EXISTENCE AND REGULARITY FOR ELLIPTIC EQUATIONS UNDER p, q-GROWTH

GIOVANNI CUPINI - PAOLO MARCELLINI - ELVIRA MASCOLO

Abstract. Under general p, q-growth conditions, we prove that the Dirichlet problem

$$
\begin{cases}\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} a^{i}(x, D u)=b(x) & \text { in } \Omega, \\ u=u_{0} & \text { on } \partial \Omega\end{cases}
$$

has a weak solution $u \in W_{\text {loc }}^{1, q}(\Omega)$ under the assumptions

$$
1<p \leq q \leq p+1 \quad \text { and } \quad q<p \frac{n-1}{n-p} .
$$

More regularity applies. Precisely, this solution is also in the class $W_{\text {loc }}^{1, \infty}(\Omega) \cap W_{\mathrm{loc}}^{2,2}(\Omega)$.

1. Introduction

Let Ω be an open bounded set of $\mathbb{R}^{n}, n \geq 2$. We consider a locally Lipschitz continuous vector field $a: \Omega \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ satisfying the ellipticity and the growth conditions

$$
\begin{gather*}
m\left(1+|\xi|^{2}\right)^{\frac{p-2}{2}}|\lambda|^{2} \leq \sum_{i, j=1}^{n} a_{\xi_{j}}^{i}(x, \xi) \lambda_{i} \lambda_{j}, \quad \forall \xi, \lambda \in \mathbb{R}^{n}, \tag{1.1}\\
\left|a_{\xi_{j}}^{i}(x, \xi)\right| \leq M\left(1+|\xi|^{2}\right)^{\frac{q-2}{2}}, \quad \forall \xi \in \mathbb{R}^{n}, \tag{1.2}
\end{gather*}
$$

for some exponents $q \geq p>1$ and for constants $M \geq m>0$. Given a right hand side b and a boundary datum u_{0}, we associate to the vector field $a(x, \xi)$ the Dirichlet problem

$$
\begin{cases}\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} a^{i}(x, D u)=b(x) & \text { in } \Omega, \tag{1.3}\\ u=u_{0} & \text { on } \partial \Omega .\end{cases}
$$

A function $u \in W_{\text {loc }}^{1, q}(\Omega)$ is a weak solution to the differential equation in (1.3) if

$$
\begin{equation*}
\int_{\Omega}\left\{\sum_{i=1}^{n} a^{i}(x, D u) \varphi_{x_{i}}(x)+b(x) \varphi(x)\right\} d x=0, \quad \forall \varphi \in W_{0}^{1, q}(\Omega), \operatorname{supp} \varphi \Subset \Omega . \tag{1.4}
\end{equation*}
$$

We emphasize that, if $q \neq p$, then the definition of weak solution is well posed only in the class $W_{\mathrm{loc}}^{1, q}(\Omega)$ and it is not sufficient to assume only $u \in W^{1, p}(\Omega)$. This is a main difficulty in the existence theory within this p, q-growth context; in fact, the classical existence theory does not apply, due to the ellipticity in $W^{1, p}$ and the growth in $W^{1, q}$.

We prove that the Dirichlet problem (1.3) has a weak solution under the conditions on p, q

$$
\begin{equation*}
1<p \leq q \leq p+1 \quad \text { and } \quad q<p \frac{n-1}{n-p} \tag{1.5}
\end{equation*}
$$

[^0]Moreover this solution $u \in W_{\text {loc }}^{1, q}(\Omega)$ is also in the class $W_{\text {loc }}^{1, \infty}(\Omega) \cap W_{\text {loc }}^{2,2}(\Omega)$; precisely see Theorem 2.1. Our bounds on the exponents p, q are quite general and in particular we do not require that they are greater than or equal to 2 .

Starting from the pioneering work by De Giorgi [7] (see also the book by LadyshenskayaUral'tseva [12]), the study of the regularity of weak solutions to the elliptic equation in (1.3), under the so-called natural growth conditions $p=q$, has been the object of so many papers that it is almost impossible to provide an exhaustive bibliography; here we mention only some relatively more recent and relevant contributions by DiBenedetto [8], Evans [9], Manfredi [14], Tolksdorf [19], the books by Giaquinta [10] and Giusti [11] and the review article by Mingione [18].

The study of problems with p, q-growth started in [15] and the following papers [16], [17]. In particular, existence of weak solutions to (1.3) and their local Lipschitz continuity is obtained in [16] whenever $2 \leq p \leq q<p(n+2) / n$. Differently from [16], we obtain the Lipschitz continuity of the weak solutions into two steps: first by proving a priori the local boundedness of the solutions and then, from that - as a second step - their local Lipschitz continuity. A strategy which gives the existence of Lipschitz solutions of (1.3) under assumptions on p and q substantially more general than those actually known; i.e., in some range the bounds on p, q are new, as described with more details later. In addition, when $q \geq 2$, we prove that locally bounded weak solutions to (1.3) are locally Lipschitz under a less strict condition than $q \leq p+1$, see Remark 6.4.

The condition $q \leq p+1$ (with or without equality), independent of the dimension n, seems to be relevant also in other similar contexts; for instance, it appears in the papers by Bildhauer and Fuchs [2], Choe [3], Lee Junjie [13], related to the regularity of locally bounded weak solutions. It also appears in the recent approach to regularity for solutions to parabolic equations and systems by Bögelein, Duzaar and Marcellini [1].

The contents of the paper is described next briefly. Section 2 is devoted to the list of the main assumptions and the precise statement of the existence result. Section 3 is devoted to the a priori estimate of the L^{∞}-norm of $D u$ in terms of L^{p}-norm, by assuming that u is a local bounded weak solution. In Section 4 we prove that u is locally bounded; a related result for systems can be found in [5]; see also [4] and [6]. Section 5 is devoted to the proof of the existence result. Finally, in Section 6 we give the specific regularity results when $q \geq 2$.

2. Assumptions and existence theorem

We study the existence and the regularity of the solutions to the Dirichlet problem

$$
\begin{cases}\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} a^{i}(x, D u)=b(x) & \text { in } \Omega \tag{2.1}\\ u=u_{0} & \text { on } \partial \Omega\end{cases}
$$

where $b \in L_{\text {loc }}^{\infty}(\Omega)$ and the functions $a^{i}(x, \xi)$ for $i=1,2, \ldots n$ are locally Lipschitz-continuous functions in $\Omega \times \mathbb{R}^{n}$, where Ω is an open subset of \mathbb{R}^{n}.

Let $1<p \leq q$ and assume that there exist two positive constants m, M such that for every $\xi, \lambda \in \mathbb{R}^{n}$, for a.e. $x \in \Omega$ and for every i, j :

$$
\begin{gather*}
m\left(1+|\xi|^{2}\right)^{\frac{p-2}{2}}|\lambda|^{2} \leq \sum_{i, j=1}^{n} a_{\xi_{j}}^{i}(x, \xi) \lambda_{i} \lambda_{j} \tag{2.2}\\
\left|a_{\xi_{j}}^{i}(x, \xi)\right| \leq M\left(1+|\xi|^{2}\right)^{\frac{q-2}{2}} \tag{2.3}\\
\left|a_{\xi_{j}}^{i}(x, \xi)-a_{\xi_{i}}^{j}(x, \xi)\right| \leq M\left(1+|\xi|^{2}\right)^{\frac{q+p-4}{4}} \tag{2.4}
\end{gather*}
$$

$$
\begin{equation*}
\left|a_{x_{j}}^{i}(x, \xi)\right| \leq M\left(1+|\xi|^{2}\right)^{\frac{q+p-2}{4}} . \tag{2.5}
\end{equation*}
$$

Moreover, we assume

$$
\begin{equation*}
u_{0} \in W^{1, r}(\Omega), \quad \text { with } r=\frac{p(q-1)}{p-1} \tag{2.6}
\end{equation*}
$$

Under the previous assumptions, $u \in W_{\operatorname{loc}}^{1, q}(\Omega)$ is a weak solution to the Dirichlet problem (2.1) if

$$
\begin{equation*}
u-u_{0} \in W_{0}^{1, p}(\Omega) \cap W_{\mathrm{loc}}^{1, q}(\Omega) \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\Omega}\left\{\sum_{i=1}^{n} a^{i}(x, D u) \varphi_{x_{i}}(x)+b(x) \varphi(x)\right\} d x=0, \quad \forall \varphi \in W_{0}^{1, q}\left(\Omega^{\prime}\right) \tag{2.8}
\end{equation*}
$$

where Ω^{\prime} is a generic open subset whose closure is contained in Ω.
The following existence and regularity result holds for the Dirichlet problem (2.1):
Theorem 2.1. Let us assume (2.2)-(2.6) with $1<p \leq q \leq p+1$ and, if $p<n$, with $q<p \frac{n-1}{n-p}$.
Assume that $b \in L^{\frac{p}{p-1}}(\Omega) \cap L_{\mathrm{loc}}^{\infty}(\Omega)$. Then there exists a weak solution $u \in W_{\mathrm{loc}}^{1, q}(\Omega)$ to the Dirichlet problem (2.1).

In particular, the $W^{1, p}(\Omega)$-norm of u is bounded by a constant depending only to n, p, q, m, $M,\left\|D u_{0}\right\|_{L^{r},},\|b\|_{L^{\frac{p}{p-1}}}$.

Moreover $u \in W_{\text {loc }}^{1, \infty}(\Omega) \cap W_{\text {loc }}^{2,2}(\Omega)$ and for all $\Omega^{\prime} \Subset \Omega$ there exist $C>0$ and $\alpha, \beta, \gamma>1$ such that

$$
\begin{gathered}
\|u\|_{L^{\infty}\left(\Omega^{\prime}\right)} \leq C\left\|\left(1+|D u|^{2}\right)^{\frac{1}{2}}\right\|_{L^{p}(\Omega)}^{\alpha}, \\
\|D u\|_{L^{\infty}\left(\Omega^{\prime}\right)} \leq C\left\|\left(1+|D u|^{2}\right)^{\frac{1}{2}}\right\|_{L^{p}(\Omega)}^{\beta}
\end{gathered}
$$

and

$$
\left\|D^{2} u\right\|_{L^{2}\left(\Omega^{\prime}\right)} \leq C\left\|\left(1+|D u|^{2}\right)^{\frac{1}{2}}\right\|_{L^{p}(\Omega)}^{\gamma}
$$

Remark 2.2. In [16, Theorem 4.1] an analogous result has been proved under the assumptions $n \geq 2$ and $2 \leq p \leq q<p \frac{n+2}{n}$. It easy to verify, that if $n \geq \frac{p}{2}$ and $p \geq 3$ then the assumptions in Theorem 2.1 are weaker than those in [16].

The proof of this theorem is in Section 5 and it follows from a priori estimates for locally bounded weak solutions to the equation (2.1).

3. LIPSCHITZ CONTINUITY FOR LOCALLY BOUNDED SOLUTIONS: A PRIORI ESTIMATE

Let us consider the equation

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} a^{i}(x, D u)=b(x) \quad \text { in } \Omega \tag{3.1}
\end{equation*}
$$

and let us assume the supplementary assumption: there exists $\epsilon>0$ such that for every $\xi, \lambda \in \mathbb{R}^{n}$, for a.e. $x \in \Omega$

$$
\begin{equation*}
\epsilon\left(1+|\xi|^{2}\right)^{\frac{q-2}{2}}|\lambda|^{2} \leq \sum_{i, j=1}^{n} a_{\xi_{j}}^{i}(x, \xi) \lambda_{i} \lambda_{j} . \tag{3.2}
\end{equation*}
$$

In this section we prove that the bounded weak solutions of (3.1) are Lipschitz continuous uniformly w.r.t. ϵ in (3.2).

Let us denote by $B_{r}\left(x_{0}\right), B_{R}\left(x_{0}\right)$ balls compactly contained in Ω of radii respectively r, R and with the same center. Moreover, we write $V\left(|D u|^{2}\right)$ in place of $\left(1+|D u|^{2}\right)$.

Lemma 3.1. Let $u \in W_{\mathrm{loc}}^{1, q}(\Omega)$ be a solution to (3.1). Assume (2.2)-(2.5), (3.2) and $1<p \leq q$. Then there exists a constant c depending on n, p, q, m, M, but not on ϵ, such that

$$
\begin{equation*}
\int_{\Omega} V\left(|D u|^{2}\right)^{\frac{p-2}{2}+\alpha}\left|D^{2} u\right|^{2} \eta^{4} d x \leq\left(1+\alpha+\|b\|_{L^{\infty}(\operatorname{supp} \eta)}\right) c \int_{\Omega} V\left(|D u|^{2}\right)^{\frac{q}{2}+\alpha}\left(|\eta|^{4}+\eta^{2}|D \eta|^{2}\right) d x \tag{3.3}
\end{equation*}
$$

for every $\eta \in C_{c}^{\infty}(\Omega)$ and every $\alpha \geq 0$ such that the right hand side is finite.
Proof. By classical regularity results (see for example [11]), by taking into account (3.2) the weak solution u belongs to $W_{\text {loc }}^{2,2}(\Omega)$ when $q \geq 2$ and to $W_{\text {loc }}^{2, q}(\Omega)$ when $1<q<2$. Moreover $\left(1+|D u|^{2}\right)^{\frac{q}{4}} \in$ $W_{\text {loc }}^{1,2}(\Omega)$.

