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Abstract. The average distance problem finds application in data param-

eterization, which involves “representing” the data using lower dimensional
objects. From a computational point of view it is often convenient to restrict

the unknown to the family of parameterized curves. The original formulation
of the average distance problem exhibits several undesirable properties. In this

paper we propose an alternative variant: we minimize the functional∫
Rd×Γγ

|x− y|p dΠ(x, y) + λLγ + εα(ν) + ε′η(γ) + ε′′‖γ′‖TV ,

where γ varies among the family of parametrized curves, ν among probability

measures on γ, and Π among transport plans between µ and ν. Here λ, ε, ε′, ε′′

are given parameters, α is a penalization term on µ, Γγ (resp. Lγ) denotes
the graph (resp. length) of γ, and ‖ · ‖TV denotes the total variation semi-

norm. We will use techniques from optimal transport theory and calculus of

variations. The main aim is to prove essential boundedness, and Lipschitz
continuity for Radon-Nikodym derivative of ν, when (γ, ν,Π) is a minimizer.

1. Introduction

The average distance problem was first proposed for mathematical modeling of
optimization problems, such as urban planning and image processing, and for ap-
plication in statistics. It also finds application in data parameterization, where
given a data distribution, the aim is to find a lower dimensional object “represent-
ing” such data (see for instance Drineas, Frieze, Kannan, Vempala and Vinay [7],
Smola, Mika, Schölkopf and Williamson [23]). The average distance problem was
first analyzed by Buttazzo, Oudet and Stepanov in [3], where several qualitative
properties of minimizers were proven. Further results were proven in Buttazzo and
Stepanov [5, 6], Paolini and Stepanov [20]. A similar formulation, often referred
to as “penalized formulation”, was introduced by Buttazzo, Mainini and Stepanov
introduced in [2]:

Problem 1. Given d ≥ 2, a nonnegative, compactly supported measure µ and a
parameter λ > 0, minimize

Eλµ : A −→ [0,+∞), Eλµ(·) := Fµ(·) + λH1(·),
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where

Fµ : A −→ [0,+∞), Fµ(Σ) :=

∫
Rd

inf
y∈Σ
|x− y|dµ(x),

A := {Σ ⊆ Rd : Σ compact, path-wise connected, H1(Σ) < +∞}.

Existence of minimizers follows from Blaschke’s selection theorem and Golab’s
theorem. For future reference, any considered measure will be assumed nonnegative,
compactly supported, probability measure. The choice to work with probability
measures is done for the sake of simplicity, and results proven in this paper can
be easily extended to finite measures. Problem 1 could be used to parameterize
data clouds, i.e. representing a distribution of data point using lower dimensional
objects, in this case elements of A. Let

• µ be the distribution of data points,
• Σ (the unknown) be the set parameterizing the data points.

Thus Fµ(Σ) represents the “error” of such representation, while λH1(Σ) is the cost
associated to its complexity. Although it is possible to consider penalizations terms
of the form G(Σ) (instead of λH1(Σ)), with G satisfying some natural conditions
(e.g. G non decreasing with respect to set inclusion, etc.), this is outside the scope of
this paper. Thus minimizing Eλµ corresponds to finding the “best” one dimensional
parameterization, which “balances” approximation error and complexity.

Moreover, in data analysis the unknown if often restricted to the family of pa-
rameterized curves. We need first to define the “length” of a parameterized curve,
as defining it as H1-measure of the graph is not natural, since injectivity is not
imposed and points (of the graph) can be visited multiple times. Let

C∗ := {γ∗ : [0, 1] −→ Rd : γ∗ Lipschitz regular with |(γ∗)′| constant L1-a.e.},

and define the “length” of a curve γ∗ ∈ C∗ as

(1) Lγ∗ :=

∫ 1

0

|(γ∗)′|ds

For the sake of simplicity, we will work with elements of

C := {γ : [0, a] −→ Rd : a ≥ 0, γ Lipschitz regular with |γ′| = 1 L1-a.e.}.

Elements of C∗ will be referred to as “constant speed parameterized curves”, while
elements of C will be referred to as “arc-length parameterized curves”. Thus if γ ∈ C
then Lγ = a, and its domain is [0, Lγ ]. The average distance problem becomes:

Problem 2. Given d ≥ 2, a nonnegative, compactly supported measure µ and a
parameter λ > 0, minimize

Ẽλµ : C −→ [0,+∞), Ẽλµ(γ) := F̃µ(γ) + λLγ ,

where

F̃µ : C −→ [0,+∞), F̃µ(γ) :=

∫
Rd

inf
y∈Γγ

|x− y|dµ, Γγ := γ([0, Lγ ]).

For future reference, the notation Lγ will denote the “length” of γ, while Γγ
will denote its graph. More details on the space C (including its topology) will be
discussed in Section 2. In many applications the integrand infy∈Γγ |x − y| can be
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replaced by infy∈Γγ |x − y|p for some p ≥ 1. Choice p = 2 is the most common.
Note that in this case, if the reference measure µ is discrete, i.e.

µ :=
∑
j

ajδxj ,
∑
j

aj = 1, aj ≥ 0 ∀j,

then

F̃µ(γ) =
∑
j

aj |xj − yj |2, yj ∈ argminy∈Γγ |xj − y| ∀j,

i.e. F̃µ(γ) is the (weighted) mean square distance of points xj from the graph of γ.
Problem 2 is related to “principal curves”, and the lazy traveling salesman problem
(see for instance Polak and Wolanski [21]). Principal curves are widely used in
statistics and machine learning. For a (highly non exhaustive) list of references
about the literature (both theoretical and applied) on principal curves, we cite
Duchamp and Stuetzle [8, 9], Fischer [10], Hastie [12], Hastie and Stuetzle [13],
Kégl [14], Kégl and Aetal [15], Ozertem and Erdogmus [19], Tibshirani [24].

However the formulation of Problem 2 still exhibits several undesirable properties
when used in data parameterization:

(1) it has been proven (Slepčev [22]) that even assuming µ� Ld with dµ/dLd ∈
C∞, Problem 1 may admit minimizers which are simple curves failing to be
C1 regular. Moreover, any simple curve minimizing Problem 1 admits a pa-
rameterization γ ∈ C minimizing Problem 2, and a positive amount of mass
is projected on any point on which C1 regularity fails. For further details
about “projections”, we refer to Section 2 of [18]. In data parameterization,
this corresponds to a loss of information, which is undesirable.

