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abstract. For a complete noncompact connected Riemannian
manifold with bounded geometry Mn, we prove that the isoperimetric

profile function IMn is continuous. Here for bounded geometry we
mean that M have Ricci curvature bounded below and volume of balls
of radius 1, uniformly bounded below with respect to its centers. Then
under an extra hypothesis on the geometry of M , we apply this result

to prove some differentiability property of IM and a differential
inequality satisfied by IM , extending in this way well known results for
compact manifolds, to this class of noncompact complete Riemannian

manifolds.
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1 Introduction

1.1 Isoperimetric profile

In the remaining part of this paper we always assume that all the Rie-
mannian manifolds (M, g) considered are smooth with smooth Rieman-
nian metric g. We denote by V the canonical Riemannian measure
induced on M by g, and by A the (n− 1)-Hausdorff measure associated
to the canonical Riemannian length space metric d of M . When it is
already clear from the context, explicit mention of the metric g will be
suppressed in what follows. At this point we give the definition of the
isoperimetric profile function which is the main object of study in this
paper.

Definition 1.1. The isoperimetric profile function (or briefly, the isoperi-
metric profile) IM : [0, V (M)[→ [0,+∞[, is defined by

IM (v) := inf{A(∂Ω) : Ω ∈ τM , V (Ω) = v}, v 6= 0,

and IM (0) = 0, where τM denotes the set of relatively compact open
subsets of M with smooth boundary.

If M is compact, classical compactness arguments of geometric mea-
sure theory combined with the direct method of the calculus of varia-
tions provide a short proof of continuity of IM in any dimension n,
[AMN13] Proposition 1. Finally, if M is complete, non-compact, and
V (M) < +∞, an easy consequence of Theorem 2.1 in [RR04] yields
the possibility of extending the same argument and to prove the con-
tinuity of the isoperimetric profile. A careful analysis of the Theorem
1 of [Nar14] about the existence of generalized isoperimetric regions,
leads to the continuity of the isoperimetric profile IM in manifolds with
bounded geometry satisfying some other assumptions on the geometry
of the manifold at infinity, of the kind considered by the second author
and A. Mondino in [MN12], i.e., for every sequence of points diverging
to infinity, there exists a pointed smooth manifold (M∞, g∞, p∞) such
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that (M, g, pj) → (M∞, g∞, p∞) in C0-topology. This is not the case
for general complete infinite-volume manifolds M . In case of manifolds
with density in Proposition 2 of [AMN13] is exhibited an example of a
manifold with density having discontinuous isoperimetric profile. The
aim of this paper is to prove Theorem 1 in which we give a very short and
quite elementary proof of the continuity of IM when M is a complete
noncompact Riemannian manifold of bounded geometry. The reason is
that in bounded geometry it is always possible to add or subtract to
an isoperimetric region a small ball centered at points of density 0 and
1 respectively. Following this philosophy it is quite easy to show that
to have an isoperimetric region in volume v ensures the upper semicon-
tinuity of IM at v, this is the content of Theorem 2.1. The problems
appears when try to prove lower semicontinuity. To prove lower semi-
continuity we need some kind of compactness that is expressed here by a
bounded geometry condition. Geometrically speaking our assumptions
of bounded geometry ensures that the manifold at infinity is not too
thin and enough thick to permit to place a small geodesic ball B inside
an arbitrary domain D in such a way V (B) is a controlled fraction of
V (D) and this fraction depends only on V (D) and the bounds on the
geometry n, v0, k, see Definition 1.2 below for the exact meaning of n,
v0, k. The proof that we present here uses only metric properties of
the manifolds with bounded geometry and for this reason it is still valid
when suitably reformulated in the context of metric measured spaces.
For the full generality of the results we need that the spaces have to be
doubling, satisfying a 1-Poincaré inequality and a curvature dimension
condition. This class of metric spaces includes for example manifolds
with density as well as Subriemannian manifolds.

