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ABSTRACT. For a complete noncompact connected Riemannian
manifold with bounded geometry M", we prove that the isoperimetric
profile function I~ is continuous. Here for bounded geometry we
mean that M have Ricci curvature bounded below and volume of balls
of radius 1, uniformly bounded below with respect to its centers. Then
under an extra hypothesis on the geometry of M, we apply this result
to prove some differentiability property of Ij; and a differential
inequality satisfied by Ins, extending in this way well known results for
compact manifolds, to this class of noncompact complete Riemannian
manifolds.
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1 Introduction

1.1 Isoperimetric profile

In the remaining part of this paper we always assume that all the Rie-
mannian manifolds (M, ¢g) considered are smooth with smooth Rieman-
nian metric g. We denote by V the canonical Riemannian measure
induced on M by g, and by A the (n — 1)-Hausdorff measure associated
to the canonical Riemannian length space metric d of M. When it is
already clear from the context, explicit mention of the metric g will be
suppressed in what follows. At this point we give the definition of the
isoperimetric profile function which is the main object of study in this

paper.

Definition 1.1. The isoperimetric profile function (or briefly, the isoperi-
metric profile) Ins : [0,V (M)[— [0, 400, is defined by

Ing(v) :=1nf{A(0N) : Q € 7y, V() = v}, v #0,

and Ip(0) = 0, where 15y denotes the set of relatively compact open
subsets of M with smooth boundary.

If M is compact, classical compactness arguments of geometric mea-
sure theory combined with the direct method of the calculus of varia-
tions provide a short proof of continuity of Ip; in any dimension n,
[AMN13] Proposition 1. Finally, if M is complete, non-compact, and
V(M) < +o00, an easy consequence of Theorem 2.1 in [RR04] yields
the possibility of extending the same argument and to prove the con-
tinuity of the isoperimetric profile. A careful analysis of the Theorem
1 of [Narl4] about the existence of generalized isoperimetric regions,
leads to the continuity of the isoperimetric profile I, in manifolds with
bounded geometry satisfying some other assumptions on the geometry
of the manifold at infinity, of the kind considered by the second author
and A. Mondino in [MN12], i.e., for every sequence of points diverging
to infinity, there exists a pointed smooth manifold (M, goo, Poo) Such



that (M, g,pj) — (Mo, goo, Poo) in C%-topology. This is not the case
for general complete infinite-volume manifolds M. In case of manifolds
with density in Proposition 2 of [AMN13] is exhibited an example of a
manifold with density having discontinuous isoperimetric profile. The
aim of this paper is to prove Theorem|[I]in which we give a very short and
quite elementary proof of the continuity of Ip; when M is a complete
noncompact Riemannian manifold of bounded geometry. The reason is
that in bounded geometry it is always possible to add or subtract to
an isoperimetric region a small ball centered at points of density 0 and
1 respectively. Following this philosophy it is quite easy to show that
to have an isoperimetric region in volume v ensures the upper semicon-
tinuity of Ip; at v, this is the content of Theorem The problems
appears when try to prove lower semicontinuity. To prove lower semi-
continuity we need some kind of compactness that is expressed here by a
bounded geometry condition. Geometrically speaking our assumptions
of bounded geometry ensures that the manifold at infinity is not too
thin and enough thick to permit to place a small geodesic ball B inside
an arbitrary domain D in such a way V(B) is a controlled fraction of
V(D) and this fraction depends only on V(D) and the bounds on the
geometry n, vg, k, see Definition below for the exact meaning of n,
vg, k. The proof that we present here uses only metric properties of
the manifolds with bounded geometry and for this reason it is still valid
when suitably reformulated in the context of metric measured spaces.
For the full generality of the results we need that the spaces have to be
doubling, satisfying a 1-Poincaré inequality and a curvature dimension
condition. This class of metric spaces includes for example manifolds
with density as well as Subriemannian manifolds.

1.2 Plan of the article

1. Section [1| constitutes the introduction of the paper. We state the
main results of the paper.

2. In section [2] we prove the continuity of isoperimetric profile in
bounded geometry, i.e., Theorem [I] without assuming existence
of isoperimetric regions.

