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Abstract. We prove that the regular N -gon minimizes the Cheeger constant among
polygons with a given area and N sides.

1. Introduction

The Cheeger constant of a set Ω ⊂ R2 having finite measure and a Lipschitz boundary is
defined by

(1) h(Ω) := inf
{Per(A,R2)

|A|
: A measurable , A ⊆ Ω

}
.

Here and below, Per(A,R2) denotes the perimeter of A in the sense of De Giorgi and |A|
denotes the volume or Lebesgue measure of A.
The minimization problem (1), named after Cheeger who introduced it in [11], has at-
tracted a lot of interest in recent years; without any attempt of completeness, a list of
related works is [1, 2, 8, 9, 10, 14, 16, 17, 21, 24, 25, 28]. Here we limit ourselves to recall
that, for Ω as above, there exists at least a solution to (1), which is called a Cheeger set of
Ω, and in general is not unique (unless Ω is convex, see [1]). Let us also mention that the
Cheeger constant can be interpreted as the first Dirichlet eigenvalue of the 1-Laplacian
(see [22, 23]), as the relaxed formulation of problem (1) reads

inf
{ |Du|(R2)∫

Ω |u|
: u ∈ BV (R2) \ {0} , u = 0 on R2 \ Ω

}
.

It readily follows from definition (1) and the isoperimetric inequality that the ball min-
imizes the Cheeger constant under a volume constraint. Indeed, denoting by Ω∗ a ball
with the same volume as Ω, by C(Ω) a Cheeger set of Ω, and by C∗(Ω) ⊆ Ω∗ a ball with
the same volume as C(Ω), it holds

(2) h(Ω) =
Per(C(Ω),R2)

|C(Ω)|
≥ Per(C∗(Ω),R2)

|C∗(Ω)|
≥ h(Ω∗) .

In this paper we prove the following discrete version of the isoperimetric inequality (2):

Theorem 1. Among all simple polygons with a given area and at most N sides, the regular
N -gon minimizes the Cheeger constant.

The main motivation which led us to study the minimization of h(Ω) over the class of
polygons with prescribed area and number of sides came from a long-standing conjecture
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by Pólya and Szegö about discrete versions of classical isoperimetric inequalities having
the ball as optimal domain.
Actually, like (2), well known isoperimetric-type inequalities state that the ball is optimal
when minimizing a shape functional under a volume constraint. This is clearly the case
of perimeter, by the classical isoperimetric inequality, but also of many relevant shape
functionals in the Calculus of Variations, such as the first Dirichlet eigenvalue of the
Laplacian, by the Faber-Krahn inequality (see [18, Section 3]), or the torsional rigidity
and the logarithmic capacity.
Thus, a very natural question is whether these symmetry results admit a discrete version,
namely whether the optimal shape still obeys symmetry in the polygonal case.
In case of perimeter, an affirmative answer comes from the classical isoperimetric inequality
for polygons in R2, which states that the regular N -gon minimizes the perimeter among
simple polygons with given area and N sides, see e.g. [7].
More than fifty years ago, Pólya and Szegö conjectured that the same property holds for
the principal frequence, namely that the regular N -gon is the unique domain minimizing
the first Dirichlet eigenvaule of the Laplacian among polygons with a given area and N
sides. Analogous conjectures were formulated also for the torsional rigidity and for the
logarithmic capacity. For N = 3 and N = 4 these conjectures were proved by Pólya and
Szegö themselves [26, p. 158], via the classical tool of Steiner symmetrization. For N ≥ 5,
as explained in [18, Section 3.3], Steiner symmetrization cannot be applied because it
may increase the number of sides, and, though easy-to-state, Pólya and Szegö conjecture
can be included into the class of challenging problems. To the best of our knowledge, at
present the unique solved case is the one of logarithmic capacity, which was settled by
Solynin and Zalgaller in the notable paper [27], whereas the cases of the first eigenvalue
and torsional rigidity are currently open. In this respect, let us mention incidentally the
recent paper [15], where it was proved that that the regular N -gon maximizes the torsional
rigidity among the subclass of convex polygons, with a given area and N sides, for which
a suitable notion of “asymmetry measure” exceeds a critical threshold.
Theorem 1 provides another case, besides logarithmic capacity, in which there is preserva-
tion of symmetry when passing from minimization in the “continuum setting” of arbitrary
domains to minimization in the “discrete setting” of polygons.
Similarly as it occurs for Pólya and Szegö conjecture, the main difficulties in order to
obtain Theorem 1 are the impossibility of determining explicitly the Cheeger constant of
a general polygon, and the failure of Steiner symmetrization as soon as N ≥ 5. On the
other hand, with respect to the case of the first eigenvalue, we can take advantage of the
fact that the shape functional h(Ω) can be formulated without invoking a pde, so that
Theorem 1 can be established by means of a careful geometric analysis.
Finally, let us point out that Theorem 1 can be seen as an extreme case of Pólya and
Szegö conjecture, formulated for the p-Laplacian. In fact, the Cheeger constant is related
to the p-Laplace eigenvalue problem as p→ 1+ through the equality