γopt (graph of)

p

B

Figure 1. In this example from [22], the set B ⊆ supp(µ) of positive
µ-measure is projected on the single point p (which is a corner), on
which C1 regularity fails.
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(2) The aforementioned configuration is a limit case of a more general issue:
indeed in the formulation of Problem 2 there is no penalization for very
high (even infinite) data concentration on the representation.

(3) In [17] it has been proven that Problem 1 may admit minimizers which
are simple curves (thus these admit parameterizations minimizing Problem
2) whose set of non differentiability is not closed. This makes difficult to
“control” the set on which C1 regularity fails.

(4) Injectivity is not guaranteed, but highly desired: indeed given a minimizer
γ of Problem 2, there are two “natural” choices of distances:
• for data points, Euclidean distance is the natural choice,
• on the representation γ however, the natural distance is the path dis-

tance dγ , defined as dγ
(
γ(s), γ(t)

)
:= |s− t|, s, t ∈ [0, Lγ ].

γ (graph of)

γ(t) = γ(s)

γ(It) γ(Is)

time increases in this direction

µ

Figure 2. In this configuration, assuming t < s, points belonging to
the red part are projected on γ(Is), while points belonging to the green
part are projected on γ(It). The sets γ(Is) and γ(It) are distant with
respect to dγ . The colored area is part of supp(µ). Time increases along
the direction of dotted arrows.

Clearly, if γ is not injective, then there exist s, t satisfying s < t and
γ(s) = γ(t). Thus these two distances are not equivalent, and data points
which are “close” (with respect to Euclidean distance) can be projected on
points which are “distant” (with respect to dγ). This is undesirable. Figure
2 is a schematic representation of this situation.



REGULARITY OF DENSITIES 5

(5) The functional F̃µ forces any point to project on one of the points on the
curve which is closest. This imposes strong geometric rigidity on minimiz-
ers.

Thus we propose an alternative variant:

Problem 3. Given d ≥ 2, a measure µ, and parameters λ, ε, ε′, ε′′ > 0, p ≥ 1,
q > 1, solve

min
(γ,ν,Π)∈T

E [µ, λ, ε, ε′, ε′′, p, q](γ, ν,Π),

where

T := {(γ, ν,Π) : γ ∈ C, ν probability measure on [0, Lγ ],

Π transport plan between µ and γ]ν},

E [µ, λ, ε, ε′, ε′′, p, q](γ, ν,Π) :=

∫
Rd×Γγ

|x− y|p dΠ(x, y) + λLγ

+ ε

∫ Lγ

0

νq dL1 + ε′η(γ) + ε′′‖γ′‖TV ,

η(γ) :=

∫ Lγ

0

∫ Lγ

0

(
|t− s|

|γ(t)− γ(s)|

)2

dtds,

(2)

∫ Lγ

0

νq dL1 :=


∫ Lγ

0

(
dν

dL1

)q
ds if ν � L1,

+∞ otherwise.

Here, and for future reference, ‖ · ‖TV denotes the total variation semi-norm.

The convergence in T will be detailed in Section 2. Note that the formulation of
Problem 3 is quite different from classical average distance problem, and resembles
the Monge-Kantorovich problem. Existence of minimizers will be proven in Lemma

2.1. For future reference

∫ Lγ

0

νq ds will be referred to as “density penalization

term”, while with an abuse of notation, the transport cost

∫
Rd×Γγ

|x− y|p dΠ(x, y)

will be referred to as “average distance term”. The transport plan Π is more a
technical expedient, and will play a marginal role in the following. Given x ∈
supp(µ), y ∈ Γγ , we will say that “x projects on y” if (x, y) ∈ supp(Π). Note that:

• ε′η(γ) penalizes non injectivity, while ε′′‖γ′‖TV penalizes large total curva-
ture (the term ‖γ′‖TV is exactly the generalized total curvature, considered
as a measure);

• ε
∫ Lγ

0

νq dL1 penalizes high concentrations of data on Γγ . In particular it

diverges if a positive amount of data is projected on a singleton;

• the functional F̃µ(γ) (from Problem 2) is replaced by

∫
Rd×Γγ

|x− y|p dΠ(x, y),

allowing data points to be projected on any point (not just the points on the
curve which are closest). However, projecting on a distant point increases
the transport cost, and is advantageous only if it decreases the density
penalization term.
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The aim of this paper is to prove essential boundedness (Theorem 3.1) and Lipschitz
regularity (Theorem 3.2) for dν/dL1, when (γ, ν,Π) is a minimizer. Note that
dν/dL1 is well defined upon L1-negligible sets. This paper will be structured as
follows:

• in Section 2 we introduce preliminary notations and results, and prove
existence of minimizers for Problem 3,
• in Section 3 we prove that for any minimizer (γ, ν,Π) of Problem 3, the

Radon-Nikodym derivative dν/dL1 is essentially bounded. Moreover, if the
exponent q appearing in the density penalization term is assumed 1 < q ≤ 2,
then dν/dL1 is Lipschitz continuous.

2. Preliminaries

The aim of this section is to present preliminary notions and results. The main
result is existence of minimizers for Problem 3. We endow the space C with the
following convergence: given a sequence {γn} ⊆ C, we say {γn} converges to γ ∈ C
(and write {γn}

C→γ) if:

• {Lγn}→Lγ ,
• the sequence {γ∗n} converges to γ∗ uniformly, where γ∗, γ∗n denote the

constant speed reparameterizations. That is,

γ∗ : [0, 1] −→ Rd, γ∗(t) := γ(tLγ),

γ∗n : [0, 1] −→ Rd, γ∗n(t) := γn(tLγn), n = 1, 2, · · · .
The convergence in C induces a “natural” convergence in T : we say that a sequence

{(γn, νn,Πn)} ⊆ T converges to (γ, ν,Π) ∈ T (and write {(γn, νn,Πn)} T→(γ, ν,Π))

if {γn}
C→γ, {νn}

∗
⇀ν, and {Πn}

∗
⇀Π.