By considering as test function $\varphi=\psi_{x_{k}}$, with $\psi \in C_{c}^{\infty}(\Omega)$ and integrating by parts we get

$$
\begin{equation*}
\int_{\Omega} \sum_{i, j=1}^{n} a_{\xi_{j}}^{i}(x, D u) u_{x_{j} x_{k}} \psi_{x_{i}} d x=\int_{\Omega}\left\{-\sum_{i=1}^{n} a_{x_{k}}^{i}(x, D u) \psi_{x_{i}}+b(x) \psi_{x_{k}}\right\} d x \tag{3.4}
\end{equation*}
$$

For $T>0$ and a.e. x set:

$$
V_{T}(x)=1+\min \left\{|D u(x)|^{2}, T\right\}
$$

and consider

$$
\psi(x):=V_{T}^{\alpha} u_{x_{k}}[\eta(x)]^{4} \quad \text { with } \alpha \geq 0
$$

where $\eta \in C_{c}^{\infty}(\Omega)$.
The function ψ can be inserted in (3.4), that becomes

$$
\begin{align*}
& \alpha \int_{\Omega} \sum_{i, j=1}^{n} a_{\xi_{j}}^{i}(x, D u) u_{x_{j} x_{k}}\left(V_{T}\right)_{x_{i}} u_{x_{k}} V_{T}^{\alpha-1} \eta^{4} d x+\int_{\Omega} \sum_{i, j=1}^{n} a_{\xi_{j}}^{i}(x, D u) u_{x_{k} x_{j}} u_{x_{k} x_{i}} V_{T}^{\alpha} \eta^{4} d x \\
= & -4 \int_{\Omega} \sum_{i, j=1}^{n} a_{\xi_{j}}^{i}(x, D u) u_{x_{k} x_{j}} u_{x_{k}} \eta^{3} \eta_{x_{i}} V_{T}^{\alpha} d x-\int_{\Omega} \sum_{i=1}^{n} a_{x_{k}}^{i}(x, D u) \psi_{x_{i}}(x) d x+\int_{\Omega} b(x) \psi_{x_{k}} d x . \tag{3.5}
\end{align*}
$$

Let us now consider the first integral at the right hand side:

$$
-4 u_{x_{k} x_{j}} u_{x_{k}} \eta^{3} \eta_{x_{i}} V_{T}^{\alpha}=\left\{u_{x_{k} x_{j}} \eta^{2} V_{T}^{\frac{\alpha}{2}}\right\}\left\{-4 u_{x_{k}} \eta \eta_{x_{i}} V_{T}^{\frac{\alpha}{2}}\right\}=: \Lambda_{j} \Sigma_{i}
$$

Then, by [16, Lemma 2.4] and Young inequality

$$
\begin{aligned}
\left|-4 \sum_{i, j=1}^{n} a_{\xi_{j}}^{i}(x, D u) u_{x_{k} x_{j}} u_{x_{k}} \eta^{3} \eta_{x_{i}} V_{T}^{\alpha}\right| & \leq c\left(\sum_{i, j=1}^{n} a_{\xi_{j}}^{i}(x, D u) \Lambda_{i} \Lambda_{j}\right)^{\frac{1}{2}}\left[V\left(|D u|^{2}\right)\right]^{\frac{q-2}{4}}|\Sigma| \\
& \leq \frac{1}{2} \sum_{i, j=1}^{n} a_{\xi_{j}}^{i}(x, D u) \Lambda_{i} \Lambda_{j}+c\left[V\left(|D u|^{2}\right)\right]^{\frac{q-2}{2}}|\Sigma|^{2}
\end{aligned}
$$

By (3.5) we get

$$
\begin{aligned}
& \alpha \int_{\Omega} \sum_{i, j=1}^{n} a_{\xi_{j}}^{i}(x, D u) u_{x_{j} x_{k}} u_{x_{k}}\left(V_{T}\right)_{x_{i}} V_{T}^{\alpha-1} \eta^{4} d x+\frac{1}{2} \int_{\Omega} \sum_{i, j=1}^{n} a_{\xi_{j}}^{i}(x, D u) u_{x_{k} x_{j}} u_{x_{k} x_{i}} V_{T}^{\alpha} \eta^{4} d x \\
\leq & c \int_{\Omega}\left[V\left(|D u|^{2}\right)\right]^{\frac{q-2}{2}} V_{T}^{\alpha} u_{x_{k}}^{2} \eta^{2}|D \eta|^{2} d x-\int_{\Omega} \sum_{i=1}^{n} a_{x_{k}}^{i}(x, D u) \psi_{x_{i}}(x) d x+\int_{\Omega} b(x) \psi_{x_{k}} d x .
\end{aligned}
$$

If we sum on $k=1, \ldots, n$, by taking into account that

$$
2\left(V_{T}\right)_{x_{i}} \sum_{k=1}^{n} u_{x_{k}} u_{x_{j} x_{k}}=\left(V_{T}\right)_{x_{i}}\left(V_{T}\right)_{x_{j}}
$$

we get

$$
\begin{aligned}
& \frac{\alpha}{2} \int_{\Omega} \sum_{i, j=1}^{n} a_{\xi_{j}}^{i}(x, D u)\left(V_{T}\right)_{x_{i}}\left(V_{T}\right)_{x_{j}} V_{T}^{\alpha-1} \eta^{4} d x+\frac{1}{2} \int_{\Omega} \sum_{i, j, k=1}^{n} a_{\xi_{j}}^{i}(x, D u) u_{x_{k} x_{j}} u_{x_{k} x_{i}} V_{T}^{\alpha} \eta^{4} d x \\
\leq & c \int_{\Omega}\left[V\left(|D u|^{2}\right)\right]^{\frac{q}{2}} V_{T}^{\alpha} \eta^{2}|D \eta|^{2} d x-\alpha \int_{\Omega} \sum_{i, k=1}^{n} a_{x_{k}}^{i}(x, D u) V_{T}^{\alpha-1}\left(V_{T}\right)_{x_{i}} u_{x_{k}} \eta^{4} d x \\
& -\int_{\Omega} \sum_{i, k=1}^{n} a_{x_{k}}^{i}(x, D u) V_{T}^{\alpha} u_{x_{k} x_{i}} \eta^{4} d x-4 \int_{\Omega} \sum_{i, k=1}^{n} a_{x_{k}}^{i}(x, D u) u_{x_{k}} \eta^{3} \eta_{x_{i}} V_{T}^{\alpha} d x+c\|b\|_{L^{\infty}(\operatorname{supp} \eta)} \int_{\Omega}|D \psi| d x
\end{aligned}
$$ with c independent of α.

By (2.2) and (2.5) the above inequality implies

$$
\begin{align*}
& \quad \frac{\alpha m}{2} \int_{\Omega}\left[V\left(|D u|^{2}\right)\right]^{\frac{p-2}{2}} V_{T}^{\alpha-1}\left|D\left(V_{T}\right)\right|^{2} \eta^{4} d x+\frac{m}{2} \int_{\Omega}\left[V\left(|D u|^{2}\right)\right]^{\frac{p-2}{2}} V_{T}^{\alpha}\left|D^{2} u\right|^{2} \eta^{4} d x \\
& \leq c \int_{\Omega}\left[V\left(|D u|^{2}\right)\right]^{\frac{q}{2}} V_{T}^{\alpha}|D \eta|^{2} \eta^{2} d x+\alpha c \int_{\Omega}\left[V\left(|D u|^{2}\right)\right]^{q+p} V_{T}^{\alpha-1}\left|D\left(V_{T}\right)\right| \eta^{4} d x \\
& \quad+c \int_{\Omega}\left[V\left(|D u|^{2}\right)\right]^{\frac{q+p-2}{4}} V_{T}^{\alpha}\left|D^{2} u\right| \eta^{4} d x \\
& \quad+c \int_{\Omega}\left[V\left(|D u|^{2}\right)\right]^{\frac{q+p}{4}} V_{T}^{\alpha} \eta^{3}|D \eta| d x+c\|b\|_{L^{\infty}(\text { supp } \eta)} \int_{\Omega}|D \psi| d x=: I_{1}+I_{2}+I_{3}+I_{4}+I_{5} . \tag{3.6}
\end{align*}
$$

Let us estimate the right hand side in (3.6).
Estimate of I_{2}.
Since $\left[V\left(|D u|^{2}\right)\right]^{\frac{q+2}{4}}\left|D\left(V_{T}\right)\right|=V_{T}^{\frac{q+2}{4}}\left|D\left(V_{T}\right)\right|$ a.e. then

$$
\begin{align*}
& I_{2}=\alpha c \int_{\Omega}\left\{\left[V\left(|D u|^{2}\right)\right]^{\frac{p-2}{4}} V_{T}^{\frac{\alpha-1}{2}}\left|D\left(V_{T}\right)\right| \eta^{2}\right\}\left\{\left[V_{T}^{\frac{q+2}{4}+\frac{\alpha-1}{2}} \eta^{2}\right\} d x\right. \\
& \leq \frac{\alpha m}{4} \int_{\Omega}\left[V\left(|D u|^{2}\right)\right]^{\frac{p-2}{2}} V_{T}^{\alpha-1}\left|D\left(V_{T}\right)\right|^{2} \eta^{4} d x+c \alpha \int_{\Omega} V_{T}^{\frac{q}{2}+\alpha} \eta^{4} d x . \tag{3.7}
\end{align*}
$$

Estimate of I_{3}.

$$
\begin{align*}
& I_{3}=c \int_{\Omega}\left\{\left[V\left(|D u|^{2}\right)\right]^{\frac{p-2}{4}} V_{T}^{\frac{\alpha}{2}}\left|D^{2} u\right| \eta^{2}\right\}\left\{\left[V\left(|D u|^{2}\right)\right]^{\frac{q}{4}} V_{T}^{\frac{\alpha}{2}} \eta^{2}\right\} d x \\
\leq & \frac{m}{4} \int_{\Omega}\left[V\left(|D u|^{2}\right)\right]^{\frac{p-2}{2}} V_{T}^{\alpha}\left|D^{2} u\right|^{2} \eta^{4} d x+c \int_{\Omega}\left[V\left(|D u|^{2}\right)\right]^{\frac{q}{2}} V_{T}^{\alpha} \eta^{4} d x . \tag{3.8}
\end{align*}
$$

Estimate of I_{5}.
Taking into account that a.e.

$$
\left|D\left(V_{T}\right)\right| V_{T}^{\alpha-1}\left[V\left(|D u|^{2}\right)\right]^{\frac{1}{2}}=\left\{\left|D\left(V_{T}\right)\right| V_{T}^{\frac{\alpha-1}{2}}\left[V\left(|D u|^{2}\right)\right]^{\frac{p-2}{4}}\right\}\left\{V_{T}^{\frac{\alpha}{2}}\left[V\left(|D u|^{2}\right)\right]^{\frac{2-p}{4}}\right\}
$$

then by the Young inequality it holds true that

$$
\left|D\left(V_{T}\right)\right| V_{T}^{\alpha-1}\left[V\left(|D u|^{2}\right)\right]^{\frac{1}{2}} \leq \frac{m}{8}\left|D\left(V_{T}\right)\right|^{2} V_{T}^{\alpha-1}\left[V\left(|D u|^{2}\right)\right]^{\frac{p-2}{2}}+c V_{T}^{\alpha}\left[V\left(|D u|^{2}\right)\right]^{\frac{2-p}{2}} .
$$

Thus,

$$
|D \psi| \leq \alpha V_{T}^{\alpha-1}\left|D\left(V_{T}\right)\right|\left[V\left(|D u|^{2}\right)\right]^{\frac{1}{2}} \eta^{4}+V_{T}^{\alpha}\left|D^{2} u\right| \eta^{4}+4 \eta^{3}|D \eta| V_{T}^{\alpha}\left[V\left(|D u|^{2}\right)\right]^{\frac{1}{2}}
$$

$$
\begin{align*}
& \leq \frac{\alpha m}{8} V_{T}^{\alpha-1}\left[V\left(|D u|^{2}\right)\right]^{\frac{p-2}{2}}\left|D\left(V_{T}\right)\right|^{2} \eta^{4}+\alpha c V_{T}^{\alpha}\left[V\left(|D u|^{2}\right)\right]^{\frac{2-p}{2}} \eta^{4} \\
& +\frac{m}{8} V_{T}^{\alpha}\left[V\left(|D u|^{2}\right)\right]^{\frac{p-2}{2}}\left|D^{2} u\right|^{2} \eta^{4}+c V_{T}^{\alpha}\left[V\left(|D u|^{2}\right)\right]^{\frac{2-p}{2}} \eta^{4}+4 \eta^{3}|D \eta|\left[V\left(|D u|^{2}\right)\right]^{\alpha+\frac{1}{2}} \tag{3.9}
\end{align*}
$$

Collecting (3.6)-(3.9) we get

$$
\begin{aligned}
& \quad \frac{\alpha m}{8} \int_{\Omega}\left[V\left(|D u|^{2}\right)\right]^{\frac{p-2}{2}} V_{T}^{\alpha-1}\left|D\left(V_{T}\right)\right|^{2} \eta^{4} d x+\frac{m}{8} \int_{\Omega}\left[V\left(|D u|^{2}\right)\right]^{\frac{p-2}{2}} V_{T}^{\alpha}\left|D^{2} u\right|^{2} \eta^{4} d x \\
& \leq \\
& c \int_{\Omega}\left[V\left(|D u|^{2}\right)\right]^{\frac{q}{2}} V_{T}^{\alpha} \eta^{2}|D \eta|^{2} d x+c(1+\alpha) \int_{\Omega}\left[V\left(|D u|^{2}\right)\right]^{\frac{q}{2}} V_{T}^{\alpha} \eta^{4} d x \\
& \quad+c \int_{\Omega}\left[V\left(|D u|^{2}\right)\right]^{\frac{q+p}{4}} V_{T}^{\alpha} \eta^{3}|D \eta| d x \\
& \quad+c(1+\alpha)\|b\|_{L^{\infty}(\operatorname{supp} \eta)} \int_{\Omega}\left\{\left[V\left(|D u|^{2}\right)\right]^{\frac{2-p}{2}}\left[V\left(|D u|^{2}\right)\right]^{\alpha} \eta^{4}+\left[V\left(|D u|^{2}\right)\right]^{\alpha+\frac{1}{2}} 4 \eta^{3}|D \eta|\right\} d x \\
& \quad=: J_{1}+J_{2}+J_{3}+J_{4} .
\end{aligned}
$$

Taking into account that $2-p \leq q$ and $q>1$ then we can majorize the right hand side as follows

$$
J_{1}+J_{2}+J_{3}+J_{4} \leq\left(1+\alpha+\|b\|_{L^{\infty}(\operatorname{supp} \eta)}\right) c \int_{\Omega}\left[V\left(|D u|^{2}\right)\right]^{\frac{q}{2}+\alpha}\left(\eta^{4}+\eta^{2}|D \eta|^{2}\right) d x
$$

By passing to the limit, as T goes to infinity we obtain (3.3).
From now on, we deal with locally bounded solutions u.
Moreover we consider a cut-off function $\eta \in C_{c}^{\infty}\left(B_{s}\left(x_{0}\right)\right)$ such that

$$
\begin{equation*}
B_{s}\left(x_{0}\right) \subseteq \Omega^{\prime}, \quad 0 \leq \eta \leq 1, \quad \eta \equiv 1 \text { in } B_{t}\left(x_{0}\right) \text { with } t<s, \quad|D \eta| \leq \frac{2}{s-t} \tag{3.10}
\end{equation*}
$$

Lemma 3.2. Let $u \in W_{\mathrm{loc}}^{1, q}(\Omega) \cap L_{\mathrm{loc}}^{\infty}(\Omega)$ be a weak solution to (3.1). Let $\Omega^{\prime} \Subset \Omega$.
Under the assumptions in Lemma 3.1 there exists c, independent of ϵ, such that for every cut-off function $\eta \in C_{c}^{\infty}\left(B_{s}\left(x_{0}\right)\right)$ satisfying (3.10) and every $\alpha \geq 0$ we have

$$
\begin{align*}
& \int_{B_{s}}\left[V\left(|D u|^{2}\right)\right]^{\frac{p-2}{2}+\alpha}\left|D^{2} u\right|^{2} \eta^{4} d x \\
& \leq \frac{c\left(1+\alpha+\|b\|_{L^{\infty}\left(\Omega^{\prime}\right)}\right)^{4}\left(1+\|u\|_{L^{\infty}\left(\Omega^{\prime}\right)}^{2}\right)}{(s-t)^{4}} \int_{B_{s}}\left(\left[V\left(|D u|^{2}\right)\right]^{q+\alpha-\frac{p}{2}-1}+\left[V\left(|D u|^{2}\right)\right]^{\frac{q}{2}+\alpha-\frac{1}{2}}\right) d x \tag{3.11}
\end{align*}
$$

whenever the right hand side is finite.
Proof. For the sake of simplicity, we introduce the notation

$$
k_{\alpha, b}:=\left(1+\alpha+\|b\|_{L^{\infty}\left(\Omega^{\prime}\right)}\right)
$$

Moreover, notice that if η is as in (3.10), then $\eta^{4}+\eta^{2}|D \eta|^{2} \leq \frac{4+\left(\operatorname{diam}\left(\Omega^{\prime}\right)\right)^{2}}{(s-t)^{2}} \eta^{2}$. By Lemma 3.1 (3.3) holds.

