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Abstract. We consider front propagation problems for forced mean curvature flows with
a transport term and their phase field variants that take place in stratified media, i.e.,
heterogeneous media whose characteristics do not vary in one direction. We provide a
convergence result relating asymptotic in time front propagation in the diffuse interface
case to that in the sharp interface case, for suitably balanced nonlinearities of Allen-Cahn
type. Our results generalize previous results for forced Allen-Cahn equations.

1. Introduction

In this paper, we consider the following equation:

(1.1) εut = ε∆u+
1

ε
µ2(x)f(u) + a(x, u),

where ε > 0, f(u) is a balanced bistable nonlinearity, with stable equilibria 0 and 1, µ(x)
is a positive function that is bounded away from zero and infinit, and a(x, u) is a bounded
function with a(x, 0) = 0 for every x. The reaction term on the right-hand side of (1.1) is
a perturbation of a spatially modulated Allen-Cahn type balanced nonlinearity (see [2]).
Such an equation may arise, e.g., in modeling the dynamics of two co-existing phases in a
phase transition with non-conserved order parameter in a medium with periodically varying
properties. When ε� 1, the variations of the properties are weak and slowly changing in
space (for a more detailed discussion, see [14]).

We are interested in the behavior of the solutions of (1.1) when ε is a small parameter.
On formal asymptotic grounds (see [23, appendix A], [24]), the dynamics governed by
(1.1) with some fixed initial condition is expected to converge as ε → 0 to a forced mean
curvature flow with an extra transport term. The presence of the forcing term is due to
the fact that we are perturbing the balanced nonlinearity µ2(x)f(u) with an unbalancing
higher order term εa(x, u). The presence of the transport term is due to the x-dependance
of the lower order term µ2(x)f(u) in the nonlinearity. More precisely, for each (x, t) fixed
the solution u(x, t) is expected to converge to either 0 or 1 everywhere except for an (n−1)-
dimensional evolving hypersurface Γ(t) ⊂ Rn separating the regions where u = 0 and u = 1
in the limit and whose equation of motion reads

V (x) = −κ(x) +
g(x)

cWµ(x)
− ν(x) · ∇µ(x)

µ(x)
,(1.2)
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where g(x) =
∫ 1

0 a(x, u)du. Here V (x) is the velocity in the direction of the outward normal
ν(x) (i.e., pointing into the region where u = 0 in the limit) at a given point x ∈ Γ(t), κ is
the sum of the principal curvatures (positive if the limit set where u = 1 is convex), and

cW :=

∫ 1

0

√
2W (u) du, W (u) := −

∫ u

0
f(s) ds,(1.3)

where we defined the double-well potential W associated with f , which is nonnegative and
whose only zeros are u = 0 and u = 1. Such a result was rigorously established by Barles
and Souganidis, interpreting (1.2) in the viscosity sense [8] (see also [7], and [1] for rigorous
leading order asymptotic formulas). Note that, since the above mentioned results are local
in space and time, they are not suitable for making conclusions about the behavior as
t→ +∞ of solutions of (1.1) for ε� 1, via the analysis of (1.2).

We focus on reaction-diffusion equations and mean curvature flows in infinite cylinders
that describe the so-called stratified media. By a cylinder, we mean a set Σ = Ω×R ⊂ Rn,
where Ω ⊂ Rn−1 is a bounded domain with sufficiently smooth boundary. Stratified media
are fibered media along the cylinder, i.e., media whose features do not change along the
cylinder axis, and this property can be characterized by the dependence of the nonlinearity
for reaction-diffusion equations and of the forcing and transport terms for mean curvature
flows only on the transverse coordinate of the cylinder. All the results obtained in this paper
remain valid in the periodic setting (i.e., when Ω is an (n − 1)-dimensional parallelogram
with periodic boundary conditions), so we do not treat this case separately.

Our approach to the problem is variational: it stems from the basic observation that
a rather wide class of reaction-diffusion systems may be viewed as gradient flows in ex-
ponentially weighted spaces when looked at in a moving reference frame (see [19], [20]).
Analogously, also the considered forced mean curvature flows can be interpreted as gra-
dient flows of appropriate geometric functionals, given by perimeter type functionals plus
volume terms (see [13], [6]).

The purpose of this paper is to study the long-time behavior of solutions of (1.1) for
ε � 1 via the analysis of traveling wave solutions to (1.2). Our aim is to characterize
the long time limit of fronts in (1.1) invading the u = 0 equilibrium in terms of uniformly
translating graphs solving (1.2). In particular we provide a convergence result, relating the
asymptotic propagation speeds and the shape of the long time limit of the fronts for (1.1)
to those for (1.2) in the spirit of Γ-convergence (as is done for stationary fronts in [18]).
In this paper we generalize previous results obtained in [14], for nonlinearities of the form
f(u) + εa(x, u) (i.e without x-dependance on the lower order term of the nonlinearity). In
our case, with the addition of x-dependance also on the lower order term of the nonlinearity,
we obtain a different sharp interface limit, where also a transport term is appearing, so the
arguments used in [14] have to be appropriately adapted.