1.2 Plan of the article

1. Section 1 constitutes the introduction of the paper. We state the
main results of the paper.

2. In section 2 we prove the continuity of isoperimetric profile in
bounded geometry, i.e., Theorem 1, without assuming existence
of isoperimetric regions.

3. In the third and final section 3, we prove Corollary 1 and 2.
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1.4 Main Results

Definition 1.2. A complete Riemannian manifold (M, g), is said to
have bounded geometry if there exists a constant k ∈ R, such that
RicM ≥ k(n − 1) (i.e., RicM ≥ (n − 1)kg in the sense of quadratic
forms) and V (B(M,g)(p, 1)) ≥ v0 for some positive constant v0, where
B(M,g)(p, r) is the geodesic ball (or equivalently the metric ball) of M
centered at p and of radius r > 0.

Theorem 1 (Continuity of the isoperimetric profile). Let Mn be a com-
plete smooth Riemannian manifold with RicM ≥ (n − 1)k, k ∈ R and
V (B(p, 1)) ≥ v0 > 0. Then IM is continuous on [0, V (M)[.

Definition 1.3. For any m ∈ N, α ∈ [0, 1], a sequence of pointed
smooth complete Riemannian manifolds is said to converge in the
pointed Cm,α, respectively Cm topology to a smooth manifold
M (denoted (Mi, pi, gi) → (M,p, g)), if for every R > 0 we can find
a domain ΩR with B(p,R) ⊆ ΩR ⊆ M , a natural number νR ∈ N,
and Cm+1 embeddings Fi,R : ΩR → Mi, for large i ≥ νR such that
B(pi, R) ⊆ Fi,R(ΩR) and F ∗i,R(gi) → g on ΩR in the Cm,α, respectively
Cm topology.

Definition 1.4. We say that a smooth Riemannian manifold (Mn, g)
has Cm,α-locally asymptotic bounded geometry if it is of bounded
geometry and if for every diverging sequence of points (pj), there exists a
subsequence (pjl) and a pointed smooth manifold (M∞, g∞, p∞) with g∞
of class Cm,α such that the sequence of pointed manifolds (M,pjl , g)→
(M∞, g∞, p∞), in Cm,α-topology.

Corollary 1 (Bavard-Pansu-Morgan-Johnson in bounded geometry).
Let M have C0-locally asymptotic bounded geometry in the sense of
Definition 1.4. Suppose that all the limit manifolds have a metric at
least of class C2. Then IM is absolutely continuous and twice differen-
tiable almost everywhere. The left and right derivatives I−M ≥ I+

M exist
everywhere and their singular parts are non-increasing. If k > 0 then
IM is strictly concave on ]0, V (M)[. If k = 0, then IM is just concave
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on ]0, V (M)[. If k < 0, then IM (v)+C(a, b)v2 is concave, (IM could not
be concave). Moreover, we have for every k ∈ R and almost everywhere

IMI
′′
M ≤ −

I ′2M
n− 1

− (n− 1)k, (1)

with equality in the case of the simply connected space form of constant
sectional curvature k. In this case, a generalized isoperimetric region is
totally umbilic.

Corollary 2 (Morgan-Johnson isoperimetric inequality in bounded ge-
ometry). Let M have C2,α-bounded geometry, sectional curvature K and
Gauss-Bonnet-Chern integrand G. Suppose that

• K < K0, or

• K ≤ K0, and G ≤ G0,

where G0 is the Gauss-Bonnet-Chern integrand of the model space form
of constant curvature K0. Then for small prescribed volume, the area
of a region R of volume v is at least as great as A(∂Bv), where Bv is a
geodesic ball of volume v in the model space, with equality only if R is
isometric to Bv.

The proofs of Corollaries 1 and 2 run along the same lines as the
corresponding proofs of theorems 3.3 and 4.4 of [MJ00].

2 Continuity of IM

2.1 Continuity in bounded geometry

To illustrate the proof of theorem 1 we start this section with the easy
part of the proof resumed in the next lemma that is straightforward
compare [AMN13] Proposition 1.