lim
p→1+

λp(Ω) = h(Ω)

where λp denotes the first Dirichlet eigenvalue of the p-Laplacian. (A similar convergence
result has been recently obtained in [6] in terms of p-torsion functions). The limit on the
other extreme is given by (cf. [20])

lim
p→+∞

λ1/p
p (Ω) = λ∞(Ω) :=

1

maxx∈Ω dist(x, ∂Ω)
.
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Clearly the infimum of λ∞(Ω) among polygons with a given area and N sides is attained,
as well, at the regular N -gon.
A bit of mathematical faith, taken from [13], is that “One important principle of mathe-
matics is that extreme cases reveal interesting structure.” In this perspective, we believe
that Theorem 1 brings some evidence to Pólya and Szegö conjecture, and hopefully can
be of some help in order to prove it.
The following short outline of the paper summarizes how the proof of Theorem 1 proceeds.
We point out that a much simpler proof, essentially based on the isoperimetric inequality
for convex polygons, would allow to settle the case of simple convex polygons (cf. Remark
32).

– In Section 2, in order to obtain an existence result, we enlarge the class of admis-
sible polygons, by taking, in a suitable sense, the closure of simple polygons with
at most N sides; in particular, polygons lying in this larger class may present self-
intersections. For such generalized polygons, we introduce a new, ad hoc conceived
by a natural relaxation procedure, notion of “Neumann-Cheeger constant”, which
reduces to the classical Cheeger constant in the case of simple polygons. In this
framework, we obtain the existence of a generalized polygon which minimizes the
Neumann-Cheeger constant under a constraint on the volume and on the num-
ber of sides. Moreover, we are able to provide a representation formula for the
Neumann-Cheeger constant of such an optimal generalized polygon, which is used
as a crucial tool in the sequel.

– In Section 3, we derive some stationarity conditions satisfied by a generalized
polygon which minimizes the Neumann-Cheeger constant under a constraint on
the volume and on the number of sides. To that aim, we perform first order shape
derivatives with respect to suitable perturbations, namely rotations and parallel
movements of one side of an optimal generalized polygon. By this way, we are able
to deduce some relevant information about the length of the sides which do not
contain self-intersections and on the measures of the angles formed by them.

– Relying on the results obtained in Section 3, in Section 4 we are able to exclude
the possibility that the boundary of an optimal generalized polygon contains self-
intersections and the possibility that it contains reflex angles. We are thus reduced
to the case of simple convex polygons, among which the regular gon turns out to
be the unique solution.

– The conclusion of the proof, along with the stronger form of Theorem 1 that it
actually entails, is given in Section 5, where we also postpone some related remarks
and open questions.

2. Existence of an optimal generalized polygon
and representation of its Cheeger constant

Firstly, let us precise what is meant by “simple polygons with at most N sides” in the
statement of Theorem 1.

Definition 2. A simple polygon is the open bounded planar region Ω delimited by a finite
number of not self-intersecting line segments (called sides) which are pairwise joined (at
their endpoints called vertices) to form a closed path. We denote by PN the class of simple
polygons with at most N sides.
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Then our object of study is the following shape optimization problem:

(3) min
{
h(Ω) : Ω ∈ PN , |Ω| = c

}
,

where c is a positive constant.
In order to gain the existence of an optimal domain, we are led to enlarge the class of
admissible polygons in the above shape optimization problem.
Let us begin by recalling that the Hausdorff complementary distance between two open
sets Ω1,Ω2 ⊂ R2 is defined by

dHc(Ω1,Ω2) := sup
x∈R2

∣∣dist(x,Ωc
1)− dist(x,Ωc

2)
∣∣ ,

where Ωc
i denotes the complement of Ωi and dist(·,Ωc

i ) is the Euclidean distance from the
closed set Ωc

i .
Given a sequence of open sets {Ωh} and an open set Ω, by writing

Ωh
Hc

−→ Ω and Ωh
Hc

loc−→ Ω ,

we mean respectively that limh dHc(Ωh,Ω) = 0 and limh dHc(Ωh ∩B,Ω∩B) = 0 for every
ball B.
For the properties of the Hausdorff complementary topology, we refer the reader to [4, 19].