3. In the third and final section [3| we prove Corollary [I] and
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1.4 Main Results

Definition 1.2. A complete Riemannian manifold (M,g), is said to
have bounded geometry if there exists a constant k € R, such that
Ricyr > k(n — 1) (ie., Ricyr > (n — 1)kg in the sense of quadratic
forms) and V(B4 (p,1)) = vo for some positive constant vo, where
Barg)(p,7) is the geodesic ball (or equivalently the metric ball) of M
centered at p and of radius r > 0.

Theorem 1 (Continuity of the isoperimetric profile). Let M™ be a com-
plete smooth Riemannian manifold with Ricyr > (n — 1)k, k € R and
V(B(p,1)) > vg > 0. Then Iy is continuous on [0,V (M)][.

Definition 1.3. For any m € N, a € [0,1], a sequence of pointed
smooth complete Riemannian manifolds is said to converge in the
pointed C™, respectively C'™ topology to a smooth manifold
M (denoted (M;,pi,g;) — (M,p,q)), if for every R > 0 we can find
a domain Qr with B(p,R) € Qr C M, a natural number vg € N,
and C™1 embeddings Fir : Qr — M;, for large i > vg such that
B(pi, R) C F; r(Q2r) and F}p(g9;) — g on Qg in the C™, respectively
C™ topology. 7

Definition 1.4. We say that a smooth Riemannian manifold (M™, g)
has C™*-locally asymptotic bounded geometry if it is of bounded
geometry and if for every diverging sequence of points (p;), there exists a
subsequence (p;,) and a pointed smooth manifold (Moo, oo, Poc) With goo
of class C™ such that the sequence of pointed manifolds (M, pj,,q) —
(Moo, §oos Po), in C™-topology.

Corollary 1 (Bavard-Pansu-Morgan-Johnson in bounded geometry).
Let M have CO-locally asymptotic bounded geometry in the sense of
Definition [1.4] Suppose that all the limit manifolds have a metric at
least of class C?. Then Iy is absolutely continuous and twice differen-
tiable almost everywhere. The left and right derivatives Iy, > I]TZ[ exist
everywhere and their singular parts are non-increasing. If k > 0 then
Iy is strictly concave on 10,V (M)[. If k = 0, then I is just concave



on )0,V (M)[. If k <0, then Ip;(v)+C(a,b)v? is concave, (Ip; could not
be concave). Moreover, we have for every k € R and almost everywhere

" I3
Iyl < ——2 — (n— 1)k, (1)
n

with equality in the case of the simply connected space form of constant
sectional curvature k. In this case, a generalized isoperimetric region is
totally umbilic.

Corollary 2 (Morgan-Johnson isoperimetric inequality in bounded ge-
ometry). Let M have C%®-bounded geometry, sectional curvature K and
Gauss-Bonnet-Chern integrand G. Suppose that

o K < Ky, or
o K < Ky, and G < Gy,

where G is the Gauss-Bonnet-Chern integrand of the model space form
of constant curvature Ky. Then for small prescribed volume, the area
of a region R of volume v is at least as great as A(OB,), where B, is a
geodesic ball of volume v in the model space, with equality only if R is
isometric to B,.

The proofs of Corollaries [1| and [2| run along the same lines as the
corresponding proofs of theorems 3.3 and 4.4 of [M.J00].

2 Continuity of Iy,

2.1 Continuity in bounded geometry

To illustrate the proof of theorem [I] we start this section with the easy
part of the proof resumed in the next lemma that is straightforward
compare [AMNI13] Proposition 1.

Theorem 2.1. Let M be a Riemannian manifold (possibly incomplete,
or possibly complete not necessarily with bounded geometry). If there
exists an isoperimetric region in volume v €]0,V(M)[ then Ins is upper
semicontinuous in v.

Proof: To prove the theorem it is enough to prove the next two
inequalities.
—>
iy L (V) < T (). (2)



—
hmv’%v""IM(U/) < IM(U) (3)
In first we prove . If v; /" v, consider an isoperimetric region D in
volume V(D) = v,
Iy (v) = A(OD).

