ABSOLUTELY CONTINUOUS CURVES IN EXTENDED WASSERSTEIN-ORLICZ SPACES

STEFANO LISINI

Abstract

In this paper we extend a previous result of the author [Lis07] of characterization of absolutely continuous curves in Wasserstein spaces to a more general class of spaces: the spaces of probability measures endowed with the Wasserstein-Orlicz distance constructed on extended Polish spaces (in general non separable), recently considered in [AGS14]. An application to the geodesics of this Wasserstein-Orlicz space is also given.

1. Introduction

In this paper we extend a previous result of the author [Lis07] to a more general class of spaces. The result in [Lis07] concerns the representation of absolutely continuous curves with finite energy in the Wasserstein space $\left(\mathscr{P}(X, \mathrm{~d}), W_{p}\right)$ (the space of Borel probability measures on a Polish metric space ($X, \mathrm{~d}$), endowed with the p-Wasserstein distance induced by d) by means of superposition of curves of the same kind on the space ($X, \mathrm{~d}$). The superposition is described by a probability measure on the space of continuous curves in ($X, \mathrm{~d}$) representing the curve in $\left(\mathscr{P}(X, \mathrm{~d}), W_{p}\right)$ and satisfying a suitable property.

Here we extend the previous representation result in two directions: in the first one we consider a so-called extended Polish space ($X, \tau, \mathrm{~d}$) instead of a Polish space ($X, \mathrm{~d}$) ; in the second one we consider the ψ-Orlicz-Wasserstein distance induced by an increasing convex function $\psi:[0,+\infty) \rightarrow[0,+\infty]$ instead of the p-Wasserstein distance modelled on the particular case of $\psi(r)=r^{p}$ for $p>1$.

The class of extended Polish spaces was introduced in the recent paper [AGS14]. The authors consider a Polish space (X, τ), i.e. τ is a separable topology on X induced by a distance δ on X such that (X, δ) is complete. The Wasserstein distance is defined between Borel probability measures on (X, τ) and constructed by means of an extended distance d on X that can assume the value $+\infty$. The minimization problem defining the extended Wasserstein distance makes sense between Borel probability measures on (X, τ), assuming that the extended distance d is lower semi continuous with respect to τ.

A typical example of extended Polish space is the abstract Wiener space (X, τ, γ) where (X, τ) is a separale Banach space and τ is the topology induced by the norm, γ is a gaussian reference measure on X with zero mean and supported on all the space. The extended distance is given by $\mathrm{d}(x, y)=|x-y|_{H}$ if $x-y \in H$, where H is the Cameron-Martin space associated to γ in X and $|\cdot|_{H}$ is the Hilbertian norm of H, and $\mathrm{d}(x, y)=+\infty$ if $x-y \notin H$ (see for instance [Str11]).

[^0]The Wasserstein-Orlicz distance is still unexplored. At the author's knowledge, only the papers [Stu11] and, more recently, [Kuw13] deal with this kind of spaces. In the paper [FGY11, Remark 3.19], the authors discuss the possibility to use this kind of WassersteinOrlicz distance to extend their results for equation of the form $\partial_{t} u-\operatorname{div}\left(u \nabla H\left(u^{-1} \nabla u\right)=0\right.$ to the case of a convex function H with non power growth.

Only the particular case of the Wasserstein-Orlicz distance W_{∞}, corresponding to the function $\psi(s)=0$ if $s \in[0,1]$ and $\psi(s)=+\infty$ if $s \in(1,+\infty)$ has been deeply investigated. The extension of the representation Theorem of [Lis07] to the W_{∞} case has been proved in [ADM14]. Another refinement of the representation Theorem of [Lis07] is contained in [BS11, Sec. 5]. The problem of the validity of the representation Theorem of [Lis07] in the case of a general Wasserstein-Orlicz space is raised in the last section of [AGS13].

For the precise statement of the result we address to Theorem 3.1. The strategy of the proof is similar to the one used to prove Theorem 5 of [Lis07], but there are several additional difficulties because ($X, \mathrm{~d}$), in general, is non separable and the function ψ that induces the Wasserstein-Orlicz distance is not homogeneous.

The paper is structured as follows: in Section 2 we introduce the framework of our study and some preliminary results, in Section 3 we state and prove the main theorem of the paper, and finally in Section 4 we apply the main theorem in order to characterize the geodesics of the Wasserstein-Orlicz space.

2. Notation and preliminary results

2.1. Extended Polish spaces and probability measures. Given a set X, we say that $\mathrm{d}: X \times X \rightarrow[0,+\infty]$ is an extended distance if

- $\mathrm{d}(x, y)=\mathrm{d}(y, x)$ for every $x, y \in X$,
- $\mathrm{d}(x, y)=0$ if and only if $x=y$,
- $\mathrm{d}(x, y) \leq \mathrm{d}(x, z)+\mathrm{d}(z, y)$ for every $x, y, z \in X$.
$(X, \mathrm{~d}))$ is called extended metric space. We observe that the only difference between a distance and an extended distance is that $\mathrm{d}(x, y)$ could be equal to $+\infty$.

We say that $(X, \tau, \mathrm{~d})$ is a Polish extended space if:
(i) τ is a topology on X and (X, τ) is Polish, i.e. τ is induced by a distance δ such that the metric space (X, δ) is separable and complete;
(ii) d is an extended distance on X and ($X, \mathrm{~d}$) is a complete extended metric space;
(iii) For every sequence $\left\{x_{n}\right\} \subset X$ such that $\mathrm{d}\left(x_{n}, x\right) \rightarrow 0$ with $x \in X$, we have that $x_{n} \rightarrow x$ with respect to the topology τ;
(iv) d is lower semicontinuous in $X \times X$, with respect to the $\tau \times \tau$ topology; i.e.,

$$
\begin{equation*}
\liminf _{n \rightarrow+\infty} \mathrm{d}\left(x_{n}, y_{n}\right) \geq \mathrm{d}(x, y), \quad \forall(x, y) \in X \times X, \quad \forall\left(x_{n}, y_{n}\right) \rightarrow(x, y) \text { w.r.t. } \tau \times \tau \tag{1}
\end{equation*}
$$

In the sequel, the class of compact sets, the class of Borel sets $\mathscr{B}(X)$, the class $C_{b}(X)$ of bounded continuous functions and the class $\mathscr{P}(X)$ of Borel probability measures, are always referred to the topology τ, even when d is a distance.

We say that a sequence $\mu_{n} \in \mathscr{P}(X)$ narrowly converges to $\mu \in \mathscr{P}(X)$ if

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \int_{X} \varphi(x) d \mu_{n}(x)=\int_{X} \varphi(x) d \mu(x) \quad \forall \varphi \in C_{b}(X) \tag{2}
\end{equation*}
$$

It is well known that the narrow convergence is induced by a distance on $\mathscr{P}(X)$ (see for instance [AGS05, Remark 5.1.1]) and we call narrow topology the topology induced by this distance. In particular the compact subsets of $\mathscr{P}(X)$ coincides with sequentially compact subsets of $\mathscr{P}(X)$.
We also recall that if $\mu_{n} \in \mathscr{P}(X)$ narrowly converges to $\mu \in \mathscr{P}(X)$ and $\varphi: X \rightarrow(-\infty,+\infty]$ is a lower semi continuous (with respect to τ) function bounded from below, then

$$
\begin{equation*}
\liminf _{n \rightarrow+\infty} \int_{X} \varphi(x) d \mu_{n}(x) \geq \int_{X} \varphi(x) d \mu(x) \tag{3}
\end{equation*}
$$

A subset $\mathscr{T} \subset \mathscr{P}(X)$ is said to be tight if

$$
\begin{equation*}
\forall \varepsilon>0 \quad \exists K_{\varepsilon} \subset X \text { compact }: \mu\left(X \backslash K_{\varepsilon}\right)<\varepsilon \quad \forall \mu \in \mathscr{T}, \tag{4}
\end{equation*}
$$

or, equivalently, if there exists a function $\varphi: X \rightarrow[0,+\infty]$ with compact sublevels $\lambda_{c}(\varphi):=$ $\{x \in X: \varphi(x) \leq c\}$, such that

$$
\begin{equation*}
\sup _{\mu \in \mathscr{T}} \int_{X} \varphi(x) d \mu(x)<+\infty \tag{5}
\end{equation*}
$$

By Prokhorov Theorem, a set $\mathscr{T} \subset \mathscr{P}(X)$ is tight if and only if \mathscr{T} is relatively compact in $\mathscr{P}(X)$. In particular, the Polish condition on τ guarantees that all Borel probability measures $\mu \in \mathscr{P}(X)$ are tight.
2.2. Orlicz spaces. Given

$$
\begin{gather*}
\psi:[0,+\infty) \rightarrow[0,+\infty] \text { convex, lower semicontinuous, non-decreasing, } \psi(0)=0, \\
\lim _{x \rightarrow+\infty} \psi(x)=+\infty \tag{6}
\end{gather*}
$$

a measure space (Ω, ν) and a ν-measurable function $u: \Omega \rightarrow \mathbb{R}$, the $L_{\nu}^{\psi}(\Omega)$ Orlicz norm of u is defined by

$$
\|u\|_{L_{\nu}^{\psi}(\Omega)}:=\inf \left\{\lambda>0: \int_{\Omega} \psi\left(\frac{|u|}{\lambda}\right) d \nu \leq 1\right\}
$$

The Orlicz space $L_{\nu}^{\psi}(\Omega):=\left\{u: \Omega \rightarrow \mathbb{R}\right.$, measurable : $\left.\|u\|_{L_{\nu}^{\psi}(\Omega)}<+\infty\right\}$ is a Banach space. For the theory of the Orlicz spaces we refer to the complete monography [RR91].

Given a bounded sequence $\left\{w_{n}\right\} \subset L_{\nu}^{\psi}(\Omega)$, the following property of lower semi continuity of the norm holds:

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} w_{n}(x) \geq w(x) \text { for } \nu \text {-a.e. } x \in \Omega \quad \Longrightarrow \quad \liminf _{n \rightarrow \infty}\left\|w_{n}\right\|_{L_{\nu}^{\psi}(\Omega)} \geq\|w\|_{L_{\nu}^{\psi}(\Omega)} \tag{7}
\end{equation*}
$$

Indeed, denoting by $\lambda_{n}:=\left\|w_{n}\right\|_{L_{\nu}^{\psi}(\Omega)}$ and $\lambda:=\liminf _{n} \lambda_{n}$, up to extract a subsequence we can assume that $\lambda=\lim _{n} \lambda_{n}$. By the lower semicontinuity and the monotonicity of ψ we have

$$
\liminf _{n \rightarrow \infty} \psi\left(\frac{w_{n}(x)}{\lambda_{n}}\right) \geq \psi\left(\frac{w(x)}{\lambda}\right) \quad \text { for } \nu \text {-a.e. } x \in \Omega
$$

Finally, by Fatou's lemma

$$
1 \geq \liminf _{n \rightarrow \infty} \int_{\Omega} \psi\left(\frac{w_{n}(x)}{\lambda_{n}}\right) d \nu(x) \geq \int_{\Omega} \psi\left(\frac{w(x)}{\lambda}\right) d \nu(x)
$$

which shows that $\lambda \geq\|w\|_{L_{\nu}^{\psi}(\Omega)}$.

