions on ¢ in Theorem 6.3 are weaker than in [16].
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