Then for j sufficiently large one can subtract a small geodesic ball
(i.e. of small radius) Bj = B(p, ") of volume v; —v from D, centered to
a point of density 1, to obtain D; := D\ B(p, %) of volume V(D%) = v;
and A(0D%) < A(OD)+ A(9Bj). Observe here that the center p of Bj is
fixed with respect to j. Moreover 7"3- — 0, and this is always possible to
obtain in any Riemannian manifold. So by definition of Ij/(v;), holds

In(vy) < A((?D;) < A(OD) + A(0Bj) = I (v) + A(0By),
which implies that
— —
limI/(vj) < HmA(OD) + A(0B;) < Ip(v),

since the sequence v; is arbitrary we get . In second, we prove . If
vj \, v, then take an isoperimetric region in volume v, i.e., V(D) = v,
A(OD) = Ip(v) and then add a small ball B; := B(p,r;) of volume
vj — v to D outside D to obtain D) := DUB; of volume V(D)) = v;
and A(OD’;) = A(OD) + A(0Bj). Observe again that the center p of B;
here is fixed with respect to j and r; — 0, this is always possible in any
Riemannian manifold. By definition of Ij;(v;) we get

I (vj) < A(OD)) = A(OD) + A(9Bj) = Iy (v) + A(9Bj),
now taking the lim it follows
limIyy (v;) < im[A(OD) + A(DB;)] = I (v) + IimADB;) = Iy (v),

since the sequence v; is arbitrary we get , which completes the proof.
q.e.d.

At this point, we may finish the proof of the main Theorem
Proof: We will prove separately the following four inequalities that
together will give the proof of our theorem

IM(U) < h_r,nv’—w*IM(v,)' (4)

IM(U) < h_n>1v/—>v+IM(U/)‘ (5)



fimy - Tar(v)) < Tar(v). (6)
fimy s Tar (V) < Tag(v). (7)

To prove we want to add a small ball. Let v; / v, take a domain D
in volume v; such that V(D;) = v; and Ip(v;) < A(0D;) + % then add
a small ball Bj := B(pj,7;) to D; outside D; to obtain D’ of volume v
and A(0D}) = A(0Dj) + A(9Bj). This is possible because D; by the
very definition (see Definition may be chosen bounded. It is worth
to observe here that the centers p; are variable and not fixed as in the
proof of Theorem So we need to use Bishop-Gromov’s Theorem to
bound the area of B; uniformly w.r.t. the centers. Having in mind the
definition of Ij;(v) it is easy to see that

In(v) = In(V(D})) < A(9D;) = A@D) + A@B,).  (8)

Now observe that by Lemma 3.2 of [MN12] or Lemma 3.5 of [M.J00|] that
A(0B;) < A(0Bup (v — v;)) where Byre (w) is a geodesic ball enclosing
volume w in M. As it is easy to check A(0Byy(w)) — 0 when w — 0
because the centers could be chosen fixed in the comparison manifold.
Which implies that A(0Buy (v —v;)) — 0, when j — +o0 and a fortiori
that lim;—, ycA(0B;) = 0. Then

Ini(v) < A(OD}) < In(vj) + ; + A@Bug (v — v)) < lim T (). (9)

By the arbitrariness of the initial sequence of volumes (v;), . ) follows
readily.

To show the strategy is now to subtract a small ball to an even-
tually diverging (to infinity) sequence of domains that could become
thinner and thinner without leaving the opportunity of placing a small
ball of the right value of the volume inside them. To rule out this possi-
bility Lemma 2.5 of [Nar14] is needed. This is a more delicate task with
respect to the preceding construction in which we add a small ball to a
relatively compact domain.

Remark 2.1. From the proof of Lemma 2.5 of [Naru/ we argue that
when [v — /| ~ 1" << v, mf) = 3ei(n, k,r) = Py 1>\/I7
Let D such that V(D) = v’ > v and then take r satisfying ﬁ
v — v, by Lemma 2.5 of [Narl4] we may take a point p € M such that
for small v — v one have
r™vg

'~



This is possible because for small |v — v/| we can take r small enough
to obtain that the constant m(, produced by Lemma 2.5 of [Narl4] co-
incides with the right hand side of the preceding inequality. An easy

consequence of is that
V(D\B(p,?")) = V(D) - V(B(p,?") mD) <w,

it follows that we may choose 0 < r’ < r satisfying V(D \ B(p,r’)) = v.