We denote by $\psi^{*}:=[0,+\infty) \rightarrow[0,+\infty]$ the conjugate of ψ defined by $\psi^{*}(y)=\sup _{x \geq 0}\{x y-$ $\psi(x)\}$. The following generalized Hölder's inequality holds

$$
\begin{equation*}
\int_{\Omega} u(x) v(x) d \nu(x) \leq 2\|u\|_{L_{\nu}^{\psi}(\Omega)}\|v\|_{L_{\nu}^{\psi^{*}}(\Omega)} \tag{8}
\end{equation*}
$$

and the following equivalence between the Orlicz norm in $L_{\nu}^{\psi}(\Omega)$ and the dual norm of $L_{\nu}^{\psi^{*}}(\Omega)$ holds

$$
\begin{equation*}
\|u\|_{L_{\nu}^{\psi}(\Omega)} \leq \sup \left\{\int_{\Omega}|u(x) v(x)| d \nu(x): v \in L_{\nu}^{\psi^{*}}(\Omega),\|v\|_{L_{\nu}^{\nu^{*}}(\Omega)} \leq 1\right\} \leq 2\|u\|_{L_{\nu}^{\psi}(\Omega)} \tag{9}
\end{equation*}
$$

In the statement of our main theorem we will assume, in addition to (6), that ψ is superlinear at $+\infty$, i.e.

$$
\begin{equation*}
\lim _{x \rightarrow+\infty} \frac{\psi(x)}{x}=+\infty \tag{10}
\end{equation*}
$$

and it has null right derivative at 0 , i.e.

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{\psi(x)}{x}=0 \tag{11}
\end{equation*}
$$

It is easy to check that conditions (10) and (11) are equivalent to assume that $\psi^{*}(y)>0$ and $\psi^{*}(y)<+\infty$ for every $y>0$.

Typical examples of admissible ψ satisfying (6), (10) and (11) are:

- $\psi(x)=x^{p}$ for $p \in(1,+\infty)$ and the corresponding Orlicz norm is the standard L^{p} norm;
- $\psi(x)=0$ if $x \in[0,1]$ and $\psi(x)=+\infty$ if $x \in(1,+\infty)$ and the corresponding Orlicz norm is the L^{∞} norm;
- $\psi(x)=e^{x}-x-1$, exponential growth;
- $\psi(x)=e^{x^{p}}-1$ for $p \in(1,+\infty)$, power exponential growth;
- $\psi(x)=(1+x) \ln (1+x)-x, L \log L$-growth.
2.3. Continuous curves. Given $(X, \tau, \mathrm{~d})$ an extended Polish space, $I:=[0, T], T>0$, we denote by $C(I ; X)$ the space of continuous curves in X with respect to the topology τ. $C(I ; X)$ is a Polish space with the metric

$$
\begin{equation*}
\delta_{\infty}(u, \tilde{u})=\sup _{t \in I} \delta(u(t), \tilde{u}(t)) \tag{12}
\end{equation*}
$$

where δ is a complete and separable metric on X inducing τ.
Given ψ satisfying (6), we say that a curve $u: I \rightarrow X$ belongs to $A C^{\psi}(I ;(X, \mathrm{~d}))$, if there exists $m \in L^{\psi}(I)$ such that

$$
\begin{equation*}
\mathrm{d}(u(s), u(t)) \leq \int_{s}^{t} m(r) d r \quad \forall s, t \in I, \quad s \leq t \tag{13}
\end{equation*}
$$

We also denote by $A C(I ;(X, \mathrm{~d}))$ the set $A C^{\psi}(I ;(X, \mathrm{~d}))$ for $\psi(r)=r$. We call a curve $u \in A C^{\psi}(I ;(X, \mathrm{~d}))$ an absolutely continuous curve with finite L^{ψ}-energy.

It can be proved that (see [AGS05, Theorem 1.1.2]) for every $u \in A C^{\psi}(I ;(X, \mathrm{~d}))$, there exists the following limit, called metric derivative,

$$
\begin{equation*}
\left|u^{\prime}\right|(t):=\lim _{h \rightarrow 0} \frac{\mathrm{~d}(u(t+h), u(t))}{|h|} \quad \text { for } \mathscr{L}^{1} \text {-a.e. } t \in I \tag{14}
\end{equation*}
$$

The function $t \mapsto\left|u^{\prime}\right|(t)$ belongs to $L^{\psi}(I)$ and it is the minimal one that satisfies (13).
The following Lemma will be useful in the proof of our main theorem.
Lemma 2.1. Let ψ be satisfying (6), (10) and (11). If $u: I \rightarrow(X, \mathrm{~d})$ is right continuous at every point and continuous except at most a countable set, and

$$
\begin{equation*}
\limsup _{h \rightarrow 0^{+}}\left\|\frac{\mathrm{d}(u(\cdot+h), u(\cdot))}{h}\right\|_{L^{\psi}(I)}<+\infty \tag{15}
\end{equation*}
$$

where u is extended for $t>T$ as $u(t)=u(T)$, then $u \in A C^{\psi}(I ;(X, d))$.
Proof. Since I is bounded, by the assumptions on u we have that the d-closure of $u(I)$ is compact in $(X, \mathrm{~d})$. Consequently $u(I)$ is d -separable. We consider a sequence $\left\{y_{n}\right\}_{n \in \mathbb{N}}$ dense in $(u(I), \mathrm{d})$. We fix $n \in \mathbb{N}$. Defining $u_{n}: I \rightarrow \mathbb{R}$ by $u_{n}(t):=\mathrm{d}\left(u(t), y_{n}\right)$, the triangular inequality implies

$$
\begin{equation*}
\left|u_{n}(t+h)-u_{n}(t)\right| \leq \mathrm{d}(u(t+h), u(t)), \quad \forall t \in I, h>0 \tag{16}
\end{equation*}
$$

Given a test function $\eta \in C_{c}^{\infty}(I)$ and $h>0$, recalling Hölder inequality (8) we obtain

$$
\begin{aligned}
\left|\int_{I} u_{n}(t) \frac{\eta(t-h)-\eta(t)}{h} d t\right| & =\left|\int_{I} \eta(t) \frac{u_{n}(t+h)-u_{n}(t)}{h} d t\right| \\
& \leq 2\left\|\frac{\left.u_{n}(\cdot+h)-u_{n}(\cdot)\right)}{h}\right\|_{L^{\psi}(I)}\|\eta\|_{L^{\psi^{*}(I)}}
\end{aligned}
$$

By the last inequality, (15) and (16), passing to the limit for $h \rightarrow 0$ we have that

$$
\begin{equation*}
\left|\int_{I} u_{n}(t) \eta^{\prime}(t) d t\right| \leq C\|\eta\|_{L^{\psi^{*}}(I)} \tag{17}
\end{equation*}
$$

The linear functional $\mathscr{L}_{n}:\left(C_{c}^{\infty}(I),\|\cdot\|_{L^{\psi^{*}(I)}}\right) \rightarrow \mathbb{R}$ defined by $\mathscr{L}_{n}(\eta)=\int_{I} u_{n}(t) \eta^{\prime}(t) d t$, by (17), is bounded and we still denote by \mathscr{L}_{n} its extension to $E^{\psi^{*}}(I)$, the closure of $C_{c}^{\infty}(I)$ with respect to the norm $\|\cdot\|_{L^{\psi^{*}(I)}}$. Since, by (10) and (11), ψ^{*} is continuous and strictly positive on $(0,+\infty), \mathscr{L}_{n}$ is uniquely represented by an element $v_{n} \in L^{\psi^{* *}}(I)$ (see Theorem 6, pag. 105 of [RR91]). The element v_{n} coincides with the distributional derivative of u_{n} and then $u_{n} \in A C^{\psi}(I ; \mathbb{R})$ (we observe that $\psi^{* *}=\psi$ because ψ is convex and lower semi continuous). We denote by $u_{n}^{\prime}(t)$ the pointwise derivative of u_{n} which exists for a.e. $t \in I$.

We introduce the negligible set

$$
N=\bigcup_{n \in \mathbb{N}}\left\{t \in I: u_{n}^{\prime}(t) \text { does not exists }\right\}
$$

and we define $m(t):=\sup _{n \in \mathbb{N}}\left|u_{n}^{\prime}(t)\right|$ for all $t \in I \backslash N$. By the density of $\left\{y_{n}\right\}_{n \in \mathbb{N}}$ in $u(I)$, we have that for all $t, s \in I$, with $s<t$,

$$
\begin{equation*}
\mathrm{d}(u(t), u(s))=\sup _{n \in \mathbb{N}}\left|u_{n}(t)-u_{n}(s)\right| \leq \sup _{n \in \mathbb{N}} \int_{s}^{t}\left|u_{n}^{\prime}(r)\right| d r \leq \int_{s}^{t} m(r) d r . \tag{18}
\end{equation*}
$$

We show that $m \in L^{\psi}(I)$. Actually, by (16), if $t \in I \backslash N$ then

$$
\left|u_{n}^{\prime}(t)\right|=\lim _{h \rightarrow 0^{+}} \frac{\left|u_{n}(t+h)-u_{n}(t)\right|}{h} \leq \liminf _{h \rightarrow 0^{+}} \frac{\mathrm{d}(u(t+h), u(t))}{h},
$$

which implies $m(t) \leq \liminf _{h \rightarrow 0^{+}} \frac{\mathrm{d}(u(t+h), u(t))}{h}$. By (15) and (7) we conclude.
2.4. The $\mathcal{M}(I ; X)$ space. We denote by $\mathscr{M}(I ; X)$ the space of curves $u: I \rightarrow X$ which are Lebesgue measurable as functions with values in (X, τ). We denote by $\mathcal{M}(I ; X)$ the quotient space of $\mathscr{M}(I ; X)$ with respect to the equality \mathscr{L}^{1}-a.e. in I. The space $\mathcal{M}(I ; X)$ is a Polish space endowed with the metric

$$
\delta_{1}(u, v):=\int_{0}^{T} \tilde{\delta}(u(t), v(t)) d t
$$

where $\tilde{\delta}(x, y):=\min \{\delta(x, y), 1\}$ is a bounded distance still inducing τ and δ is a distance inducing τ.

The space $\mathcal{M}(I ; X)$ coincides with $L^{1}(I ;(X, \tilde{\delta}))$. It is well known that $\delta_{1}\left(u_{n}, u\right) \rightarrow 0$ as $n \rightarrow+\infty$ if and only if $u_{n} \rightarrow u$ in measure as $n \rightarrow+\infty$; i.e.

$$
\lim _{n \rightarrow+\infty} \mathscr{L}^{1}\left(\left\{t \in I: \delta\left(u_{n}(t), u(t)\right)>\sigma\right\}\right)=0, \quad \forall \sigma>0
$$

We recall a useful compactness criterion in $\mathcal{M}(I ; X),[$ RS03, Theorem 2].
Theorem 2.2. A family $\mathscr{A} \subset \mathcal{M}(I ; X)$ is precompact if there exists a function $\Psi: X \rightarrow$ $[0,+\infty]$ whose sublevels $\lambda_{c}(\Psi):=\{x \in X: \Psi(x) \leq c\}$ are compact for every $c \geq 0$, such that

$$
\begin{equation*}
\sup _{u \in \mathscr{A}} \int_{0}^{T} \Psi(u(t)) d t<+\infty \tag{19}
\end{equation*}
$$

and there exists a map $g: X \times X \rightarrow[0, \infty]$ lower semi continuous with respect to $\tau \times \tau$ such that

$$
g(x, y)=0 \quad \Longrightarrow \quad x=y
$$

and

$$
\lim _{h \rightarrow 0^{+}} \sup _{u \in \mathscr{A}} \int_{0}^{T-h} g(u(t+h), u(t)) d t=0
$$

2.5. Push forward of probability measures. If Y, Z are topological spaces, $\mu \in \mathscr{P}(Y)$ and $F: Y \rightarrow Z$ is a Borel map (or a μ-measurable map), the push forward of μ through F, denoted by $F_{\#} \mu \in \mathscr{P}(Z)$, is defined as follows:

$$
\begin{equation*}
F_{\#} \mu(B):=\mu\left(F^{-1}(B)\right) \quad \forall B \in \mathscr{B}(Z) . \tag{20}
\end{equation*}
$$

It is not difficult to check that this definition is equivalent to

$$
\begin{equation*}
\int_{Z} \varphi(z) d\left(F_{\#} \mu\right)(z)=\int_{Y} \varphi(F(y)) d \mu(y) \tag{21}
\end{equation*}
$$

for every bounded Borel function $\varphi: Z \rightarrow \mathbb{R}$. More generally (21) holds for every $F_{\#} \mu^{-}$ integrable function $\varphi: Z \rightarrow \mathbb{R}$.