Let us estimate the right hand side in (3.3). By an integration by parts we get

$$
\begin{aligned}
& \frac{k_{\alpha, b} c}{(s-t)^{2}} \int_{B_{s}}\left[V\left(|D u|^{2}\right)\right]^{\frac{q}{2}+\alpha} \eta^{2} d x=\frac{k_{\alpha, b} c}{(s-t)^{2}} \int_{B_{s}}\left[V\left(|D u|^{2}\right)\right]^{\frac{q}{2}+\alpha-1}\left(1+\sum_{k=1}^{n} u_{x_{k}} u_{x_{k}}\right) \eta^{2} d x \\
= & -\frac{k_{\alpha, b} c}{(s-t)^{2}} \sum_{k=1}^{n} \int_{B_{s}}\left(\left[V\left(|D u|^{2}\right)\right]^{\frac{q}{2}+\alpha-1} u_{x_{k}} \eta^{2}\right)_{x_{k}} u d x+\frac{k_{\alpha, b} c}{(s-t)^{2}} \int_{B_{s}}\left[V\left(|D u|^{2}\right)\right]^{\frac{q}{2}+\alpha-1} \eta^{2} d x
\end{aligned}
$$

$$
\begin{align*}
\leq & \|u\|_{\infty}\left|\frac{q}{2}+\alpha-1\right| \frac{k_{\alpha, b} c}{(s-t)^{2}} \int_{B_{s}}\left[V\left(|D u|^{2}\right)\right]^{\frac{q}{2}+\alpha-\frac{3}{2}}\left|D\left(|D u|^{2}\right)\right| \eta^{2} d x \\
& +\frac{k_{\alpha, b} c}{(s-t)^{2}}\|u\|_{\infty} \int_{B_{s}}\left[V\left(|D u|^{2}\right)\right]^{\frac{q}{2}+\alpha-1}\left|D^{2} u\right| \eta^{2} d x \\
& +\frac{4 k_{\alpha, b} c}{(s-t)^{3}}\|u\|_{\infty} \int_{B_{s}}\left[V\left(|D u|^{2}\right)\right]^{\frac{q}{2}+\alpha-\frac{1}{2}} \eta d x+\frac{k_{\alpha, b} c}{(s-t)^{2}} \int_{B_{s}}\left[V\left(|D u|^{2}\right)\right]^{\frac{q}{2}+\alpha-1} \eta^{2} d x \tag{3.12}
\end{align*}
$$

where $\|u\|_{\infty}=\|u\|_{L^{\infty}\left(\Omega^{\prime}\right)}$.
By the Young inequality we can estimate the first two integrals in the right hand side. The first one gives

$$
\begin{aligned}
& \frac{c k_{\alpha, b}\|u\|_{\infty}}{(s-t)^{2}}\left|\frac{q}{2}+\alpha-1\right| \int_{B_{s}}\left[V\left(|D u|^{2}\right)\right]^{\frac{q}{2}+\alpha-\frac{3}{2}}\left|D\left(|D u|^{2}\right)\right| \eta^{2} d x \\
& =\int_{B_{s}}\left\{\left[V\left(|D u|^{2}\right)\right]^{\frac{p-2}{4}+\frac{\alpha-1}{2}}\left|D\left(|D u|^{2}\right)\right| \eta^{2}\right\} \times \\
& \quad \times\left\{\frac{c k_{\alpha, b}\|u\|_{\infty}}{(s-t)^{2}}\left|\frac{q}{2}+\alpha-1\right|\left[V\left(|D u|^{2}\right)\right]^{\frac{q}{2}+\alpha-\frac{3}{2}-\left(\frac{p-2}{4}+\frac{\alpha-1}{2}\right)}\right\} d x \\
& \leq \frac{1}{16} \int_{B_{s}}\left[V\left(|D u|^{2}\right)\right]^{\frac{p}{2}+\alpha-2}\left|D\left(|D u|^{2}\right)\right|^{2} \eta^{4} d x \\
& +\frac{c k_{\alpha, b}^{2}\|u\|_{\infty}^{2}}{(s-t)^{4}}\left(\frac{q}{2}+\alpha-1\right)^{2} \int_{B_{s}}\left[V\left(|D u|^{2}\right)\right]^{q+\alpha-\frac{p}{2}-1} d x
\end{aligned}
$$

Thus, by the inequality $\left|D\left(|D u|^{2}\right)\right|^{2} \leq 4|D u|^{2}\left|D^{2} u\right|^{2} \leq 4 V\left(|D u|^{2}\right)\left|D^{2} u\right|^{2}$ and $\left(\frac{q}{2}+\alpha-1\right)^{2} \leq c k_{\alpha, b}^{2}$, with $c>0$ depending on q, but not on α, we get

$$
\begin{align*}
& \frac{c k_{\alpha, b}\|u\|_{\infty}}{(s-t)^{2}}\left|\frac{q}{2}+\alpha-1\right| \int_{B_{s}}\left[V\left(|D u|^{2}\right)\right]^{\frac{q}{2}+\alpha-\frac{3}{2}}\left|D\left(|D u|^{2}\right)\right| \eta^{2} d x \\
& \leq \frac{1}{4} \int_{B_{s}}\left[V\left(|D u|^{2}\right)\right]^{\frac{p}{2}+\alpha-1}\left|D^{2} u\right|^{2} \eta^{4} d x+\frac{c k_{\alpha, b}^{4}\|u\|_{\infty}^{2}}{(s-t)^{4}} \int_{B_{s}}\left[V\left(|D u|^{2}\right)\right]^{q+\alpha-\frac{p}{2}-1} d x . \tag{3.13}
\end{align*}
$$

Analogously, the second term in the right hand side of (3.12) gives

$$
\begin{align*}
& \frac{c k_{\alpha, b}}{(s-t)^{2}}\|u\|_{\infty} \int_{B_{s}}\left[V\left(|D u|^{2}\right)\right]^{\frac{q}{2}+\alpha-1}\left|D^{2} u\right| \eta^{2} d x \\
& \leq \int_{B_{s}}\left\{\left[V\left(|D u|^{2}\right)\right]^{\frac{p-2}{4}+\frac{\alpha}{2}}\left|D^{2} u\right| \eta^{2}\right\}\left\{\frac{c k_{\alpha, b}}{(s-t)^{2}}\|u\|_{\infty}\left[V\left(|D u|^{2}\right)\right]^{\frac{q}{2}+\alpha-1-\left(\frac{p-2}{4}+\frac{\alpha}{2}\right)}\right\} d x \\
& \leq \frac{1}{4} \int_{B_{s}}\left[V\left(|D u|^{2}\right)\right]^{\frac{p}{2}+\alpha-1}\left|D^{2} u\right|^{2} \eta^{4} d x+\frac{c k_{\alpha, b}^{2}\|u\|_{\infty}^{2}}{(s-t)^{4}} \int_{B_{s}}\left[V\left(|D u|^{2}\right)\right]^{q+\alpha-\frac{p}{2}-1} d x . \tag{3.14}
\end{align*}
$$

As far as the last term in the right hand side of (3.12) is concerned, we have

$$
\frac{c k_{\alpha, b}}{(s-t)^{2}} \int_{B_{s}}\left[V\left(|D u|^{2}\right)\right]^{\frac{q}{2}+\alpha-1} \eta^{2} d x \leq \frac{c k_{\alpha, b} \operatorname{diam} \Omega^{\prime}}{(s-t)^{3}} \int_{B_{s}}\left[V\left(|D u|^{2}\right)\right]^{\frac{q}{2}+\alpha-1} \eta^{2} d x .
$$

Therefore, by (3.3) and by (3.12)-(3.14) we get

$$
\frac{1}{2} \int_{B_{s}}\left[V\left(|D u|^{2}\right)\right]^{\frac{p-2}{2}+\alpha}\left|D^{2} u\right|^{2} \eta^{4} d x \leq \frac{c k_{\alpha, b}^{4}\|u\|_{\infty}^{2}}{(s-t)^{4}} \int_{B_{s}}\left[V\left(|D u|^{2}\right)\right]^{q+\alpha-\frac{p}{2}-1} d x
$$

$$
+\frac{c k_{\alpha, b}^{2}\|u\|_{\infty}^{2}}{(s-t)^{4}} \int_{B_{s}}\left[V\left(|D u|^{2}\right)\right]^{q+\alpha-\frac{p}{2}-1} d x+\frac{c k_{\alpha, b}}{(s-t)^{3}} \int_{B_{s}}\left[V\left(|D u|^{2}\right)\right]^{\frac{q}{2}+\alpha-\frac{1}{2}} \eta d x
$$

that implies (3.11).
Remark 3.3. Observe that when $\alpha=0$ and $q \leq p+1$, (3.11) becomes:

$$
\int_{B_{s}}\left[V\left(|D u|^{2}\right)\right]^{\frac{p-2}{2}}\left|D^{2} u\right|^{2} \eta^{4} d x \leq c \frac{\left(1+\alpha+\|b\|_{L^{\infty}\left(\Omega^{\prime}\right)}\right)^{4}\left(1+\|u\|_{L^{\infty}\left(\Omega^{\prime}\right)}^{2}\right)}{(s-t)^{4}} \int_{B_{s}}\left[V\left(|D u|^{2}\right)\right]^{\frac{q-1}{2}} d x
$$

In the following two results 2^{*} is the Sobolev exponent, i.e.,

$$
2^{*}= \begin{cases}\frac{2 n}{n-2} & \text { if } n \geq 3 \tag{3.15}\\ \text { any } \mu>2 & \text { if } n=2\end{cases}
$$

Lemma 3.4. Let $u \in W_{\mathrm{loc}}^{1, q}(\Omega) \cap L_{\mathrm{loc}}^{\infty}(\Omega)$ be a weak solution to (3.1). Let $\Omega^{\prime} \Subset \Omega$. If the assumptions in Lemma 3.1 hold, then there exists a constant c such that for every cut-off function $\eta \in C_{c}^{\infty}\left(B_{s}\left(x_{0}\right)\right)$ satisfying (3.10) and every $\alpha \geq 0$ we have

$$
\begin{align*}
& \left\{\int_{B_{t}}\left[V\left(|D u|^{2}\right)\right]^{\left(\frac{p}{2}+\alpha\right) \frac{2^{*}}{2}} d x\right\}^{2 / 2^{*}} \\
& \leq \frac{c\left(1+\alpha+\|b\|_{\left.L^{\infty}\left(\Omega^{\prime}\right)\right)^{6}}\left(1+\|u\|_{L^{\infty}\left(\Omega^{\prime}\right)}^{2}\right)\right.}{(s-t)^{4}} \int_{B_{s}}\left[V\left(|D u|^{2}\right)\right]^{\alpha+\max \left\{\frac{p}{2}, q-\frac{p}{2}-1, \frac{q-1}{2}\right\}} d x \tag{3.16}
\end{align*}
$$

whenever the right hand side is finite.
Proof. Let η be a cut-off function as in Lemma 3.2. By the Sobolev imbedding Theorem

$$
\begin{aligned}
& \left\{\int_{B_{t}}\left[V\left(|D u|^{2}\right)\right]^{\left(\frac{p}{2}+\alpha\right) \frac{2^{*}}{2}} d x\right\}^{2 / 2^{*}} \leq\left\{\int_{B_{s}}\left(\left[V\left(|D u|^{2}\right)\right]^{\frac{p}{4}+\frac{\alpha}{2}} \eta^{2}\right)^{2^{*}} d x\right\}^{2 / 2^{*}} \\
& \leq \int_{B_{s}}\left|D\left(\left[V\left(|D u|^{2}\right)\right]^{\frac{p}{4}+\frac{\alpha}{2}} \eta^{2}\right)\right|^{2} d x \\
& \leq \frac{c}{(s-t)^{2}} \int_{B_{s}}\left[V\left(|D u|^{2}\right)\right]^{\frac{p}{2}+\alpha} \eta^{2} d x+c(1+\alpha)^{2} \int_{B_{s}}\left[V\left(|D u|^{2}\right)\right]^{\frac{p}{2}+\alpha-2}\left|D\left(|D u|^{2}\right)\right|^{2} \eta^{4} d x \\
& \leq \frac{c}{(s-t)^{2}} \int_{B_{s}}\left[V\left(|D u|^{2}\right)\right]^{\frac{p}{2}+\alpha} \eta^{2} d x+c(1+\alpha)^{2} \int_{B_{s}}\left[V\left(|D u|^{2}\right)\right]^{\frac{p}{2}+\alpha-1}\left|D^{2} u\right|^{2} \eta^{4} d x
\end{aligned}
$$

Thus, using (3.11) to estimate the last integral we get

$$
\begin{aligned}
& \left\{\int_{B_{t}}\left[V\left(|D u|^{2}\right)\right]^{\left(\frac{p}{2}+\alpha\right) \frac{2^{*}}{2}} d x\right\}^{2 / 2^{*}} \leq \frac{c}{(s-t)^{2}} \int_{B_{s}}\left[V\left(|D u|^{2}\right)\right]^{\frac{p}{2}+\alpha} d x \\
& +\frac{c\left(1+\alpha+\|b\|_{\left.L^{\infty}\left(\Omega^{\prime}\right)\right)^{6}\left(1+\|u\|_{L^{\infty}\left(\Omega^{\prime}\right)}^{2}\right)}^{(s-t)^{4}} \int_{B_{s}}\left\{\left[V\left(|D u|^{2}\right)\right]^{q+\alpha-\frac{p}{2}-1}+\left[V\left(|D u|^{2}\right)\right]^{\frac{q}{2}+\alpha-\frac{1}{2}}\right\} d x\right.}{}
\end{aligned}
$$

and the claim follows.
Consequence of the above lemma is the Lipschitz regularity estimate for weak solutions to (3.1) under the assumptions (3.2) and $q \leq p+1$.

Theorem 3.5. Let $u \in W_{\mathrm{loc}}^{1, q}(\Omega) \cap L_{\mathrm{loc}}^{\infty}(\Omega)$ be a weak solution to (3.1), with $1<p \leq q \leq p+1$. Assume also that (2.2)-(2.5) and (3.2). Then $u \in W_{\mathrm{loc}}^{1, \infty}(\Omega)$.