Definition 3. A generalized polygon with at most N -sides is the limit in the Hc
loc topology

of a sequence {Ωh} ⊂ PN such that lim suph |Ωh| < +∞. The class of generalized polygons
with at most N sides is denoted by PN .

Remark 4. Let Ω ∈ PN . Then:

(i) Ω is an open set;
(ii) Ω is simply connected, since Ωc is connected [19, Remark 2.2.18];
(iii) Ω may be disconnected; each connected component of Ω is delimited by a finite

number of line segments (still called the sides of Ω), which are pairwise joined at
their endpoints (still called vertices of Ω) to form a closed path, possibly containing
self-intersections;

(iv) Ω has finite Lebesgue measure [19, Proposition 2.2.21];
(v) Ω is bounded (otherwise, since Ω has at most N sides, necessarily it would have

two parallel sides, contradicting item (iv)).

We now introduce a new notion of Neumann-Cheeger constant. As well as the classical
notion (1), it can be given for every subset Ω of R2 having finite measure and a Lipschitz
boundary; actually, we shall use it only for generalized polygons. We stress that we need
to introduce this notion of Neumann-Cheeger constant just for technical reasons, that is
to say in order to handle the possible self-intersections of generalized polygons (which in
turn cannot be avoided to have an existence result). On the other hand, it will be clear
from the definition that our notion of Neumann-Cheeger constant reduces to the classical
Cheeger constant for simple polygons.
Let us prepone the following new notion of Neumann-perimeter relative to Ω:

Definition 5. Let Ω ⊂ R2 be a set having finite Lebesgue measure and a Lipschitz
boundary, and let A be a measurable subset of Ω. Then we define the Neumann-perimeter
of A relative to Ω by

Per(A,Ω) := sup
{∫

A
divV dx : V ∈W 1,2(Ω;R2) ∩ C(Ω;R2) , ‖V ‖L∞ ≤ 1

}
.
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η1

η3

p

η2

Figure 1. An example of generalized polygon, with 2 connected compo-
nents, which self-intersects at the point p and at the segments η1, η2, η3.

Remark 6. We point out that, with respect to the classical definitions of perimeter ap-
pearing in (1) and of perimeter relative to Ω, which read respectively

Per(A,R2) := sup
{∫

A
divV dx : V ∈ C∞0 (R2;R2) , ‖V ‖L∞ ≤ 1

}
Per(A,Ω) := sup

{∫
A

divV dx : V ∈ C∞0 (Ω;R2) , ‖V ‖L∞ ≤ 1
}
,

the crucial difference appearing in Definition 5 is the different choice of the class of test
fields (which is the reason why we have chosen the terminology “Neumann-perimeter”).
For simple polygons Ω ∈ PN , Per(A,Ω) agrees with Per(A,R2); the same holds true also
when Ω ∈ PN provided A ⊂ Ω. In spite, when Ω ∈ PN and A 6⊂ Ω, in general it holds
Per(A,Ω) ≤ Per(A,Ω), with possibly strict inequality. More precisely, if there is a line
segment S contained into two sides of Ω, the H1-measure of the points of A having density
1 and lying on S is counted twice in the computation of Per(A,Ω) (wheres it does not
appear at all in the computation of Per(A,Ω)).

