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Abstract. In this short note we show how, by exploiting the regular-
ity theory for solutions to the Monge-Ampère equation, Petty’s equation
characterizes ellipsoids without assuming any a priori regularity assump-
tion.

1. Introduction

Affine inequalities play a very important role in the study of the geometry
of convex bodies and they also find applications in several different fields (e.g.
ordinary and partial differential equation, functional analysis). In [13] Petty
treated three closely related affine problems, namely the Blaschke-Santalò
inequality, the affine isoperimetric inequality and the geominimal surface
area inequality 1, and he characterized ellipsoids as the only extremal bodies
for these inequalities. In order to establish this characterization he proved
that if K ⊂ RN is an extremal convex body for these inequalities, then
necessarily there must exist a positive constant cK such that

(1.1) fK(ω) = cK h
−N−1
K (ω),

for every ω ∈ SN−1. Here

hK(ω) = max{ω · x : x ∈ K}

denotes the support function of the convex body K and fK is the curvature
function of K, see Section 2.1. Petty was then able to show that (1.1) implies
that K is an ellipsoid if N = 2. If N ≥ 3 he obtained the same result only
under the assumption that K is a C2-regular convex body or that K is a
body of revolution. In any case this was sufficient to prove that extremal
sets for the above mentioned problems are ellipsoids since symmetrization
techniques allow to reduce to the case of axially symmetric sets.

It remains however an interesting question to understand to which extent
(1.1) characterizes ellipsoids without assuming any a priori regularity as-
sumption on K, see for instance [6]. In this short note we prove that every
convex body satisfying (1.1) is actually an ellipsoid. More precisely we prove

Theorem 1.1. Let K be a convex body which possesses a curvature function
fK ; if equation (1.1) is satisfied for some positive constant cK , then K is
an ellipsoid.
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1For the position of these problems and a comprehensive overview on the subject we

refer to [6] and [13] and the references therein.

1



2 MARINI AND DE PHILIPPIS

Besides its own interest Theorem 1.1 will have applications in several
problems in which (1.1) characterizes extremal bodies, but for which it is a
priori unknown their regularity as well as it can provide new short proofs
of some results in which (1.1) appears. As examples let us quote [9, 21, 7,
8] concerning, respectively, convolution bodies, floating bodies and K-dense
sets.

In order to prove Theorem 1.1 we closely follow Petty’s strategy. Petty’s
argument was based on the observation that if K is a smooth convex body

satisfying (1.1) and we define hK(x) = |x|hK(x/|x|), then h
2
K is a solution

of the Monge-Ampère equation

(1.2) det
1

2
D2h

2
K(x) = cK , x ∈ RN .

Combining this remark with classical results due to Pogorelov, [14, 15, 16],

Petty proved that h
2
K is a quadratic polynomial and hence that K is an

ellipsoid. By an approximation procedure we show that if a convex set K
satisfies (1.1), then its support function still satisfies (1.2) in the Aleksandrov
sense, see Section 2.2 for the definition. By relying on standard techniques
one can then show that any Aleksandrov solution of (1.2) is smooth and
hence, by Pogorelov’s Theorem, a quadratic polynomial.

The paper is organized as follows: in Section 2 we recall some preliminar-
ies concerning Convex Geometry and weak solution of the Monge-Ampère
equation, in Section 3 we provide a proof of Theorem 1.1.

After we finished writing this note, Prof. Schneider informed us that in
the new edition of his book, there is a sketch of the proof of Theorem 1.1
based on Caffarelli’s regularity results for the solutions of the Minkowski
problem, see the Remark after Theorem 10.5.1 in [20].

2. Prelimanaries

In this section we recall some basic notions concerning convex bodies and
solutions of the Monge-Ampère equation.

2.1. Convex Geometry. We denote by KN the set of convex bodies (a
convex body is a compact convex set with nonempty interior) of RN . We
can associate a convex body K with a measure µK supported on the unit
sphere, called the surface area measure, with the property that, for every
Borel set A ⊂ SN−1, µK(A) is the (N−1)-dimensional Hausdorff measure of
the set of the points in the boundary of K whose normal cone has nonempty
intersection with A. More precisely, if for x ∈ ∂K, we define the possibly
multivalued map

NK(x) =
{
ω ∈ SN−1 : ω · (y − x) ≤ 0 for all y ∈ K

}
,

then

µK(A) = HN−1(N−1K (A)).