Fix n > 0 and consider an almost isoperimetric region D in volume v’,
i.e., such that V(D) = and

Ly (v') < A(OD) < In(v') +, (11)

by Bishop-Gromov’s theorem it is true that A(0Bu(p,7')) < A(0Bwy (1)),
then we have the following

In(v) < A@O(D\ Bu(p,r'))) < A(OD) + A(@Bum(p,r")) (12)
< In(V') +n+ AOBup(r)), (13)

1

with ¢/ < 7 = (2U=ver—DVE) " By the arbitrariness of n > 0 we get
vo

Iy (v) < Iy (V) +A(GBMZ(T’)). (14)
Taking limits in the last inequality yields

IM(U) < li_n)lv/—w'*‘IM(U/)' (15)

The last two inequalities are relative to the fim property and are
analogous to the case in which there is existence of an isoperimetric
region in volume v, but with the additional difficulty that isoperimetric
regions in volume v does not necessarily exists. So we apply the same
ideas of the proof of Theorem to a minimizing sequence in volume
v instead of a genuine isoperimetric region.

Now, we prove @ If v; /" v, consider an almost minimizer D, in
volume V(D;) = v, i.e.,

L(v) < A(D;) < Inr(v) + j
Then subtract a small ball B; of volume v — v; to D; as in the proof
of (5), to obtain D’ := Dj;\ B(p;,r}) of volume V(D’) = v; < v and
A(9D}) < A(ODj) + A(9Bj), so by definition it holds

Ing(vj) < A(E?D;-) < A(0Dj) + A(0By),



which implies (as in the proof of (5))) that
— —
limI/(v;) < Um[A(OD;) + A(0Bj)] = In(v).

Since the sequence (v;) is arbitrary we get (0).

Finally we prove . This last part of the proof is analogous in some
respects to the proof of , because we add a small ball. If v; \, v,
then take a minimizing sequence D; in volume v, ie., V(D;) = v,
A(ODj) \, Ip(v) and then add a small ball B; to D; outside D; to
obtain Dj of volume V/(D’) = v; and A(9D’;) = A(0D;) + A(0B;),

In(vy) < A(@D;) = A(0D;) + A(0By),
now taking the lim it follows as before
— — —
limIM(vj) < hIIlA(aDJ) + A(E)B]) = IM(U) + llmA(aBj) = IM(U),

since the sequence v; is arbitrary we get , which completes the proof.
q.e.d.

3 Differentiability of I,

Lemma 3.1 (Lemma 3.2 of [MJ00] improved). Let f :Ja,b[— R be an
upper semicontinuous (resp. lower semicontinuous) function. Then f
is concave (resp. convex) if and only if for every xo €|a,b| there exists
an open interval I, Cla,b] of xo and a concave (resp. convex) C?
function gg, : Iz, — R such that gz, = f(x0) and f(z) < gz, (x) (resp.
f(z) > gz (x)) for every x € I,.

We recall here the generalized existence theorem 1 of [Narl4] stated

under more general assumptions to check why this is legitimate one can
see Remark 2.9 of [MN12], or Remarks

Theorem 3.1 (Generalized existence). Let M have C°-locally asymp-
totically bounded geometry in the sense of Definition[1.J} Given a posi-
tive volume 0 < v < V(M), there are a finite number of limit manifolds
at infinity such that their disjoint union with M contains an isoperimet-
ric region of volume v and perimeter Ins(v). Moreover, the number of
limit manifolds is at worst linear in v.
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Remark 3.1. The reqularity discussion made there in Remark 2.2 of
[MN12], is necessary in the proof of Corollary |1, where we need to do
analysis on the limit manifolds, applying a (by now classical) formula
for the second variation of the area functional on those isoperimetric
regions which eventually lie in a limit manifold of possibly non-smooth
boundary. The assumption of C° convergence of the metric tensor in
the preceding lemma is due to the necessity of transporting volumes and
perimeters in the limit manifold.

Remark 3.2. We observe that if (M;, g;,p;) — (M, g,p) in the pointed
Gromov-Hausdorff topology and M; satisfy Ricg, > (n — 1)kogi, it is
not true, in general, that Ricy > (n — 1)kog. Instead, if (M;, gi,pi) —
(M7gvp) in the pomted CO'tOPOZOgy then (Mzagza‘/zapz> - (M7gav7p)
converge in the measured pointed Gromov-Hausdorff topology. There-
fore, if all the Riemannian n-manifolds (M;, g;) satisfy Ricg, > (n —
1)kog; then also the limit Riemannian manifold (M, g) satisfies Ricg >
(n — 1)kog (see Section 7 in [AG0Y]). Notice that for the convergence
of the Ricci curvature one should need a stronger convergence of the
(M;, gi,pi) to (M, g,p), say in C*-topology; here we just need the con-
vergence of a lower bound.