Definition 7. Let Ω ⊂ R2 be a set with finite Lebesgue measure and a Lipschitz boundary.
We define the Neumann-Cheeger constant of Ω by

(4) h(Ω) := inf
{Per(A,Ω)

|A|
: A measurable , A ⊆ Ω

}
,

Proposition 8. On the class of generalized polygons, the Neumann-Cheeger constant
enjoys the following properties:

(i) It is monotone decreasing with respect to inclusion.
(ii) It is homogeneous of degree −1 by homotheties.
(iii) For every Ω ∈ PN , there exists at least a Neumann-Cheeger set of Ω, namely a

measurable subset of Ω at which the infimum in (4) is attained.
(iv) If C(Ω) is a Neumann-Cheeger set of Ω ∈ PN , the set ∂C(Ω) ∩Ω is made by arcs

of circle of curvature h(Ω); moreover, ∂C(Ω) necessarily meets ∂Ω, this occurs
either tangentially or at a vertex, and ∂C(Ω)∩ ∂Ω may contain self-intersections.
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Proof. (i) Let Ω1 ⊆ Ω2 be two generalized polygons. Then

h(Ω2) = inf
{Per(A,Ω2)

|A|
: A measurable , A ⊆ Ω2

}
≤ inf

{Per(A,Ω2)

|A|
: A measurable , A ⊆ Ω1

}
≤ inf

{Per(A,Ω1)

|A|
: A measurable , A ⊆ Ω1

}
= h(Ω1) ,

where the first inequality comes directly from the assumption Ω1 ⊆ Ω2, and the second
one from the fact that, due to the inclusion of fields in W 1,2(Ω2;R2) ∩ C(Ω2;R2) into
W 1,2(Ω1;R2)∩C(Ω1;R2), we have Per(A,Ω2) ≤ Per(A,Ω1) for any measurable set A ⊆ Ω1.
(ii) The fact that h is homogeneous of degree −1 follows from the fact that, for every
measurable set A ⊂ Ω ∈ PN , it holds Per(λA, λΩ) = λPer(A,Ω), and |λA| = λ2|A|.
(iii) Let {An} be a minimizing sequence for problem (4). If we are able to prove that it
admits a minimizing sequence which converges in L1(Ω), we are done. Indeed, it readily
follows from its definition as the supremum of a family functionals which are continuous
in L1(Ω), that Per(·,Ω) is lower semicontinuous in L1(Ω). Hence, the set A which is the
L1-limit of {An} will be a solution to (4):

h(Ω) ≤ Per(A,Ω)

|A|
≤ lim inf

n

Per(An,Ω)

|An|
= h(Ω) .

Let us show that {An} admits a subsequence which converges in L1(Ω). For k ∈ N \ {0},
set Ωk := {x ∈ Ω : dist(x, ∂Ω) ≥ 1

k

}
. Since {An} is a minimizing sequence for problem

(4), we have supn Per(An,Ω) < +∞, and hence we also have supn Per(An ∩Ωk,Ω) < +∞
for every fixed k. Now we observe that

Per(An ∩ Ωk,Ωk) = sup
{∫

An∩Ωk
divV dx : V ∈ C∞0 (Ωk;R2) , ‖V ‖L∞ ≤ 1

}
≤ sup

{∫
An∩Ωk divV dx : V ∈W 1,2(Ω;R2) ∩ C(Ω;R2) , ‖V ‖L∞ ≤ 1

}
= Per(An ∩ Ωk,Ω) .

By the compact embedding of BV (Ωk) into L1(Ωk), we deduce that, for every fixed k, the
sequence {An∩Ωk} admits a subsequence which converges in L1(Ωk). Since limk |Ω\Ωk| =
0, we conclude that {An} admits a subsequence which converges in L1(Ω).
(iv) Since Per(A,Ω) agrees with the usual perimeter of A in R2 for all sets A such that
A ⊂ Ω, all the properties stated here for a Neumann-Cheeger set of a generalized polygon
(except for the possible presence of self-intersections in ∂C(Ω)∩ ∂Ω) are readily inherited
from well-known properties of a Cheeger set of a simple polygon. For more details, we refer
the reader to [25, Section 4] and references therein. Finally, since ∂C(Ω) meets necessarily
∂Ω, the possible presence of self-intersections in ∂C(Ω)∩∂Ω is an immediate consequence
of the possible presence of self-intersections in ∂Ω. �

We are now ready to prove an existence result for the following generalized version of
problem (3):

(5) min
{
h(Ω) : Ω ∈ PN |Ω| = c

}
,
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Proposition 9. The shape optimization problem (5) admits at least a solution.

Remark 10. An equivalent formulation of problem (5), which is convenient in order to
drop the volume constaint and deal deal with a scaling invariant shape functional, is:

(6) min
{
|Ω|h2

(Ω) : Ω ∈ PN
}
.