It is possible to show (see [19, Proposition 4.10]) that such measures are
continuous in the K-variable with respect to the Hausdorff convergence.
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Namely

(2.3) lim
i

∫
SN−1

ϕdµKi =

∫
SN−1

ϕdµK ,

for every ϕ ∈ C(SN−1), whenever Ki → K in the Hausdorff distance.

When K is C2
+, i.e. if it is C2-regular body with strictly positive Gauss-

Kronecker curvature κ, the surface area measure is absolutely continuous
with respect to the Hausdorff measure HN−1xSN−1 and its density is given
by κ ◦N−1k (note that NK is single valued and injective since K has differ-
entiable boundary and it is strictly convex).

A convex body K is said to possess a curvature function provided there
exists a positive and continuous function fK : SN−1 → R such that2

µK = fKHN−1xSN−1.
Conversely given a positive and continuous function f : SN−1 → R, Minkowski
existence and uniqueness Theorem, [2, 10, 11, 12, 15], asserts that, provided
f fulfills the following (necessary) condition

(2.4)

∫
SN−1

ωf(ω) dHN−1(ω) = 0 ,

there exists a unique (up to translation) convex body K whose curvature
function equals f .

The above condition leads us to the following observation: while the left-
hand side of (1.1) is invariant under translations of K the right-hand is
affected by translations. However we shall note that, for every convex body
K, there exists a point, say pK , such that h−N−1K−pK is a curvature function.
To see this let us recall that the polar reciprocal of a convex body K with
respect to the point p is definend as

K∗p =
{
x ∈ RN : x · (y − p) ≤ 1 for all y ∈ K

}
.

One can show that there exists a unique point, pK , such that

V (K∗pK ) = min{V (K∗p) : p ∈ RN},
this point is the Santalò point of K. We denote by K∗ the set K∗pK . It is
well-known that the polar reciprocal of a convex body with respect to its
Santalò point has its barycenter at the origin (see [17]), this implies that∫

SN−1

ωρN+1
K∗ (ω) dHN−1(ω) = 0,

where ρK∗ denotes the radial function of the convex set K∗, i.e. ρK∗(ω) =
sup{λ : λω ∈ K∗}. Since one can easily show that hK = 1/ρK∗ , then

h−N−1K satisfies condition (2.4) and hence, by Minkowski Theorem, for every

K ∈ KN , there exists a body K ′ such that fK′ = h−N−1K−pK .
From these considerations we note that, if we define a map Λ, from the

set of convex bodies whose Santalò point is the origin in itself, associating
each convex body K the solution of the Minkoski problem with data h−N−1K ,

2In [13] mixed volumes are used to define curvature functions, however the definition
given by Petty coincide with the one above by virtue of [20, Theorem 4.2.3].
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then K is a solution of (1.1) if and only if its image Λ(K) is a dilation of
K. We refer the reader to [6] for more details.

2.2. Aleksandrov solutions of the Monge-Ampère equation. In this
section we recall the notion of Aleksandrov solutions of the Monge-Ampère
equation and we summarize the properties of these solutions which we will
need in the sequel, see [3, 5] for a more detailed exposition.

Let u be a convex function defined on a convex open domain Ω ⊂ RN ,
the subdifferential of u, ∂u, is the multi-valued map given by

∂u(x) =
{
p ∈ RN : u(y) ≥ u(x) + py · (y − x), ∀y ∈ Ω

}
.

We define a measure νu, and we call it Monge-Ampère measure of u, as
follows: for a Borel set A ⊂ Ω

(2.5) νu(A) = V (∂u(A)) := V
( ⋃
x∈A

∂u(x)
)
.

Note that if u ∈ C2, the change of variable formula gives that dνu =
detD2u dx. We then call u an Alexandrov solution of the equation

(2.6) detD2u = f

provided νu = f dx. Among several properties of Aleksandrov solutions we
are going to use the following concerning their stability under uniform limit,
see [5, Lemma 1.2.3] for a proof.

Lemma 2.1. If uk are convex functions defined on an open set Ω and uk →
u uniformly, then

νuk
*
⇀νu

as Radon measures in Ω, that is∫
ϕdνuk →

∫
ϕdνu ∀ϕ ∈ C0

c (Ω).