The first issue is existence of minimizers. For the sake of brevity we will omit
writing the dependency on dimension (since all results will be valid for all dimen-
sions greater or equal to 2) for all quantities.

Lemma 2.1. Given d ≥ 2, a measure µ, parameters λ, ε, ε′, ε′′ > 0, p ≥ 1, q > 1,
the functional E [µ, λ, ε, ε′, ε′′, p, q] admits a minimizer in T .

The proof will be split over several lemmas. Note that the set

{E [µ, λ, ε, ε′, ε′′, p, q] < +∞}
is non empty: indeed choose arbitrary points x ∈ supp(µ), y ∈ B(x, 1), and let

ψ : [0, 1] −→ Rd, ψ(t) := (1− t)x+ ty.

Let Π be an arbitrary optimal plan between µ and ψ]L1
x[0,1]. Then direct compu-

tation gives

(3) E [µ, λ, ε, ε′, ε′′, p, q](ψ,L1
x[0,1],Π) ≤ (diam supp(µ) + 1)p + λ+ ε+ ε′ < +∞.

In particular, it follows that for any minimizing sequence {γn}, it holds supn η(γn) <
+∞, supn ‖γ′n‖TV < +∞.

Lemma 2.2. Given d ≥ 2, a measure µ, parameters λ, ε, ε′, ε′′ > 0, p ≥ 1, q > 1,
M ≥ inf E [µ, λ, ε, ε′, ε′′, p, q], and a sequence

{(γn, νn,Πn)} ⊆ T ∩ {E [µ, λ, ε, ε′, ε′′, p, q] ≤M},
then it holds:
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(1) length estimate:

(4) 0 < (M/ε)
1

1−q ≤ inf
n
Lγn ≤ sup

n
Lγn ≤M/λ < +∞,

(2) confinement condition:

(5)
⋃
n

Γγn ⊆
(

supp(µ)
)
M1/p+M/λ

,

where for given r ≥ 0,(
supp(µ)

)
r

:=

{
x ∈ Rd : inf

z∈supp(µ)
|x− z| ≤ r

}
.

Proof. Length estimate. Note that

(∀n) λLγn ≤ E [µ, λ, ε, ε′, ε′′, p, q](γn, νn,Πn) ≤M=⇒Lγn ≤M/λ,

proving the upper bound in (4).
Fix an arbitrary n. Condition E [µ, λ, ε, ε′, ε′′, p, q](γn, νn,Πn) ≤M gives

M ≥ E [µ, λ, ε, ε′, ε′′, p, q](γn, νn,Πn) ≥ ε
∫ Lγn

0

(
dνn
dL1

)q
dL1≥ εL1−q

γn .

The last inequality holds since, by Hölder inequality, we have

1 =

∫ Lγn

0

dνn
dL1

dL1 ≤

(∫ Lγn

0

(
dνn
dL1

)q
dL1

)1/q

L
q−1
q

γn

=⇒

(∫ Lγn

0

(
dνn
dL1

)q
dL1

)1/q

≥ L
1−q
q

γn .

Since q > 1, it follows L1−q
γn ≤M/ε , proving the lower bound in (4).

Confinement condition. Note that for any n and ξ ≥ 0, if it holds Γγn ∩(
supp(µ)

)
(M+ξ)1/p

= ∅, then

E [µ, λ, ε, ε′, ε′′, p, q](γn, νn,Πn) ≥
∫
Rd×Γγn

|x− y|p dΠ(x, y) ≥M + ξ.

Since {(γn, νn,Πn)} ⊆ T ∩ {E [µ, λ, ε, ε′, ε′′, p, q] ≤M}, it follows

(∀n)(∀ξ > 0) Γγn ∩
(

supp(µ)
)

(M+ξ)1/p
6= ∅.

Using length estimate supn Lγn ≤M/λ gives

(∀n)(∀ξ > 0) Γγn ⊆
(

supp(µ)
)

(M+ξ)1/p+M/λ
,

and the arbitrariness of ξ proves (5). �

We remark that for any (γ, ν,Π) ∈ T satisfying E [µ, λ, ε, ε′, ε′′, p, q](γ, ν,Π) <
+∞ it holds ν � L1.

Lemma 2.3. For any γ ∈ C it holds

(6) η(γ) < +∞=⇒γ injective.
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Proof. Assume there exist t0, s0 ∈ [0, Lγ ] with t0 < s0, γ(t0) = γ(s0). Choose
sufficiently small r, a > 0 such that t0 + r < s0 − r − a, and

η(γ) =

∫ Lγ

0

∫ Lγ

0

|s− t|2

|γ(s)− γ(t)|2
dsdt ≥

∫ t0+r

t0

∫ s0

s0−r

|s− t|2

|γ(s)− γ(t)|2
dsdt

≥ a2

∫ t0+r

t0

∫ s0

s0−r

1

|γ(s)− γ(t)|2
dsdt.

Since γ is arc-length parameterized, it holds

|γ(s)− γ(t)| ≤ |γ(s)− γ(s0)|+ |γ(t)− γ(t0)|+ |γ(s0)− γ(t0)|
=⇒|γ(s)− γ(t)|2 ≤ (|γ(s)− γ(s0)|+ |γ(t)− γ(t0)|)2

≤ 2|γ(s)− γ(s0)|2 + 2|γ(t)− γ(t0)|2 ≤ 2|s0 − s|2 + 2|t0 − t|2

=⇒ 1

|γ(s)− γ(t)|2
≥ 1

2|s− s0|2 + 2|t− t0|2
,

which gives∫ t0+r

t0

∫ s0

s0−r

1

|γ(s)− γ(t)|2
dsdt ≥

∫ t0+r

t0

∫ s0

s0−r

1

2|s− s0|2 + 2|t− t0|2
dsdt = +∞,

concluding the proof. �

Lemma 2.4. Given a sequence of piece-wise linear functions {fn} : [0, 1] → R,

uniformly converging to the identically zero function, and such that
∫ 1

0
|f ′n|ds →

c > 0, then ‖f ′n‖TV → +∞.

We use the proof suggested by a referee.

Proof. Consider an arbitrary f ∈ C∞([0, 1]). By the mean value theorem, there
exists c ∈ [0, 1] such that f ′(c) = f(1)− f(0). Therefore,

‖f ′‖L∞ ≤ 2‖f‖L∞ + ‖f ′′‖L1 .