Theorem 2.1. Let M be a Riemannian manifold (possibly incomplete,
or possibly complete not necessarily with bounded geometry). If there
exists an isoperimetric region in volume v ∈]0, V (M)[ then IM is upper
semicontinuous in v.

Proof: To prove the theorem it is enough to prove the next two
inequalities. −→

limv′→v−IM (v′) ≤ IM (v). (2)
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−→
limv′→v+IM (v′) ≤ IM (v). (3)

In first we prove (2). If vj ↗ v, consider an isoperimetric region D in
volume V (D) = v,

IM (v) = A(∂D).

Then for j sufficiently large one can subtract a small geodesic ball
(i.e. of small radius) Bj = B(p, r′j) of volume vj−v from D, centered to
a point of density 1, to obtain D′j := D \B(p, r′j) of volume V (D′j) = vj
and A(∂D′j) ≤ A(∂D)+A(∂Bj). Observe here that the center p of Bj is
fixed with respect to j. Moreover r′j → 0, and this is always possible to
obtain in any Riemannian manifold. So by definition of IM (vj), holds

IM (vj) ≤ A(∂D′j) ≤ A(∂D) +A(∂Bj) = IM (v) +A(∂Bj),

which implies that

−→
limIM (vj) ≤

−→
limA(∂D) +A(∂Bj) ≤ IM (v),

since the sequence vj is arbitrary we get (2). In second, we prove (3). If
vj ↘ v, then take an isoperimetric region in volume v, i.e., V (D) = v,
A(∂D) = IM (v) and then add a small ball Bj := B(p, rj) of volume
vj − v to D outside D to obtain D′j := D∪̊Bj of volume V (D′j) = vj
and A(∂D′j) = A(∂D) +A(∂Bj). Observe again that the center p of Bj
here is fixed with respect to j and rj → 0, this is always possible in any
Riemannian manifold. By definition of IM (vj) we get

IM (vj) ≤ A(∂D′j) = A(∂D) +A(∂Bj) = IM (v) +A(∂Bj),

now taking the
−→
lim it follows

−→
limIM (vj) ≤

−→
lim[A(∂D) +A(∂Bj)] = IM (v) +

−→
limA(∂Bj) = IM (v),

since the sequence vj is arbitrary we get (3), which completes the proof.
q.e.d.

At this point, we may finish the proof of the main Theorem 1.
Proof: We will prove separately the following four inequalities that
together will give the proof of our theorem 1.

IM (v) ≤ lim−→v′→v−IM (v′). (4)

IM (v) ≤ lim−→v′→v+IM (v′). (5)
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−→
limv′→v−IM (v′) ≤ IM (v). (6)
−→
limv′→v+IM (v′) ≤ IM (v). (7)

To prove (4) we want to add a small ball. Let vj ↗ v, take a domain Dj

in volume vj such that V (Dj) = vj and IM (vj) ≤ A(∂Dj) + 1
j then add

a small ball Bj := B(pj , rj) to Dj outside Dj to obtain D′j of volume v
and A(∂D′j) = A(∂Dj) + A(∂Bj). This is possible because Dj by the
very definition (see Definition 1.1) may be chosen bounded. It is worth
to observe here that the centers pj are variable and not fixed as in the
proof of Theorem 2.1. So we need to use Bishop-Gromov’s Theorem to
bound the area of Bj uniformly w.r.t. the centers. Having in mind the
definition of IM (v) it is easy to see that

IM (v) = IM (V (D′j)) ≤ A(∂Dj) = A(∂Dj) +A(∂Bj). (8)

Now observe that by Lemma 3.2 of [MN12] or Lemma 3.5 of [MJ00] that
A(∂Bj) ≤ A(∂BMn

k
(v − vj)) where BMn

k
(w) is a geodesic ball enclosing

volume w in Mn
k . As it is easy to check A(∂BMn

k
(w))→ 0 when w → 0

because the centers could be chosen fixed in the comparison manifold.
Which implies that A(∂BMn

k
(v− vj))→ 0, when j → +∞ and a fortiori

that lim−→j→+∞A(∂Bj) = 0. Then

IM (v) ≤ A(∂D′j) ≤ IM (vj) +
1
j

+A(∂BMn
k
(v − vj)) ≤ lim−→ IM (vj). (9)

By the arbitrariness of the initial sequence of volumes (vj), (4) follows
readily.