Precisely, fixed $\Omega^{\prime} \Subset \Omega$, there exists a constant c depending on n, p, q, m, M, but independent of ϵ, such that for every $B_{r}\left(x_{0}\right) \subset B_{R}\left(x_{0}\right) \subseteq \Omega^{\prime}$ the following estimate holds:

$$
\begin{equation*}
\sup _{B_{r}\left(x_{0}\right)}|D u| \leq c\left(\frac{\left(1+\|b\|_{\left.L^{\infty}\left(B_{R}\left(x_{0}\right)\right)\right)^{3}\left(1+\|u\|_{L^{\infty}\left(B_{R}\left(x_{0}\right)\right)}\right)}^{(R-r)^{2}}\right)^{\delta}\left(\int_{B_{R}\left(x_{0}\right)}\left(1+|D u|^{2}\right)^{\frac{p}{2}} d x\right)^{\frac{1}{p}} . . \text {. } . ~(1)}{}\right. \tag{3.17}
\end{equation*}
$$

The exponent δ is equal to $\frac{n}{p}$ if $n \geq 3$ and it is any number greater than $\frac{2}{p}$ if $n=2$.
Proof. We start using Lemma 3.4, with $\Omega^{\prime}=B_{R}\left(x_{0}\right)$. Let us write $\|\cdot\|_{\infty}$ in place of $\|\cdot\|_{L^{\infty}\left(B_{R}\left(x_{0}\right)\right)}$. If $q \leq p+1$, then

$$
q-\frac{p}{2}-1 \leq \frac{q-1}{2} \leq \frac{p}{2}
$$

By (3.16) it follows that

$$
\begin{equation*}
\left\{\int_{B_{t}}\left[V\left(|D u|^{2}\right)\right]^{]^{\frac{p}{2}}+\alpha\right) \frac{2^{*}}{2}} d x\right\}^{2 / 2^{*}} \leq \frac{c(1+\alpha)^{6}\left(1+\|b\|_{\infty}\right)^{6}\left(1+\|u\|_{\infty}^{2}\right)}{(s-t)^{4}} \int_{B_{s}}\left[V\left(|D u|^{2}\right)\right]^{\frac{p}{2}+\alpha} d x \tag{3.18}
\end{equation*}
$$

Let us define two sequences, $\left(r_{k}\right)$ and $\left(\alpha_{k}\right)$, such that

$$
r_{k}=r+\frac{R-r}{2^{k-1}} \quad \text { and } \quad \alpha_{k}=\frac{p}{2}\left(\frac{2^{*}}{2}\right)^{k-1}-\frac{p}{2}
$$

In particular, $\left(\alpha_{k}\right)$ is a strictly increasing and positive sequence solution to the difference equation

$$
\left\{\begin{array}{l}
\frac{p}{2}+\alpha_{k+1}=\left(\frac{p}{2}+\alpha_{k}\right) \frac{2^{*}}{2} \\
\alpha_{1}=0
\end{array}\right.
$$

Let us define $X_{k}=\left\|V\left(|D u|^{2}\right)\right\|_{L^{\frac{p}{2}+\alpha_{k}\left(B_{r_{k}}\right)}}$. Then

$$
X_{k+1}=\left\{\int_{B_{r_{k+1}}}\left[V\left(|D u|^{2}\right)\right]^{\frac{p}{2}+\alpha_{k+1}} d x\right\}^{\frac{1}{\frac{p}{2}+\alpha_{k+1}}}=\left\{\int_{B_{r_{k+1}}}\left[V\left(|D u|^{2}\right)\right]^{\left.\frac{p}{2}_{2}^{2}+\alpha_{k}\right) \frac{2^{*}}{2}} d x\right\}^{\frac{2}{2^{*} \frac{1}{2}+\alpha_{k}}}
$$

Thus, (3.18) can be rewritten as:

$$
X_{k+1}^{\frac{p}{2}+\alpha_{k}} \leq \frac{c\left(1+\alpha_{k}\right)^{6}\left(1+\|b\|_{\infty}\right)^{6}\left(1+\|u\|_{\infty}^{2}\right)}{\left(r_{k}-r_{k+1}\right)^{4}} X_{k}^{\frac{p}{2}+\alpha_{k}}
$$

Therefore,

$$
\begin{equation*}
X_{k+1} \leq c_{k} X_{k} \tag{3.19}
\end{equation*}
$$

where

$$
c_{k}=\left\{\frac{c\left(1+\|b\|_{\infty}\right)^{6}\left(1+\|u\|_{\infty}^{2}\right) 2^{4 k}}{(R-r)^{4}}\left(\frac{2^{*}}{2}\right)^{6 k}\right\}^{\frac{1}{\frac{p}{2}\left(\frac{2^{*}}{2}\right)^{k-1}}} .
$$

By iteration,

$$
X_{i+1} \leq\left(\Pi_{k=1}^{i} c_{k}\right) X_{1}
$$

Notice that

$$
\log \Pi_{k=1}^{i} c_{k}=\sum_{k=1}^{i} \frac{1}{\frac{p}{2}\left(\frac{2^{*}}{2}\right)^{k-1}} \log \left(\frac{c\left(1+\|b\|_{\infty}\right)^{6}\left(1+\|u\|_{\infty}^{2}\right) 2^{4 k}}{(R-r)^{4}}\left(\frac{2^{*}}{2}\right)^{6 k}\right)
$$

has a finite limit as i goes to ∞. Precisely, since

$$
\Pi_{k=1}^{\infty}\left\{\left(1+\|b\|_{\infty}\right)^{6}\left(1+\|u\|_{\infty}^{2}\right)\right\}^{\frac{1}{\frac{p}{2}\left(\frac{2^{*}}{2}\right)^{k-1}}}=\left\{\left(1+\|b\|_{\infty}\right)^{6}\left(1+\|u\|_{\infty}^{2}\right)\right\}^{\delta}
$$

with $\delta=\frac{n}{p}$ if $n \geq 3$ and δ is any number greater than $\frac{2}{p}$ if $n=2$, then when i goes to ∞ we have

$$
\sup _{B_{r}}\left[V\left(|D u|^{2}\right)\right] \leq c\left(\frac{\left(1+\|b\|_{\infty}\right)^{6}\left(1+\|u\|_{\infty}^{2}\right)}{(R-r)^{4}}\right)^{\delta}\left(\int_{B_{R}}\left[V\left(|D u|^{2}\right)\right]^{\frac{p}{2}} d x\right)^{\frac{2}{p}}
$$

that implies (3.17).

4. Boundedness and Lipschitz continuity for $W^{1, q}$ Solutions

In this section we prove the local boundedness of weak solutions.
Theorem 4.1. Assume (2.2), (2.3) and (2.5), with $1<p \leq q$. Moreover, if $p<n$ assume also $q<p \frac{n-1}{n-p}$.

If $u \in W_{l o c}^{1, q}(\Omega)$ is a weak solution to (3.1), then u is locally bounded.
Moreover, fixed $\Omega^{\prime} \Subset \Omega$, there exist $C_{1}>0$ such that for every $B_{R}\left(x_{0}\right) \subseteq \Omega^{\prime}$ and $0<\rho<R$,

$$
\begin{equation*}
\sup _{B_{\rho}\left(x_{0}\right)}|u| \leq C_{1}\left(\frac{\left(1+\|b\|_{L^{\infty}\left(\Omega^{\prime}\right)}\right)^{\frac{1}{p}}}{(R-\rho)^{\frac{q-1}{p-1}}}\right)^{\frac{q}{p^{*}-q}}\left\{\int_{B_{R}\left(x_{0}\right)}(1+|D u|)^{p} d x\right\}^{\frac{1+\theta}{p}} \tag{4.1}
\end{equation*}
$$

with $\theta=\frac{q}{p} \frac{q-p}{p^{*}-q}$; here $p^{*}=\frac{n p}{n-p}$, if $p<n$, and p^{*} is any $\nu>\frac{p(q-1)}{p-1}$, else.
First we recall the following result, see Lemma 1 in [19].
Lemma 4.2 (Lemma 1 in [19]). Assume (2.2), (2.3). Then there exists a positive constant c such that

$$
\begin{gather*}
\sum_{i=1}^{n}\left(a^{i}(x, \xi)-a^{i}(x, \zeta)\right)\left(\xi_{i}-\zeta_{i}\right) \geq c|\xi-\zeta|^{p} \quad \text { if } p \geq 2 ; \tag{4.2}\\
\sum_{i=1}^{n}\left(a^{i}(x, \xi)-a^{i}(x, \zeta)\right)\left(\xi_{i}-\zeta_{i}\right) \geq c\left(1+|\xi|^{2}+|\zeta|^{2}\right)^{\frac{p-2}{2}}|\xi-\zeta|^{2} \quad \text { if } \quad p<2 . \tag{4.3}
\end{gather*}
$$

The above lemma implies that we are considering a monotone operator:

$$
\begin{equation*}
\sum_{i=1}^{n}\left(a^{i}(x, \xi)-a^{i}(x, \zeta)\right)\left(\xi_{i}-\zeta_{i}\right) \geq 0 \quad \text { for every } \xi, \zeta \in \mathbb{R}^{n} \tag{4.4}
\end{equation*}
$$

We are ready to provide a proof of Theorem 4.1.
Proof of Theorem 4.1. First of all we prove that (2.3) implies that for fixed $x_{0} \in \Omega$ and for every $i=1,2, \ldots, n, \eta \in \mathbb{R}^{n}$ and a.e. $x \in \Omega$

$$
\begin{equation*}
\left|a^{i}(x, \eta)\right| \leq \bar{C}\left(1+|\eta|^{2}\right)^{\frac{q-1}{2}} \tag{4.5}
\end{equation*}
$$

with \bar{C} depending on Ω, n, q, M and x_{0}. Precisely,

$$
\bar{C}:=\left|a^{i}\left(x_{0}, 0\right)\right|+M\left[\operatorname{diam} \Omega+n \max \left\{1, \frac{1}{q-1}\right\}\right]
$$

Indeed, consider

$$
a^{i}(x, 0)=a^{i}\left(x_{0}, 0\right)+\int_{0}^{1}\left\langle a_{x}^{i}\left(x_{0}+t\left(x-x_{0}\right), 0\right), x-x_{0}\right\rangle d t ;
$$

thus, by (2.5),

$$
\sup _{x \in \Omega}\left|a^{i}(x, 0)\right| \leq\left|a^{i}\left(x_{0}, 0\right)\right|+M \operatorname{diam} \Omega=: \tilde{M}
$$

Then by (2.3)

$$
\left|a^{i}(x, \eta)\right| \leq \tilde{M}+\sum_{j=1}^{n}\left|\eta_{j}\right| \int_{0}^{1}\left|a_{\xi_{j}}^{i}(x, t \eta)\right| d t \leq \tilde{M}+M n|\eta| \int_{0}^{1}\left(1+|t \eta|^{2}\right)^{\frac{q-2}{2}} d t
$$

Then (4.5) holds when $q \geq 2$. If $1<q<2$ we get

$$
|\eta| \int_{0}^{1}\left(1+|t \eta|^{2}\right)^{\frac{q-2}{2}} d t \leq|\eta|^{q-1} \int_{0}^{1} t^{q-2} d t=\frac{1}{q-1}|\eta|^{q-1}
$$

and also in this case (4.5) follows.
Moreover, by Lemma 4.2 for $\eta=0$, for suitable $0<\epsilon<c$, we get:

$$
\begin{equation*}
\sum_{i=1}^{n} a^{i}(x, \xi) \xi_{i} \geq c|\xi|^{p}+\sum_{i=1}^{n} a^{i}(x, 0) \xi_{i} \geq(c-\epsilon)|\xi|^{p}-C \tilde{M}^{\frac{p}{p-1}} \tag{4.6}
\end{equation*}
$$

To construct a sequence of test functions we consider an approximation of the identity function id $: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$by an increasing sequence of C^{1} functions $g_{k}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$, such that

$$
g_{k}(t)=\left\{\begin{array}{ll}
0 & \text { for all } t \in\left[0, \frac{1}{k+1}\right] \tag{4.7}\\
k & \text { for all } t \geq k,
\end{array} \quad 0 \leq g_{k}^{\prime}(t) \leq 2 \quad \text { and } \quad g_{k}^{\prime}(t) t \leq g_{k}(t)+\frac{2}{k} \quad \text { in } \mathbb{R}_{+}\right.
$$

The last inequality can be assumed since the restriction of g_{k} to the interval $\left[\frac{1}{k+1}, k\right]$ can be seen as a smooth approximation of the linear function $G_{k}(t)=\frac{k(k+1)}{k(k+1)-1}\left(t-\frac{1}{k+1}\right)$, whose graph is the line of the plane connecting $\left(\frac{1}{k+1}, 0\right)$ and (k, k) and G_{k} satisfies $G_{k}^{\prime}(t) t \leq G_{k}(t)+\frac{1}{k}$.

Fixed $\nu>0$ let $\Phi_{k, \nu}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be the increasing function defined as

$$
\Phi_{k, \nu}(t):=g_{k}\left(t^{p \nu}\right)
$$

Consider $B_{R_{0}}\left(x_{0}\right) \Subset \Omega, 0<\rho<R \leq R_{0}$ and let $\eta \in C_{c}^{\infty}(\Omega)$ be a cut-off function, such that

$$
0 \leq \eta \leq 1, \quad \eta \equiv 1 \text { in } B_{\rho}, \quad \operatorname{supp} \eta \Subset B_{R}, \quad|D \eta| \leq \frac{2}{R-\rho}
$$

Let $u \in W_{\mathrm{loc}}^{1, q}(\Omega)$ be a weak solution and define the following sequence of test functions:

$$
\varphi_{k, \nu}(x):=\Phi_{k, \nu}(|u(x)|) u(x)[\eta(x)]^{\mu}
$$

where $\mu=\frac{p}{p-1}(q-1)$.
Notice that by (4.7) we easily get

$$
\Phi_{k, \nu}^{\prime}(t) t \leq p \nu\left\{\Phi_{k, \nu}(t)+\frac{2}{k}\right\} \leq q \nu\left\{\Phi_{k, \nu}(t)+\frac{2}{k}\right\}
$$

Moreover, Φ_{k} is in $C^{1}\left(\mathbb{R}_{+}\right)$, bounded and with bounded derivative; thus $\varphi_{k, \nu} \in W^{1, q}$, with $\operatorname{supp} \varphi_{k, \nu} \Subset B_{R}$.