1.1. Notations. Throughout the paper H1, BV , Lp, Ck, Ckc , Ck,α denote the usual spaces
of Sobolev functions, functions of bounded variation, Lebesgue functions, continuous func-
tions with k continuous derivatives, k-times continuously differentiable functions with com-
pact support, continuously differentiable functions with Hölder-continuous derivatives of
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order k for α ∈ (0, 1) (or Lipschitz-continuous when α = 1), respectively. For a point x ∈ Σ
in the cylinder Σ = Ω × R, where Ω ⊂ Rn−1, we always write x = (y, z), where y ∈ Ω is
the transverse coordinate and z ∈ R is the coordinate along the cylinder axis. The symbol
B(x, r) stands for the open ball in Rn with radius r centered at x, and for a set A the
symbols A, |A| and χA always denote the closure of A, the Lebesgue measure of A and the
characteristic function of A, respectively. We also use the convention that ln 0 = −∞ and
e−∞ = 0.
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2. Problem formulation and standing assumptions

We assume that Ω is a bounded domain with boundary of class C2 and 2 ≤ n ≤ 7 (of
course, the physically relevant cases correspond to n = 3 and n = 2). We set Σ := Ω× R,
and in Σ we consider the family of singularly perturbed reaction-diffusion equations for
u = u(x, t) ∈ R, with parameter ε > 0:

(2.1) εut = ε∆u+
1

ε
µ2(y)f(u) + a(y, u) (x, t) ∈ Σ× (0,+∞),

with initial datum u(x, 0) = u0(x) ≥ 0 and Neumann boundary conditions on ∂Σ. For
simplicity, we also assume that a(x, u) does not depend on ε. Nevertheless the results
remain valid after perturbing a with terms that can be controlled by Cεu for some C > 0
independent of ε.

We associate to f and a the potentials

(2.2) W (u) := −
∫ u

0
f(s) ds, G(y, u) :=

∫ u

0
a(y, s) ds.

We now state our assumptions on the functions µ, a and f . Let α ∈ (0, 1].

Assumption 1. µ ∈ C1,α(Ω), µ(y) > 0 for all y ∈ Ω.

Assumption 2. a ∈ Cαloc(Ω× R), au ∈ Cαloc(Ω× R), a(·, 0) = 0.

Assumption 3. f ∈ C1,α
loc

(
R
)
, f(0) = f(1) = 0, f ′(0) < 0, f ′(1) < 0, W (1) = W (0) = 0,

W (u) > 0 for all u 6= 0, 1, and lim inf
|u|→∞

W (u) > 0.

Assumption 3 implies that W (u) is a balanced non-degenerate double-well potential (as a
model function one could think of W (u) = 1

4u
2(1− u)2). However, we do not require that

f has only one other zero, which is located in (0, 1), as is usually done in the literature.
Instead, we only assume that u = 0 and u = 1 have the same value of W , and that W is
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greater for all other values of u, including at infinity. Note that by Assumptions 2 and 3
there exists C, δ0 > 0, depending only on µ, f and a, such that for every ε ≤ C−1δ0

(2.3) ε−1µ2(y)W (u)−G(y, u) ≥ 0 ∀(y, u) ∈ Ω×
(
R\(1− C

√
ε, 1 + C

√
ε)
)
,

and

(2.4) ε−1µ2(y)W (·)−G(y, ·) is increasing on [1 + Cε, 1 + δ0] ∀y ∈ Ω.

Remark 2.1. Observe that, if the initial datum u0 satisfies 0 ≤ u0(x) ≤ 1 + δ for some
δ ∈ (0, δ0) and all x ∈ Σ, then by the maximum principle and (2.4) we have 0 ≤ u(x, t) ≤
1 + δ for all (x, t) ∈ Σ× [0,+∞) and all ε ≤ C−1δ.

We consider a family of measurable sets S(t) ⊆ Σ with regular boundary, such that
Γ(t) = ∂S(t) evolves according to (1.2) with forcing term

(2.5) g(y) :=

∫ 1

0
a(y, s)ds = G(y, 1).

associate to this flow the following quasilinear parabolic problem for h = h(y, t) ∈ R in Ω
which describes the motion of the set {(y, z) ∈ Σ : z = h(y, t)} according to (1.2):

(2.6) ht =
√

1 + |∇h|2
(
∇ ·

(
∇h√

1 + |∇h|2

)
+

g

cWµ

)
+∇h · ∇ logµ in Ω× (0,+∞) ,

with initial datum h(y, 0) = h0(y), and Neumann boundary conditions on ∂Ω. In particu-
lar, the subgraph S(t) = {(y, z) ∈ Σ : z < h(y, t)} of the solution of (2.6) coincides with the
family of sets evolving according to (1.2), with initial datum S0 = {(y, z) ∈ Σ : z < h0(y)}.

We recall the definition of the perimeter with weight µ of a Lebesgue measurable set
A ⊆ Ω relative to Ω (see, e.g., [3], [5]): let

(2.7) Perµ(A,Ω) = sup

{∫
A

(∇ · φ(y) + φ · ∇ logµ)µ(y)dy : φ ∈ C1
c (Ω;Rn−1), |φ| ≤ 1

}
.

When µ ≡ 1, we recover the standard definition of perimeter. We also recall the classical
isoperimetric inequality [3]:

Proposition 2.2. There exists CΩ > 0, depending on n and Ω, such that

(2.8) Per(A,Ω) ≥ CΩ|A|
n−2
n−1

for all A ⊆ Ω of finite perimeter and such that |A| ≤ 1
2 |Ω|.

Remark 2.3. Notice that CΩ = 2 if n = 2.