Direct computation gives(∫ 1

0

|f ′(s)|ds
)2

≤
∫ 1

0

|f ′(s)|2 ds

≤
∫ 1

0

|f(s)||f ′′(s)|ds+ f(1)f ′(1)− f(0)f ′(0)

≤ ‖f‖L∞‖f ′′‖L1 + 4‖f‖2L∞ + 2‖f‖L∞‖f ′′‖L1

≤ 4(‖f‖2L∞ + ‖f‖L∞‖f ′‖TV ).

The proof for general f follows by a density argument. �

Lemma 2.5. Given a sequence of constant (positive) speed curves {γn} : [0, 1] →
Rd, converging uniformly to γ : [0, 1]→ Rd, such that

(7) sup
n
‖γ′n‖TV < +∞, sup

n

∫ 1

0

∫ 1

0

|s− t|2

|γn(s)− γn(t)|2
dsdt < +∞,

then it holds

L(γ) = lim
n→+∞

L(γn).
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Note that this is a much stronger result then the general lower semicontinuity of
length. In particular, due to the curvature penalization, it states that any minimiz-
ing sequence {γn} (which surely satisfies (7) in view of (3)), admitting a uniform
limit γ, then L(γn) → L(γ). This will be crucial for the proof of Lemma 2.1. We
use the proof suggested by a referee.

Proof. Boundedness of both sequences ‖γ′n‖TV and ‖γn‖L∞ imply boundedness of
‖γ′n‖L1 . Since the embedding from BV (0, 1) into L1(0, 1) is compact, boundedness
(and thus, upon subsequences, weak convergence) of γ′n in BV (0, 1) gives strong
convergence in L1(0, 1), hence strong convergence of length. �

Now it is possible to prove Lemma 2.1.

Proof. (of Lemma 2.1) Consider a minimizing sequence {(γn, νn,Πn)}. Since (in
view of (3))

inf
T
E [µ, λ, ε, ε′, ε′′, p, q] ≤ (diam supp(µ) + 1)p + λ+ ε+ ε′ =: M,

assume without loss of generality supn E [µ, λ, ε, ε′, ε′′, p, q](γn, νn,Πn) ≤ 2M . Lemma
2.2 gives c1, c2 such that c2 ≥ supn Lγn ≥ infn Lγn ≥ c1 > 0. Let

γ∗n : [0, 1] −→ Rd, γ∗n(t) := γn(tLγn), n = 1, 2, · · ·
be constant speed reparameterizations. Lemma 2.2 proves that the sequence {γ∗n}
satisfies the conditions of Ascoli-Arzelà theorem, thus (upon subsequence, which
will not be relabeled) there exists γ∗ : [0, 1] −→ Rd (not necessarily parameterized
by constant speed) such that {γ∗n}→γ∗ uniformly. Note that (upon subsequence,
which we do not relabel) L∗γ = limn→+∞ Lγ∗n in view of Lemma 2.5. Define the
measures ν∗n as

ν∗n(B) := νn(BLγn) for any L1-measurable set B ⊆ [0, 1], n = 1, 2, · · · ,
where BLγn := {t ∈ [0, Lγn ] : t/Lγn ∈ B}. Since {(γn, νn,Πn)} is a minimizing
sequence, it follows

sup
n

∫ Lγn

0

νqn dL1 < +∞=⇒ν∗n � L1, n = 1, 2, · · · .

Let fn := dν∗n/ dL1, n = 1, 2, · · · . Since νn are nonnegative, it follows fn ≥ 0 for

any n, and

∫ Lγn

0

νqn dL1 differs from

∫ 1

0

fqn dL1 by the multiplicative constant Lγn .

This yields

sup
n

∫ Lγn

0

νqn dL1 < +∞=⇒ sup
n

∫ 1

0

fqn dL1 < +∞,

i.e. the sequence {fn} is bounded in Lq([0, 1]). Thus there exists f ∈ Lq([0, 1]) such
that (upon subsequence, which will not be relabeled) {fn}⇀ f , which implies

{ν∗n} = {fn · L1} ∗⇀f · L1 =: ν∗,

and ∫ 1

0

fq dL1 = ‖f‖qLq ≤ lim inf
n
‖fn‖qLq = lim inf

n

∫ 1

0

fqn dL1.

Thus

(8) {νn}
∗
⇀ν,

∫ Lγ

0

νq dL1 ≤ lim inf
n

∫ Lγn

0

νqn dL1,
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where ν is defined as

ν(B) := ν∗(B/Lγn) for any L1-measurable set B ⊆ [0, Lγ ],

B/Lγ := {t ∈ [0, 1] : tLγ ∈ B}.
Note that Γγn ⊆ Rd, thus γn]νn (resp. Πn) is also a measure on Rd (resp. Rd×Rd).
Thus ∫

Rd×Γγn

|x− y|p dΠn(x, y) =

∫
Rd×Rd

|x− y|p dΠn(x, y),

eliminating any problem that a moving domain of integration may generate. Prokhorov’s
theorem gives the existence of Π such that (upon subsequence, which will not be

relabeled) {Πn}
∗
⇀Π, and Π is a transport plan between µ and γ]ν (for further

details about stability of transport plans, we refer to [1, 25] and references therein),
hence

(9) lim
n→+∞

∫
Rd×Γγn

|x− y|p dΠn(x, y) =

∫
Rd×Γγ

|x− y|p dΠ(x, y).

It remains to prove lower semicontinuity for ε′η(·). Let

gn : [0, 1]× [0, 1] −→ R, gn(t, s) :=

(
|s− t|

|γ∗n(s)− γ∗n(t)|

)2

,

g : [0, 1]× [0, 1] −→ R, g(t, s) :=

(
|s− t|

|γ∗(s)− γ∗(t)|

)2

.

Since {γ∗n}→γ∗ uniformly, it follows {gn}→g point-wise. Fatou’s lemma gives∫ 1

0

∫ 1

0

g(s, t) dsdt ≤ lim inf
n

∫ 1

0

∫ 1

0

gn(s, t) dsdt.