By relying on the uniqueness of the Aleksandrov solution to the Dirichlet
problem for the Monge-Ampère equation, [5, Corollary 1.4.7] and on their
stability under uniform limits, one can prove the following classical theorem.
For the sake of completeness we sketch the main steps of its proof, see also
[3, Section 2] for a more detailed account.

Theorem 2.2. Let u be a strictly convex function defined on a convex set
Ω satisfying

νu = f dx in Ω.

If f ∈ C∞(Ω) and λ ≤ f ≤ Λ for some λ,Λ > 0, then for every Ω′ b Ω,
u ∈ C∞(Ω′).

Proof. Fix x0 ∈ Ω′, p ∈ ∂u(x0), and consider the section of u at height t
defined as

S(x, p, t) :=
{
y ∈ Ω : u(y) ≤ u(x) + p · (y − x) + t

}
.

Since u is strictly convex we can choose t > 0 small enough so that S(x0, p, t) b
Ω′. Then we consider a sequence of smooth uniformly convex sets Si, con-
verging to S(x0, p, t) and we apply classical continuity methods in order find
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a function vi ∈ C∞(Sε) solving{
detD2vi = f ∗ %εi in Si

vi = 0 on ∂Si,

where %εi is a sequence of mollifying kernels, see [3, Theorem 2.11] and [4,
Chapter 17]. We apply Pogorelov estimates, see for instance [3, Theorem
2.12], to vi to infer that

|D2vi| ≤ C in S(x0, p, t/2) b S(x0, p, t)

for a constant C independent on i ∈ N. Since Si → S(x0, p, t) and u(x) =
u(x0) + p · x + t on ∂S(x0, p, t), by stability and uniqueness of weak so-
lutions we deduce that vi + u(x0) + p · x + t → u uniformly as i → ∞,
hence |D2u| ≤ C in S(x0, p, t/2). This makes the Monge-Ampère equation
uniformly elliptic, hence Evans-Krylov Theorem and Schauder theory imply
that u ∈ C∞(S(x0, p, t/4)), see [4, Chapter 17]. By the arbitrariness of x0
we obtain that u ∈ C∞(Ω′), as desired. �

By a well-known example, strict convexity of u is necessary in order to
prove the above Theorem. The following result, due to Caffarelli, implies
that the obstruction to strict convexity can only arise from the boundary
behavior. In particular every entire solution has to be strictly convex. We
recall that x is an extremal point of a convex set K if x ∈ K and K \ {x} is
convex.

Theorem 2.3 ([1]). Let Ω be an open convex and let u be a convex function
such that

λ dx ≤ νu ≤ Λ dx

for some λ,Λ > 0. For every x ∈ Ω and p ∈ ∂u(x), if the set

Γx,p := {y ∈ Ω : u(y) = u(x) + p · (y − x)}

contains more than one point, then it has no extremal points in Ω.

An easy corollary of the above theorem is the following:

Corollary 2.4. Let u : RN → R be a convex function such that

(2.7) λ dx ≤ νu ≤ Λ dx

for some λ,Λ > 0, then u is strictly convex.

Proof. Let us assume by contradiction that for some x0 ∈ RN and p0 ∈
∂u(x0) the set Γx0,p0 contains more than one point, then according to Caf-
farelli’s Theorem it must contain a line. Up to subtracting a linear function
and to change the coordinates we can then assume that u ≥ 0 and u = 0 on

` := {x ∈ RN : x = (x1, 0, . . . , 0)}.

This easily implies that ∂u(RN ) ⊂ e⊥1 and hence that νu = 0, contradicting
(2.7). �
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3. Proof of the main Theorem

In this section we prove Theorem 1.1, the argument is based on an ap-
proximation procedure in order to show that, for a convex body satisfying

(1.1), h
2
K/2 is an Aleksandrov solution of (1.2). At this point we can apply

Corollary 2.4 and Theorem 2.2 to show that h
2
k is smooth and hence the

classical Pogorelov argument can be applied. More in general we prove the
following:

Theorem 3.1. Let K be a convex body which possesses a curvature function
fK and let hK be the one-homogeneous extension of its support function,
hK = |x|hK(x/|x|), then

(3.8) det
1

2
D2h

2
K = fK

( x
|x|

)
hN+1
K

( x
|x|

)
dx in RN

in the Aleksandrov sense.