Assumption 4. Let g ∈ Cα(Ω). Then there exists A ⊆ Ω such that

(2.9)

∫
A
g(y)dy > cW Perµ(A,Ω).

This assumption basically ensures that the trivial state u = 0 is energetically less favorable
for ε sufficiently small, resulting in the existence of the invasion fronts.
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Remark 2.4. Notice that (2.9) implies, in particular, that supΩ g > 0, and is automatically
satisfied if

(2.10)

∫
Ω
g(y)dy > 0.

Throughout the rest of the paper Assumptions 1–4 are always taken to be satisfied, with
g defined by (2.5).

3. Traveling waves in the diffuse interface case

In this section we review some results on existence and stability of traveling wave solu-
tions of the reaction-diffusion equation (2.1) for ε > 0, in the form of fronts invading the
equilibrium u = 0 from above. Our main references are [20], [21] and [14].

We look for solutions to (2.1) of the form u(x, t) = ū(y, z − ct), where c > 0, ū > 0,

(3.1) ū(·, z)→ 0 uniformly as z → +∞,

and ū ∈ C2(Σ) ∩ C1(Σ) ∩ L∞(Σ) solves

(3.2) ε∆ū+ cεūz +
1

ε
µ2(y)f(ū) + a(y, ū) = 0 (y, z) ∈ Σ,

with Neumann boundary conditions ν ·∇ū = 0 on ∂Σ. The constant c is referred to as the
speed of the wave, and ū the profile.

Note that existence and qualitative properties of traveling fronts in a variety of settings
have been extensively studied, starting with the classical work of Berestycki and Nirenberg
[10] who analyzed traveling fronts ū connecting zero with some equilibrium v > 0 (i.e.
which satisfies also limz→−∞ ū(·, z) = v uniformly).

By an equilibrium for (2.1), we mean a function v : Ω→ R which solves

(3.3) ε∆v +
1

ε
µ2(y)f(v) + a(y, v) = 0 y ∈ Ω,

with ν · ∇v = 0 on ∂Ω. Note that every critical point of the functional

(3.4) Eε(v) =

∫
Ω

(
ε

2
|∇v|2 + µ2(y)

W (v)

ε
−G(y, v)

)
dy v ∈ H1(Ω) ∩ L∞(Ω)

is an equilibrium for the reaction-diffusion equation (2.1). Moreover, we will consider stable
equilibria, according to the following definition.

Definition 3.1. A function v ∈ H1(Ω) ∩ L∞(Ω) is a stable critical point of Eε if it is a
critical point of the functional and the second variation of Eε is nonnegative, i.e.

(3.5)

∫
Ω

(
ε|∇φ|2 +

(
ε−1µ2(y)W ′′(v)−Guu(y, v)

)
φ2
)
dy ≥ 0 ∀φ ∈ H1(Ω) .

Moreover, v is a nondegenerate stable critical point of Eε if strict inequality holds in (3.5).
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By Assumption 3, v = 0 is a non-degenerate stable critical point of the functional Eε

for every ε sufficiently small. Indeed, defining

(3.6) νε0 := min∫
Ω φ

2=1

∫
Ω

(
ε|∇φ|2 +

(
ε−1µ2(y)W ′′(0)−Guu(y, 0)

)
φ2
)
dy,

observe that there exists ε0 > 0, depending on W ′′(0), inf µ and ‖au(·, 0)‖∞, such that

(3.7) νε0 > 0 for all ε < ε0.

We point out that existence of the considered solutions (i.e. a traveling front connecting 0
and a prescribed equilibrium v > 0) is not guaranteed in general. In particular, we have to
impose some condition on g assuring the existence of non-trivial positive equilibria, with
negative energy, as in the following proposition.

Proposition 3.2. Under Assumptions 1–4, there exist positive constants ε0 and C such
that for all ε < ε0 there exists v0

ε ∈ H1(Ω) such that 0 ≤ v0
ε ≤ 1 and Eε(v0

ε) < 0.

Proof. By [18] we have that

(3.8) Γ− lim
ε→0

Eε(u) =

{
E0(A) := cWPerµ(A,Ω)−

∫
A g dy if u = χA,

+∞ otherwise,

where the convergence is understood in the sense of Γ-convergence in L1(Ω). So the proof
follows the same argument as in [14, Proposition 3.4]. �

Following the variational approach to front propagation problems [20] (see also [17, 19,
21, 22]), for every c > 0 we associate to the reaction-diffusion equation in (2.1) the energy
functional (for fixed ε > 0)

(3.9) Φε
c(u) =

∫
Σ
ecz
(
ε

2
|∇u|2 +

1

ε
µ2(y)W (u)−G(y, u)

)
dx.

This functional is naturally defined on H1
c (Σ) ∩ L∞(Σ), where H1

c (Σ) is an exponentially
weighted Sobolev space with the norm

(3.10) ‖u‖2H1
c (Σ) =

∫
Σ
ecz(|∇u|2 + |u|2) dx.

Furthermore, the functional Φε
c is differentiable in H1

c (Σ) ∩ L∞(Σ), and its critical points
satisfy the traveling wave equation (3.2) [17,20].

Remark 3.3. Following [10, Section 4] (see also [20, Theorem 3.3(iii)]) one can show that
every traveling wave (c, u) to (2.1) satisfying (3.1) belongs to H1

c (Σ) and is a critical point
to Φε

c.