We recall the following composition rule: for every $\mu \in \mathscr{P}(Y)$ and for all Borel maps $F: Y \rightarrow Z$ and $G: Z \rightarrow W$, we have

$$
(G \circ F)_{\#} \mu=G_{\#}\left(F_{\#} \mu\right)
$$

The following continuity property holds:

$$
F: Y \rightarrow Z \quad \text { continuous } \quad \Longrightarrow \quad F_{\#}: \mathscr{P}(Y) \rightarrow \mathscr{P}(Z) \quad \text { narrowly continuous. }
$$

We say that $\mu \in \mathscr{P}(Y)$ is concentrated on the set A if $\mu(X \backslash A)=0$. It follows from the definition that $F_{\#} \mu$ is concentrated on $F(A)$ if μ is concentrated on A.

The support of a Borel probability measure $\mu \in \mathscr{P}(Y)$ is the closed set defined by supp $\mu=$ $\{y \in Y: \mu(U)>0, \forall U$ neighborhood of $y\} . \mu$ is concentrated on supp μ and it is the smallest closed set on which μ is concentrated.

In general we have $F(\operatorname{supp} \mu) \subset \operatorname{supp} F_{\#} \mu \subset \overline{F(\operatorname{supp} \mu)}$ for $F: Y \rightarrow Z$ continuous.
It follows that $F_{\#} \mu\left(\operatorname{supp} F_{\#} \mu \backslash F(\operatorname{supp} \mu)\right)=0$.
The following Lemma is fundamental in our proof of Theorem 3.1. It allows to recover a pointwise bound assuming an integral bound.
Lemma 2.3. Let Y be a Polish space and $\left\{\mu_{n}\right\}_{n \in \mathbb{N}} \subset \mathscr{P}(Y)$ be a sequence narrowly convergent to $\mu \in \mathscr{P}(Y)$ as $n \rightarrow+\infty$. Let $F_{n}: Y \rightarrow[0,+\infty)$ be a sequence of μ_{n}-measurable functions such that

$$
\begin{equation*}
\sup _{n \in \mathbb{N}} \int_{Y} F_{n}(y) d \mu_{n}(y)<+\infty \tag{22}
\end{equation*}
$$

Then there exists a subsequence $\mu_{n_{k}}$ such that
for μ-a.e. $\bar{y} \in \operatorname{supp} \mu \quad \exists y_{n_{k}} \in \operatorname{supp} \mu_{n_{k}}: \lim _{k \rightarrow+\infty} y_{n_{k}}=\bar{y} \quad$ and $\quad \sup _{k \in \mathbb{N}} F_{n_{k}}\left(y_{n_{k}}\right)<+\infty$.
Proof. Let us define the sequence $\nu_{n}:=\left(\mathrm{i} \times F_{n}\right)_{\#} \mu_{n} \in \mathscr{P}(Y \times \mathbb{R})$, where i denotes the identity map in Y. We denote by $\pi^{1}: Y \times \mathbb{R} \rightarrow Y$ and $\pi^{2}: Y \times \mathbb{R} \rightarrow \mathbb{R}$ the projections defined by $\pi^{1}(y, z)=y$ and $\pi^{2}(y, z)=z$. The set $\left\{\nu_{n}\right\}_{n \in \mathbb{N}}$ is tight because $\left\{\pi_{\#}^{1} \nu_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{\pi_{\#}^{2} \nu_{n}\right\}_{n \in \mathbb{N}}$ are tight. Indeed $\pi_{\#}^{1} \nu_{n}=\mu_{n}$ is narrowly convergent, and $\pi_{\#}^{2} \nu_{n}=\left(F_{n}\right)_{\#} \mu_{n}$ has first moments uniformly bounded because

$$
\int_{\mathbb{R}}|z| d \pi_{\#}^{2} \nu_{n}(z)=\int_{Y}\left|F_{n}(y)\right| d \mu_{n}(y)
$$

$F_{n} \geq 0$ and (22) holds. By Prokhorov's Theorem there exists $\nu \in \mathscr{P}(Y \times \mathbb{R})$ and a subsequence $\left\{\nu_{n_{k}}\right\}_{k \in \mathbb{N}} \subset \mathscr{P}(Y \times \mathbb{R})$ narrowly convergent to ν. Since $\pi_{\#}^{1} \nu_{n}=\mu_{n}$ and $\pi_{\#}^{1} \nu_{n_{k}} \rightarrow \pi_{\#}^{1} \nu$ as $k \rightarrow+\infty$ we have that $\pi_{\#}^{1} \nu=\mu$.

Let $\bar{y} \in \pi^{1}(\operatorname{supp} \nu)$, and we observe that $\mu\left(\operatorname{supp} \mu \backslash \pi^{1}(\operatorname{supp} \nu)\right)=0$. By definition of \bar{y} there exists $z \in \mathbb{R}$ such that $(\bar{y}, z) \in \operatorname{supp} \nu$. Let $h \in \mathbb{N}$ and $D_{1 / h}(\bar{y}, z):=B_{1 / h}(\bar{y}) \times(z-1 / h, z+1 / h)$ where $B_{r}(\bar{y})$ denotes the open ball of radius r and center \bar{y}, when a distance in Y is fixed. By (3), with φ the characteristic function of $D_{1 / h}(\bar{y}, z)$, we obtain

$$
\liminf _{k \rightarrow+\infty} \nu_{n_{k}}\left(D_{1 / h}(\bar{y}, z)\right) \geq \nu\left(D_{1 / h}(\bar{y}, z)\right)>0
$$

Then there exists $k(h) \in \mathbb{N}$ such that

$$
\begin{equation*}
\nu_{n_{k}}\left(D_{1 / h}(\bar{y}, z)\right)>0 \quad \forall k \geq k(h) . \tag{24}
\end{equation*}
$$

By definition of ν_{n}

$$
\begin{align*}
\nu_{n_{k}}\left(D_{1 / h}(\bar{y}, z)\right) & =\mu_{n_{k}}\left(\left\{y \in Y:\left(\mathrm{i} \times F_{n_{k}}\right)(y) \in D_{1 / h}(\bar{y}, z)\right\}\right) \\
& =\mu_{n_{k}}\left(\left\{y \in Y:\left(y, F_{n_{k}}(y)\right) \in B_{1 / h}(\bar{y}) \times(z-1 / h, z+1 / h)\right\}\right) . \tag{25}
\end{align*}
$$

By (24) and (25) we have that

$$
\begin{equation*}
\operatorname{supp} \mu_{n_{k}} \cap\left\{y \in Y:\left(y, F_{n_{k}}(y)\right) \in B_{1 / h}(\bar{y}) \times(z-1 / h, z+1 / h)\right\} \neq \emptyset \quad \forall k \geq k(h) \tag{26}
\end{equation*}
$$

Since we can choose the application $h \mapsto k(h)$ strictly increasing, by (26) we can select a sequence $y_{n_{k}} \in \operatorname{supp} \mu_{n_{k}} \cap\left\{y \in Y:\left(y, F_{n_{k}}(y)\right) \in B_{1 / h}(\bar{y}) \times(z-1 / h, z+1 / h)\right\}$. By definition $y_{n_{k}} \rightarrow \bar{y}$ and $F_{n_{k}}\left(y_{n_{k}}\right) \rightarrow z$ as $k \rightarrow+\infty$. Since $F_{n_{k}}\left(y_{n_{k}}\right)$ converges in \mathbb{R} we obtain the bound in (23).
2.6. The extended Wasserstein-Orlicz space $\left(\mathscr{P}(X), W_{\psi}\right)$. Given $\mu, \nu \in \mathscr{P}(X)$ we define the set of admissible plans $\Gamma(\mu, \nu)$ as follows:

$$
\Gamma(\mu, \nu):=\left\{\gamma \in \mathscr{P}(X \times X): \pi_{\#}^{1} \gamma=\mu, \pi_{\#}^{2} \gamma=\nu\right\}
$$

where $\pi^{i}: X \times X \rightarrow X$, for $i=1,2$, are the projections on the first and the second component, defined by $\pi^{1}(x, y)=x$ and $\pi^{2}(x, y)=y$.

Given ψ satisfying (6), the ψ-Wasserstein-Orlicz extended distance between $\mu, \nu \in \mathscr{P}(X)$ is defined by

$$
\begin{align*}
W_{\psi}(\mu, \nu) & :=\inf _{\gamma \in \Gamma(\mu, \nu)} \inf \left\{\lambda>0: \int_{X \times X} \psi\left(\frac{\mathrm{~d}(x, y)}{\lambda}\right) d \gamma(x, y) \leq 1\right\} \tag{27}\\
& =\inf _{\gamma \in \Gamma(\mu, \nu)}\|\mathrm{d}(\cdot, \cdot)\|_{L_{\gamma}^{\psi}(X \times X)} .
\end{align*}
$$

It is easy to check that

$$
W_{\psi}(\mu, \nu)=\inf \left\{\lambda>0: \inf _{\gamma \in \Gamma(\mu, \nu)} \int_{X \times X} \psi\left(\frac{\mathrm{~d}(x, y)}{\lambda}\right) d \gamma(x, y) \leq 1\right\}
$$

which is the definition given in [Stu11] (see also [Kuw13]).
When the set of $\gamma \in \Gamma(\mu, \nu)$ such that $\|\mathrm{d}(\cdot, \cdot)\|_{L_{\gamma}^{\psi}(X \times X)}<+\infty$ is empty, then $W_{\psi}(\mu, \nu)=$ $+\infty$. Otherwise it is not difficult to show that a minimizer $\gamma \in \Gamma(\mu, \nu)$ in (27) exists. We denote by $\Gamma_{o}^{\psi}(\mu, \nu)$ the set of minimizers in (27). We observe that

$$
\begin{equation*}
\gamma \in \Gamma_{o}^{\psi}(\mu, \nu) \quad \Longleftrightarrow \quad \int_{X \times X} \psi\left(\frac{\mathrm{~d}(x, y)}{W_{\psi}(\mu, \nu)}\right) d \gamma(x, y) \leq 1 \tag{28}
\end{equation*}
$$

Since ψ satisfies (6) it is well defined $\psi^{-1}(s)$ for every $s>0$, with the convention that in the case that $\psi(r)=+\infty$ for $r>r_{0}$ and $\psi\left(r_{0}\right)<+\infty$ we define $\psi^{-1}(s)=r_{0}$ for every $s>\psi\left(r_{0}\right)$.

Moreover if $\gamma \in \Gamma_{o}^{\psi}(\mu, \nu)$ then

$$
\begin{equation*}
\int_{X \times X} \mathrm{~d}(x, y) d \gamma(x, y) \leq \psi^{-1}(1) W_{\psi}(\mu, \nu) . \tag{29}
\end{equation*}
$$

Indeed, for $\mu \neq \nu$ (the other case is trivial) using Jensen's inequality and (28)

$$
\psi\left(\int_{X \times X} \frac{\mathrm{~d}(x, y)}{W_{\psi}(\mu, \nu)} d \gamma(x, y)\right) \leq \int_{X \times X} \psi\left(\frac{\mathrm{~d}(x, y)}{W_{\psi}(\mu, \nu)}\right) d \gamma(x, y) \leq 1
$$

and (29) follows.