Note that
∫ 1

0

∫ 1

0
g(s, t) dsdt and

∫ 1

0

∫ 1

0
|s−t|2

|γ(s)−γ(t)2| dsdt differ by the multiplicative

constant L2
γ , and ‖(γ∗)′‖TV = ‖γ′‖TV . Similarly for the ratio between∫ 1

0

∫ 1

0

gn(s, t) dsdt

and ∫ 1

0

∫ 1

0

|s− t|2

|γn(s)− γn(t)2|
dsdt,

and ‖(γ∗n)′‖TV = ‖γ′n‖TV . Thus it follows

lim inf
n→+∞

η(γn) ≥ η(γ), lim inf
n→+∞

‖γ′n‖TV ≥ ‖γ′‖TV .

Since {Lγn}→Lγ , combining with (8) and (9) gives

E [µ, λ, ε, ε′, ε′′, p, q](γ, ν,Π) ≤ lim inf
n
E [µ, λ, ε, ε′, ε′′, p, q](γn, νn,Πn),

and the proof is complete. �

We conclude this section with two simple observations. The first is a Γ-convergence
result.

Lemma 2.6. Given d ≥ 2, a measure µ, parameters λ, ε′′ > 0, p ≥ 1, q > 1,
sequences {εn}, {ε′n}→0, and (γ, ν,Π) ∈ T , then:
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• any sequence {(γn, νn,Πn)} T→(γ, ν,Π), satisfies
(10)

lim inf
n
E [µ, λ, εn, ε

′
n, ε
′′, p, q](γn, νn,Πn) ≥

∫
Rd×Γγ

|x−y|p dΠ(x, y)+λLγ+ε′′‖γ′‖TV ;

• assume there exist ε, ε′ > 0 such that E [µ, λ, ε, ε′, ε′′, p, q](γ, ν,Π) < +∞.

Then there exists a sequence {(γn, νn,Πn)} T→(γ, ν,Π), such that
(11)

lim sup
n
E [µ, λ, εn, ε

′
n, ε
′′, p, q](γn, νn,Πn) ≤

∫
Rd×Γγ

|x−y|p dΠ(x, y)+λLγ+ε′′‖γ′‖TV ;

Proof. Fix an arbitrary (γ, ν,Π) ∈ T . Consider an arbitrary sequence {(γn, νn,Πn)}
T→(γ, ν,Π). It holds

lim inf
n

∫
Rd×Γγn

|x− y|p dΠn(x, y) + λLγn + εn

∫ Lγn

0

νqn dL1 + ε′nη(γn) + ε′′‖γ′n‖TV

≥ lim inf
n

∫
Rd×Γγn

|x− y|p dΠn(x, y) + λLγn + ε′′‖γ′n‖TV

≥
∫
Rd×Γγ

|x− y|p dΠ(x, y) + λLγ + ε′′‖γ′‖TV ,

proving (10).
To prove (11), note that since by hypothesis there exist ε, ε′ > 0 such that

E [µ, λ, ε, ε′, ε′′, p, q](γ, ν,Π) < +∞, it follows that γ is injective in view of (6), and
ν � L1. Let

γn := γ, νn := ν, Πn := Π, n = 1, 2, · · · .

By construction {(γn, νn,Πn)} T→(γ, ν,Π), and∫ Lγn

0

νqn dL1 =

∫ Lγn

0

νq dL1 < +∞, η(γn) = η(γ) < +∞, n = 1, 2, · · · ,

thus

lim
n→+∞

∫
Rd×Γγn

|x− y|p dΠn(x, y) + λLγn + εn

∫ Lγn

0

νqn dL1 + ε′nη(γn) + ε′′‖γ′n‖TV

=

∫
Rd×Γγ

|x− y|p dΠ(x, y) + λLγ + ε′′‖γ′‖TV ,

proving (11). �

Lemma 2.7. Given d ≥ 2, a measure µ, parameters λ, ε′, ε′′ > 0, p ≥ 1, q > 1,
a sequence {εn}→0, and (γ, ν,Π) ∈ T , then there exists a sequence {(γn, νn,Πn)}
T→(γ, ν,Π) such that

lim
n
E [µ, λ, εn, ε

′, ε′′, p, q](γn, νn,Πn) = E [µ, λ, 0, ε′, ε′′, p, q](γ, ν,Π)(12)

=

∫
Rd×Γγ

|x− y|p dΠ(x, y) + λLγ

+ ε′η(γ) + ε′′‖γ′‖TV .

In particular {E [µ, λ, εn, ε
′, ε′′, p, q]} Γ→E [µ, λ, 0, ε′, ε′′, p, q] as n→+∞.
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Before the proof, note that for fixed γ, the quantity

E [µ, λ, 0, ε′, ε′′, p, q](γ, ν,Π) =

∫
Rd×Γγ

|x− y|p dΠ(x, y) + λLγ + ε′η(γ) + ε′′‖γ′‖TV

is minimum when∫
Rd×Γγ

|x− y|p dΠ(x, y) =

∫
Rd

inf
z∈Γγ

|x− z|p dµ(x),

since only the average distance term depends on ν and Π.

Proof. If η(γ) = +∞ then (12) follows. Thus assume η(γ) < +∞, i.e. γ is injective.

• Case Lγ > 0.

Let γn := γ, n = 1, 2, · · · . Note that for any t ∈ [0, Lγ ] the measure δt (Dirac
measure in t) can be approximated (in the weak-∗ topology) by measures of the
form fn,t ·L1

x[0,Lγ ], where fn,t := knχIt(kn), {kn}→+∞, χ denotes the characteristic

function of the subscripted set, and It(kn) is an arbitrary interval containing t such
that L1(It(kn)) = 1/kn. Thus any measure of the form

H∑
j=1

ajδtj , H ∈ N,
H∑
j=1

aj = 1, {tj} ⊆ [0, Lγ ]

can be approximated (in the weak-∗ topology) by measures of the form
(∑H

j=1 ajfn,t

)
·

L1
x[0,Lγ ]. Thus ν can be approximated (in the weak-∗ topology) by a sequence of

measures {νn} the form

νn :=

Hn∑
j=1

aj,nfn,tj,n

 · L1
x[0,Lγ ],

for suitable choices of {Hn} ⊆ N, {aj,n} ⊆ [0, 1],
∑
j,n aj,n = 1, {tj,n} ⊆ [0, Lγ ].