Critical points of Φε
c and, in particular, minimizers of Φε

c play an important role for the
long-time behavior of the solutions of the initial value problem associated with (2.1) in the
case of front-like initial data. Indeed, in [22] it is proved under generic assumptions on the
nonlinearity (see also [19,20]) that the non-trivial minimizers of Φε

c over H1
c (Σ) are selected

as long-time attractors for the initial value problem associated to (2.1) with front-like initial
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data. Also, in [20] it was proved under minimal assumptions on the nonlinearity that the

speed of the leading edge of the solution is determined by the unique value of c†ε > 0 for
which Φε

c†ε
has a non-trivial minimizer. Appropriate assumptions to guarantee existence of

minimizers of Φε
c were given in [20]. In our case these conditions are verified for every ε

sufficiently small.

Theorem 3.4. Under Assumptions 1–4, there exist positive constants ε0, C and M , de-

pending on f , µ, a and Ω, such that for all 0 < ε < ε0 there exists a unique 0 < c†ε ≤ M
such that

i) Φε
c†ε

admits a non-trivial minimizer ūε ∈ H1
c†ε
∩ L∞(Σ) which satisfies

(3.11) sup
{
z ∈ R | sup

y∈Ω
ūε(y, z) >

1

2

}
= 0.

ii) ūε ∈ C2(Σ) ∩ C1(Σ) ∩W 1,∞(Σ), and (c†ε, ūε) is a traveling wave solution to (2.1).
iii) 0 < ūε ≤ 1 + Cε < 3

2 , (ūε)z < 0 in Σ, and

lim
z→+∞

ūε(·, z) = 0 lim
z→−∞

ūε(·, z) = vε in C1(Ω),

where vε is a stable critical point of Eε in (3.4) with Eε(vε) < 0.
iv) Φε

c†ε
(ūε) = 0, and all non-trivial minimizers of Φε

c†ε
are translates of ūε along z.

v) Given δ ∈ (0, 1) and x̄ ∈ Σ, there exist C, r̄, ε̄ > 0 depending only on W , G, µ, Ω and
δ such that, for every ε ∈ (0, ε̄) and r ∈ (ε, r̄), there holds

ūε(x̄) ≥ δ ⇒
∫
B(x̄,r)∩Σ

ū2
ε dx ≥ Crn,(3.12)

ūε(x̄) ≤ 1− δ ⇒
∫
B(x̄,r)∩Σ

(1− ūε)2 dx ≥ Crn.(3.13)

Proof. For the proof we refer to [14, Thm 3.5, Prop. 3.7 and Prop. 3.8]. �

4. Traveling waves in the sharp interface case

In this section we consider the front propagation problem in the cylinder Σ, for the
forced mean curvature flow with transport term (1.2). Also in this case, we are interested
in traveling wave solutions with positive speed. We review and generalize some results
contained in [14] (see also [13]).

Definition 4.1 (Traveling waves). A traveling wave for the forced mean curvature flow
is a pair (c, ψ), where c > 0 is the speed of the wave and the graph of the function ψ ∈
C2(Ω) ∩ C1(Ω) is the profile of the wave, such that h(y, t) = ψ(y) + ct solves (2.6).

Observe that to prove existence of a traveling wave solution it is sufficient to determine
c > 0 such that the equation in Ω

(4.1) −∇ ·

(
∇ψ√

1 + |∇ψ|2

)
=

1

cWµ(y)
g(y)− c√

1 + |∇ψ|2
+

∇ψ√
1 + |∇ψ|2

· ∇ logµ(y),
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with Neumann boundary condition ν · ∇ψ = 0 on ∂Ω, admits a classical solution. The
graph of this solution will be the profile of the traveling wave.

Following the variational approach for the forced mean curvature flow (see [13], [14]),
for c > 0 we consider the family of exponentially weighted area-type functionals

Fc(ψ) =

∫
Ω
ecψ(y)

(
cWµ(y)

√
1 + |∇ψ(y)|2 − g(y)

c

)
dy,(4.2)

among all ψ ∈ C1(Ω). Note that if ψ is bounded and is a critical point of the functional
Fc, then it is a solution to (4.1). Here ψ defines the graph z = ψ(y) that represents the
sharp interface front. The functional Fc has a well-known geometric characterization. Let
us introduce the following exponentially weighted perimeter for S ⊆ Σ:

Perc,µ(S,Σ) := sup

{∫
S

[∇ · φ+ (cẑ +∇ logµ) · φ]µ(y)eczdx : φ ∈ C1
c (Σ;Rn), |φ| ≤ 1

}
.

(4.3)

We then define the following geometric functional on measurable sets S ⊂ Σ with the
weighted volume

∫
S e

czµ(y)dx <∞:

(4.4) Fc(S) := cW Perc,µ(S,Σ)−
∫
S
ecz g(y) dx,

where we noted that by Assumption 1 the last term in (4.4) is well-defined in the considered

class of sets. After the change of variable ζ(y) := ecψ(y)

c ≥ 0, the functional Fc is equivalent
to

(4.5) Gc(ζ) =

∫
Ω

(
cWµ(y)

√
c2ζ2(y) + |∇ζ(y)|2 − g(y)ζ(y)

)
dy,

in the sense that Fc(ψ) = Gc(ζ) for all ζ ∈ C1(Ω) [13]. Since the functional Gc is natu-
rally defined on BV (Ω) as the lower-semicontinuous relaxation, we introduce the following
generalization to the notion of a traveling wave for (2.6).