Being ($X, \mathrm{~d}$) complete, $\left(\mathscr{P}(X), W_{\psi}\right)$, is complete too (the proof of [AGS05, Proposition 7.1.5] works also in the case of the extended distance d and the Orlicz-Wasserstein distance).

We observe that $(X, \mathrm{~d})$ is embedded in $\left(\mathscr{P}(X), W_{\psi}\right)$ via the map $x \mapsto \delta_{x}$ and it holds

$$
\begin{equation*}
W_{\psi}\left(\delta_{x}, \delta_{y}\right)=\frac{1}{\psi^{-1}(1)} d(x, y) \tag{30}
\end{equation*}
$$

Thanks to the compatibility condition (iii) in the definition of extended Polish space we also have the following fundamental property:

$$
\begin{equation*}
W_{\psi}\left(\mu_{n}, \mu\right) \rightarrow 0 \quad \Longrightarrow \quad \mu_{n} \rightarrow \mu \text { narrowly in } \mathscr{P}(X) \tag{31}
\end{equation*}
$$

The space $\left(\mathscr{P}(X), W_{\psi}\right)$ is an extended Polish space, when in $\mathscr{P}(X)$ we consider the narrow topology.

3. Main theorem

In this section we state and prove our main result: a characterization of absolutely continuous curves with finite L^{ψ}-energy in the extended ψ-Wasserstein-Orlicz space $\left(\mathscr{P}(X), W_{\psi}\right)$.

Before to state the result, we define, for every $t \in I$, the evaluation map $e_{t}: C(I ; X) \rightarrow X$ in this way

$$
\begin{equation*}
e_{t}(u)=u(t) \tag{32}
\end{equation*}
$$

and we observe that e_{t} is continuous.
Theorem 3.1. Let ψ be satisfying (6), (10) and (11). Let ($X, \tau, \mathrm{~d}$) be an extended Polish space and $I:=[0, T], T>0$. If $\mu \in A C^{\psi}\left(I ;\left(\mathscr{P}(X), W_{\psi}\right)\right)$, then there exists $\eta \in \mathscr{P}(C(I ; X))$ such that
(i) η is concentrated on $A C^{\psi}(I ;(X, \mathrm{~d}))$,
(ii) $\left(e_{t}\right)_{\#} \eta=\mu_{t} \quad \forall t \in I$,
(iii) for a.e. $t \in I$, the metric derivative $\left|u^{\prime}\right|(t)$ exists for $\eta-a . e . ~ u \in C(I ; X)$ and it holds the equality

$$
\left|\mu^{\prime}\right|(t)=\left\|\left|u^{\prime}\right|(t)\right\|_{L_{\eta}^{\psi}(C(I ; X))} \quad \text { for a.e. } t \in I
$$

Proof. We preliminary assume that

$$
\begin{equation*}
\left|\mu^{\prime}\right|=1 \quad \text { for a.e. } t \in I \tag{33}
\end{equation*}
$$

and we will remove this assumption in Step 6 of this proof. We also assume for simplicity that $I=[0,1]$.

For any integer $N \geq 1$, we divide the unitary interval I in 2^{N} equal parts, and we denote by t^{i} the points

$$
t^{i}:=\frac{i}{2^{N}} \quad i=0,1, \ldots, 2^{N}
$$

We also denote by \boldsymbol{X}_{N} the product space

$$
\boldsymbol{X}_{N}:=X_{0} \times X_{1} \times \ldots \times X_{2^{N}}
$$

where X_{i}, with $i=0,1, \ldots, 2^{N}$, are $2^{N}+1$ copies of the same space X.
Choosing optimal plans

$$
\gamma_{N}^{i} \in \Gamma_{o}^{\psi}\left(\mu_{t^{i}}, \mu_{t^{i+1}}\right) \quad i=0,1, \ldots, 2^{N}-1
$$

there exists (see for instance [AGS05, Lemma 5.3.2 and Remark 5.3.3]) a measure $\gamma_{N} \in$ $\mathscr{P}\left(\boldsymbol{X}_{N}\right)$ such that

$$
\pi_{\#}^{i} \gamma_{N}=\mu_{t^{i}} \quad \text { and } \quad \pi_{\#}^{i, i+1} \gamma_{N}=\gamma_{N}^{i}
$$

where we denoted by $\pi^{i}: \boldsymbol{X}_{N} \rightarrow X_{i}$ the projection on the i-th component and by $\pi^{i, j}$: $\boldsymbol{X}_{N} \rightarrow X_{i} \times X_{j}$ the projection on the (i, j)-th component.
We define $\sigma: \boldsymbol{X}_{N} \rightarrow \mathscr{M}(I ; X)$, and we use the notation $\boldsymbol{x}=\left(x_{0}, \ldots, x_{2^{N}}\right) \mapsto \sigma_{\boldsymbol{x}}$, by

$$
\sigma_{\boldsymbol{x}}(t):=x_{i} \quad \text { if } \quad t \in\left[t^{i}, t^{i+1}\right), \quad i=0,1, \ldots, 2^{N}-1
$$

Finally, we define the sequence of probability measures

$$
\eta_{N}:=\sigma_{\#} \gamma_{N} \in \mathscr{P}(\mathcal{M}(I ; X)) .
$$

Step 1. (Tightness of $\left\{\eta_{N}\right\}_{N \in \mathbb{N}}$ in $\left.\mathscr{P}(\mathcal{M}(I ; X))\right)$ In order to prove the tightness of $\left\{\eta_{N}\right\}_{N \in \mathbb{N}}$ in $\mathscr{P}(\mathcal{M}(I ; X))$ (we recall that $\mathcal{M}(I ; X)$ is a Polish space with the metric δ_{1}) it is sufficient to show the existence of a function $\Phi: \mathcal{M}(I ; X) \rightarrow[0,+\infty]$ whose sublevels $\lambda_{c}(\Phi):=\{u \in \mathcal{M}(I ; X): \Phi(u) \leq c\}$ are compact in $\mathcal{M}(I ; X)$ for any $c \in \mathbb{R}_{+}$, and

$$
\begin{equation*}
\sup _{N \in \mathbb{N}} \int_{\mathcal{M}(I ; X)} \Phi(u) d \eta_{N}(u)<+\infty . \tag{34}
\end{equation*}
$$

First of all we observe that $\mathscr{A}:=\left\{\mu_{t}: t \in I\right\}$ is compact in $\left(\mathscr{P}(X), W_{\psi}\right)$ (because it is a continuous image of a compact) and consequently in $\mathscr{P}(X)$. Since, by Prokhorov's Theorem, \mathscr{A} is tight in $\mathscr{P}(X)$ there exists a function $\Psi: X \rightarrow[0,+\infty]$ whose sublevels $\lambda_{c}(\Psi):=\{x \in X: \Psi(x) \leq c\}$ are compact in X for any $c \in \mathbb{R}_{+}$, such that

$$
\begin{equation*}
\sup _{t \in I} \int_{X} \Psi(x) d \mu_{t}(x)<+\infty . \tag{35}
\end{equation*}
$$

We define $\Phi: \mathcal{M}(I ; X) \rightarrow[0,+\infty]$ by

$$
\Phi(u):=\int_{0}^{1} \Psi(u(t)) d t+\sup _{h \in(0,1)} \int_{0}^{1-h} \frac{\mathrm{~d}(u(t+h), u(t))}{h} d t .
$$

The compactness of the sublevels $\lambda_{c}(\Phi)$ in $\mathcal{M}(I ; X)$ follows by Theorem 2.2 with the choice $g(x, y)=\mathrm{d}(x, y)$. In order to prove (34) we begin to show that

$$
\begin{equation*}
\left.\sup _{N \in \mathbb{N}} \int_{\mathcal{M}(I ; X)} \int_{0}^{1} \Psi(u(t))\right) d t d \eta_{N}(u)<+\infty \tag{36}
\end{equation*}
$$

By the definition of η_{N} we have

$$
\begin{aligned}
\int_{\mathcal{M}(I ; X)} \int_{0}^{1} \Psi(u(t)) d t d \eta_{N}(u) & =\int_{\boldsymbol{X}_{N}} \int_{0}^{1} \Psi\left(\sigma_{\boldsymbol{x}}(t)\right) d t d \gamma_{N}(\boldsymbol{x}) \\
& =\int_{\boldsymbol{X}_{N}} \sum_{i=0}^{2^{N}-1} \int_{t^{i}}^{t^{i+1}} \Psi\left(x_{i}\right) d t d \gamma_{N}(\boldsymbol{x}) \\
& =\int_{\boldsymbol{X}_{N}} \frac{1}{2^{N}} \sum_{i=0}^{2^{N}-1} \Psi\left(x_{i}\right) d \gamma_{N}(\boldsymbol{x}) \\
& =\frac{1}{2^{N}} \sum_{i=0}^{2^{N}-1} \int_{X} \Psi(x) d \mu_{t^{i}}(x) \\
& \leq \frac{1}{2^{N}} \sum_{i=0}^{2^{N}-1} \sup _{t \in I} \int_{X} \Psi(x) d \mu_{t}(x)=\sup _{t \in I} \int_{X} \Psi(x) d \mu_{t}(x)
\end{aligned}
$$

and (36) follows by (35). The second bound that we have to show is

$$
\begin{equation*}
\sup _{N \in \mathbb{N}} \int_{\mathcal{M}(I ; X)} \sup _{h \in(0,1)} \int_{0}^{1-h} \frac{\mathrm{~d}(u(t+h), u(t))}{h} d t d \eta_{N}(u)<+\infty . \tag{37}
\end{equation*}
$$

First of all we prove that for $\boldsymbol{x} \in \boldsymbol{X}_{N}$ we have

$$
\begin{equation*}
\sup _{h \in(0,1)} \int_{0}^{1-h} \frac{\mathrm{~d}\left(\sigma_{\boldsymbol{x}}(t+h), \sigma_{\boldsymbol{x}}(t)\right)}{h} d t \leq 2 \sum_{i=0}^{2^{N}-1} \mathrm{~d}\left(x_{i}, x_{i+1}\right) \tag{38}
\end{equation*}
$$

We fix $h \in(0,1)$. When $h<2^{-N}$ we have that $\sigma_{\boldsymbol{x}}(t+h)=\sigma_{\boldsymbol{x}}(t)$ for every $t \in\left[t^{i}, t^{i+1}-h\right]$ and $i=0, \ldots, 2^{N}-1$. Then

$$
\begin{equation*}
\int_{0}^{1-h} \mathrm{~d}\left(\sigma_{\boldsymbol{x}}(t+h), \sigma_{\boldsymbol{x}}(t)\right) d t=\sum_{i=0}^{2^{N}-1} \int_{t^{i}}^{t^{i+1}} \mathrm{~d}\left(\sigma_{\boldsymbol{x}}(t+h), \sigma_{\boldsymbol{x}}(t)\right) d t=h \sum_{i=0}^{2^{N}-2} \mathrm{~d}\left(x_{i}, x_{i+1}\right) \tag{39}
\end{equation*}
$$