From now on, we write φ_{k} and Φ_{k} instead of $\varphi_{k, \nu}$ and $\Phi_{k, \nu}$
Let us insert φ_{k} in (2.8), we obtain

$$
\begin{aligned}
& \sum_{i=1}^{n} \int_{B_{R}} a^{i}(x, D u) u_{x_{i}} \Phi_{k}(|u|) \eta^{\mu} d x+\sum_{i=1}^{n} \int_{B_{R}} a^{i}(x, D u) u \Phi_{k}^{\prime}(|u|) \frac{u}{|u|} u_{x_{i}} \eta^{\mu} d x \\
& =\mu \sum_{i=1}^{n} \int_{B_{R}} a^{i}(x, D u) \Phi_{k}(|u|)(-u) \eta_{x_{i}} \eta^{\mu-1} d x-\int_{B_{R}} b(x) \Phi_{k}(|u|) u \eta^{\mu} d x
\end{aligned}
$$

We estimate the first term of the right hand, by applying the monotone property (4.4). For a.e. $x \in B_{R_{0}} \cap\{\eta \neq 0\}$, by (4.4), we have for $\xi=D u(x)$ and $\zeta=-2 \mu u(x) \frac{D \eta(x)}{\eta(x)}$,

$$
\begin{aligned}
& \mu \sum_{i=1}^{n} a^{i}(x, D u)(-u) \eta_{x_{i}} \eta^{\mu-1}=\frac{\eta^{\mu}}{2} \sum_{i=1}^{n} a^{i}(x, D u)\left(\frac{-2 \mu u \eta_{x_{i}}}{\eta}\right) \\
& \leq \frac{\eta^{\mu}}{2}\left\{\sum_{i=1}^{n} a^{i}(x, D u) u_{x_{i}}+\sum_{i=1}^{n} a^{i}\left(x, \frac{-2 u D \eta}{\eta}\right)\left(\frac{-2 u \eta_{x_{i}}}{\eta}\right)-\sum_{i=1}^{n} a^{i}\left(x, \frac{-2 u D \eta}{\eta}\right) u_{x_{i}}\right\} .
\end{aligned}
$$

So we obtain

$$
\begin{align*}
& \frac{1}{2} \sum_{i=1}^{n} \int_{B_{R}} a^{i}(x, D u) u_{x_{i}} \Phi_{k}(|u|) \eta^{\mu} d x+\sum_{i=1}^{n} \int_{B_{R}} a^{i}(x, D u) u \Phi_{k}^{\prime}(|u|) \frac{u}{|u|} u_{x_{i}} \eta^{\mu} d x \\
& \leq \frac{1}{2} \sum_{i=1}^{n} \int_{B_{R}} a^{i}\left(x, \frac{-2 u D \eta}{\eta}\right)\left(\frac{-2 u D \eta}{\eta}\right) \eta^{\mu} \Phi_{k}(|u|) d x+\frac{1}{2} \sum_{i=1}^{n} \int_{B_{R}} a^{i}\left(x, \frac{-2 u D \eta}{\eta}\right) u_{x_{i}} \eta^{\mu} \Phi_{k}(|u|) d x \\
& -\int_{B_{R}} b(x) \Phi_{k}(|u|) u \eta^{\mu} d x \tag{4.8}
\end{align*}
$$

By (4.6) there exist positive constants c, C such that

$$
\begin{aligned}
& \frac{1}{2} \sum_{i=1}^{n} \int_{B_{R}} a^{i}(x, D u) u_{x_{i}} \Phi_{k}(|u|) \eta^{\mu} d x+\sum_{i=1}^{n} \int_{B_{R}} a^{i}(x, D u) u_{x_{i}} \Phi_{k}^{\prime}(|u|)|u| \eta^{\mu} d x \\
& \geq c \int_{B_{R}}|D u|^{p} \Phi_{k}(|u|) \eta^{\mu} d x-C \int_{B_{R}}\left(\Phi_{k}(|u|)+\Phi_{k}^{\prime}(|u|)|u|\right) \eta^{\mu} d x
\end{aligned}
$$

Therefore, using also (4.5), inequality (4.8) implies that there exists $\tilde{C}>0$ such that

$$
\begin{aligned}
& \int_{B_{R}}|D u|^{p} \Phi_{k}(|u|) \eta^{\mu} d x \leq \tilde{C} \int_{B_{R}}\left(\Phi_{k}(|u|)+\frac{2}{k}\right) \eta^{\mu} d x \\
& +\tilde{C} \int_{B_{R}}\left(1+\left|\frac{u D \eta}{\eta}\right|^{2}\right)^{\frac{q}{2}} \Phi_{k}(|u|) \eta^{\mu} d x+\tilde{C} \int_{B_{R}}\left(1+\left|\frac{u D \eta}{\eta}\right|^{2}\right)^{\frac{q-1}{2}}|D u| \Phi_{k}(|u|) \eta^{\mu} d x \\
& +\tilde{C}\|b\|_{L^{\infty}\left(\Omega^{\prime}\right)} \int_{B_{R}} \Phi_{k}(|u|)|u| \eta^{\mu} d x
\end{aligned}
$$

Since $\frac{q}{q-1} \leq \frac{p}{p-1}$, we have

$$
\tilde{C}\left(1+\left|\frac{u D \eta}{\eta}\right|^{2}\right)^{\frac{q}{2}} \eta^{\mu} \leq \tilde{C}\left(1+|u D \eta|^{2}\right)^{\frac{q}{2}} \eta^{\mu-q} \leq \tilde{C} \max \left\{1,|D \eta|^{\frac{p(q-1)}{p-1}}\right\}\left(1+|u|^{\frac{p(q-1)}{2(p-1)}}\right.
$$

and by Young inequality

$$
\begin{aligned}
& \tilde{C}\left(1+\left|\frac{u D \eta}{\eta}\right|^{2}\right)^{\frac{q-1}{2}}|D u| \eta^{\mu} \leq c|D u| \eta^{\frac{\mu}{p}} \eta^{\mu\left(1-\frac{1}{p}\right)}+c|D u| \eta^{\frac{\mu}{p}}|u D \eta|^{q-1} \eta^{\mu\left(1-\frac{1}{p}\right)-q+1} \\
& \leq \frac{1}{2}|D u|^{p} \eta^{\mu}+c \eta^{\mu}+c|u D \eta|^{\frac{p(q-1)}{p-1}} \eta^{\mu-\frac{p(q-1)}{p-1}}
\end{aligned}
$$

then by the properties of η and by recalling that $\mu=\frac{p}{p-1}(q-1)$ we get

$$
\begin{aligned}
& \int_{B_{R}}|D u|^{p} \Phi_{k}(|u|) \eta^{\mu} d x \leq c \int_{B_{R}}\left(\Phi_{k}(|u|)+\frac{2}{k}\right) \eta^{\mu} d x+\frac{c}{(R-\rho)^{\frac{p(q-1)}{p-1}}} \int_{B_{R}}\left(1+|u|^{2}\right)^{\frac{p(q-1)}{2(p-1)}} \Phi_{k}(|u|) d x \\
& +\frac{c}{\min \{1,(R-\rho)\}^{\frac{p(q-1)}{p-1}}} \int_{B_{R}}\left(1+|u|^{2}\right)^{\frac{p(q-1)}{2(p-1)}} \Phi_{k}(|u|) d x+c\|b\|_{L^{\infty}\left(\Omega^{\prime}\right)} \int_{B_{R}}\left(1+|u|^{2}\right)^{\frac{p(q-1)}{2(p-1)}} \Phi_{k}(|u|) d x
\end{aligned}
$$

Since $\Phi_{k}(u) \rightarrow|u|^{p \nu}$ as k goes to $+\infty$ passing to the limit we get

$$
\begin{equation*}
\int_{B_{R}}\left(1+|D u|^{2}\right)^{\frac{p}{2}}|u|^{p \nu} \eta^{\mu} d x \leq \frac{c\left(1+\|b\|_{L^{\infty}\left(\Omega^{\prime}\right)}\right)}{\min \{1, R-\rho\}^{\frac{p(q-1)}{p-1}}} \int_{B_{R}}\left(1+|u|^{2}\right)^{\frac{p(q-1)}{2(p-1)}}|u|^{p \nu} \eta^{\mu} d x \tag{4.9}
\end{equation*}
$$

Observe that if $p<n$ then the assumption $q<p \frac{n-1}{n-p}$ implies $p \frac{q-1}{p-1}<p^{*}$.
Inequality (4.9) is analogous to the inequality (4.33) of [5], then by a careful application of the Sobolev embedding theorem and the classical Moser's iteration method we obtain that u is locally bounded with the following estimate:

$$
\sup _{B_{\rho}\left(x_{0}\right)}|u| \leq C_{1}\left(\frac{\left(1+\|b\|_{L^{\infty}\left(\Omega^{\prime}\right)}\right)^{\frac{1}{p}}}{(R-\rho)^{\frac{q-1}{p-1}}}\right)^{\frac{q}{p^{*}-q}}\left\{\int_{B_{R}\left(x_{0}\right)}(1+|u|)^{p^{*}} d x\right\}^{\frac{1+\theta}{p^{*}}}
$$

with θ as in the statement. The Sobolev imbedding gives (4.1).
By collecting Theorem 3.5 and 4.1, we have
Theorem 4.3. Let $u \in W_{\mathrm{loc}}^{1, q}(\Omega)$ be a weak solution to (3.1), with $1<p \leq q \leq p+1$ and, if $p<n$, assume also $q<p \frac{n-1}{n-p}$. If (2.2)-(2.5) and (3.2) hold, then $u \in W_{\mathrm{loc}}^{1, \infty}(\Omega)$.
Moreover, fixed $\Omega^{\prime} \Subset \Omega$, there exist $C, \alpha, \delta, \gamma>0$, independent of ϵ in (3.2), such that such that for every $B_{r}\left(x_{0}\right) \subset B_{R}\left(x_{0}\right) \subseteq \Omega^{\prime}$ the following estimate holds:

$$
\begin{equation*}
\sup _{B_{r}\left(x_{0}\right)}|D u| \leq C \frac{\left(1+\|b\|_{L^{\infty}\left(\Omega^{\prime}\right)}\right)^{\alpha}}{(R-r)^{\delta}}\left(\int_{B_{R}\left(x_{0}\right)}\left(1+|D u|^{2}\right)^{\frac{p}{2}} d x\right)^{\frac{1+\gamma}{p}} \tag{4.10}
\end{equation*}
$$

5. Proof of the existence result

First we state a preliminary result, see also Lemma 4.4 of [16].
Lemma 5.1. Under the assumption (2.2), (2.3) and (2.6) there exists a costant C such that for every $\xi, \eta \in \mathbb{R}^{n}$ and for a.e. $x \in \Omega$,

$$
\begin{equation*}
|\xi|^{p} \leq C\left\{\left(1+|\eta|^{2}\right)^{\frac{p(q-1)}{2(p-1)}}+\sum_{i=1}^{n} a^{i}(x, \xi)\left(\xi_{i}-\eta_{i}\right)\right\} \tag{5.1}
\end{equation*}
$$

Proof. Fixed $x_{0} \in \Omega$, we have that for every $i=1,2, \ldots, n$, every $\eta \in \mathbb{R}^{n}$ and a.e. $x \in \Omega$, inequality (4.5) holds.

Let $p \geq 2$, by (4.2) and the Young inequality, for all $\epsilon>0$ we obtain

$$
\begin{aligned}
& |\xi|^{p} \leq c\left(|\xi-\eta|^{p}+|\eta|^{p}\right) \leq\left\{\sum_{i=1}^{n}\left(a^{i}(x, \xi)-a^{i}(x, \eta)\right)\left(\xi_{i}-\eta_{i}\right)+|\eta|^{p}\right\} \\
& \leq c\left\{|\eta|^{p}+\sum_{i=1}^{n} a^{i}(x, \xi)\left(\xi_{i}-\eta_{i}\right)+c\left(n, q, M, x_{0}, \operatorname{diam} \Omega\right)\left(1+|\eta|^{2}\right)^{\frac{q-1}{2}}(|\xi|+|\eta|)\right\}
\end{aligned}
$$

$$
\leq c\left\{\left(1+|\eta|^{2}\right)^{\frac{p}{2}}+\sum_{i=1}^{n} a^{i}(x, \xi)\left(\xi_{i}-\eta_{i}\right)+c_{\epsilon}\left(1+|\eta|^{2}\right)^{\frac{p(q-1)}{2(p-1)}}+\epsilon(|\xi|+|\eta|)^{p}\right\}
$$

thus if ϵ is small enough we get (5.1).
Let now consider $1<p<2$. By the Young inequality with complementary exponents $\frac{2}{p}$ and $\frac{2-p}{2}$ for $\epsilon>0$

$$
\begin{aligned}
& |\xi|^{p} \leq c\left(|\xi-\eta|^{p}+|\eta|^{p}\right) \leq c\left(|\eta|^{p}+\left(|\xi-\eta|^{2}\right)^{\frac{p}{2}}\left(1+|\xi|^{2}+|\eta|^{2}\right)^{\frac{p(p-2)}{4}+\frac{p(2-p)}{4}}\right) \\
& \quad \leq c\left\{\left(1+|\eta|^{2}\right)^{\frac{p}{2}}+c_{\epsilon}\left(1+|\xi|^{2}+|\eta|^{2}\right)^{\frac{p-2}{2}}|\xi-\eta|^{2}+\epsilon\left(1+|\xi|^{2}+|\eta|^{2}\right)^{\frac{p}{2}}\right\} .
\end{aligned}
$$

Therefore, by (4.3), for small ϵ we get

$$
|\xi|^{p} \leq c\left\{\left(1+|\eta|^{2}\right)^{\frac{p}{2}}+\sum_{i=1}^{n}\left(a^{i}(x, \xi)-a^{i}(x, \eta)\right)\left(\xi_{i}-\eta_{i}\right)\right\}
$$

and we conclude by proceeding as above.
We now turn to prove our existence result.
Proof of Theorem 2.1. Fixed $0<\epsilon \leq 1$, let us consider the following Dirichlet problem

$$
\left\{\begin{array}{l}
\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left[a^{i}(x, D u)+\epsilon\left(1+|D u|^{2}\right)^{\frac{q-2}{2}} u_{x_{i}}\right]=b(x) \quad \text { in } \Omega \tag{5.2}\\
u-u_{0} \in W_{0}^{1, q}(\Omega) .
\end{array}\right.
$$

By Lemma 4.2 the differential operator associated to $\left\{a^{i}\right\}$ is monotone. We can apply the theory of monotone operators to prove the existence of a unique solution $u_{\epsilon} \in W^{1, q}(\Omega)$ to the problem (5.2).