To show (5) the strategy is now to subtract a small ball to an even-
tually diverging (to infinity) sequence of domains that could become
thinner and thinner without leaving the opportunity of placing a small
ball of the right value of the volume inside them. To rule out this possi-
bility Lemma 2.5 of [Nar14] is needed. This is a more delicate task with
respect to the preceding construction in which we add a small ball to a
relatively compact domain.

Remark 2.1. From the proof of Lemma 2.5 of [Nar14] we argue that
when |v − v′| ∼ rn << v, m′0 = 1

2c1(n, k, r) = rn

2e(n−1)
√
|k|

.

LetD such that V (D) = v′ > v and then take r satisfying rnv0
2e(n−1)

√
k

=
v′ − v, by Lemma 2.5 of [Nar14] we may take a point p ∈ M such that
for small v′ − v one have

V (B(p, r) ∩D) >
rnv0

2e(n−1)
√
k

= v′ − v. (10)
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This is possible because for small |v − v′| we can take r small enough
to obtain that the constant m′0 produced by Lemma 2.5 of [Nar14] co-
incides with the right hand side of the preceding inequality. An easy
consequence of (10) is that

V (D \B(p, r)) = V (D)− V (B(p, r) ∩D) < v,

it follows that we may choose 0 < r′ < r satisfying V (D \B(p, r′)) = v.
Fix η > 0 and consider an almost isoperimetric region D in volume v′,
i.e., such that V (D) = v′ and

IM (v′) ≤ A(∂D) ≤ IM (v′) + η, (11)

by Bishop-Gromov’s theorem it is true thatA(∂BM (p, r′)) ≤ A(∂BMn
k
(r′)),

then we have the following

IM (v) ≤ A(∂(D \BM (p, r′))) ≤ A(∂D) +A(∂BM (p, r′)) (12)
≤ IM (v′) + η +A(∂BMn

k
(r′)), (13)

with r′ < r =
(

2v
′−v
v0

e(n−1)
√
k
) 1

n . By the arbitrariness of η > 0 we get

IM (v) ≤ IM (v′) +A(∂BMn
k
(r′)). (14)

Taking limits in the last inequality yields

IM (v) ≤ lim−→v′→v+IM (v′). (15)

The last two inequalities are relative to the
−→
lim property and are

analogous to the case in which there is existence of an isoperimetric
region in volume v, but with the additional difficulty that isoperimetric
regions in volume v does not necessarily exists. So we apply the same
ideas of the proof of Theorem 2.1 to a minimizing sequence in volume
v instead of a genuine isoperimetric region.

Now, we prove (6). If vj ↗ v, consider an almost minimizer Dj in
volume V (Dj) = v, i.e.,

IM (v) ≤ A(∂Dj) ≤ IM (v) +
1
j
.

Then subtract a small ball Bj of volume v − vj to Dj as in the proof
of (5), to obtain D′j := Dj \ B(pj , r′j) of volume V (D′j) = vj < v and
A(∂D′j) ≤ A(∂Dj) +A(∂Bj), so by definition it holds

IM (vj) ≤ A(∂D′j) ≤ A(∂Dj) +A(∂Bj),
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which implies (as in the proof of (5)) that

−→
limIM (vj) ≤

−→
lim[A(∂Dj) +A(∂Bj)] = IM (v).