Now we assume that $h \geq 2^{-N}$ and we take the integer $k(h)=\left[h 2^{N}\right]$, where $[a]:=\max \{n \in$ $\mathbb{Z}: n \leq a\}$ is the integer part of the real number a. Since the triangular inequality yields

$$
\mathrm{d}\left(\sigma_{\boldsymbol{x}}(t+h), \sigma_{\boldsymbol{x}}(t)\right) \leq \sum_{i=0}^{k(h)} \mathrm{d}\left(\sigma_{\boldsymbol{x}}\left(t+t^{i+1}\right), \sigma_{\boldsymbol{x}}\left(t+t^{i}\right)\right),
$$

we have that

$$
\begin{align*}
\int_{0}^{1-h} \mathrm{~d}\left(\sigma_{\boldsymbol{x}}(t+h), \sigma_{\boldsymbol{x}}(t)\right) d t & \leq \int_{0}^{1-t^{k(h)}} \mathrm{d}\left(\sigma_{\boldsymbol{x}}(t+h), \sigma_{\boldsymbol{x}}(t)\right) d t \\
& \leq \int_{0}^{1-t^{k(h)}} \sum_{i=0}^{k(h)} \mathrm{d}\left(\sigma_{\boldsymbol{x}}\left(t+t^{i+1}\right), \sigma_{\boldsymbol{x}}\left(t+t^{i}\right)\right) d t \tag{40}\\
& =\sum_{i=0}^{k(h)} \frac{1}{2^{N}} \sum_{j=0}^{2^{N}-k(h)-1} \mathrm{~d}\left(x_{i+j+1}, x_{i+j}\right)
\end{align*}
$$

Observing that in (40) the term $\mathrm{d}\left(x_{k+1}, x_{k}\right)$, for every $k=0,1, \ldots, 2^{N}-1$, is counted at most $k(h)+1$ times, we obtain that

$$
\begin{equation*}
\int_{0}^{1-h} \mathrm{~d}\left(\sigma_{\boldsymbol{x}}(t+h), \sigma_{\boldsymbol{x}}(t)\right) d t \leq \frac{k(h)+1}{2^{N} h} h \sum_{j=0}^{2^{N}-1} \mathrm{~d}\left(x_{j+1}, x_{j}\right) \leq 2 h \sum_{j=0}^{2^{N}-1} \mathrm{~d}\left(x_{j+1}, x_{j}\right) \tag{41}
\end{equation*}
$$

because

$$
\frac{k(h)+1}{h 2^{N}} \leq \frac{k(h)+1}{k(h)} \leq 2 .
$$

The inequality (38) follows from (41) and (39). Finally, by (38), (29) taking into account the optimality of the plans $\pi_{\#}^{i, i+1} \gamma_{N}$, and (33) we have

$$
\begin{align*}
\int_{\mathcal{M}(I ; X)} \sup _{h \in(0,1)} \int_{0}^{1-h} \frac{\mathrm{~d}(u(t+h), u(t))}{h} d t d \eta_{N}(u) & \leq 2 \int_{\boldsymbol{X}_{N}} \sum_{i=0}^{2^{N}-1} \mathrm{~d}\left(x_{i}, x_{i+1}\right) d \gamma_{N}(\boldsymbol{x}) \\
& \leq 2 \psi^{-1}(1) \sum_{i=0}^{2^{N}-1} W_{\psi}\left(\mu_{t^{i}}, \mu_{t^{i+1}}\right) \tag{42}\\
& \leq 2 \psi^{-1}(1) \sum_{i=0}^{2^{N}-1} \frac{1}{2^{N}}=2 \psi^{-1}(1)
\end{align*}
$$

and (37) follows.
Then, by Prokhorov's Theorem, there exist $\eta \in \mathscr{P}(\mathcal{M}(I ; X))$ and a subsequence N_{n} such that $\eta_{N_{n}} \rightarrow \eta$ narrowly in $\mathscr{P}(\mathcal{M}(I ; X))$ as $n \rightarrow+\infty$.

Step 2. (η is concentrated on BV right continuous curves) We apply Lemma 2.3 in order to show that η-a.e. $u \in \operatorname{supp} \eta$ has a right continuous BV representative.

Given a curve $u:[a, b] \rightarrow X$, we denote by $\mathrm{pV}(u,[a, b])=\sup \left\{\sum_{i=1}^{n} \mathrm{~d}\left(u\left(t_{i}\right), u\left(t_{i+1}\right)\right): a=\right.$ $\left.t_{1}<t_{2}<\ldots<t_{n}<t_{n+1}=b\right\}$ its pointwise variation and by $\mathrm{eV}(u,[a, b])=\inf \{\mathrm{pV}(w,[a, b]):$ $w(t)=u(t)$ for a.e. $t \in(a, b)\}$ its essential variation.

We define $F_{N}: \mathcal{M}(I ; X) \rightarrow[0,+\infty)$ by

$$
F_{N}(u)= \begin{cases}\mathrm{eV}(u, I) & \text { if } u \in \operatorname{supp} \eta_{N} \tag{43}\\ 0 & \text { if } u \notin \operatorname{supp} \eta_{N}\end{cases}
$$

If u is a.e. equal to $\sigma_{\boldsymbol{x}}$ then $\mathrm{eV}(u, I)=\mathrm{pV}\left(\sigma_{\boldsymbol{x}}, I\right)$. Taking into account this equality, the proof of bound (36) shows that

$$
\begin{equation*}
\sup _{N \in \mathbb{N}} \int_{\mathcal{M}(I ; X)} F_{N}(u) d \eta_{N}(u)<+\infty \tag{44}
\end{equation*}
$$

Since $F_{N} \geq 0$ by definition, we apply Lemma 2.3 with the choice $Y=\mathcal{M}(I ; X)$ and $\mu_{n}=\eta_{N_{n}}$. We still denote by $\eta_{N_{n}}$ the subsequence of $\eta_{N_{n}}$ given by Lemma 2.3. Let $u \in \operatorname{supp}(\eta)$ be such that (23) holds and we denote by $u_{N_{n}} \in \operatorname{supp}\left(\eta_{N_{n}}\right)$ such that $u_{N_{n}} \rightarrow u$ in $\mathcal{M}(I ; X)$ and C a constant independent of n such that

$$
\begin{equation*}
F_{N_{n}}\left(u_{N_{n}}\right) \leq C . \tag{45}
\end{equation*}
$$

Moreover, up to extract a further subsequence, we can also assume that $u_{N_{n}}(t) \rightarrow u(t)$ with respect to the distance δ for a.e. $t \in I$. Since $u_{N_{n}} \in \operatorname{supp}\left(\eta_{N_{n}}\right)$ we can choose the piecewise constant right continuous representative of $u_{N_{n}}$, still denoted by $u_{N_{n}}$. From (45) we obtain that

$$
\begin{equation*}
\mathrm{eV}\left(u_{N_{n}}\right)=\mathrm{pV}\left(u_{N_{n}}\right) \leq C \tag{46}
\end{equation*}
$$

Defining the increasing functions $v_{n}: I \rightarrow \mathbb{R}$ by $v_{n}(t)=\mathrm{pV}\left(u_{N_{n}},[0, t]\right)$, from the Helly theorem, up to extract a further subsequence still denoted by v_{n}, there exists an increasing function $v: I \rightarrow \mathbb{R}$ such that $v_{n}(t)$ converges to $v(t)$ for every $t \in I$ (we observe that for (46) $v \leq C$). Since the set of discontinuity points of v is at most countable we can redefine a right continuous function \bar{v} by $\bar{v}(t)=\lim _{s \rightarrow t^{+}} v(t)$. Since

$$
\begin{equation*}
\mathrm{d}\left(u_{N_{n}}(t), u_{N_{n}}(s)\right) \leq v_{n}(s)-v_{n}(t) \quad \forall t, s \in I, \quad t \leq s \tag{47}
\end{equation*}
$$

from the property (1) it follows that

$$
\begin{equation*}
\mathrm{d}(u(t), u(s)) \leq \bar{v}(s)-\bar{v}(t) \quad \text { for a.e. } t, s \in I, \quad t \leq s \tag{48}
\end{equation*}
$$

Since ($X, \mathrm{~d}$) is complete, by (48) we can choose the representative of $u, \bar{u}: I \rightarrow X$ defined by $\bar{u}(t)=\lim _{s \rightarrow t^{+}} u(t)$, which is right continuous by (48).

We have just proved that η-a.e. $u \in \operatorname{supp} \eta$ is equivalent (with respect to the a.e. equality) to a d-right continuous function with pointwise d-bounded variation, continuous at every points except at most a countable set.

Step 3. (Proof of (i))
Since we want to apply Lemma 2.1, we prove that

$$
\begin{equation*}
\sup _{h \in(0,1)}\left\|\frac{\mathrm{d}(u(\cdot+h), u(\cdot))}{h}\right\|_{L^{\psi}(0,1-h)}<+\infty, \quad \text { for } \eta-\text { a.e. } u \in \mathcal{M}(I ; X) \text {. } \tag{49}
\end{equation*}
$$

Let us define the sequence of lower semi continuous functions $f_{N}: \mathcal{M}(I ; X) \rightarrow[0,+\infty]$ by

$$
f_{N}(u):=\sup _{1 / 2^{N} \leq h<1} \int_{0}^{1-h} \psi\left(\frac{\mathrm{~d}(u(t+h), u(t))}{2 h}\right) d t
$$

that satisfies the monotonicity property

$$
\begin{equation*}
f_{N}(u) \leq f_{N+1}(u) \quad \forall u \in \mathcal{M}(I ; X) \tag{50}
\end{equation*}
$$

For $h \in\left[2^{-N}, 1\right)$, and $u \in \operatorname{supp}\left(\eta_{N}\right)$, by the monotonicity of ψ, the discrete Jensen's inequality and taking into account that $(k(h)+1) /(2 h) \leq 2^{N}$, we have that

$$
\begin{aligned}
& \int_{0}^{1-h} \psi\left(\frac{\mathrm{~d}(u(t+h), u(t))}{2 h}\right) d t \\
& =\int_{0}^{1-h} \psi\left(\frac{\mathrm{~d}\left(x_{k(t+h)}, x_{k(t)}\right)}{2 h}\right) d t \\
& =\int_{0}^{1-t^{k(h)}} \psi\left(\frac{\mathrm{d}\left(x_{k(t+h)}, x_{k(t)}\right)}{2 h}\right) d t \\
& \leq \int_{0}^{1-t^{k(h)}} \psi\left(\frac{1}{k(h)+1} \sum_{i=0}^{k(h)} \frac{k(h)+1}{2 h} \mathrm{~d}\left(x_{k(t)+i+1}, x_{k(t)+i}\right)\right) d t \\
& \leq \int_{0}^{1-t^{k(h)}} \frac{1}{k(h)+1} \sum_{i=0}^{k(h)} \psi\left(\frac{k(h)+1}{2 h} \mathrm{~d}\left(x_{k(t)+i+1}, x_{k(t)+i}\right)\right) d t \\
& =\sum_{j=0}^{2^{N}-k(h)-1} 2^{-N} \frac{1}{k(h)+1} \sum_{i=0}^{k(h)} \psi\left(2^{N} \mathrm{~d}\left(x_{j+i+1}, x_{j+i}\right)\right) \\
& \leq \sum_{j=0}^{2^{N}-1} 2^{-N} \psi\left(2^{N} \mathrm{~d}\left(x_{j+1}, x_{j}\right)\right) .
\end{aligned}
$$

It follows that

$$
f_{N}(u) \leq \sum_{j=0}^{2^{N}-1} 2^{-N} \psi\left(2^{N} \mathrm{~d}\left(x_{j+1}, x_{j}\right)\right)
$$

for every $u \in \operatorname{supp}\left(\eta_{N}\right)$. Integrating the last inequality, taking into account that $W_{\psi}\left(\mu_{t^{j}}, \mu_{t^{j+1}}\right) \leq$ 2^{-N} and

$$
\int_{\boldsymbol{X}_{N}} \psi\left(\frac{\mathrm{~d}\left(x_{j+1}, x_{j}\right)}{W_{\psi}\left(\mu_{t^{j+1}}, \mu_{t^{j}}\right)}\right) d \gamma_{N}(\boldsymbol{x}) \leq 1
$$

we obtain that

$$
\begin{aligned}
\int_{\mathcal{M}(I ; X)} f_{N}(u) d \eta_{N}(u) & \leq \sum_{j=0}^{2^{N}-1} 2^{-N} \int_{\boldsymbol{X}_{N}} \psi\left(2^{N} \mathrm{~d}\left(x_{j+1}, x_{j}\right)\right) d \gamma_{N}(\boldsymbol{x}) \\
& \leq \sum_{j=0}^{2^{N}-1} 2^{-N} \int_{\boldsymbol{X}_{N}} \psi\left(\frac{\mathrm{~d}\left(x_{j+1}, x_{j}\right)}{W_{\psi}\left(\mu_{t}{ }^{j+1}, \mu_{t j}\right)}\right) d \gamma_{N}(\boldsymbol{x}) \leq 1
\end{aligned}
$$