Namely, if Ω solves problem (5), it solves also problem (6); viceversa, if Ω solves problem
(6), a suitable homothety of Ω solves (5) (cf. [18, Proposition 1.2.9]).

Proof of Proposition 9. Let {Ωn} be a minimizing sequence for problem (5). For every
Ωn we select a connected Cheeger set Cn of Ωn. Using the fact that {Ωn} is a minimizing
sequence, the relationship between the Neumann-perimeter and the classical one, and the
isoperimetric inequality, we infer that there exist positive constants k1, k2 such that

(7) |Cn| ≥ k1Per(Cn,Ωn) ≥ k1Per(Cn,R2) ≥ k2|Cn|1/2 .
On the other hand, using the fact that Ωn are admissible domains in (5), and the same
inequality above, we infer that

(8) c = |Ωn| ≥ |Cn| ≥ k1Per(Cn,R2) .

From (7) and (8), we see respectively that lim infn |Cn| > 0 and that lim supn Per(Cn,R2) <
+∞. Since Cn are connected, we deduct that they remain uniformly bounded, namely we
can translate the sets Ωn such that all Cn lie in a fixed, sufficiently large ball B.
By (8) and the compact embedding of BV (B) into L1(B), there exists a measurable set
C such that

(9) Cn
L1

−→ C .

By the compactness and lower semicontinuity properties of the Hausdorff complementary
topology [19, Corollary 2.2.24 and Proposition 2.2.21], up to passing to a (not relabeled)
subsequence, there exists Ω ∈ PN , with |Ω| ≤ c, such that

(10) Ωn
Hc

loc−→ Ω .

Clearly, C ⊆ Ω. Then it is enough to prove that

(11) Per(C,Ω) ≤ lim inf
n

Per(Cn,Ωn) .

Indeed, if (11) holds, we get

h(Ω) =
Per(C,Ω)

|C|
≤ lim inf

n

Per(Cn,Ωn)

|Cn|
≤ lim inf

n
h(Ωn) ,

which readily implies that an homothety of Ω (precisely
√
c|Ω|−1Ω) solves problem (5)

and achieves the proof.
It remains to prove (11). To that aim we observe that

(12) Ωn
L1
loc−→ Ω .

Indeed, the L1
loc convergence in (12) follows from the Hc

loc-convergence in (10) by applying
Theorem 4.2 in [5]. (In fact, for every ball B, we can apply such result to the sequence
Ωn∩B because both the number of connected components of (Ωn∩B)c and the perimeter of
Ωn∩B remain bounded from above: the former because the sets Ωn are simply connected,
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and the latter because, since Ωn has at most N sides, it can be estimated from above by
Per(B,R2) +Ndiam (B).)
We are now in a position to prove the lower semicontinuity property (11). If we are able
to approximate any field V ∈W 1,2(Ω;R2)∩C(Ω;R2) with ‖V ‖L∞ ≤ 1, in the strong W 1,2

topology, by a sequence of fields Vn in W 1,2(Ωn;R2)∩C(Ωn;R2) with ‖V ‖L∞ ≤ 1, we get
the required lower semicontinuity property; indeed, using also (9), we shall have

Per(C,Ω) ≤
∫
C

divV dx = lim
n

∫
Cn

divVn dx ≤ lim inf
n

Per(Cn,Ωn) .

A sequence {Vn} which gives the approximation above (which is related to the first con-
dition in the Mosco-convergence of the Sobolev spaces W 1,2(Ωn;R2) to W 1,2(Ω;R2)) can
be constructed by using the same arguments as in Section 3 of [5], to which we refer for
more details. In short, the procedure works as follows. We first reduce ourselves to the
case when the approximating sequence {Ωn} is contained into a fixed ball. We stress that
this is possible thanks to the fact that Ω is bounded (cf. Remark 4 (v)) and that the
sequence {Ωn} ⊆ PN satisfies (10)-(12): these conditions ensure that one can modify the

generalized polygons Ωn into a new sequence of generalized polygons Ω̃n which satisfy
the same convergence properties as Ωn and in addition are all contained into a fixed ball
(such modification can be done by arguing as in the proof of Lemma 3.6 in [5]). Once we
are reduced to the case when the approximating sequence {Ωn} is contained into a fixed
ball, we are in a position to apply Lemma 3.7 in [5] in order to get a sequence of fields
Vn ∈W 1,2(Ωn;R2) which converge strongly in W 1,2 to V . Finally, the fact that these fields
Vn can be constructed in order to satisfy also the constraint ‖Vn‖L∞ ≤ 1 can be checked
by inspection of the proof of Lemma 3.4 in [5]. �

The next result collects some easy-to-obtain qualitative properties of an optimal general-
ized polygon:

Proposition 11. Let Ω ∈ PN be a solution to problem (5). Then:

(i) Ω has exactly N sides;
(ii) Ω is connected;
(iii) the generalized polygon whose boundary is obtained by eliminating from ∂Ω all line

segments possibly contained into two consecutive sides of Ω is still a solution to
problem (5).