Definition 4.2 (Generalized traveling waves). A generalized traveling wave for the forced
mean curvature flow is a pair (c, ψ), where c > 0 is the speed of the wave, and ψ = 1

c ln cζ
is the profile of the wave, where ζ ∈ BV (Ω) is a non-negative critical point of Gc, not
identically equal to zero.

We define ω ⊂ Ω to be the interior of the support of ζ. By standard regularity of
minimizers of perimeter-type functionals [3], we have that ψ solves (4.1) classically in ω
with ν · ∇ψ = 0 on ∂ω ∩ ∂Ω and, therefore, we have that h(y, t) = ψ(y) + ct solves (2.6) in
ω with Neumann boundary conditions on ∂ω∩ ∂Ω. In particular, if ω = Ω, then the above
definition implies that (c, ψ) is a traveling wave in the sense of Definition 4.1. In general,
however, ω may differ from Ω by a set of positive measure, in which case the traveling wave
profile ψ obeys the following kind of boundary condition:

(4.6) lim
y→ȳ

ψ(y) = −∞ ∀ ȳ ∈ ∂ω ∩ Ω.
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In this situation a generalized traveling wave may have the form of one or several “fingers”
invading the cylinder from left to right with speed c.

The next proposition explains the relation between Assumption 4 and the minimization
problems associated with functionals Gc and, hence, Fc.

Proposition 4.3. Let Assumption 4 hold. Then there exists a unique c† > 0 such that

i) ∫
Ω g dy

cW
∫

Ω µdy
≤ c† ≤ 1

cW
sup

Ω

(
g

µ

)
.

ii) If 0 < c < c†, then inf{Gc(ζ) : ζ ∈ BV (Ω), ζ ≥ 0} = −∞.
iii) If c > c†, then inf{Gc(ζ) : ζ ∈ BV (Ω), ζ ≥ 0} = 0, and Gc(ζ) > 0 for every

non-trivial ζ ≥ 0.
iv) If c = c†, then there exists a non-trivial ζ̄ ≥ 0, with ζ̄ ∈ BV (Ω), such that Gc(ζ̄) =

inf{Gc(ζ) : ζ ∈ BV (Ω), ζ ≥ 0} = 0.

Proof. The result follows from [13, Proposition 3.1 and Corollary 3.2] (see also [21, Propo-
sition 4.1]). �

Note that the same argument as in [13, Proposition 3.4, Lemma 3.5] gives that for all
ζ ≥ 0 such that ζ ∈ BV (Ω) we have

(4.7) Gc(ζ) = Fc(Sψ)

where Sψ = {(y, z) ∈ Ω×R : z < ψ(y)} is the subgraph of ψ = 1
c ln cζ. Moreover if ζ ≥ 0

is a non trivial minimizer of Gc, then the subgraph Sψ of ψ is a minimizer, under compact
perturbations, of the functional Fc defined in (4.4). So, from Proposition 4.3 we obtain
the following result about existence of generalized traveling waves (see [14], [13]).

Theorem 4.4 (Existence of generalized traveling waves). Let Assumption 4 hold. Then
there exists a unique c† > 0, which coincides with the one in Proposition 4.3, such that:

i) There exist a function ψ : Ω → [−∞,∞) such that (c†, ψ) is a generalized traveling
wave for the forced mean curvature flow and the set Sψ := {(y, z) ∈ Σ | z < ψ(y)} is
a minimizer of Fc†.

ii) The set ω := {ψ > −∞} is open and satisfies E0(ω) < 0, where E0 is defined in (3.8).
Moreover, ω × R is a minimizer of Fc† under compact perturbations, and there exist

r0 > 0 and λ > 0 such for all x̄ ∈ ω × R, all x̄′ ∈ Σ\ω × R and all r ∈ (0, r0) the
following density estimates hold:

|ω × R ∩B(x̄, r)| ≥ λ rn−1,(4.8)

|(Σ \ ω × R) ∩B(x̄′, r)| ≥ λ rn−1.(4.9)

iii) ψ ∈ C2(ω) and it is unique up to additive constants on every connected component of
ω, in the following sense: there exists a number k ∈ N and functions ψi : Ω→ [−∞,∞)
for each i = 1, . . . , k such that ωi := {ψi > −∞} 6= ∅ are open, connected and disjoint,

ψi ∈ C2(ωi) and ψ = ln
(∑k

i=1 e
ψi+ki

)
, for some ki ∈ [−∞,∞).
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iv) ∂Sψ is a hypersurface of class C2 uniformly in Σ, and ∂ω is a C2 solution to the
prescribed curvature problem

(4.10) cWκ =
g

µ
− cW∇ logµ · ν∂ω on ∂ω ∩ Ω,

where κ is the sum of the principal curvatures of ∂ω ∩ Ω, with Neumann boundary
conditions ν∂ω · ν∂Ω = 0 at ∂ω ∩ ∂Ω.

Proof. For the proof we refer to [14, Lemma 4.4, Theorem 4.8]. �

We now introduce an additional assumption, under which stronger conclusions about
the convergence of fronts can be made.