The lower semi continuity of f_{N}, the monotonicity (50) of f_{N} and the last inequality yield

$$
\int_{\mathcal{M}(I ; X)} f_{N}(u) d \eta(u) \leq 1 \quad \forall N \in \mathbb{N}
$$

and consequently, by monotone convergence Theorem, we have that

$$
\int_{\mathcal{M}(I ; X)} \sup _{N \in \mathbb{N}} f_{N}(u) d \eta(u) \leq 1
$$

and

$$
\begin{equation*}
\sup _{N \in \mathbb{N}} f_{N}(u)<+\infty \quad \text { for } \eta-\text { a.e. } u \in \mathcal{M}(I ; X) \text {. } \tag{51}
\end{equation*}
$$

Since

$$
\sup _{N \in \mathbb{N}} f_{N}(u)=\sup _{0<h<1} \int_{0}^{1-h} \psi\left(\frac{\mathrm{~d}(u(t+h), u(t))}{2 h}\right) d t,
$$

and $\int_{0}^{1-h} \psi\left(\frac{\mathrm{~d}(u(t+h), u(t))}{2 h}\right) d t \leq C$ implies $\left\|\frac{\mathrm{d}(u(\cdot+h), u(\cdot))}{h}\right\|_{L^{\psi}(0,1-h)} \leq \max \{C, 1\}$ we obtain (49).
Finally, taking into account Step 2, we can associate to η-a.e. $u \in \operatorname{supp} \eta$ a right continuous representative \bar{u}, with at most a countable points of discontinuity satisfying (15). By Lemma 2.1 this representative belongs to $A C^{\psi}(I ;(X, \mathrm{~d}))$.

Defining the canonical immersion $T: C(I ; X) \rightarrow \mathcal{M}(I ; X)$ and observing that it is continuous, we define the new Borel probability measure $\tilde{\eta} \in \mathscr{P}(C(I ; X))$ by $\tilde{\eta}(B)=\eta(T(B))$. For the previous steps $\tilde{\eta}$ is concentrated on $A C^{\psi}(I ;(X, \mathrm{~d}))$.

Step 4. (Proof of (ii)) In order to show (ii) we prove that for every $t \in I$,

$$
\begin{equation*}
\int_{C(I ; X)} \varphi(u(t)) d \tilde{\eta}(u)=\int_{X} \varphi(x) d \mu_{t}(x) \quad \forall \varphi \in C_{b}(X) . \tag{52}
\end{equation*}
$$

Let $\varphi \in C_{b}(X)$. Since $g: I \rightarrow \mathbb{R}$ defined by

$$
g(t):=\int_{X} \varphi(x) d \mu_{t}(x)
$$

is uniformly continuous in I, we have that the sequence of piecewise constant functions $g_{N}: I \rightarrow \mathbb{R}$ defined by

$$
g_{N}(t):=g\left(t^{i}\right)=\int_{X} \varphi(x) d \mu_{t^{i}}(x) \quad \text { if } t \in\left[t^{i}, t^{i+1}\right)
$$

converges uniformly to g in I when $N \rightarrow+\infty$. Then, for every test function $\zeta \in C_{b}(I)$, we have that

$$
\begin{equation*}
\lim _{N \rightarrow+\infty} \int_{0}^{1} \zeta(t) g_{N}(t) d t=\int_{0}^{1} \zeta(t) g(t) d t \tag{53}
\end{equation*}
$$

On the other hand

$$
\begin{aligned}
\int_{0}^{1} \zeta(t) g_{N}(t) d t & =\int_{0}^{1} \zeta(t) \int_{\mathcal{M}(I ; X)} \varphi(u(t)) d \eta_{N}(u) d t \\
& =\int_{\mathcal{M}(I ; X)} \int_{0}^{1} \zeta(t) \varphi(u(t)) d t d \eta_{N}(u)
\end{aligned}
$$

Since the map

$$
u \mapsto \int_{0}^{1} \zeta(t) \varphi(u(t)) d t
$$

is continuous and bounded from $\mathcal{M}(I ; X)$ to \mathbb{R}, then by the narrow convergence of $\eta_{N_{n}}$ we have

$$
\lim _{n \rightarrow+\infty} \int_{\mathcal{M}(I ; X)} \int_{0}^{1} \zeta(t) \varphi(u(t)) d t d \eta_{N_{n}}(u)=\int_{\mathcal{M}(I ; X)} \int_{0}^{1} \zeta(t) \varphi(u(t)) d t d \eta(u) .
$$

By Fubini's Theorem and the definition of $\tilde{\eta}$

$$
\begin{aligned}
\int_{\mathcal{M}(I ; X)} \int_{0}^{1} \zeta(t) \varphi(u(t)) d t d \eta(u) & =\int_{C(I ; X)} \int_{0}^{1} \zeta(t) \varphi(u(t)) d t d \tilde{\eta}(u) \\
& =\int_{0}^{1} \zeta(t) \int_{C(I ; X)} \varphi(u(t)) d \tilde{\eta}(u) d t
\end{aligned}
$$

By the uniqueness of the limit then

$$
\int_{0}^{1} \zeta(t) \int_{C(I ; X)} \varphi(u(t)) d \tilde{\eta}(u) d t=\int_{0}^{1} \zeta(t) \int_{X} \varphi(x) d \mu_{t}(x) d t \quad \forall \zeta \in C_{b}(I)
$$

from which

$$
\begin{equation*}
\int_{C(I ; X)} \varphi(u(t)) d \tilde{\eta}(u)=\int_{X} \varphi(x) d \mu_{t}(x) \quad \text { for a.e. } t \in I \tag{54}
\end{equation*}
$$

Since the applications $t \mapsto \int_{X} \varphi(x) d \mu_{t}(x)$ and $t \mapsto \int_{C(I ; X)} \varphi(u(t)) d \tilde{\eta}(u)$ are continuous, (54) is true for every $t \in I$ and (52) is proved.

Step 5. (Proof of (iii))

First of all we check that for a.e. $t \in I,\left|u^{\prime}\right|(t)$ exists for $\tilde{\eta}$-a.e. $u \in C(I ; X)$. We set $\Lambda:=\left\{(t, u) \in I \times C(I ; X):\left|u^{\prime}\right|(t)\right.$ does not exist $\}$. Λ is a Borel subset of $I \times C(I ; X)$ since the maps $G_{h}: I \times C(I ; X) \rightarrow \mathbb{R}$ defined by $G_{h}(t, u):=\frac{d(u(t+h), u(t))}{|h|}$ are lower semi continuous for every $h \neq 0$, and $\Lambda=\left\{(t, u) \in I \times C(I ; X): \liminf _{h \rightarrow 0} G_{h}(t, u)<\limsup _{h \rightarrow 0} G_{h}(t, u)\right\}$. Since $\tilde{\eta}$ is concentrated on $A C(I ;(X, \mathrm{~d}))$ curves, we have that for $\tilde{\eta}$-a.e. $u \in C(I ; X)$, $\mathscr{L}^{1}(\{t \in I:(t, u) \in \Lambda\})=0$ and then Fubini's Theorem implies that for a.e. $t \in I$, $\tilde{\eta}(\{u \in C(I ; X):(t, u) \in \Lambda\})=0$.

Let $a, b \in I$ such that $a<b$ and let $h>0$ such that $b+h \in I$. Recalling that $k(h)=\left[2^{N} h\right]$, for every $N \in \mathbb{N}$ such that $2^{-N} \leq h$, by the monotonicity of ψ and the discrete Jensen's inequality we have

$$
\begin{aligned}
& \int_{\mathcal{M}(I ; X)} \int_{a}^{b} \psi\left(\frac{k(h)}{k(h)+1} \frac{\mathrm{~d}(u(t+h), u(t))}{h}\right) d t d \eta_{N}(u) \\
& \leq \int_{\boldsymbol{X}_{N}} \int_{a}^{b} \psi\left(\frac{k(h)}{k(h)+1} \frac{\mathrm{~d}\left(x_{k(t+h)}, x_{k(t)}\right)}{h}\right) d t d \gamma_{N}(\boldsymbol{x}) \\
& \leq \int_{\boldsymbol{X}_{N}} \int_{a}^{b} \psi\left(\frac{1}{k(h)+1} \sum_{i=0}^{k(h)} \frac{k(h)}{h} \mathrm{~d}\left(x_{k(t)+i+1}, x_{k(t)+i}\right)\right) d t d \gamma_{N}(\boldsymbol{x}) \\
& \leq \int_{\boldsymbol{X}_{N}} \int_{a}^{b} \sum_{i=0}^{b} \frac{1}{k(h)+1} \psi\left(\frac{k(h)}{h} \mathrm{~d}\left(x_{k(t)+i+1}, x_{k(t)+i}\right)\right) d t d \gamma_{N}(\boldsymbol{x}) .
\end{aligned}
$$

Since $k(h) / h \leq 2^{N}$ and, by (33), $W_{\psi}\left(\mu_{t^{k}}, \mu_{t^{k+1}}\right) \leq 2^{-N}$, we have that

$$
\begin{aligned}
& \int_{\boldsymbol{X}_{N}} \int_{a}^{b} \sum_{i=0}^{k(h)} \frac{1}{k(h)+1} \psi\left(\frac{k(h)}{h} \mathrm{~d}\left(x_{k(t)+i+1}, x_{k(t)+i}\right)\right) d t d \gamma_{N}(\boldsymbol{x}) \\
& \leq \int_{\boldsymbol{X}_{N}} \int_{a}^{b} \sum_{i=0}^{k(h)} \frac{1}{k(h)+1} \psi\left(2^{N} \mathrm{~d}\left(x_{k(t)+i+1}, x_{k(t)+i}\right)\right) d t d \gamma_{N}(\boldsymbol{x}) \\
& \leq \int_{a}^{b} \sum_{i=0}^{k(h)} \frac{1}{k(h)+1} \int_{\boldsymbol{X}_{N}} \psi\left(\frac{\mathrm{~d}\left(x_{k(t)+i+1}, x_{k(t)+i}\right)}{W_{\psi}\left(\mu_{t^{k(t)+i+1}}, \mu_{\left.t^{k(t)+i}\right)}\right)}\right) d \gamma_{N}(\boldsymbol{x}) d t \leq b-a,
\end{aligned}
$$

where we used the inequality

$$
\int_{\boldsymbol{X}_{N}} \psi\left(\frac{\mathrm{~d}\left(x_{k(t)+i+1}, x_{k(t)+i}\right)}{W_{\psi}\left(\mu_{t^{k(t)+i+1}}, \mu_{\left.t^{k(t)+i}\right)}\right.}\right) d \gamma_{N}(\boldsymbol{x}) \leq 1 .
$$

It follows that

$$
\int_{\mathcal{M}(I ; X)} \frac{1}{b-a} \int_{a}^{b} \psi\left(\frac{k(h)}{k(h)+1} \frac{\mathrm{~d}(u(t+h), u(t))}{h}\right) d t d \eta_{N}(u) \leq 1
$$

and then, passing to the limit along the sequence $\eta_{N_{n}}$,

$$
\int_{C(I ; X)} \frac{1}{b-a} \int_{a}^{b} \psi\left(\frac{\mathrm{~d}(u(t+h), u(t))}{h}\right) d t d \tilde{\eta}(u) \leq 1
$$

Taking into account (i), Fubini's Theorem and Lebesgue differentiation Theorem we obtain

$$
\begin{equation*}
\int_{C(I ; X)} \psi\left(\left|u^{\prime}\right|(t)\right) d \tilde{\eta}(u) \leq 1 \quad \text { for a.e. } t \in I \tag{55}
\end{equation*}
$$

and this shows that

$$
\left\|\left|u^{\prime}\right|(t)\right\|_{L_{\eta}^{\psi}(C(I ; X))} \leq 1=\left|\mu^{\prime}\right|(t) \quad \text { for a.e. } t \in I
$$

Step 6. (Conclusion) Finally we have to remove the assumption (33). Let $\mu \in$ $A C^{\psi}\left(I ;\left(\mathscr{P}(X), W_{\psi}\right)\right)$ with length $L:=\int_{0}^{T}\left|\mu^{\prime}\right|(t) d t$.