Now we split the proof into steps:
Step 1. By Lemma 5.1, we prove the boundedness of $\left\{u_{\epsilon}\right\}$ in $W^{1, p}(\Omega)$. More precisely, there exists a constant C_{1} independent of ϵ, such that

$$
\begin{equation*}
\left\|u_{\epsilon}\right\|_{1, p} \leq C_{1} \tag{5.3}
\end{equation*}
$$

In fact, set $a_{\epsilon}^{i}(x, \xi)=a^{i}(x, \xi)+\epsilon\left(1+|\xi|^{2}\right)^{\frac{q-2}{2}} \xi_{i}$. The functions a_{ϵ}^{i} satisfy the assumptions of Lemma 5.1 with constants $m^{\prime}=m, M^{\prime}=M+1$. Thus, by Lemma 5.1 applied to a_{ϵ}^{i} with $\xi=D u_{\epsilon}$, $\eta=D u_{0}$, give the inequality below with constants independent of ϵ :

$$
\int_{\Omega}\left|D u_{\epsilon}\right|^{p} d x \leq c\left\{\int_{\Omega}\left(1+\left|D u_{0}\right|^{2}\right)^{\frac{p(q-1)}{2(p-1)}} d x+\sum_{i=1}^{n} a_{\epsilon}^{i}\left(x, D u_{\epsilon}\right) D_{x_{i}}\left(u_{\epsilon}-u_{0}\right) d x\right\}
$$

Since u_{ϵ} is the weak solution to (5.2), by Young and Sobolev inequalities we obtain

$$
\begin{aligned}
& \int_{\Omega}\left|D u_{\epsilon}\right|^{p} d x \leq c\left\{\int_{\Omega}\left(1+\left|D u_{0}\right|^{2}\right)^{\frac{p(q-1)}{2(p-1)}} d x+c_{\tau} \int_{\Omega}|b|^{\frac{p}{p-1}} d x+\tau \int_{\Omega}\left|u_{\epsilon}-u_{0}\right|^{p} d x\right\} \\
& \leq c\left\{\int_{\Omega}\left(1+\left|D u_{0}\right|^{2}\right)^{\frac{p(q-1)}{2(p-1)}} d x+c_{\tau} \int_{\Omega}|b|^{\frac{p}{p-1}} d x+\tau \int_{\Omega}\left|D u_{\epsilon}-D u_{0}\right|^{p} d x\right\}
\end{aligned}
$$

for any $\tau>0$; if τ is small enough the inequality above easily implies (5.3).

STEP 2. We claim that for every $\Omega^{\prime} \Subset \Omega$ the sequence $\left\{u_{\epsilon}\right\}$ is bounded in L^{∞}. Precisely, by Theorem 4.1 there exists constants C and θ independent of ϵ such that,

$$
\left.\left\|u_{\epsilon}\right\|_{L^{\infty}\left(\Omega^{\prime}\right)} \leq C\left(\int_{\Omega}\left(1+\left|D u_{\epsilon}\right|^{2}\right)^{\frac{p}{2}}\right) d x\right)^{\frac{1+\theta}{p}}
$$

As already noticed, the functions a_{ϵ}^{i} satisfy the assumptions of Lemma 5.1 with constants $m^{\prime}=m$, $M^{\prime}=M+1$. Therefore, by Step 1 the right hand side is bounded uniformly w.r.t. ϵ.

STEP 3. Here we prove that for every open sets $\Omega^{\prime \prime} \Subset \Omega^{\prime} \Subset \Omega$ the sequence $\left\{D u_{\epsilon}\right\}$ is bounded in $L^{\infty}\left(\Omega^{\prime \prime}\right)$. Precisely, there exists a costant C_{2} independent of ϵ such that

$$
\begin{equation*}
\left\|D u_{\epsilon}\right\|_{L^{\infty}\left(\Omega^{\prime \prime}\right)} \leq C_{2}\left(1+\left\|u_{\epsilon}\right\|_{L^{\infty}\left(\Omega^{\prime}\right)}\right)^{\gamma}\left(\int_{\Omega}\left(1+\left|D u_{\epsilon}\right|^{p}\right) d x\right)^{\frac{1}{p}} \tag{5.4}
\end{equation*}
$$

with the right hand side bounded uniformly w.r.t. ϵ by the previous steps. The exponent γ is positive and it is $\gamma=\frac{n}{p}$ if $n \geq 3$, otherwise γ is any number greater than $\frac{2}{p}$.

Indeed, since $a_{\epsilon}^{i}(x, \xi)$ satisfy the assumptions of Theorem 3.5 and $\left\{u_{\epsilon}\right\}$ are bounded w.r.t. the $W^{1, p}(\Omega)$ and $L^{\infty}\left(\Omega^{\prime}\right)$ norms, we can apply Theorem 3.5 so obtaining the claim by a covering argument.

STEP 4. We claim that for every $\Omega^{\prime \prime} \Subset \Omega^{\prime} \Subset \Omega$ there exists a constant C_{3} independent of ϵ such that, if $p \geq 2$,

$$
\begin{equation*}
\int_{\Omega^{\prime \prime}}\left|D^{2} u_{\epsilon}\right|^{2} d x \leq C_{3}\left(1+\left\|u_{\epsilon}\right\|_{L^{\infty}\left(\Omega^{\prime}\right)}^{2}\right) \int_{\Omega}\left(1+\left|D u_{\epsilon}\right|^{p}\right) d x \tag{5.5}
\end{equation*}
$$

and, if $p<2$,

$$
\begin{equation*}
\int_{\Omega^{\prime \prime}}\left|D^{2} u_{\epsilon}\right|^{2} d x \leq C_{3}\left(1+\left\|u_{\epsilon}\right\|_{L^{\infty}\left(\Omega^{\prime}\right)}^{2}\right)\left(1+\left\|D u_{\epsilon}\right\|_{L^{\infty}\left(\Omega^{\prime \prime}\right)}^{2}\right)^{\frac{2-p}{2}} \int_{\Omega}\left(1+\left|D u_{\epsilon}\right|^{p}\right) d x \tag{5.6}
\end{equation*}
$$

Also in this case, the constant C_{3} is independent of ϵ.
This claim follows by Lemma 3.2, precisely by Remark 3.3, and by taking into account that $q \leq p+1$, so we get

$$
\int_{\Omega^{\prime \prime}}\left(1+\left|D u_{\epsilon}\right|^{2}\right)^{\frac{p-2}{2}}\left|D^{2} u_{\epsilon}\right|^{2} d x \leq c\left(1+\left\|u_{\epsilon}\right\|_{L^{\infty}\left(\Omega^{\prime}\right)}^{2}\right) \int_{\Omega}\left(1+\left|D u_{\epsilon}\right|^{2}\right)^{\frac{p}{2}} d x
$$

If $p \geq 2$ we immediately conclude. Otherwise, since by Step 3 we have that $\left\{D u_{\epsilon}\right\} \in L^{\infty}\left(\Omega^{\prime \prime}\right)$, estimate (5.4) implies (5.6).

Step 5. Now, we conclude the proof, by studying the limit $\epsilon \rightarrow 0$ of u_{ϵ}.
By the previous steps the sequence $\left\{u_{\epsilon}\right\}$ is bounded in $W_{\text {loc }}^{2,2}(\Omega) \cap W_{\text {loc }}^{1, \infty}(\Omega)$. Therefore there exists a subsequence, that we still denote by u_{ϵ}, that converges in the strong topology of $W_{\text {loc }}^{1,2}$ to a function u and we have that

$$
u \in\left(u_{0}+W_{0}^{1, p}\right) \cap W_{\mathrm{loc}}^{1, \infty} \cap W_{\mathrm{loc}}^{2,2}(\Omega)
$$

with $D u_{\epsilon}$ that converges to $D u$ a.e. in Ω.
Let $\Omega^{\prime} \Subset \Omega$ and let $\varphi \in W_{0}^{1, q}\left(\Omega^{\prime}\right)$. By definition of weak solution we have that

$$
\int_{\Omega^{\prime}}\left\{\sum_{i=1}^{n} a_{\epsilon}^{i}\left(x, D u_{\epsilon}\right) \varphi_{x_{i}}(x)+b(x) \varphi(x)\right\} d x=0
$$

and we can go to the limit as ϵ goes to 0 . We obtain that u is a locally Lipschitz continuous weak solution to the Dirichlet problem (2.1).

Finally the estimates (5.3), (5.4) and (5.5) hold for u by the lower semicontinuity of the norms.

6. Local Lipschitz Regularity of locally bounded solutions

In this section we prove the Local Lipschitz regularity for locally bounded weak solutions to (3.1) when $q \geq 2$ with two type of estimates: in Theorem 6.2 we estimate the L^{∞}-norm of the gradient with its L^{p}-norm, and in Theorem 6.3 we prove an analogous result, using the L^{q} norm in place of the L^{p} one.

The starting point is the following lemma analogous to Lemma 2.8 in [16]; the main difference is that now it can be $1<p<2$.

Lemma 6.1. If $q \geq 2, \quad 1<p \leq q$ and (2.2)-(2.5) hold then a weak solution $u \in W_{\operatorname{loc}}^{1, q}(\Omega)$ to (3.1) satisfies

$$
\int_{\Omega} \eta^{4} \sum_{i=1}^{n}\left(1+\left|u_{x_{i}}\right|^{2}\right)^{\frac{p}{2}+\gamma-1}\left|D u_{x_{i}}\right|^{2} d x \leq c(1+\gamma) \int_{\Omega}\left(\eta^{4}+\eta^{2}|D \eta|^{2}\right) \sum_{i=1}^{n}\left(1+\left|u_{x_{i}}\right|^{2}\right)^{\frac{q}{2}+\gamma} d x
$$

for every $\eta \in C_{c}^{\infty}(\Omega)$ and every $\gamma \geq 0$ such that the right hand side is finite.
Proof. Fixed $\gamma \geq 0$ define the odd and Lipschitz function $g_{\gamma, k}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
g_{\gamma, k}(t)=t\left(1+t^{2}\right)^{\gamma} \quad \text { if } \quad|t| \leq k
$$

and extended to \mathbb{R} linearly as a function in $C^{1}(\mathbb{R})$. As a test function in

$$
\int_{\Omega}\left\{\sum_{i=1}^{n} a^{i}(x, D u) \varphi_{x_{i}}+b(x) \varphi\right\} d x=0
$$

consider the function

$$
\varphi=\Delta_{-h}\left(\eta^{4} g_{\gamma, k}\left(\Delta_{h} u\right)\right)
$$

where Δ_{h} is the difference quotient in the direction e_{s} defined by $\Delta_{h} f(x)=\frac{f\left(x+h e_{s}\right)-f(x)}{h}$. Then,

$$
\begin{aligned}
& \frac{1}{c} \int_{\Omega} \int_{0}^{1} \eta^{4} g_{\gamma, k}^{\prime}\left(\Delta_{h} u\right)\left(1+\left|D u+t h \Delta_{h} D u\right|^{2}\right)^{\frac{p-2}{2}}\left|\Delta_{h} D u\right|^{2} d x d t \\
& \leq \int_{\Omega} \int_{0}^{1} \eta^{4} g_{\gamma, k}^{\prime}\left(\Delta_{h} u\right)\left(1+\left|D u+t h \Delta_{h} D u\right|^{2}\right)^{\frac{q}{2}} d x d t \\
& +\int_{\Omega} \int_{0}^{1} 4 \eta^{3}|D \eta|\left|g_{\gamma, k}\left(\Delta_{h} u\right)\right|\left(1+\left|D u+t h \Delta_{h} D u\right|^{2}\right)^{\frac{q-1}{2}} d x d t \\
& +\int_{\Omega} \int_{0}^{1} \eta^{2}|D \eta|^{2} \frac{g_{\gamma, k}^{2}}{g_{\gamma, k}^{\prime}}\left(\Delta_{h} u\right)\left(1+\left|D u+t h \Delta_{h} D u\right|^{2}\right)^{\frac{q-2}{2}} d x
\end{aligned}
$$

for every $\eta \in C_{c}^{\infty}(\Omega)$ and every $\gamma \geq 0$ such that the right hand side is finite.
Notice that if $p<2$ the Young inequality implies

$$
\left|\Delta_{h} D u\right|^{p} \leq c\left(1+\left|D u+t h \Delta_{h} D u\right|^{2}\right)^{\frac{p}{2}}+c\left(1+\left|D u+t h \Delta_{h} D u\right|^{2}\right)^{\frac{p-2}{2}}\left|\Delta_{h} D u\right|^{2}
$$

Thus, for any $p>1$, there exist $D u_{x_{s}} \in L_{\text {loc }}^{\min \{2, p\}}$ and $D \Delta_{h} u$ converges a.e. to $D u_{x_{s}}$. From now on, analogous calculations as those in [16] allow to conclude.

We state now the first regularity result of this section.

Theorem 6.2. Let $u \in L_{\text {loc }}^{\infty}(\Omega) \cap W_{\text {loc }}^{1, q}(\Omega)$ be a weak solution to (3.1). Assume (2.2)-(2.5).
If $q \geq 2$ and $1<p \leq q \leq p+1$, then $u \in W_{\text {loc }}^{1, \infty}(\Omega)$.
Moreover, fixed $\Omega^{\prime} \Subset \Omega$, there exists a constant c depending on the L^{∞}-norm of b in Ω^{\prime}, such that for every $B_{r}\left(x_{0}\right) \subset B_{R}\left(x_{0}\right) \subseteq \Omega^{\prime}$ the following estimate holds:

$$
\sup _{B_{r}\left(x_{0}\right)}|D u| \leq c\left(\frac{\left(1+\|u\|_{L^{\infty}\left(\Omega^{\prime}\right)}\right)}{(R-r)^{2}}\right)^{\delta}\left(\int_{B_{R}\left(x_{0}\right)}\left(1+|D u|^{2}\right)^{\frac{p}{2}} d x\right)^{\frac{1}{p}} .
$$

The exponent δ is equal to $\frac{n}{p}$ if $n \geq 3$ and it is any number greater than $\frac{2}{p}$ if $n=2$.
Proof. Consider $x_{0} \in \Omega$ and $R>0$, such that $B_{R}:=B_{R}\left(x_{0}\right) \subseteq \Omega^{\prime} \Subset \Omega$. Fix also $0<r \leq R$. Define $V:[0, \infty) \rightarrow[1, \infty), V(t)=(1+t)$ and let $\eta \in C_{c}^{\infty}\left(B_{s}\left(x_{0}\right)\right), r<s<R$, be a cut-off function satisfying the following assumptions

$$
0 \leq \eta \leq 1, \quad \eta \equiv 1 \text { in } B_{t}\left(x_{0}\right) \text { with } r \leq t<s \quad|D \eta| \leq \frac{2}{s-t} .
$$

We split the proof into different steps.
Step 1. By Lemma 6.1 and the assumptions on η, we get

$$
\begin{equation*}
\int_{B_{s}} \sum_{i=1}^{n}\left(1+\left|u_{x_{i}}\right|^{2}\right)^{\frac{p}{2}+\gamma-1}\left|D^{2} u\right|^{2} \eta^{4} d x \leq \frac{\bar{c}(1+\gamma)}{(s-t)^{2}} \int_{B_{s}} \sum_{i=1}^{n}\left(1+\left|u_{x_{i}}\right|^{2}\right)^{\frac{q}{2}+\gamma} \eta^{2} d x \tag{6.1}
\end{equation*}
$$

for some constant \bar{c} possibly depending on diam Ω^{\prime}.
STEP 2. In this step we prove that there exists c independent of γ, such that

$$
\begin{align*}
& \int_{B_{s}} \sum_{i=1}^{n}\left(1+\left|u_{x_{i}}\right|^{2}\right)^{\frac{p}{2}+\gamma-1}\left|D u_{x_{i}}\right|^{2} \eta^{4} d x \leq \frac{c(1+\gamma)^{4}\left(1+\|u\|_{\infty}^{2}\right)}{(s-t)^{4}} \times \\
& \times \int_{B_{s}}\left\{\sum_{i=1}^{n}\left(1+\left|u_{x_{i}}\right|^{2}\right)^{q+\gamma-\frac{p}{2}-1}+\sum_{i=1}^{n}\left(1+\left|u_{x_{i}}\right|^{2}\right)^{\frac{q}{2}+\gamma-\frac{1}{2}}\right\} d x . \tag{6.2}
\end{align*}
$$