Remark 12. In view of Proposition 11 (iii), in the sequel when dealing with a solution
Ω to problem (5), we shall directly assume, with no loss of generality, that there is no
line segment contained into two consecutive sides of Ω. For brevity, we shall call such a
solution a reduced optimal polygon. For instance, if Ω would be the connected component
of the generalized polygon represented in Figure 1 containing the point p on its boundary,
the corresponding reduced polygon would be obtained by eliminating the line segment η3.

For the proof of Proposition 11 (i), we use in particular the following elementary fact, that
we prefer to state separately since it which will be repeatedly used in the paper.

Lemma 13. Let C(Ω) be a Neumann-Cheeger set of Ω, and let Ω̃ be such that C(Ω) ⊂
Ω̃ ⊂ Ω. Then h(Ω) = h(Ω̃).

Proof. Since Ω̃ ⊂ Ω, and h is monotone decreasing with respect to inclusions, there holds

h(Ω) ≤ h(Ω̃). On the other hand, since C(Ω) ⊂ Ω̃, C(Ω) is an admissible set for the

Neumann-Cheeger problem in Ω̃, so that h(Ω̃) ≤ |∂C(Ω)|
|C(Ω)| = h(Ω). �
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Proof of Proposition 11. (i) Assume by contradiction that Ω is a solution to problem (5)
with strictly less than N sides, and let C(Ω) denote one of its Cheeger sets. Then by

“cutting” an angle of Ω which measures less than π, one can construct a polygon Ω̃ with

one side more than Ω (thus, with at most N sides), such that C(Ω) ⊂ Ω̃ ⊂ Ω. Clearly

|Ω̃| < |Ω| whereas, by Lemma 13, h(Ω̃) = h(Ω). We conclude that |Ω|h2
(Ω) > |Ω̃|h2

(Ω̃), so
that Ω cannot be a solution to problem (6) and hence neither to problem (5), contradiction.

(ii) Assume by contradiction that Ω is disconnected. Denote by Ω1 a connected component
of Ω, and set Ω2 := Ω \ Ω1. Let C(Ω) be a Neumann-Cheeger set of Ω, and set C1 :=
C(Ω) ∩ Ω1 and C2 := C(Ω) ∩ Ω2. Since

Per(C(Ω),Ω) = Per(C1,Ω1) + Per(C2,Ω2) and |C(Ω)| = |C1|+ |C2| ,
we have

h(Ω) =
Per(C1,Ω1) + Per(C2,Ω2)

|C1|+ |C2|

≥ min
{Per(C1,Ω1)

|C1|
,
Per(C2,Ω2)

|C2|

}
≥ min

{
h(Ω1), h(Ω2)

}
.

On the other hand, we have |Ω| > max{|Ω1|, |Ω2|}. Hence for at least one among the
indices i = 1 and i = 2 it holds |Ωi|2h(Ωi) < |Ω|2h(Ω). This shows that Ω cannot be a
solution to problem (6) and hence neither to problem (5), contradiction.

(iii) Consider the generalized polygon Ω′ whose boundary is obtained by eliminating from
∂Ω all line segments contained into two consecutive sides of Ω. Then, we still have Ω′ ∈
PN . Clearly, Ω and Ω′ have the same volume, whereas by Proposition 8 (i) we have
h(Ω′) ≤ h(Ω). We infer that |Ω|2h(Ω) = |Ω′|2h(Ω′). Hence Ω′ is still a solution to problem
(5).

�

Now, in order to provide a representation formula for the Cheeger constant of an optimal
generalized polygon, we need to introduce some additional definitions. By a convex angle
we mean an angle θ ∈ (0, π), whereas by a reflex angle we mean an angle θ ∈ (π, 2π).