Choosing kn := ε
1/(2−2q)
n gives

(∀n, t)
∫ Lγ

0

fqn,t dL1 ≤ kq−1
n = ε−1/2

n ,

thus

(13) (∀n)

∫ Lγ

0

(
dνn
dL1

)q
dL1 ≤ ε−1/2

n .

For any n, choose an optimal plan Πn between µ and γ]νn. Since {νn}
∗
⇀ν, it

follows (upon subsequence, which will not be relabeled) {Πn}
∗
⇀Π, and

lim
n→∞

E [µ, λ, εn, ε
′, ε′′, p, q](γn, νn,Πn)

= lim
n→+∞

∫
Rd×Γγ

|x− y|p dΠn(x, y) + λLγ

+ εn

∫ Lγ

0

(
dνn
dL1

)q
dL1 + ε′η(γ) + ε′′‖γ′‖TV

(13)

≤
∫
Rd×Γγ

|x− y|p dΠ(x, y) + λLγ + ε′η(γ) + ε′′‖γ′‖TV .

• Case Lγ = 0.
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This implies ν = δ0. Choose an arbitrary unit vector w ∈ Rd, let {P} := Γγ and

γn : [0, ξn] −→ Rd, γn(t) := P + tw, ξn := ε1/(2q−2)
n n = 1, 2, · · · .

By construction {γn}
C→γ. Let

νn := ξ−1
n · L1

x[0,ξn], n = 1, 2, · · · ,
and direct computation gives

(∀n)

∫ ξn

0

(
dνn
dL1

)q
dL1 ≤ ε−1/2

n .

By construction {νn}
∗
⇀ν. For any n choose an optimal plan Πn between µ and

γn]νn, and (note that Πn can be considered as measure on Rd, thus eliminating
any problem potentially related to a moving domain of integration) upon subse-

quence (which will not be relabeled) {Πn}
∗
⇀Π. Since by construction {η(γn)}→0,

it follows

lim
n→+∞

E [µ, λ, εn, ε
′, ε′′, p, q](γn, νn,Πn)

= lim
n→+∞

∫
Rd×Γγn

|x− y|p dΠn(x, y) + λξn

+ εn

∫ ξn

0

(
dνn
dL1

)q
dL1 + ε′η(γn) + ε′′‖γ′‖TV

=

∫
Rd×Γγ

|x− y|p dΠ(x, y)

=

∫
Rd
|x− P |p dµ(x) + ε′′‖γ′‖TV .

Thus (12) is proven. Since for any sequence {(γn, νn,Πn)} T→(γ, ν,Π) it holds

lim inf
n

∫
Rd×Γγn

|x− y|p dΠn(x, y) + λLγn + εn

∫ Lγn

0

νqn dL1 + ε′η(γn) + ε′′‖γ′n‖TV

≥ lim inf
n

∫
Rd×Γγn

|x− y|p dΠn(x, y) + λLγn

+ ε′η(γn) + ε′′‖γ′n‖TV

≥
∫
Rd×Γγ

|x− y|p dΠ(x, y) + λLγ

+ ε′η(γ) + ε′′‖γ′‖TV ,

it follows {E [µ, λ, εn, ε
′, ε′′, p, q]} Γ→E [µ, λ, 0, ε′, ε′′, p, q] as n→+∞. �

3. Regularity of densities

It follow from the definition that if (γ, ν,Π) is a minimizer of Problem 3 then
ν � L1. In this section further regularity properties will be analyzed. The main
results are:

Theorem 3.1. (Essential boundedness) Given d ≥ 2, a measure µ, parameters
λ, ε, ε′, ε′′ > 0, p ≥ 1, q > 1, and a minimizer (γ, ν,Π) of E [µ, λ, ε, ε′, ε′′, p, q], then
dν/dL1 ∈ L∞.
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Theorem 3.2. (Lipschitz continuity) Given d ≥ 2, a measure µ, parameters
λ, ε, ε′, ε′′ > 0, p ≥ 1, 1 < q ≤ 2, and a minimizer (γ′, ν′,Π′) of E [µ, λ, ε, ε′, p, q],
then ν′ has Lipschitz regular density.

Note that given K ≥ 1, a, b ∈ [0,K], p ≥ 1, then it holds

(14) |ap − bp| ≤ |a− b|pKp−1.

The proof is straightforward using mean value theorem, which gives |ap − bp| =
|(a− b)pξp−1| with a ≤ ξ ≤ b ≤ K.

To prove Theorems 3.1 and 3.2, we use the technique developed by Buttazzo
and Santambrogio in [4]. Since very little modification is required, for most of the
proofs, we provide a sketch, and refer to [4] for further details. Similarly to the
proof of Theorem 3.1 η(γ) and ‖γ′‖TV depend only on γ, not on ν or Π. As the
construction in the following lemmas does not alter γ, η(γ) and ‖γ′‖TV do not
change.

We recall the definition of Kantorovich potential in our specific setting.

Definition 3.3. Let c : Rd × Rd → R, c(x, y) := |x − y|p. Given probability
measures µ and ν on Rd, a Kantorovich potential ψ is a function such that

inf
π

∫
Rd×Rd

c(x, y) dπ(x, y) =

∫
ψ dµ+

∫
ψc dν,

where π varies among transport plans between µ and ν, and ψc is the c-transform
of ψ (that is ψc(y) := infx c(x, y) − ψ(x)). Such a function ψ will be referred as
“Kantorovich potential associated to c, µ, ν”.

For further discussion about c-concavity, c-transform, and Kantorovich poten-
tials we refer to [1, 11, 25] and references therein. For future reference we will
denote by cp the cost function c(x, y) := |x− y|p.
Lemma 3.4. Given probability measures µ, ν, ν̃, let νt := ν + t(ν̃ − ν) (t > 0),
and let ψt be the Kantorovich potentials associated to cp, µ, νt (p > 1) such that
ψt(x0) ≡ 0 for some point x0. Then (upon subsequence) ψt → ψ uniformly, where
ψ is the Kantorovich potential associated to c, µ, ν satisfying ψ(x0) = 0.