Assumption 5. Let g ∈ Cα(Ω) and assume that (2.10) holds. Then Ω× R is the unique
minimizer of Fc† under compact perturbations among sets S = ω × R with ω ⊆ Ω and
c† := inf{c > 0 : inf Fc ≥ 0} ∈ (0,∞).

Clearly, Assumption 5 is quite implicit. In Proposition 4.6 we give some sufficient conditions
for it, first in the two-dimensional case and then in every dimension.

This result of Theorem 4.4 can be strengthened under Assumption 5, as follows.

Theorem 4.5 (Existence, uniqueness and stability of traveling waves). Let Assumption 5
hold. Then there exists a unique c† > 0, such that:

i) there exists a unique ψ ∈ C2(Ω) ∩ C1(Ω) such that maxy∈Ω ψ(y) = 0, and (c†, ψ) is

a traveling wave for the forced mean curvature flow (2.6). Moreover ψ is the unique
minimizer of the functional Fc† over C1(Ω), up to additive constants,

ii) S = {(y, z) ∈ Σ : z < ψ(y)} is the unique minimizer of Fc† up to translations in z.
iii)

h(·, t)− c†t− k −→ ψ in C1,α(Ω), as t→ +∞
where h(y, t) is the unique solution to (2.6) with Neumann boundary conditions and
initial datum h(y, 0) = h0(y) ∈ C(Ω) and k ∈ R is constant, depending on h0.

Proof. For the proof we refer to [14, Theorem 4.10, Theorem 4.11]. �

As Assumption 5 is quite implicit, in the following proposition we list some sufficient
conditions for it to hold.

Proposition 4.6. Let (2.10) hold and let CΩ be the relative isoperimetric constant of Ω
(see (2.8)). Then Assumption 5 holds if one of the following conditions is verified:

i) there is no embedded hypersurface ∂ω ⊆ Ω which solves the prescribed curvature prob-
lem

(4.11) cWµκ− g + cW∇µ · ν = 0 ∂ω ∩ Ω ,

with Neumann boundary conditions ν∂ω · ν∂Ω = 0 on ∂ω ∩ ∂Ω.
ii) n = 2 and g(y) > cW |µ′| on Ω.
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iii) infΩ(g − cW |∇µ|) ≤ 0 and

sup
Ω

(
g + cW |∇µ|

µ

)
− inf

Ω

(
g − cW |∇µ|

µ

)
< cWCΩ2

1
n−1 |Ω|−

1
n−1 .

iv) infΩ(g − cW |∇µ|) ≥ 0 on Ω and

sup
Ω

(
g + cW |∇µ|

µ

)
< cWCΩ2

1
n−1 |Ω|−

1
n−1 .

Proof. We start proving (i) and (ii). Let ω×R a local minimizer of Fc. So ∂ω is a solution
to (4.11), with Neumann boundary conditions, which is the Euler-Lagrange equation for
Fc† (the regularity of ∂ω×R is a consequence of the classical regularity theory for minimal
surfaces with prescribed mean curvature). When n = 2, the prescribed mean curvature
problem (4.11) reads g(y) = ±cWµ′(y) for some y ∈ Ω.

Now we prove the other items. Let ψ be a solution to (4.1), with maximal support
ω ⊂ Ω. This means that every other solution to (4.1) has support ω′ ⊂ ω (see (iii) in
Theorem 4.4). Integrating (4.1) over ω and recalling that ψ(x)→ −∞ as dist(x; ∂ω)→ 0
we obtain

(4.12) Per(ω,Ω) =

∫
ω

(
g(y)

cWµ(y)
− c√

1 + |∇ψ(y)|2
+
∇ logµ(y) · (∇ψ(y))√

1 + |∇ψ(y)|2

)
dy

where Per(ω,Ω) is the standard perimeter relative to Ω (as defined in (2.7), with weight
µ ≡ 1, see also [3]). (4.12) gives

(4.13) cWPer(ω,Ω) ≤
[
sup

Ω

(
g + cW |∇µ|

µ

)]
|ω|.

Let ζ = ec
†ψ

c†
. By Proposition 4.3, we get that ζ is a minimizer of Gc† . Observe that

Gc† in (4.5) is a convex, lower semicontinuous functional on L2(Ω) (Gc†(u) = +∞ if
u ∈ L2(Ω) \ BV (Ω)). So, by the general theory of subdifferentials in [4, Ch.w 6] there
exist a vector field ξζ = ξ : Ω → Rn, with |ξ| ≤ 1 and div(ξ) ∈ L2(Ω), and a function
hζ = h : Ω→ R, with 0 ≤ h ≤ 1, such that

(4.14)

∫
Ω

[
−cWµ(div ξ(y) +∇ logµ · ξ) + c†cWµ(y)h(y)− g(y)

]
(χ− ζ)dy ≥ 0 in Ω,

for all χ ∈ BV (Ω) such that χ ≥ 0. Moreover, for all y ∈ ω,

h(y) =
c†ζ√

(c†)2ζ2(y) + |∇ζ(y)|2

ξ(y) =
∇ζ(y)√

(c†)2ζ2(y) + |∇ζ(y)|2
.
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If we apply inequality (4.14) to χ(y) = ζ(y)+ χA(y)
µ(y) , where A ⊆ Ω is a set of finite perimeter,

we obtain

(4.15) Per(A,Ω) +

∫
A

(
−∇ logµ · ξ + c†h(y)− g(y)

cWµ(y)

)
dy ≥ 0 .