Remark 3.3. One possible application is to simplify part of the proof
of different papers about existence and caracterisation of isoperimetric
regions in non compact Riemannian manifolds and prove new theorems
of the same kind.

We can finish now the proof of Corollary

Proof: Using the generalized existence theorem of [Narl4] and eval-
uating the second variation formula for the area functional on a gen-
eralized isoperimetric region €5 in volume V(€;) = v we can con-
struct a smooth function f; defined in a small neighborhood of o,
that we can compare locally with Ip;. Consider the equidistant do-
mains = {xr e M : d(z,Q) <t}, if r; >t >0, and Q := M\
{zeM: dlz,M\ Q) <t},if —ry <t <0, where 3 > 0 is the normal
injectivity radius of 0€Q2z. Consider the inverse function of ¢ — V(§2;) as
a function of the volume, v +— t(v), and finally set fz(v) := A(9Qy () for
v belonging to a small neighbourhood I3 = [v—¢e3, v+€5]. To be rigorous
in this construction we have to take care of the singular part of domains
Q. This is done, carefully, in Proposition 2.1 and 2.3 of [Bay04]. Here
we just ignore this technical complication, to make the exposition sim-
pler to read. We just observe that the proof that we give here works
mutatis mutandis also if we consider the case in which €2 is allowed to
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have a nonvoid singular part. Hence, for every v €]0,V(M)[, fz gives
smooth function f; : [0 —eg,v+e5] — [0, +00[, such that f3(0) = Ip(0)
and fz > Ips. A standard application of the second variation formula
see (V.4.3) [Cha06], or [BP86], shows that

"(v) = L 2 icci(v n-l

Fi0) =~ s { L, (1P Ricitan } (16)
1 _(n—l)/{:
E(U)S f{)(’U) . (17)

If £ > 0, then f3 is concave and a straightforward application of Lemma
implies that Ijs is concave in all |0, V/(M)[. If £ < 0 then

frw) < —W, (18)
C=C(n,k,a,b) = m, (19)

where 0prqp = inf{lps(v) : v € [a,b]} is strictly positive because by
Theorem (1| Ips is continuous. For every v €]a, b it is easily seen that
I (v) + C(a,b)v? < f5(v) + Cla, b)v? and (fz(v) + C(a,b)v?)" < 0 for
every v €|a,b[Nl;. By Lemma for a,b €]0, V (M), In;(v)+C(a,b)v?
is concave in [a, b]. Hence, I5;(v)+C(a, b)v? is locally Lipschitz and it is
straightforward to see that Iy is locally Lipschitz too, with I'" < f/. <
I'", with equality holding at all but a countable set of points, which are
the only points of discontinuity of I’" and I'~. Moreover I'* and I'™ are
nonincreasing so the set of points at which I,; is nonderivable is at most
countable, moreover I, or I}, + 2Cv are respectively monotone nonin-
cresing see for this standard convexity arguments Corollary 2, page 29 of
[Bou04] this implies that they are special cases of absolutely continuous
functions and for this reason differentiable almost everywhere. So ex-
ists I,(v) almost everywhere. Now, following [Bay04], for an arbitrary
function f, set

f(xo+9) + f(wo — ) — 2f(x0)
62 '

D2 f () = limg_g (20)

When f is differentiable two times at xg it is straightforward to see that
1" (x0) = D2f(xp). From certainly follows

I (v) = D21y (v) < D2 f3(v) = fi (v),
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for every v € I3.
In a point v at which I, is twice differentiable we observe that

I" v (0) = D21y (D) < f2(0).
Hence, yields

'3 ()
Ing(0) 1" 3 (0) < Ing(0) fy (0) < —Ipg(0) (M —(n— 1)k> ;

n—1

which is exactly , because |I1|> > W2 where h = 15(0) by the first
h

= n—-1°
variation formula, if equality holds in 1} then |I1]? = T—Ql’ which is

equivalent to say that the regular part of 925 is totally umbilic. g.e.d.
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