Proof. The proof uses the construction from [4, Lemma 3.4]. Some discussion about
uniqueness of Kantorovich potentials is required. It is known that, for transport
costs of the form |x − y|p, when one of the measures has compact support and
a.e. positive absolutely continuous part, then the Kantorovich potential is (upon
addictive constants) unique. Thus we will first assume that µ has convex support,
and a.e. positive absolute continuous part. The family {ψt} is equicontinuous
since any c-concave function with respect to cp is Lipschitz, while equiboundedness
follows from ψt(x0) ≡ 0. Thus Ascoli-Arzelà theorem gives the existence of a
uniform limit ψ̄, arising from a certain sequence. The optimality of ψt gives∫

ψt dµ+

∫
ψct dνt ≥

∫
ϕdµ+

∫
ϕc dνt

for every c-concave function ϕ. Passing to the limit t ↓ 0, the uniform convergence of
{ψt} has been proven, while the uniform convergence of {ψct} follows (by definition
of c-transform) from |ψct (x)− ψ̄c(x)| ≤ ‖ψt− ψ̄‖L∞ . Thus passing to the limit t ↓ 0,
along a subsequence we get∫

ψ̄ dµ+

∫
ψ̄c dν ≥

∫
ϕdµ+

∫
ϕc dν
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for every c-concave function ϕ. Thus ψ̄ is a Kantorovich potential associated to
c, µ, ν, and ψ̄(x0) = ψ(x0) ensures ψ̄ = ψ, and uniqueness of Kantorovich potential
ensures that the whole sequence converges to ψ.

If supp(µ) is not convex, or dµ/dLd is not a.e. positive, then an approximation
argument applies. Clearly, by Lemma 2.2, supp(µ) and any minimizer (γ, ν,Π),
there exists a convex set K (independent of γ, ν,Π) containing supp(µ), Γγ and x0.

Consider an arbitrary sequence εn ↘ 0, and let µn :=
1

(µ+ εnLd)(Rd)
(µ+ εnLd).

By construction, µn has a.e. positive density. Then, we proceed as in [4, Lemma 3.6]
(to which we refer for the detailed arguments): denoting by ψn the Kantorovich
potentials associated to c, µn, ν satisfying ψn(x0) = 0, by Ascoli-Arzelà theorem,
upon subsequence, ψn → ψ uniformly for some ψ. It is then straightforward to
verify that ψ is a Kantorovich potential associated to c, µ, ν, satisfying ψ(x0) =
0. �

Lemma 3.5. Let ψ be the Kantorovich potential associated to cp, µ, ν (p > 1), with
(γ, ν,Π) minimizer of E [µ, λ, ε, ε′, ε′′, p, q]. Then there exists a constant l such that

qνq−1 = l − ψ L1-a.e..

In particular qνq−1 is H-Lipschitz regular, H := p(diamK)p−1 and K is a compact
set with minimal diameter in the family of compact sets satisfying confinement
condition of Lemma 2.2.

Proof. We will use an an approach based on the Kantorovich potential technique
developed by Buttazzo and Santambrogio in [4]. Since any minimizer (γ, ν,Π)
satisfies ν � L1

x[0,Lγ ], without an abuse of notation we identify ν with its Radon-

Nikodym derivative dν/dL1
x[0,Lγ ]. Thus E [µ, λ, ε, ε′, ε′′, p, q](γ, ν,Π) can be written

as

E [µ, λ, ε, ε′, ε′′, p, q](γ, ν,Π) =

∫
Rd

∫ Lγ

0

|x− γ(t)|p dµ(x) dt+ λLγ

+ ε

∫ Lγ

0

νq ds+ ε′η(γ) + ε′′‖γ′‖TV .

Since our construction will modify only ν (and consequently Π, but not γ), let

F(ν) := Tp(µ, ν) + F (ν),

Tp(µ, ν) :=

∫
Rd

∫ Lγ

0

|x− γ(t)|p dµ(x) dt, F (ν) := ε

∫ Lγ

0

νq ds.

Although F depends on several quantities, for the sake of brevity we omit writing
them explicitly. Minimality of (γ, π,Π) gives ν ∈ argmin F . Note that Lemma
2.2 gives the existence of a compact set K such that supp Π ⊆ K for any optimal
plan Π. Thus |x − y|p ≤ H|x − y|, i.e. cp is H-Lipschitz. Consider an arbitrary
probability measure ν̃ with smooth density (with an abuse of notation we identify ν̃
with its Radon-Nikodym derivative dν̃/dL1), and let νt := ν+t(ν̃−ν). Minimality
of ν gives

(15) Tp(µ, νt) + F (νt)− Tp(µ, ν)− F (ν) ≥ 0.
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Also

Tp(µ, νt) =

∫
Rd
ψt dµ+

∫ Lγ

0

ψct dνt,

Tp(µ, ν) =

∫
Rd
ψ dµ+

∫ Lγ

0

ψc dν ≥
∫
Rd
ψt dµ+

∫ Lγ

0

ψct dν,

where ψt (resp. ψ) are Kantorovich potentials associated to c, µ, νt (resp. c, µ, ν),
hence (15) reads∫ Lγ

0

ψct d(νt − ν) + F (νt)− F (ν) = t

∫ Lγ

0

ψct d(ν̃ − ν) + F (νt)− F (ν) ≥ 0.

Dividing by t and passing to the limit t→ 0+ gives∫ Lγ

0

ψc d(ν̃ − ν) + q

∫ Lγ

0

νq−1(ν̃ − ν) ds ≥ 0

=⇒
∫ Lγ

0

(ψc + qνq−1)ν̃ ds ≥
∫ Lγ

0

(ψc + qνq−1)ν ds.