If $L=0$, then $\mu_{t}=\mu_{0}$ for every $t \in I$ and μ is represented by $\eta:=\sigma_{\#} \mu_{0}$, where $\sigma: X \rightarrow C(I ; X)$ denotes the function $\sigma(x)=c_{x}, c_{x}(t):=x$ for every $t \in I$.

When $L>0$ we can reparametrize μ by its arc-length (see Lemma 1.1.4(b) of [AGS05] for the details). We define the increasing function $s: I \rightarrow[0, L]$ by $s(t):=\int_{0}^{t}\left|\mu^{\prime}\right|(r) d r$ observing that s is absolutely continuous with pointwise derivative

$$
\begin{equation*}
s^{\prime}(t)=\left|\mu^{\prime}\right|(t) \quad \text { for a.e. } t \in I . \tag{56}
\end{equation*}
$$

Defining $\boldsymbol{s}^{-1}: I \rightarrow[0, L]$ by $\boldsymbol{s}^{-1}(s)=\min \{t \in I: s(t)=s\}$ it is easy to check that the new curve $\hat{\mu}:[0, L] \rightarrow \mathscr{P}(X)$ defined by $\hat{\mu}_{s}=\mu_{s^{-1}(s)}$ satisfies $\left|\hat{\mu}^{\prime}\right|(s)=1$ for a.e. $s \in[0, L]$ and $\mu_{t}=\hat{\mu}_{\boldsymbol{s}(t)}$. By the previous steps, we represent $\hat{\mu}$ by a measure $\hat{\eta}$ concentrated on $A C^{\psi}([0, L] ;(X, \mathrm{~d}))$. Denoting by $F: C([0, L] ; X) \rightarrow C(I ; X)$ the map defined by $F(\hat{u})=\hat{u} \circ \boldsymbol{s}$, we represent μ by $\eta:=F_{\#} \hat{\eta}$. Clearly $\left(e_{t}\right)_{\#} \eta=\left(e_{t} \circ F\right)_{\#} \hat{\eta}=\hat{\mu}_{\boldsymbol{s}(t)}=\mu_{t}$. Moreover, η is concentrated on curves u of the form $u(t)=\hat{u}(\boldsymbol{s}(t))$ with $\hat{u} \in A C^{\psi}([0, L] ;(X, \mathrm{~d}))$. Since \boldsymbol{s}
is monotone and $A C(I ; \mathbb{R})$ and \hat{u} is $A C([0, L] ;(X, \mathrm{~d}))$ then $\hat{u} \circ s$ is $A C(I ;(X, \mathrm{~d}))$, and the metric derivative satisfies

$$
\begin{equation*}
\left|u^{\prime}\right|(t) \leq\left|\hat{u}^{\prime}\right|(s(t)) s^{\prime}(t) \quad \text { for a.e. } t \in I \tag{57}
\end{equation*}
$$

Let $t \in I$ such that $\boldsymbol{s}^{\prime}(t)$ and $\left|\mu^{\prime}\right|(t)$ exist and $\boldsymbol{s}^{\prime}(t)=\left|\mu^{\prime}\right|(t)>0$. Taking into account (55) and Jensen's inequality we have for $h>0$

$$
\begin{aligned}
\int_{C(I ; X)} \psi\left(\frac{\mathrm{d}(u(t+h), u(t))}{\boldsymbol{s}(t+h)-\boldsymbol{s}(t)}\right) d \eta(u) & =\int_{C([0, L] ; X)} \psi\left(\frac{\mathrm{d}(\hat{u}(\boldsymbol{s}(t+h)), u(\boldsymbol{s}(t)))}{\boldsymbol{s}(t+h)-\boldsymbol{s}(t)}\right) d \hat{\eta}(\hat{u}) \\
& \leq \int_{C([0, L] ; X)} \psi\left(\frac{1}{\boldsymbol{s}(t+h)-\boldsymbol{s}(t)} \int_{\boldsymbol{s}(t)}^{\boldsymbol{s}(t+h)}\left|\hat{u}^{\prime}\right|(r) d r\right) d \hat{\eta}(\hat{u}) \\
& \leq \frac{1}{\boldsymbol{s}(t+h)-\boldsymbol{s}(t)} \int_{\boldsymbol{s}(t)}^{\boldsymbol{s}(t+h)} \int_{C([0, L] ; X)} \psi\left(\left|\hat{u}^{\prime}\right|(r)\right) d \hat{\eta}(\hat{u}) d r \leq 1
\end{aligned}
$$

By Fatou's lemma, taking into account that η is concentrated on $A C(I ;(X, \mathrm{~d}))$ curves, we obtain the inequality

$$
\begin{equation*}
\int_{C(I ; X)} \psi\left(\frac{\left|u^{\prime}\right|(t)}{\left|\mu^{\prime}\right|(t)}\right) d \eta(u) \leq 1 \tag{58}
\end{equation*}
$$

On the other hand, if $\left|\mu^{\prime}\right|(t)=0$ on a set $J \subset I$ of positive measure, then for η-a.e. u we have $\left|u^{\prime}\right|(t)=0$ for a.e. $t \in J$ because of the inequality (57). Taking into account this observation and (58) we obtain the inequality

$$
\begin{equation*}
\left\|\left|u^{\prime}\right|(t)\right\|_{L_{\eta}^{\psi}(C(I ; X))} \leq\left|\mu^{\prime}\right|(t), \quad \text { for a.e. } t \in I \tag{59}
\end{equation*}
$$

We prove that η is concentrated on $A C^{\psi}(I ;(X, \mathrm{~d}))$. For every $v \in L^{\psi^{*}}(I), v \geq 0$, $\|v\|_{L^{\psi^{*}(I)}} \leq 1$, from (59) we have that

$$
\int_{I}\left\|\left|u^{\prime}\right|(t)\right\|_{L_{\eta}^{\psi}(C(I ; X))} v(t) d t \leq \int_{I}\left|\mu^{\prime}\right|(t) v(t) d t
$$

By the inequality (9) it follows that, for every $w \in L_{\eta}^{\psi^{*}}(C(I ; X)), w \geq 0,\|w\|_{L_{\eta}^{\psi^{*}}(C(I ; X))} \leq 1$,

$$
\int_{I} \int_{C(I ; X)}\left|u^{\prime}\right|(t) w(u) d \eta(u) v(t) d t \leq 4\left\|\left|\mu^{\prime}\right|\right\|_{L^{\psi}(I)}
$$

By Fubini Theorem and (9) we obtain that

$$
\left\|\left\|\left\|\left|u^{\prime}\right|(t)\right\|_{L^{\psi}(I)}\right\|_{L_{\eta}^{\psi}(C(I ; X))} \leq 4\right\|\left|\mu^{\prime}\right| \|_{L^{\psi}(I)}
$$

and (i) holds.
In order to show the opposite inequality of (59), we assume that $t \in I$ is such that $\left|u^{\prime}\right|(t)$ exists for η-a.e. $u \in C(I ; X)$ and $\lambda_{t}:=\left\|\left|u^{\prime}\right|(t)\right\|_{L_{\eta}^{\psi}(C(I ; X))}>0$. We fix $\varepsilon>0$. Since $\int_{C(I ; X)} \psi\left(\frac{\left|u^{\prime}\right|(t)}{\lambda_{t}}\right) d \eta(u) \leq 1$ and ψ is strictly increasing on an interval of the form $\left(r_{0}, r_{1}\right)$ where $r_{0} \geq 0, r_{1} \leq+\infty$ and $\psi(r)=0$ for $r<r_{0}, \psi(r)=+\infty$ for $r>r_{1}$, we have that

$$
\int_{C(I ; X)} \psi\left(\frac{\left|u^{\prime}\right|(t)}{\lambda_{t}+\varepsilon}\right) d \eta(u)<1
$$

For $h>0$, let $\gamma_{t, t+h}:=\left(e_{t}, e_{t+h}\right)_{\#} \eta$. Taking into account that η is concentrated on $A C^{\psi}(I ;(X, \mathrm{~d}))$, we have

$$
\begin{align*}
\limsup _{h \rightarrow 0^{+}} \int_{X \times X} \psi\left(\frac{\mathrm{~d}(x, y)}{h\left(\lambda_{t}+\varepsilon\right)}\right) d \gamma_{t, t+h}(x, y) & =\limsup _{h \rightarrow 0^{+}} \int_{C(I ; X)} \psi\left(\frac{\mathrm{d}(u(t), u(t+h))}{h\left(\lambda_{t}+\varepsilon\right)}\right) d \eta(u) \\
& \leq \int_{C(I ; X)} \limsup _{h \rightarrow 0^{+}} \psi\left(\frac{\mathrm{d}(u(t), u(t+h))}{h\left(\lambda_{t}+\varepsilon\right)}\right) d \eta(u) \tag{60}\\
& =\int_{C(I ; X)} \psi\left(\frac{\left|u^{\prime}\right|(r)}{\lambda_{t}+\varepsilon}\right) d \eta(u)<1 .
\end{align*}
$$

Consequently there exists \bar{h} (depending on ε and t) such that

$$
\int_{X \times X} \psi\left(\frac{\mathrm{~d}(x, y)}{h\left(\lambda_{t}+\varepsilon\right)}\right) d \gamma_{t, t+h}(x, y) \leq 1 \quad \forall h \in(0, \bar{h}) .
$$

Since $\gamma_{t, t+h} \in \Gamma\left(\mu_{t}, \mu_{t+h}\right)$, the last inequality shows that

$$
W_{\psi}\left(\mu_{t}, \mu_{t+h}\right) \leq h\left(\lambda_{t}+\varepsilon\right) \quad \forall h \in(0, \bar{h})
$$

Finally, dividing by h and passing to the limit for $h \rightarrow 0^{+}$we obtain

$$
\left|\mu^{\prime}\right|(t) \leq\left\|\left|u^{\prime}\right|(t)\right\|_{L_{\eta}^{\psi}(C(I ; X))} \quad \text { for a.e. } t \in I
$$

Remark 3.2. The following example shows that the assumptions on ψ are necessary for the validity of Theorem 3.1.

Since ψ is convex, if (10) and (11) are not satisfied there exist $a, b \in \mathbb{R}$ such that $0<$ $a \leq b<+\infty$ and $a t \leq \psi(t) \leq b t$ for every $t \geq 0$. Then it holds $a W_{1}(\mu, \nu) \leq W_{\psi}(\mu, \nu) \leq$ $b W_{1}(\mu, \nu)$, where W_{1} denotes the distance W_{ϕ} for $\phi(t)=t$. Given two distinct points $x_{0}, x_{1} \in X$, consider the curve $\mu:[0,1] \rightarrow \mathscr{P}(X)$ defined by $\mu_{t}=(1-t) \delta_{x_{0}}+t \delta_{x_{1}}$. We observe that $\operatorname{supp}\left(\mu_{t}\right)=\left\{x_{0}, x_{1}\right\}$ for $t \in(0,1)$ and $\operatorname{supp}\left(\mu_{i}\right)=\left\{x_{i}\right\}$ for $i=0,1$. Clearly μ is Lipschitz with respect to the distance W_{ψ} and in particular $\mu \in A C^{\psi}(I ; X)$. If there is a measure η satisfying properties (i) and (ii) of Theorem 3.1, then for η-a.e. u there holds $u(i)=x_{i}$ for $i=0,1$ and $u(t) \in\left\{x_{0}, x_{1}\right\}$ for every $t \in(0,1)$ and u cannot be continuous.