Since the sequence (vj) is arbitrary we get (6).
Finally we prove (7). This last part of the proof is analogous in some

respects to the proof of (4), because we add a small ball. If vj ↘ v,
then take a minimizing sequence Dj in volume v, i.e., V (Dj) = v,
A(∂Dj) ↘ IM (v) and then add a small ball Bj to Dj outside Dj to
obtain D′j of volume V (D′j) = vj and A(∂D′j) = A(∂Dj) +A(∂Bj),

IM (vj) ≤ A(∂D′j) = A(∂Dj) +A(∂Bj),

now taking the
−→
lim it follows as before

−→
limIM (vj) ≤

−→
limA(∂Dj) +A(∂Bj) = IM (v) +

−→
limA(∂Bj) = IM (v),

since the sequence vj is arbitrary we get (7), which completes the proof.
q.e.d.

3 Differentiability of IM

Lemma 3.1 (Lemma 3.2 of [MJ00] improved). Let f :]a, b[→ R be an
upper semicontinuous (resp. lower semicontinuous) function. Then f
is concave (resp. convex) if and only if for every x0 ∈]a, b[ there exists
an open interval Ix0 ⊆]a, b[ of x0 and a concave (resp. convex) C2

function gx0 : Ix0 → R such that gx0 = f(x0) and f(x) ≤ gx0(x) (resp.
f(x) ≥ gx0(x)) for every x ∈ Ix0.

We recall here the generalized existence theorem 1 of [Nar14] stated
under more general assumptions to check why this is legitimate one can
see Remark 2.9 of [MN12], or Remarks 3.1, 3.2.

Theorem 3.1 (Generalized existence). Let M have C0-locally asymp-
totically bounded geometry in the sense of Definition 1.4. Given a posi-
tive volume 0 < v < V (M), there are a finite number of limit manifolds
at infinity such that their disjoint union with M contains an isoperimet-
ric region of volume v and perimeter IM (v). Moreover, the number of
limit manifolds is at worst linear in v.
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Remark 3.1. The regularity discussion made there in Remark 2.2 of
[MN12], is necessary in the proof of Corollary 1, where we need to do
analysis on the limit manifolds, applying a (by now classical) formula
for the second variation of the area functional on those isoperimetric
regions which eventually lie in a limit manifold of possibly non-smooth
boundary. The assumption of C0 convergence of the metric tensor in
the preceding lemma is due to the necessity of transporting volumes and
perimeters in the limit manifold.

Remark 3.2. We observe that if (Mi, gi, pi)→ (M, g, p) in the pointed
Gromov-Hausdorff topology and Mi satisfy Ricgi ≥ (n − 1)k0gi, it is
not true, in general, that Ricg ≥ (n − 1)k0g. Instead, if (Mi, gi, pi) →
(M, g, p) in the pointed C0-topology then (Mi, gi, Vi, pi) → (M, g, V, p)
converge in the measured pointed Gromov-Hausdorff topology. There-
fore, if all the Riemannian n-manifolds (Mi, gi) satisfy Ricgi ≥ (n −
1)k0gi then also the limit Riemannian manifold (M, g) satisfies Ricg ≥
(n − 1)k0g (see Section 7 in [AG09]). Notice that for the convergence
of the Ricci curvature one should need a stronger convergence of the
(Mi, gi, pi) to (M, g, p), say in C2-topology; here we just need the con-
vergence of a lower bound.

Remark 3.3. One possible application is to simplify part of the proof
of different papers about existence and caracterisation of isoperimetric
regions in non compact Riemannian manifolds and prove new theorems
of the same kind.

We can finish now the proof of Corollary 1.
Proof: Using the generalized existence theorem of [Nar14] and eval-