Let us estimate the right hand side in (6.1). By an integration by parts we get

$$
\begin{align*}
& \frac{\bar{c}(1+\gamma)}{(s-t)^{2}} \int_{B_{s}} \sum_{i=1}^{n}\left(1+\left|u_{x_{i}}\right|^{2}\right)^{\frac{q}{2}+\gamma} \eta^{2} d x \\
= & \frac{\bar{c}(1+\gamma)}{(s-t)^{2}} \int_{B_{s}} \sum_{i=1}^{n}\left(1+\left|u_{x_{i}}\right|^{2}\right)^{\frac{q}{2}+\gamma-1} \eta^{2} u_{x_{i}} u_{x_{i}} \eta^{2} d x+\frac{\bar{c}(1+\gamma)}{(s-t)^{2}} \int_{B_{s}} \sum_{i=1}^{n}\left(1+\left|u_{x_{i}}\right|^{2}\right)^{\frac{q}{2}+\gamma-1} \eta^{2} d x \\
= & -\frac{\bar{c}(1+\gamma)}{(s-t)^{2}} \sum_{i=1}^{n} \int_{B_{s}}\left(\left(1+\left|u_{x_{i}}\right|^{2}\right)^{\frac{q}{2}+\gamma-1} u_{x_{i}} \eta^{2}\right)_{x_{i}} u d x+\frac{\bar{c}(1+\gamma)}{(s-t)^{2}} \int_{B_{s}} \sum_{i=1}^{n}\left(1+\left|u_{x_{i}}\right|^{2}\right)^{\frac{q}{2}+\gamma-1} \eta^{2} d x \\
\leq & c\|u\|_{\infty}\left(\frac{q}{2}+\gamma-1\right) \frac{\bar{c}(1+\gamma)}{(s-t)^{2}} \int_{B_{s}}\left(1+\left|u_{x_{i}}\right|^{2}\right)^{\frac{q}{2}+\gamma-\frac{3}{2}}\left|\left(\left|u_{x_{i}}\right|^{2}\right)_{x_{i}}\right| \eta^{2} d x \\
& +\frac{\bar{c}(1+\gamma)}{(s-t)^{2}}\|u\|_{\infty} \sum_{i=1}^{n} \int_{B_{s}}\left(1+\left|u_{x_{i}}\right|^{2}\right)^{\frac{q}{2}+\gamma-1}\left|u_{x_{i} x_{i}}\right| \eta^{2} d x \\
& +\frac{4 \bar{c}(1+\gamma)}{(s-t)^{3}}\|u\|_{\infty} \int_{B_{s}} \sum_{i=1}^{n}\left(1+\left|u_{x_{i}}\right|^{2}\right)^{\frac{q}{2}+\gamma-\frac{1}{2}} \eta d x+\frac{\bar{c}(1+\gamma)}{(s-t)^{2}} \int_{B_{s}} \sum_{i=1}^{n}\left(1+\left|u_{x_{i}}\right|^{2}\right)^{\frac{q}{2}+\gamma-1} \eta^{2} d x \tag{6.3}
\end{align*}
$$

where $\|u\|_{\infty}=\|u\|_{L^{\infty}\left(\Omega^{\prime}\right)}$.
Let us now write all the constants as c, that may vary from line to line. By the Young inequality we can estimate the first two integrals in the right hand side. The first one gives

$$
\begin{aligned}
& c\|u\|_{\infty}\left(\frac{q}{2}+\gamma-1\right) \frac{\bar{c}(1+\gamma)}{(s-t)^{2}} \int_{B_{s}} \sum_{i=1}^{n}\left(1+\left|u_{x_{i}}\right|^{2}\right)^{\frac{q}{2}+\gamma-\frac{3}{2}}\left|\left(\left|u_{x_{i}}\right|^{2}\right)_{x_{i}}\right| \eta^{2} d x \\
& =\sum_{i=1}^{n} \int_{B_{s}}\left\{\left(1+\left|u_{x_{i}}\right|^{2}\right)^{\frac{p-2}{4}+\frac{\gamma-1}{2}}\left|\left(\left|u_{x_{i}}\right|^{2}\right)_{x_{i}}\right| \eta^{2}\right\} \times \\
& \quad \times\left\{\frac{c(1+\gamma)\|u\|_{\infty}}{(s-t)^{2}}\left(\frac{q}{2}+\gamma-1\right)\left(1+\left|u_{x_{i}}\right|^{2}\right)^{\left.\frac{q}{2}+\gamma-\frac{3}{2}-\left(\frac{p-2}{4}+\frac{\gamma-1}{2}\right)\right\} d x}\right. \\
& \leq \frac{1}{16} \sum_{i=1}^{n} \int_{B_{s}}\left(1+\left|u_{x_{i}}\right|^{2}\right)^{\frac{p}{2}+\gamma-2}\left|\left(\left|u_{x_{i}}\right|^{2}\right)_{x_{i}}\right|^{2} \eta^{4} d x \\
& +\frac{c(1+\gamma)^{2}\|u\|_{\infty}^{2}}{(s-t)^{4}}\left(\frac{q}{2}+\gamma-1\right)^{2} \int_{B_{s}} \sum_{i=1}^{n}\left(1+\left|u_{x_{i}}\right|^{2}\right)^{q+\gamma-\frac{p}{2}-1} d x .
\end{aligned}
$$

Thus, by the inequality $\left|\left(\left|u_{x_{i}}\right|^{2}\right)_{x_{i}}\right|^{2} \leq 4\left|u_{x_{i}}\right|^{2}\left|u_{x_{i} x_{i}}\right|^{2} \leq 4\left(1+\left|u_{x_{i}}\right|^{2}\right)\left|D u_{x_{i}}\right|^{2}$ and $\left(\frac{q}{2}+\gamma-1\right)^{2} \leq$ $(1+\gamma)^{2}$ with $c>0$ depending on q, but not on γ, we get

$$
\begin{align*}
& c\|u\|_{\infty}\left(\frac{q}{2}+\gamma-1\right) \frac{\bar{c}(1+\gamma)}{(s-t)^{2}} \int_{B_{s}} \sum_{i=1}^{n}\left(1+\left|u_{x_{i}}\right|^{2}\right)^{\frac{q}{2}+\gamma-\frac{3}{2}}\left|\left(\left|u_{x_{i}}\right|^{2}\right)_{x_{i}}\right| \eta^{2} d x \\
& \leq \frac{1}{4} \int_{B_{s}} \sum_{i=1}^{n}\left(1+\left|u_{x_{i}}\right|^{2}\right)^{\frac{p}{2}+\gamma-1}\left|D u_{x_{i}}\right|^{2} \eta^{4} d x+\frac{c(1+\gamma)^{4}\|u\|_{\infty}^{2}}{(s-t)^{4}} \int_{B_{s}} \sum_{i=1}^{n}\left(1+\left|u_{x_{i}}\right|^{2}\right)^{q+\gamma-\frac{p}{2}-1} d x \tag{6.4}
\end{align*}
$$

Analogously, the second term in the right hand side of (6.3) gives

$$
\begin{align*}
& \frac{c(1+\gamma)}{(s-t)^{2}}\|u\|_{\infty} \sum_{i=1}^{n} \int_{B_{s}}\left(1+\left|u_{x_{i}}\right|^{2}\right)^{\frac{q}{2}+\gamma-1}\left|D^{2} u\right| \eta^{2} d x \\
& \leq \sum_{i=1}^{n} \int_{B_{s}}\left\{\left(1+\left|u_{x_{i}}\right|^{2}\right)^{\frac{p-2}{4}+\frac{\gamma}{2}}\left|u_{x_{i} x_{i}}\right|^{2}\right\}\left\{\frac{c(1+\gamma)}{(s-t)^{2}}\|u\|_{\infty}\left(1+\left|u_{x_{i}}\right|^{2}\right)^{\frac{q}{2}+\gamma-1-\left(\frac{p-2}{4}+\frac{\gamma}{2}\right)}\right\} d x \\
& \leq \frac{1}{4} \sum_{i=1}^{n} \int_{B_{s}}\left(1+\left|u_{x_{i}}\right|^{2}\right)^{\frac{p}{2}+\gamma-1}\left|D u_{x_{i}}\right|^{2} \eta^{4} d x+\frac{c(1+\gamma)^{2}\|u\|_{\infty}^{2}}{(s-t)^{4}} \sum_{i=1}^{n} \int_{B_{s}}\left(1+\left|u_{x_{i}}\right|^{2}\right)^{q+\gamma-\frac{p}{2}-1} d x \tag{6.5}
\end{align*}
$$

By (6.1) and by (6.3)-(6.5) we get

$$
\begin{aligned}
& \frac{1}{2} \int_{B_{s}} \sum_{i=1}^{n}\left(1+\left|u_{x_{i}}\right|^{2}\right)^{\frac{p}{2}+\gamma-1}\left|D u_{x_{i}}\right|^{2} \eta^{4} d x \leq \frac{c(1+\gamma)^{4}\|u\|_{\infty}^{2}}{(s-t)^{4}} \int_{B_{s}} \sum_{i=1}^{n}\left(1+\left|u_{x_{i}}\right|^{2}\right)^{q+\gamma-\frac{p}{2}-1} d x \\
& +\frac{c(1+\gamma)^{2}\|u\|_{\infty}^{2}}{(s-t)^{4}} \int_{B_{s}} \sum_{i=1}^{n}\left(1+\left|u_{x_{i}}\right|^{2}\right)^{q+\gamma-\frac{p}{2}-1} d x+\frac{c(1+\gamma)}{(s-t)^{3}} \int_{B_{s}} \sum_{i=1}^{n}\left(1+\left|u_{x_{i}}\right|^{2}\right)^{\frac{q}{2}+\gamma-\frac{1}{2}} \eta d x \\
& +\frac{c(1+\gamma)}{(s-t)^{2}} \int_{B_{s}} \sum_{i=1}^{n}\left(1+\left|u_{x_{i}}\right|^{2}\right)^{\frac{q}{2}+\gamma-1} \eta^{2} d x
\end{aligned}
$$

that implies (6.2).

Step 3. In this step we prove that there exists c, possibly depending on R, but not on γ, such that

$$
\begin{align*}
& \left\{\int_{B_{t}} \sum_{i=1}^{n}\left(1+\left|u_{x_{i}}\right|^{2}\right)^{\left(\frac{p}{2}+\gamma\right) \frac{2}{2}_{2}^{2}} d x\right\}^{2 / 2^{*}} \\
& \leq c \frac{(1+\gamma)^{6}\left(1+\|u\|_{\infty}^{2}\right)}{(s-t)^{4}} \int_{B_{s}} \sum_{i=1}^{n}\left\{\left(1+\left|u_{x_{i}}\right|^{2}\right)^{\frac{p}{2}+\gamma}+\left(1+\left|u_{x_{i}}\right|^{2}\right)^{q+\gamma-\frac{p}{2}-1}+\left(1+\left|u_{x_{i}}\right|^{2}\right)^{\frac{q}{2}+\gamma-\frac{1}{2}}\right\} d x \tag{6.6}
\end{align*}
$$

By the Sobolev imbedding Theorem

$$
\begin{aligned}
& \left\{\int_{B_{s}}\left(\left(1+\left|u_{x_{i}}\right|^{2}\right)^{\frac{p}{4}+\frac{\gamma}{2}} \eta^{2}\right)^{2^{*}} d x\right\}^{2 / 2^{*}} \leq \int_{B_{s}}\left|D\left(\left(1+\left|u_{x_{i}}\right|^{2}\right)^{\frac{p}{4}+\frac{\gamma}{2}} \eta^{2}\right)\right|^{2} d x \\
& \leq \frac{c}{(s-t)^{2}} \int_{B_{s}}\left(1+\left|u_{x_{i}}\right|^{2}\right)^{\frac{p}{2}+\gamma} \eta^{2} d x+c(1+\gamma)^{2} \int_{B_{s}}\left(1+\left|u_{x_{i}}\right|^{2}\right)^{\frac{p}{2}+\gamma-2}\left|D\left(\left|u_{x_{i}}\right|^{2}\right)\right|^{2} \eta^{4} d x \\
& \leq \frac{c}{(s-t)^{2}} \int_{B_{s}}\left(1+\left|u_{x_{i}}\right|^{2}\right)^{\frac{p}{2}+\gamma} \eta^{2} d x+c(1+\gamma)_{B_{s}}\left(1+\left|u_{x_{i}}\right|^{2}\right)^{\frac{p}{2}+\gamma-1}\left|D u_{x_{i}}\right|^{2} \eta^{4} d x .
\end{aligned}
$$

Therefore, (6.2) implies

$$
\begin{aligned}
& \left\{\int_{B_{s}}\left(\left(1+\left|u_{x_{i}}\right|^{2}\right)^{\frac{p}{4}+\frac{\gamma}{2}} \eta^{2}\right)^{2^{*}} d x\right\}^{2 / 2^{*}} \leq \frac{c}{(s-t)^{2}} \int_{B_{s}}\left(1+\left|u_{x_{i}}\right|^{2}\right)^{\frac{p}{2}+\gamma} \eta^{2} d x \\
& +\frac{c(1+\gamma)^{6}\left(1+\|u\|_{\infty}^{2}\right)}{(s-t)^{4}} \int_{B_{s}}\left\{\sum_{i=1}^{n}\left(1+\left|u_{x_{i}}\right|^{2}\right)^{q+\gamma-\frac{p}{2}-1}+\sum_{i=1}^{n}\left(1+\left|u_{x_{i}}\right|^{2}\right)^{\frac{q}{2}+\gamma-\frac{1}{2}}\right\} d x .
\end{aligned}
$$

By using the inequality $\sum_{i=1}^{n} y_{i}^{a} \leq\left(\sum_{i=1}^{n} y_{i}\right)^{a}$ with $a=2^{*} / 2>1$, the Minkowski's inequality with exponent $2^{*} / 2$, and using (6.2) to estimate the last integral in the chain of inequalities above, we get

$$
\begin{aligned}
& \int_{B_{t}}\left\{\sum_{i=1}^{n}\left(1+\left|u_{x_{i}}\right|^{2}\right)^{\left(\frac{p}{2}+\gamma\right) \frac{2^{*}}{2}} d x\right\}^{2 / 2^{*}} \leq\left\{\int_{B_{s}}\left\{\sum_{i=1}^{n} \eta^{4}\left(1+\left|u_{x_{i}}\right|^{2}\right)^{\frac{p}{2}+\gamma}\right\}^{\frac{2^{*}}{2}} d x\right\}^{2 / 2^{*}} \\
& \leq \sum_{i=1}^{n}\left\{\int_{B_{s}}\left(\left(1+\left|u_{x_{i}}\right|^{2}\right)^{\frac{p}{4}+\frac{\gamma}{2}} \eta^{2}\right)^{2^{*}} d x\right\}^{2 / 2^{*}}
\end{aligned}
$$

and the claim follows.