Since c is bounded, it follows ψ,ψc ∈ L∞([0, Lγ ]) (for further details we refer to
[25, Chapter 2] and references therein). The arbitrariness of ν̃ allows to make the
difference ∣∣∣∣∣

∫ Lγ

0

(ψc + qνq−1)ν̃ ds− essinf(ψc + qνq−1)

∣∣∣∣∣
arbitrarily small. Thus

essinf(ψc + qνq−1) ≥
∫ Lγ

0

(ψc + qνq−1)ν ds ≥ essinf(ψc + qνq−1),

that is

(16) ψc + qνq−1 = essinf(ψc + qνq−1) =: l L1-a.e.

since ν is a probability measure. Regularity of qνq−1 follows immediately. �

We need to establish an analogous of Lemma 3.5 when p = 1. The main issue is
the lack of differentiability of the transport cost. An approximation argument (from
[4, Lemma 3.7], to which we refer for further details) will be used. Note that (using

the same arguments from [4, Lemma 3.5]) for fixed µ, ν, it holds Tp(µ, ν)
Γ→ T1(µ, ν)

in the weak-* topology (here
Γ→ denotes Γ-convergence). Indeed it follows from the

proof of Lemma 3.5 that cp is Lipschitz regular with the same Lipschitz constant
as p gets close to 1, hence

W1(µ, ν) ≤Wp(µ, ν) ≤ CW1(µ, ν)

for some constant depending on H and independent of p.

Lemma 3.6. Let ψ be the Kantorovich potential associated to c1, µ, ν, with (γ, ν,Π)
minimizer of E [µ, λ, ε, ε′, ε′′, p, q] (i.e. ν minimizer of F). Then there exists a
constant l such that

qνq−1 = l − ψ L1-a.e..
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Proof. For any p > 1, Lemma 3.5 gives the existence of a unique Kantorovich
potential associated to cp, µ, νp, where νp minimizes F (for any p, recall that the
definition of F depends on p). Moreover qνq−1

p = −ψp, and all qνq−1
p are H-

Lipschitz regular (constant H from Lemma 3.5). Thus upon subsequence νp → ν
and ψp → ψ uniformly. Clearly ψ is Lipschitz regular with Lipschitz constant at
most lim infp→1+ H (recall that H depends on p), and consequently c1-concave. We
need to check ψ is a Kantorovich potential associated to c1, µ, ν. Recall that for any
cost function c and real function ϕ it holds ϕcc ≥ ϕ, and ϕcc is c-concave function
whose c-transform is ϕccc = ϕc. The optimality of ψp gives

(17)

∫
ψp dµ+

∫
ψcpp dνp ≥

∫
ϕcpcp dµ+

∫
ϕcpcp dνp ≥

∫
ϕdµ+

∫
ϕcpdνp.

Note that {cp} → c1 uniformly on compact sets, hence

|ϕcpp (x)− ϕc11 (x)| ≤ ‖cp − c1‖L∞ + ‖ϕp − ϕ1‖L∞ ,

i.e. for any sequence {ϕp} → ϕ1, if {ϕp} → ϕ1 uniformly then {ϕcpp } → ϕc11

uniformly. Thus passing to the limit in (17) gives∫
ψ dµ+

∫
ψc1 dν ≥

∫
ϕdµ+

∫
ϕc1 dν

for any ϕ (thus also for any c1-concave function ϕ), concluding the proof. �

Proof. (of Theorem 3.1) Lemmas 3.5 and 3.6 give (for cases p > 1 and p = 1
respectively) the existence of a constant l such that qνq−1 = l − ψ, where ψ is a
Kantorovich potential associated to cp, µ, ν. In particular, the inverse of the map
t 7→ tq−1 (recall that, by hypothesis, we have q > 1) is Hölder continuous, thus the
density ν is Hölder continuous, hence bounded. �

Proof. (of Theorem 3.2) Lemma 3.5 proved that qνq−1 is H-Lipschitz regular when
p > 1. For case p = 1, since c1 is H-Lipschitz regular, ψ and ψc are H-Lipschitz (see
[25, Chapter 2] for further details), as well as qνq−1. As by hypothesis 1 < q ≤ 2,
and ν ∈ L∞ in view of Theorem 3.1, ν is Lipschitz. �

Scaling properties. The scaling of the energy with respect to homothety is often
relevant in data analysis. Given r > 0, let

T : Rd → Rd, T (x) := rx.

Fix an arbitrary (γ, ν,Π) ∈ T . Let γr := T ◦ γ, νr := T]ν, and Πr optimal plan
between T]µ and νr. By simple change of variable we get

(18)

∫
Rd×Γγr

|x− y|p dΠr(x, y) = rp−d
∫
Rd×Γγ

|x− y|p dΠ(x, y), Lγr = rLγ ,

(19)∫ Lγr

0

|νr|q ds = r1−q
∫ Lγ

0

|ν|q ds, η(γr) = r−2η(γ), ‖γ′r‖TV = ‖γ‖TV .

Thus E [µ, λ, ε, ε′, ε′′, p, q] does not scale with homothecy, and we infer little informa-
tion about minimality of (γr, νr,Πr) from the minimality of (γ, ν,Π). This because
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the term transport cost
∫
Rd×Γγ

|x − y|p dΠ(x, y) is not “weighted” (it has always

weight 1). If transport cost is also weighted, then the energy

Ē [µ, ξ, λ, ε, ε′, ε′′, p, q] := ξ

∫
Rd×Γγ

|x−y|p dΠ(x, y)+λLγ+ε

∫ Lγ

0

νq ds+ε′η(γ)+ε′′‖γ′‖TV

is well-behaved with respect to homothecy: the same arguments from Section 2
give the existence of minimizers for Ē [µ, ξ, λ, ε, ε′, ε′′, p, q], and (in view of scaling
properties (18) and (19))

Ē [T]µ,ξr
d−p, λr−1, εrq−1, ε′r2, ε′′, p, q](γr, νr,Πr)

=
ξ

rp−d

∫
Rd×Γγr

|x− y|p dΠr(x, y) +
λ

r
Lγr

+
ε

r1−q

∫ Lγr

0

νqr ds+ ε′r2η(γr) + ε′′‖γ′r‖TV

= ξ

∫
Rd×Γγ

|x− y|p dΠ(x, y) + λLγ + ε

∫ Lγ

0

νqr ds+ ε′η(γ) + ε′′‖γ′‖TV

= Ē [µ, ξ, λ, ε, ε′, ε′′, p, q](γ, ν,Π).

In particular

(γr, νr,Πr) ∈ argmin Ē [T]µ, ξr
d−p, λr−1, εrq−1, ε′r2, ε′′, p, q]

if and only if

(γ, ν,Π) ∈ argmin Ē [µ, ξ, λ, ε, ε′, ε′′, p, q].
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