In order to prove the above Theorem we need to approximate, in the
Hausdorff topology, a convex body with C2

+ bodies, for which we know

that (3.8) holds true at least in RN \ {0}. We know from an old theorem by
Minkowski that convex sets with analytic boundary are dense in KN , several
years later Schmuckenschläger (see [18]) gave a simple proof of the theorem
and showed that one can explicitly write down an approximating sequence
with further additional properties; more precisely we have

Theorem 3.2 ([18]). Let K a convex body, there exist a sequence {Ki}i∈N,
Ki+1 ⊆ Ki, such that

• Ki and K∗i have real analytic boundaries,
• The Gaussian curvature of both K and K∗ is strictly positive,
• Ki → K in the Hausdorff distance.

We now discuss the proof of Theorem 3.1.

Proof of Theorem 3.1. We divide the proof in three steps:

• Step 1: Equation (3.8) holds true if K ∈ C2
+. Let K ∈ C2

+, then hK ∈ C2

and hK ∈ C2(RN \{0}). Then a classical computation, see [13, Lemma 8.4],
implies that

det
1

2
D2h

2
K(x) = fK

( x
|x|

)
hN+1
K

( x
|x|

)
∀x ∈ RN \ {0}.

In particular, by the change of variable formula, if we denote by νK the

Monge-Ampére measure of h
2
K

νK = fK

( x
|x|

)
hN+1
K

( x
|x|

)
dx

as Radon measures on RN \{0}. Moreover since h
2
K is homogeneous of degree

two, it is differentiable in 0 and ∂h
2
K(0) = {0}. Recalling the definition of

Monge-Ampère measure (2.5), we then see that for every Borel set A ⊂ Rn

νK(A) = νK(A \ {0}) + νK({0})
= νK(A \ {0}) + V ({0}) = νK(A \ {0}).
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Hence (3.2) is valid (as equality between measures) also in RN .

• Step 2: Let Ki be a sequence of convex bodies for which Theorem 3.1 is
valid and let K be a convex body admitting a curvature function fK . If
Ki → K in the Hausdroff distance, then the conclusion of the Theorem 3.1
holds true for K.

Since Ki → K in the Hausdorff distance, hKi → hK uniformly on SN−1

and h
2
Ki
→ h

2
K locally uniformly in RN . According to Lemma 2.1 it is

enough to show that

(3.9) νKi = fKi

( x
|x|

)
hN+1
Ki

( x
|x|

)
dx

*
⇀fK

( x
|x|

)
hN+1
K

( x
|x|

)
dx,

as Radon measures in RN . To this end let ϕ ∈ C0
c (RN ) and note that for

every % ∈ [0,+∞), SN−1 3 ω 7→ ϕ(%ω) is continuous. Since hKi → hK
uniformly on Sn−1 and∫

ϕdνKi =

∫ ∞
0

%N−1
∫
SN−1

ϕ(%ω)fKi(ω)hKi(ω)dHN−1(ω) ,

an application of Lebesgue Dominated Convergence Theorem (recall that ϕ
is compactly supported) shows that in order to prove (3.9) it is enough to
show that

fKi(ω) dHN−1 *
⇀fK(ω) dHN−1

as Radon measures on SN−1. This however follows by the continuity of
curvature measures under the Hausdorff convergence, (2.3).

• Step 3: Conclusion. If K is a convex body admitting a curvature function
we can apply Theorem 3.2 to approximate it with a sequence of convex
bodies Ki ∈ C2

+, by Step 1 the conclusion of the Theorem holds true for Ki

and hence by Step 2 also for K. �

Proof of Theorem 1.1. According to Theorem 3.1, if K is a convex body
satisfying (1.1), then

det
1

2
D2h

2
K = cK dx on RN

in the Aleksandrov sense. By Corollary 2.4, h
2
K is strictly convex and by

Theorem 2.2, h
2
K ∈ C∞(RN ). By applying the classical Pogorelov argu-

ment (see [5, Theorem 4.3.1] for a proof) h
2
K(x) = Ax · x for some positive

symmetric matrix A, which immediately implies that K is an ellipsoid. �
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