In particular, (4.12) and (4.15) imply that ω is a minimum for the functional

G(A) = Per1(A,Ω) +

∫
A

(
−∇ logµ · ξ + c†h(y)− g(y)

cWµ(y)

)
dy . A ⊆ Ω.

This gives that
∫

Ω

(
−∇ logµ · ξ + c†h(y)− g(y)

cWµ(y)

)
dy ≥ 0 and so, by (4.12), by (i) in

Proposition 4.3 and by the definition of h, ξ, we get

Per(ω,Ω) ≤
∫

Ω\ω

(
−∇ logµ · ξ + c†h(y)− g(y)

cWµ(y)

)
dy

≤ 1

cW

(
sup

Ω

g

µ
− inf

Ω

g − cW |∇µ|
µ

)
|Ω \ ω|.(4.16)

Observe that by the isoperimetric inequality (2.8) and (4.16), either |Ω \ ω| > 1
2 |Ω| or

(4.17)

1

cW

(
sup

Ω

g

µ
− inf

Ω

g − cW |∇µ|
µ

)
|Ω|

1
n−1

2
1

n−1

≥ 1

cW

(
sup

Ω

g

µ
− inf

Ω

g − cW |∇µ|
µ

)
|Ω \ ω|

1
n−1 ≥ CΩ.

In particular, if

(4.18)
1

cW

(
sup

Ω

g

µ
− inf

Ω

g − cW |∇µ|
µ

)
< CΩ2

1
n−1 |Ω|−

1
n−1

then necessarily |ω| ≤ 1
2 |Ω| and so by (2.8) and (4.13) we obtain

(4.19) sup
Ω

(
g + cW |∇µ|

µ

)
≥ cW

Per(ω,Ω)

|ω|
≥ cWCΩ2

1
n−1 |Ω|−

1
n−1 .

We start proving (iii). Note that if infΩ
g−cW |∇µ|

µ ≤ 0,

sup
Ω

(
g + cW |∇µ|

µ

)
≤ sup

Ω

(
g + cW |∇µ|

µ

)
− inf

Ω

(
g − cW |∇µ|

µ

)
.

So if

sup
Ω

(
g + cW |∇µ|

µ

)
− inf

Ω

(
g − cW |∇µ|

µ

)
< cWCΩ2

1
n−1 |Ω|−

1
n−1 ,

neither (4.17) nor (4.19) are verified. Hence ω = Ω and (iii) is proved.

We prove (iv). If infΩ(g−cW |∇µ|) ≥ 0 and supΩ

(
g+cW |∇µ|

µ

)
< CΩcW 2

1
n−1 |Ω|−

1
n−1 , then

neither (4.17) nor (4.19) are verified, and (iv) is proved. �
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5. Asymptotic behavior as ε→ 0

We now state our main result.

Theorem 5.1. Let Assumptions 1–4 hold. Let c†ε, ūε and vε be as in Theorem 3.4, and
let c† be as in Theorem 4.4.

i) There holds

lim
ε→0

c†ε = c†.

ii) For every sequence εn → 0 there exists a subsequence (not relabeled) and an open
set S ⊂ Σ such that

ūεn → χS in L1
loc(Σ),

where S is a non-trivial minimizer of Fc† satisfying S ⊆ Ω × (−∞, 0) and ∂S ∩
(Ω× {0}) 6= ∅. Moreover,

ūεn → χS locally uniformly on Σ \ ∂S,

and for every θ ∈ (0, 1) the level sets {ūεn = θ} converge to ∂S locally uniformly
in the Hausdorff sense.

iii) If also Assumption 5 holds, then S is the unique minimizer of Fc† from Theorem
4.5 satisfying S ⊆ Ω× (−∞, 0) and ∂S ∩ (Ω× {0}) 6= ∅. Moreover

vε → 1 uniformly in Ω.

Proof. The proof follows exactly the same arguments as in the proof of [14, Theorem 5.3].
The only modification that is required is in the proof of Step 1, whose details we present
below. We shall prove that

lim inf
ε→0

c†ε ≥ c†.

We adapt the standard Modica-Mortola construction of a recovery sequence [18] to the
situation, in which an extra weight µ is present.

Let Sψ be as in Theorem 4.4. Then the hypersurface ∂Sψ is of class C2 uniformly in Σ,
and

(5.1) cWPerc†,µ(Sψ,Σ) =

∫
Sψ

ec
†zg(y)dx.

We consider dSψ to be the signed distance function from ∂Sψ, i.e.,

dSψ(x) := dist(x,Σ \ Sψ)− dist(x, Sψ)

and γ : R → R to be the unique solution to γ′ =
√

2W (γ) with γ(0) = 1
2 . Note that γ is

monotonically increasing and connects the two equilibria 0 and 1 at infinity. Furthermore,
under Assumption 3 there exist A,B > 0 such that (see, e.g., [12]; for a complete proof,
see [9, Lemma 2.2])

γ(s) ≤ min
(
1, AeBs

)
and γ′(s) ≤ Ae−B|s| ∀s ∈ R.(5.2)
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Therefore, defining

uε := γ

(
µdSψ
ε

)
,

we have that uε ∈ H1
c†

(Σ) for all ε sufficiently small, and uε → χSψ as ε→ 0 in L1
loc(Σ).