4. GEODESICS IN $\left(\mathscr{P}((X, \mathrm{~d})), W_{\psi}\right)$

We apply Theorem 3.1 in order to characterize the geodesics of the metric space ($\left.\mathscr{P}(X), W_{\psi}\right)$ in terms of the geodesics of the space ($X, \mathrm{~d}$).

In this section I denotes the unitary interval $[0,1]$.
We say that $u: I \rightarrow X$ is a constant speed geodesic in $(X, \mathrm{~d})$ if

$$
\begin{equation*}
\mathrm{d}(u(t), u(s))=|t-s| \mathrm{d}(u(0), u(1)) \quad \forall s, t \in I \tag{61}
\end{equation*}
$$

We define the set

$$
G(X, \mathrm{~d}):=\{u: I \rightarrow X: u \text { is a constant speed geodesic of }(X, \mathrm{~d})\} .
$$

Proposition 4.1. Let $(X, \tau, \mathrm{~d})$ be an extended Polish space and ψ be satisfying (6). If $\eta \in \mathscr{P}(C(I ; X))$ is concentrated on $G(X, \mathrm{~d})$ and $\gamma_{0,1}:=\left(e_{0}, e_{1}\right)_{\# \eta} \in \Gamma_{o}^{\psi}\left(\left(e_{0}\right)_{\#} \eta,\left(e_{1}\right)_{\#} \eta\right)$, then the curve $\mu: I \rightarrow \mathscr{P}(X)$ defined by $\mu_{t}=\left(e_{t}\right)_{\#} \eta$ is a constant speed geodesic in $\left(\mathscr{P}(X), W_{\psi}\right)$.

Proof. Since $\gamma_{0,1}:=\left(e_{0}, e_{1}\right)_{\#} \eta \in \Gamma_{o}^{\psi}\left(\mu_{0}, \mu_{1}\right)$, the following inequality holds

$$
\begin{equation*}
\int_{X \times X} \psi\left(\frac{\mathrm{~d}(x, y)}{W_{\psi}\left(\mu_{0}, \mu_{1}\right)}\right) d \gamma_{0,1}(x, y) \leq 1 \tag{62}
\end{equation*}
$$

Since η is concentrated on constant speed geodesics and $\gamma_{s, t}:=\left(e_{s}, e_{t}\right)_{\#} \eta \in \Gamma\left(\mu_{s}, \mu_{t}\right)$ we have, for every $t, s \in I, t \neq s$.

$$
\begin{align*}
\int_{X \times X} \psi\left(\frac{\mathrm{~d}(x, y)}{W_{\psi}\left(\mu_{0}, \mu_{1}\right)}\right) d \gamma_{0,1}(x, y) & =\int_{C(I ; X)} \psi\left(\frac{\mathrm{d}(u(0), u(1))}{W_{\psi}\left(\mu_{0}, \mu_{1}\right)}\right) d \eta(u) \\
& =\int_{C(I ; X)} \psi\left(\frac{\mathrm{d}(u(t), u(s))}{|t-s| W_{\psi}\left(\mu_{0}, \mu_{1}\right)}\right) d \eta(u) \tag{63}\\
& =\int_{X \times X} \psi\left(\frac{\mathrm{~d}(x, y)}{|t-s| W_{\psi}\left(\mu_{0}, \mu_{1}\right)}\right) d \gamma_{t, s}(x, y)
\end{align*}
$$

From (62) and (63) it follows that

$$
\begin{equation*}
W_{\psi}\left(\mu_{t}, \mu_{s}\right) \leq|t-s| W_{\psi}\left(\mu_{0}, \mu_{1}\right) \quad \forall s, t \in I \tag{64}
\end{equation*}
$$

By the triangular inequality we conclude that equality holds in (64).
Theorem 4.2. Let ($X, \tau, \mathrm{~d}$) be an extended Polish space and ψ be satisfying (6), (10) and (11). Let $\mu: I \rightarrow \mathscr{P}(X)$ be a constant speed geodesic in $\left(\mathscr{P}(X), W_{\psi}\right)$ and $\eta \in \mathscr{P}(C(I ; X))$ a measure representing μ in the sense that (i), (ii) and (iii) of Theorem 3.1 hold. Then $\gamma_{s, t}:=\left(e_{s}, e_{t}\right)_{\# \eta} \eta$ belongs to $\Gamma_{o}^{\psi}\left(\mu_{s}, \mu_{t}\right)$ for every $s, t \in I$. If, in addition, ψ is strictly convex and

$$
\begin{equation*}
\int_{X \times X} \psi\left(\frac{\mathrm{~d}(x, y)}{W_{\psi}\left(\mu_{0}, \mu_{1}\right)}\right) d \gamma_{0,1}(x, y)=1 \tag{65}
\end{equation*}
$$

then η is concentrated on $G(X, \mathrm{~d})$.
Proof. Let $L=W_{\psi}\left(\mu_{0}, \mu_{1}\right)$. Since μ is a constant speed geodesic and (iii) of Theorem 3.1 holds

$$
\begin{equation*}
L=\left|\mu^{\prime}\right|(r)=\left\|\left|u^{\prime}\right|(r)\right\|_{L_{\eta}^{\psi}(C(I ; X))} \quad \text { for a.e. } r \in I \tag{66}
\end{equation*}
$$

Let $t, s \in I, t \neq s$. Since, by (66), it holds

$$
\frac{1}{t-s} \int_{s}^{t} \int_{C(I ; X)} \psi\left(\frac{\left|u^{\prime}\right|(r)}{L}\right) d \eta(u) d r \leq 1
$$

Fubini's theorem and Jensen's inequality yield

$$
\begin{equation*}
\int_{C(I ; X)} \psi\left(\frac{1}{t-s} \int_{s}^{t} \frac{\left|u^{\prime}\right|(r)}{L} d r\right) d \eta(u) \leq 1 \tag{67}
\end{equation*}
$$

By the monotonicity of ψ and (67) we obtain

$$
\int_{C(I ; X)} \psi\left(\frac{\mathrm{d}(u(s), u(t))}{|t-s| L}\right) d \eta(u) \leq 1
$$

Since $|t-s| L=W_{\psi}\left(\mu_{s}, \mu_{t}\right)$ we have

$$
\begin{equation*}
\int_{C(I ; X)} \psi\left(\frac{\mathrm{d}(u(s), u(t))}{W_{\psi}\left(\mu_{s}, \mu_{t}\right)}\right) d \eta(u) \leq 1 \tag{68}
\end{equation*}
$$

and, recalling (28), this shows that $\gamma_{s, t}$ is optimal.
Assuming (65) and using Jensen's inequality we have

$$
\begin{align*}
1 & =\int_{C(I ; X)} \psi\left(\frac{\mathrm{d}(u(0), u(1))}{L}\right) d \eta(u) \leq \int_{C(I ; X)} \psi\left(\int_{0}^{1} \frac{\left|u^{\prime}\right|(t)}{L} d t\right) d \eta(u) \\
& \leq \int_{C(I ; X)} \int_{0}^{1} \psi\left(\frac{\left|u^{\prime}\right|(t)}{L}\right) d t d \eta(u)=\int_{0}^{1} \int_{C(I ; X)} \psi\left(\frac{\left|u^{\prime}\right|(t)}{L}\right) d \eta(u) d t \leq 1 \tag{69}
\end{align*}
$$

It follows that equality holds in (69) and, still by Jensen's inequality, we have

$$
\begin{equation*}
\psi\left(\int_{0}^{1} \frac{\left|u^{\prime}\right|(t)}{L} d t\right)=\int_{0}^{1} \psi\left(\frac{\left|u^{\prime}\right|(t)}{L}\right) d t, \quad \text { for } \eta \text {-a.e. } u \in C(I ; X) \tag{70}
\end{equation*}
$$

The strict convexity of ψ implies that, if u satisfies the equality in (70), then $\left|u^{\prime}\right|$ is constant, say $\left|u^{\prime}\right|(t)=L_{u}$ for a.e. $t \in I$. Analogously equality in (69) shows that $\psi\left(\frac{\mathrm{d}(u(0), u(1))}{L}\right)=$ $\psi\left(\frac{L_{u}}{L}\right)$ for η-a.e. $u \in C(I ; X)$. The strict monotonicity of ψ implies that $\mathrm{d}(u(0), u(1))=L_{u}$ and we conclude that $u \in G(X, \mathrm{~d})$ for η-a.e. $u \in C(I ; X)$.

Acknowledgements

The author would like to thank Luigi Ambrosio, Nicola Gigli and Giuseppe Savaré for helpful conversations on the topic of this paper. The author is supported by a MIURPRIN 2010-2011 grant for the project Calculus of Variations. The author is member of the GNAMPA group of the Istituto Nazionale di Alta Matematica (INdAM).

References

[ADM14] Luigi Ambrosio and Simone Di Marino. Equivalent definitions of BV space and of total variation on metric measure spaces. To appear on J. Funct. Anal. http://dx.doi.org/10.1016/j.jfa.2014.02.002, 2014.
[AGS05] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savarè. Gradient flows in metric spaces and in the Wasserstein spaces of probability measures. Birkhäuser, 2005.
[AGS13] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Density of lipschitz functions and equivalence of weak gradients in metric measure spaces. Rev. Mat. Iberoamericana, 29:969-986, 2013.
[AGS14] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. Inventiones mathematicae, 195(2):289-391, 2014.
[BS11] Lorenzo Brasco and Filippo Santambrogio. An equivalent path functional formulation of branched transportation problems. Discrete Contin. Dyn. Syst., 29(3):845-871, 2011.
[FGY11] Alessio Figalli, Wilfrid Gangbo, and Türkay Yolcu. A variational method for a class of parabolic PDEs. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 10(1):207-252, 2011.
[Kuw13] Kazumasa Kuwada. Gradient estimate for Markov kernels, Wasserstein control and Hopf-Lax formula. To appear in RIMS Kôkyûroku Bessatsu. Preprint available at http://www.math.ocha.ac.jp/kuwada/papers.html, 2013.
[Lis07] Stefano Lisini. Characterization of absolutely continuous curves in Wasserstein spaces. Calc. Var. Partial Differential Equations, 28(1):85-120, 2007.
[RR91] M. M. Rao and Z. D. Ren. Theory of Orlicz spaces, volume 146 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker Inc., New York, 1991.
[RS03] Riccarda Rossi and Giuseppe Savaré. Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 2(2):395-431, 2003.
[Str11] Daniel W. Stroock. Probability theory. Cambridge University Press, Cambridge, second edition, 2011. An analytic view.
[Stu11] Karl-Theodor Sturm. Generalized Orlicz spaces and Wasserstein distances for convex-concave scale functions. Bull. Sci. Math., 135(6-7):795-802, 2011.

Dipartimento di Matematica "F.Casorati", Università degli Studi di Pavia, 27100 Pavia, Italy

E-mail address: stefano.lisini@unipv.it

[^0]: 2010 Mathematics Subject Classification. 49J27, 49J52.
 Key words and phrases. Spaces of probability measures, Wasserstein-Orlicz distance, absolutely continuous curves, superposition principle, geodesic in spaces of probability measures.