Step 4. Iteration.

Since $q \leq p+1$ then

$$
q-\frac{p}{2}-1 \leq \frac{q-1}{2} \leq \frac{p}{2} .
$$

By (6.6) it follows that

$$
\left\{\int_{B_{t}} \sum_{i=1}^{n}\left(1+\left|u_{x_{i}}\right|^{2}\right)^{\left(\frac{p}{2}+\gamma\right) \frac{2^{*}}{2}} d x\right\}^{2 / 2^{*}} \leq \frac{c(1+\gamma)^{6}\left(1+\|u\|_{\infty}^{2}\right)}{(s-t)^{4}} \int_{B_{s}} \sum_{i=1}^{n}\left(1+\left|u_{x_{i}}\right|^{2}\right)^{\frac{p}{2}+\gamma} d x
$$

Now, the proof follows the same scheme of the proof of Theorem 3.5.
In the next result we prove an estimate of the L^{∞}-norm of the gradient with its L^{q}-norm. This can be obtained also for some $q>p+1$.

Theorem 6.3. Let $u \in L_{\mathrm{loc}}^{\infty}(\Omega) \cap W_{\mathrm{loc}}^{1, q}(\Omega)$ be a weak solution to (3.1) and let (2.2)-(2.5) hold. If $n=2$, assume $q \leq p+2$; if instead $n \geq 3$,

$$
\begin{cases}q \leq p+2 & \text { if } p>n-2 \\ q<\frac{n}{n-1}(p+1) & \text { if } p \leq n-2\end{cases}
$$

Then $u \in W_{\mathrm{loc}}^{1, \infty}(\Omega)$.
Moreover, fixed $\Omega^{\prime} \Subset \Omega$, there exists a constant c depending on the L^{∞}-norm of b in Ω^{\prime}, such that for every $B_{r}\left(x_{0}\right) \subset B_{R}\left(x_{0}\right) \subseteq \Omega^{\prime}$ the following estimate holds:

$$
\sup _{B_{r}\left(x_{0}\right)}|D u| \leq c\left(\frac{1+\|u\|_{L^{\infty}\left(\Omega^{\prime}\right)}}{(R-r)^{2}}\right)^{\gamma \Theta}\left(\int_{B_{R}\left(x_{0}\right)}\left(1+|D u|^{2}\right)^{\frac{q}{2}} d x\right)^{\frac{\Theta}{q}}
$$

for some $\Theta>1$.
Proof. If $q \leq p+1$ the thesis follows by Theorem 6.2.
Let us assume that $q>p+1$. The first four steps of the proof are the same of Theorem 6.2 ; only the last one changes.

Step 4. Iteration.
By the assumption $q>p+1$,

$$
\frac{p}{2}<\frac{q-1}{2}<q-\frac{p}{2}-1
$$

Thus, by (6.6) we get

$$
\begin{equation*}
\left\{\int_{B_{t}}\left[V\left(|D u|^{2}\right)\right]^{\left(\frac{p}{2}+\gamma\right) \frac{2^{*}}{2}} d x\right\}^{2 / 2^{*}} \leq \frac{c(1+\gamma)^{6}\left(1+\|u\|_{\infty}^{2}\right)}{(s-t)^{4}} \int_{B_{s}}\left[V\left(|D u|^{2}\right)\right]^{q-\frac{p}{2}-1+\gamma} d x \tag{6.7}
\end{equation*}
$$

Let us denote

$$
\lambda:=\frac{2}{2^{*}-2}\left[q-\frac{p}{2}\left(1+\frac{2^{*}}{2}\right)-1\right]
$$

where 2^{*} is the Sobolev exponent (3.15), and define two sequences, $\left(r_{k}\right)$ and $\left(\gamma_{k}\right)$, as follows:

$$
\begin{equation*}
r_{k}=r+\frac{R-r}{2^{k-1}} \quad \text { and } \quad \gamma_{k}=\left(\frac{p-q}{2}+1-\lambda\right)\left(\frac{2^{*}}{2}\right)^{k-1}+\lambda \tag{6.8}
\end{equation*}
$$

An easy computation shows that γ_{k} solves the difference equation

$$
\left\{\begin{array}{l}
q-\frac{p}{2}-1+\gamma_{k+1}=\left(\frac{p}{2}+\gamma_{k}\right) \frac{2^{*}}{2} \tag{6.9}\\
\gamma_{1}=\frac{p-q}{2}+1
\end{array}\right.
$$

Moreover,

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \gamma_{k}=+\infty \quad \Leftrightarrow \quad \frac{p-q}{2}+1-\lambda>0 \quad \Leftrightarrow \quad q<\frac{2 \cdot 2^{*}}{2^{*}+2}(p+1) \tag{6.10}
\end{equation*}
$$

If $n=2$, since $q \leq p+2$ we can choose 2^{*} as any number $\mu>2$ such that $q<\frac{2 \cdot \mu}{\mu+2}(p+1)$; this is possible, because

$$
\lim _{\mu \rightarrow 2^{+}} \frac{2 \cdot \mu}{\mu+2}(p+1)=p+1, \quad \lim _{\mu \rightarrow+\infty} \frac{2 \cdot \mu}{\mu+2}(p+1)=2(p+1)
$$

If instead $n \geq 3$ the last inequality in (6.10) becomes $q<\frac{n}{n-1}(p+1)$; which is true by the assumptions on p and q.
Moreover $\gamma_{k} \geq 0$ for all k since $q \leq p+2$.

Let us define

$$
X_{k}:=\left\|V\left(|D u|^{2}\right)\right\|_{L^{q-\frac{p}{2}-1+\gamma_{k}\left(B_{r_{k}}\right)}}=\left\|V\left(|D u|^{2}\right)\right\|_{L^{\left(\frac{p}{2}+\gamma_{k-1}\right) \frac{2^{*}}{2}\left(B_{r_{k}}\right)}}, \quad k \geq 1
$$

where γ_{0} is defined coherently with (6.8). We remark that at each step of the iteration below, the γ 's in (6.7) take the non-negative values γ_{k} with $k \geq 1$, but not the negative value γ_{0}.
Reasoning as in the proof of the previous theorem, inequality (6.7) can be rewritten as

$$
X_{k+1}^{\frac{p}{2}+\gamma_{k}} \leq \frac{c\left(1+\gamma_{k}\right)^{6}\left(1+\|u\|_{\infty}^{2}\right)}{\left(r_{k}-r_{k+1}\right)^{4}} X_{k}^{\left(\frac{p}{2}+\gamma_{k-1}\right) \frac{2^{*}}{2}}, \quad k \geq 1
$$

Taking into account that (6.9) implies

$$
\frac{\left(\frac{p}{2}+\gamma_{k-1}\right) \frac{2^{*}}{2}}{\frac{p}{2}+\gamma_{k}}=1+\frac{q-p-1}{\frac{p}{2}+\gamma_{k}}
$$

we get that

$$
\begin{equation*}
X_{k+1} \leq c_{k} X_{k}^{1+\theta_{k}}, \quad k \geq 1 \tag{6.11}
\end{equation*}
$$

where

$$
c_{k}=\left\{\frac{c 2^{4 k}\left(1+\|u\|_{\infty}^{2}\right)}{(R-r)^{4}}\left(\frac{2^{*}}{2}\right)^{6 k}\right\}^{\frac{1}{\frac{p}{2}+\gamma_{k}}}, \quad \theta_{k}=\frac{q-p-1}{\frac{p}{2}+\gamma_{k}}
$$

By iteration, (6.11) implies

$$
\begin{equation*}
X_{i+1} \leq\left(\prod_{k=1}^{i} c_{k}^{\Pi_{j=k+1}^{i}\left(1+\theta_{j}\right)}\right) X_{1}^{\Pi_{j=1}^{i}\left(1+\theta_{j}\right)} \tag{6.12}
\end{equation*}
$$

with the position $\Pi_{j=i+1}^{i}\left(1+\theta_{j}\right)=1$. Without loss of generality we can assume $c_{k} \geq 1$. Then (6.12) implies

$$
\begin{equation*}
X_{i+1} \leq\left(\Pi_{k=1}^{i} c_{k}^{\Pi_{j=1}^{\infty}\left(1+\theta_{j}\right)}\right) X_{1}^{\Pi_{j=1}^{\infty}\left(1+\theta_{j}\right)} \tag{6.13}
\end{equation*}
$$

It is easy to see that

$$
\begin{equation*}
\Theta:=\Pi_{j=1}^{\infty}\left(1+\theta_{j}\right)<\infty \tag{6.14}
\end{equation*}
$$

indeed,

$$
\log \left(\Pi_{j=1}^{i}\left(1+\theta_{j}\right)\right)=\sum_{j=1}^{i} \log \left(1+\frac{q-p-1}{\frac{p}{2}+\gamma_{j}}\right)
$$

since γ_{j} goes to $+\infty$ due to the assumption $q<p+1+\frac{p}{n-2}$, we obtain

$$
\log \left(1+\frac{q-p-1}{\frac{p}{2}+\gamma_{j}}\right) \sim \frac{q-p-1}{\frac{p}{2}+\gamma_{j}}=\theta_{j} \sim \frac{q-p-1}{\left(\frac{p-q}{2}+1-\lambda\right)\left(\frac{2^{*}}{2}\right)^{j-1}}
$$

thus (6.14) follows.
This fact, together with (6.13), implies

$$
\begin{equation*}
X_{i+1} \leq\left(\Pi_{k=1}^{i} c_{k}^{\Theta}\right) X_{1}^{\Theta} \tag{6.15}
\end{equation*}
$$

Since

$$
\sum_{k=1}^{i} \log \left(c_{k}\right)=\sum_{k=1}^{i} \frac{1}{\frac{p}{2}+\gamma_{k}} \log \left\{\frac{c 2^{4 k}\left(1+\|u\|_{\infty}^{2}\right)}{(R-r)^{4}}\left(\frac{2^{*}}{2}\right)^{6 k}\right\}
$$

that obviously converges as i goes to ∞, because of the definition of γ_{k}, see (6.8). If we define $\gamma:=\sum_{k=1}^{\infty} \frac{1}{\frac{1}{2}+\gamma_{k}}$, by letting i go to ∞ in (6.15) we get

$$
\sup _{B_{r}}\left[V\left(|D u|^{2}\right)\right] \leq c\left(\frac{1+\|u\|_{\infty}^{2}}{(R-r)^{4}}\right)^{\gamma \Theta}\left(\int_{B_{R}}\left[V\left(|D u|^{2}\right)\right]^{\frac{q}{2}} d x\right)^{\frac{2 \Theta}{q}}
$$

that implies

$$
\sup _{B_{r}}|D u| \leq c\left(\frac{1+\|u\|_{L^{\infty}\left(\Omega^{\prime}\right)}}{(R-r)^{2}}\right)^{\gamma \Theta}\left(\int_{B_{R}}\left(1+|D u|^{2}\right)^{\frac{q}{2}} d x\right)^{\frac{\Theta}{q}} .
$$

Remark 6.4. In [16, Theorem 2.1] an analogous Lipschitz estimate has been proved without assuming the a priori boundedness, under the assumptions: $n=2$ and $2 \leq p \leq q$, or $n \geq 3$ and $2 \leq p \leq q<$ $p \frac{n}{n-2}$. For instance, if $n \geq p+2$ the assumptions on q in Theorem 6.3 are weaker than in [16].

References

[1] V. Bögelein. F. Duzaar, P. Marcellini: Parabolic systems with p, q-growth: a variational approach, Arch. Ration. Mech. Anal. 210 (2013), 219-267.
[2] M. Bildhauer, M. Fuchs: $C^{1, \alpha}$-solutions to non-autonomous anisotropic variational problems, Calc. Var. Partial Differential Equations 24 (2005), 309-340.
[3] H.J. Choe: Interior behaviour of minimizers for certain functionals with nonstandard growth, Nonlinear Anal. 19 (1992), 933-945.
[4] G. Cupini, P. Marcellini, E. Mascolo: Regularity under sharp anisotropic general growth conditions, Discrete Contin. Dyn. Syst. Ser. B 11 (2009), 66-86.
[5] G. Cupini, P. Marcellini, E. Mascolo: Local boundedness of solutions to quasilinear elliptic systems, Manuscripta Math. 137 (2012), 287-315.
[6] G. Cupini, P. Marcellini, E. Mascolo: Local boundedness of solutions to some anisotropic elliptic systems, Contemp. Math. 595 (2013), 169-186.
[7] E. DeGiorgi: Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. 3 (1957), 25-43.
[8] E. DiBenedetto: $C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7 (1983), 827-850.
[9] L.C. Evans: A new proof of local $C^{1, \alpha}$ regularity for solutions of certain degenerate elliptic p.d.e., J. Differential Equations 45 (1982), 356-373.
[10] M. GiAQuinta: Multiple integrals in the calculus of variations and nonlinear elliptic systems, Annals of Mathematics Studies, 105. Princeton University Press (1983).
[11] E. Giusti: Direct methods in the calculus of variations, World Scientific Publishing Co., Inc., River Edge, NJ (2003).
[12] O. Ladyzhenskaya, N. Ural'tseva: Linear and quasilinear elliptic equations, Academic Press, New York and London (1968).
[13] Lee JunjiE: Existence of C^{1}-solutions to certain non-uniformly degenerate elliptic equations, J. Part. Diff. Eq. 11 (1998), 9-24.
[14] J.J. Manfredi: Regularity for minima of functionals with p-growth, J. Differential Equations 76 (1988), 203-212.
[15] P. Marcellini: Regularity of minimizers of integrals in the calculus of variations with nonstandard growth conditions, Arch. Rational Mech. Anal. 105 (1989), 267-284.
[16] P. Marcellini: Regularity and existence of solutions of elliptic equations with p, q-growth conditions, J. Differential Equations 90 (1991), 1-30.
[17] P. Marcellini: Regularity for elliptic equations with general growth conditions, J. Differential Equations 105 (1993), 296-333.
[18] G. Mingione: Regularity of minima: an invitation to the dark side of the calculus of variations, Appl. Math. 51 (2006), 355-426.
[19] P. TolkSDORF: Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984), 126-150.

Giovanni Cupini: Dipartimento di Matematica, Università di Bologna, Piazza di Porta S.Donato 5, 40126 - Bologna, Italy.

E-mail address: giovanni.cupini@unibo.it
Paolo Marcellini and Elvira Mascolo: Dipartimento di Matematica e Informatica "U. Dini", Università di Firenze, Viale Morgagni 67/A, 50134 - Firenze, Italy.

E-mail address: marcellini@math.unifi.it
E-mail address: mascolo@math.unifi.it

[^0]: 2000 Mathematics Subject Classification. Primary: 35J25; Secondary: 35B65.
 Key words and phrases. Elliptic equation, existence of solutions, Lipschitz regularity, p, q-growth conditions.
 Acknowledgement: The authors have been supported by the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). .