Differentiating uε, we get

|∇uε| = γ′
(
µdSψ
ε

) ∣∣∣∣µ∇dSψε +∇µ
dSψ
ε

∣∣∣∣(5.3)

≤ 1

ε
γ′
(
µdSψ
ε

)(
µ+ |dSψ∇µ|

)
=
µ

ε

√
2W (uε) +

1

ε
γ′
(
µdSψ
ε

)
|dSψ∇µ|.

Analogously

|∇uε| ≥
1

ε
γ′
(
µdSψ
ε

)(
µ− |dSψ∇µ|

)
(5.4)

=
µ

ε

√
2W (uε)−

1

ε
γ′
(
µdSψ
ε

)
|dSψ∇µ|.

Hence, from (5.3) and (5.4) we obtain

(5.5)

∣∣∣∣∣
√
ε

2
|∇uε| − µ

√
W (uε)

ε

∣∣∣∣∣ ≤ |∇µ|√
2ε
γ′
(
µdSψ
ε

)
|dSψ |.

Recalling (5.2) again, we observe that |sγ′(s)| ≤ AB−1e−
1
2
B|s| for all s ∈ R, and, therefore,

from (5.5) we obtain(√
ε

2
|∇uε| − µ

√
W (uε)

ε

)2

≤ ε|∇µ|2A2

2µ2B2
exp

(
−
Bµ |dSψ |

ε

)
≤ Cεmin

(
1, e−2c†z

)
,

for some C = C(µ,W ) > 0 and ε sufficiently small. Thus, completing the square we obtain∫
Σ

(
ε

2
|∇uε|2 + µ2(y)

W (uε)

ε

)
ec
†zdx ≤

∫
Σ

√
2W (uε)|∇uε|µ(y)ec

†zdx+ Cε,

for ε sufficiently small. It then follows

Φε
c†(uε) ≤

∫
Σ

√
2W (uε)|∇uε|µ(y)ec

†zdx−
∫

Σ
ec
†zG(y, uε)dx+ Cε

=

∫
Σ
|∇φ(uε)|µ(y)ec

†zdx−
∫

Σ
ec
†zG(y, uε)dx+ Cε,

where

(5.6) φ(u) :=

∫ u

0

√
2W (s)ds.
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Recalling the definition of g in (2.5) and observing that φ(uε) → cWχSψ uniformly in the
set {|dSψ | ≥ δ} for any δ > 0 as ε → 0, we can apply the Co-area Formula [3] and obtain
from (5.1), as ε→ 0,

Φε
c†(uε) =

∫ ∞
0

Perc†,µ({φ(uε) > t},Σ)dt−
∫

Σ
ec
†zG(y, uε)dx+ Cε

→ cWPerc†,µ(Sψ,Σ)−
∫
Sψ

ec
†zg(y)dx = 0.(5.7)

Assume now by contradiction that there exists a sequence of c†ε converging to a constant
c < c†. A simple computation (see [14, Lemma 5.2]) gives

(5.8) Φε
c†(uε) ≥

(c†)2 − (c†ε)2

(c†)2

∫
Σ
ec
†z ε

2
|(uε)z|2dx,

and observe that by the definition of uε and the regularity of ∂Sψ, we get that

|∇φ(uε)| = ε|∇uε|2 ≤ 2ε|(uε)z|2,

in a ball B(x, r) for some r > 0, where x = (y, z) ∈ ∂Sψ and y ∈ Ω is a point at which ψ
attains its maximum. Combining these two facts yields

Φε
c†(uε) ≥ (c†)2 − (c†ε)2

4(c†)2

∫
Σ∩B(x,r)

µ(y)

supΩ µ
ec
†z|∇φ(uε)|dx

→ (c†)2 − c2

4(c†)2 supΩ µ
cWPerc†,µ(Sψ,Σ ∩B(x, r)) > 0,

which then contradicts (5.7). �

Theorem 5.1 implies that the level sets of solutions of the initial value problem with
general front-like linitial data for ε � 1 asymptotically spread with average speed that
approaches c† as ε→ 0. Moreover, under the stronger assumption 5, we can show that the
long-time limit of such solutions converges, as ε→ 0, to a traveling wave solution to (2.6)
moving with speed c†. For the proof we refer to [14].

Corollary 5.2. Let Assumptions 1–4 hold. Let δ > 0 be such that

(1− u)f(u) > 0 for all u ∈ [1− δ, 1) ∪ (1, 1 + δ],

let uε0 ∈W 1,∞(Σ) ∩ L2
c†ε

(Σ) be such that

0 ≤ uε0 ≤ 1 + δ and lim inf
z→−∞

uε0(y, z) ≥ 1− δ uniformly in Ω,(5.9)

and let uε be the solution of (2.1) with initial datum uε0.

i) For every θ ∈ (0, 1)

lim
ε→0

lim
t→∞

sup{z ∈ R : uε(y, z, t) > θ for some y ∈ Ω}
t

= c†.(5.10)
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ii) If also Assumption 5 holds, then there exists R∞ ∈ R such that, for all M > 0,

(5.11) lim
ε→0

lim
t→∞
‖uε(y, z − c†εt−R∞, t)− χSψ(y, z)‖L1(ΣM ) = 0 ,

where ψ is given by Theorem 4.5. Moreover, the convergence as ε→ 0 after passing
to the limit t→∞ is locally uniform in Σ\∂Sψ.
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