uating the second variation formula for the area functional on a gen-
eralized isoperimetric region Ωv̄ in volume V (Ωv̄) = v̄ we can con-
struct a smooth function fv̄ defined in a small neighborhood of v̄,
that we can compare locally with IM . Consider the equidistant do-
mains Ωt := {x ∈M : d(x,Ωv̄) ≤ t}, if rv̄ ≥ t ≥ 0, and Ωt := M \
{x ∈M : d(x,M \ Ωv̄) ≤ t}, if −rv̄ ≤ t < 0, where rv̄ > 0 is the normal
injectivity radius of ∂Ωv̄. Consider the inverse function of t 7→ V (Ωt) as
a function of the volume, v 7→ t(v), and finally set fv̄(v) := A(∂Ωt(v)) for
v belonging to a small neighbourhood Iv̄ = [v̄−εv̄, v̄+εv̄]. To be rigorous
in this construction we have to take care of the singular part of domains
Ωt. This is done, carefully, in Proposition 2.1 and 2.3 of [Bay04]. Here
we just ignore this technical complication, to make the exposition sim-
pler to read. We just observe that the proof that we give here works
mutatis mutandis also if we consider the case in which Ω is allowed to
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have a nonvoid singular part. Hence, for every v̄ ∈]0, V (M)[, fv̄ gives
smooth function fv̄ : [v̄−εv̄, v̄+εv̄]→ [0,+∞[, such that fv̄(v̄) = IM (v̄)
and fv̄ ≥ IM . A standard application of the second variation formula
see (V.4.3) [Cha06], or [BP86], shows that

f ′′v̄ (v) = − 1
f2
v̄ (v)

{∫
∂Ωt(v)

(|II|2 +Ricci(ν))dHn−1

}
. (16)

f ′′v̄ (v) ≤ −(n− 1)k
fv̄(v)

. (17)

If k ≥ 0, then fv̄ is concave and a straightforward application of Lemma
3.1 implies that IM is concave in all ]0, V (M)[. If k < 0 then

f ′′v̄ (v) ≤ −(n− 1)k
IM (v)

, (18)

C = C(n, k, a, b) :=
(n− 1)k
2δM,a,b

, (19)

where δM,a,b := inf{IM (v) : v ∈ [a, b]} is strictly positive because by
Theorem 1, IM is continuous. For every v̄ ∈]a, b[ it is easily seen that
IM (v) + C(a, b)v2 ≤ fv̄(v) + C(a, b)v2 and (fv̄(v) + C(a, b)v2)′′ ≤ 0 for
every v ∈]a, b[∩Iv̄. By Lemma 3.1, for a, b ∈]0, V (M)[, IM (v)+C(a, b)v2

is concave in [a, b]. Hence, IM (v)+C(a, b)v2 is locally Lipschitz and it is
straightforward to see that IM is locally Lipschitz too, with I ′+ ≤ f ′v̄ ≤
I ′−, with equality holding at all but a countable set of points, which are
the only points of discontinuity of I ′+ and I ′−. Moreover I ′+ and I ′− are
nonincreasing so the set of points at which IM is nonderivable is at most
countable, moreover I ′M or I ′M + 2Cv are respectively monotone nonin-
cresing see for this standard convexity arguments Corollary 2, page 29 of
[Bou04] this implies that they are special cases of absolutely continuous
functions and for this reason differentiable almost everywhere. So ex-
ists I ′′M (v) almost everywhere. Now, following [Bay04], for an arbitrary
function f , set

D2f(x0) :=
−→
limδ→0

f(x0 + δ) + f(x0 − δ)− 2f(x0)
δ2

. (20)

When f is differentiable two times at x0 it is straightforward to see that
f ′′(x0) = D2f(x0). From (20) certainly follows

I ′′M (v) = D2IM (v) ≤ D2fv̄(v) = f ′′v̄ (v),
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for every v ∈ Iv̄.
In a point v̄ at which IM is twice differentiable we observe that

I ′′M (v̄) = D2IM (v̄) ≤ f ′′v̄ (v̄).

Hence, (16) yields

IM (v̄)I ′′M (v̄) ≤ IM (v̄)f ′′v̄ (v̄) ≤ −IM (v̄)

(
I ′2M (v̄)
n− 1

− (n− 1)k

)
,

which is exactly (1), because |II|2 ≥ h2

n−1 , where h = f ′v̄(v̄) by the first
variation formula, if equality holds in (1), then |II|2 = h2

n−1 , which is
equivalent to say that the regular part of ∂Ωv̄ is totally umbilic. q.e.d.
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