Definition 14. Given a generalized polygon Ω, we set:

– Θ(Ω) := the class of inner angles of Ω, namely the angles θ formed at the interior of Ω
by two consecutive sides of ∂Ω.

– ΘC(Ω), ΘR(Ω) := the subclasses of convex/reflex angles in Θ(Ω).

– S(Ω) := the family of all sides of Ω.

– F(Ω):= the family of the free sides of Ω, intended as the sides S ∈ S(Ω) such that S
does not contain self-intersections, namely such that the only other sides which meet S
are its two consecutive sides, and this occurs only at the endpoints of S.

– FCC(Ω), FCR(Ω), FRR(Ω) := the subclass of sides S ∈ F(Ω) such that the two angles of
Θ(Ω) formed by S and its two consecutives sides are respectively convex-convex, convex-
reflex, and reflex-reflex.

Definition 15. Given a generalized polygon Ω, we set

τ(Ω) :=
∑

α∈ΘC(Ω)

[
tan

(π − α
2

)
−
(π − α

2

)]
.
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Remark 16. From the inequality tanx > x for all x ∈ (0, π2 ), it follows that τ(Ω) > 0 for
any generalized polygon Ω. Notice also that, if Ω is a simple convex polygon, there holds

τ(Ω) =
∑

α∈Θ(Ω)

[
tan

(π − α
2

)]
− π .

Proposition 17. Let Ω ∈ PN be a reduced optimal polygon. Then there exists a unique
Cheeger set C(Ω), which is determined by the equality

(13) ∂C(Ω) ∩ Ω =
⋃{

Γα : α ∈ ΘC(Ω)
}
,

where Γα is an arc of circumference of radius (h(Ω))−1 which is tangent to the two sides
of ∂Ω forming the angle α.
Moreover, the Neumann-Cheeger constant of Ω is given by

(14) h(Ω) =
|∂Ω|+ ∆(Ω)

2|Ω|
with ∆(Ω) :=

√
|∂Ω|2 − 4|Ω|τ(Ω) > 0 ,

where |∂Ω| is intended as Per(Ω,Ω).

Remark 18. (i) It may happen that, for two (or more) consecutive angles αi ∈ ΘC(Ω), the
arcs Γαi appearing in (13) lie on the same circumference.
(ii) By equality (13), reflex corners of ∂Ω are contained into ∂C(Ω).
(iii) Formula (14) already appeared in [21], where it was established to hold for simple
convex polygons Ω whose Cheeger set meets all sides of ∂Ω.

Proof of Proposition 17. The fact that ∂C(Ω) ∩ Ω is made by arcs or circumference of
curvature h(Ω) is well-known, as well as the fact that ∂C(Ω) ∩ Ω must meet tangentially
∂Ω, if this occurs at points where ∂Ω is C1, see for instance [25, Section 4] and references
therein.
Assume now that Ω ∈ PN is a solution to problem (5), and let C(Ω) be a Neumann-
Cheeger set of Ω. Then it is readily seen that C(Ω) must touch every side of Ω, that
is

(15) ∂C(Ω) ∩ S 6= ∅ ∀S ∈ S(Ω) .

Namely, assume by contradiction that there exists a side S which is not touched by C(Ω).

In this case it is possible to construct a domain Ω̃, still belonging to PN , such that that

C(Ω) ⊂ Ω̃ ⊂ Ω. Then |Ω̃| < |Ω| and h(Ω̃) = h(Ω) by Lemma 13, so that |Ω|h2
(Ω) >

|Ω̃|h2
(Ω̃). Hence Ω cannot be a solution to problem (6), nor to problem (5).

As a consequence of (15) and of the connectedness of C(Ω), we obtain that all the arcs
of circumference contained into ∂C(Ω) ∩ Ω must be of the form Γα for some α ∈ ΘC(Ω),
that is, each arc must meet two sides of ∂Ω forming a convex angle.
We have thus shown the inclusion ⊆ in (13). To get the opposite inclusion, we have to prove
that boundary of a Neumann-Cheeger set of Ω cannot contain any convex angle, namely
that, for every α ∈ ΘC(Ω), there exists an arc of the form Γα such that Γα ⊆ ∂C(Ω) ∩Ω.
Let α ∈ ΘC(Ω) be fixed, and let Ωα,r be the domain obtained by “smoothing” the corner
α by means of an arc of cirumference of radius r, tangent to the two sides of ∂Ω forming
the angle α. It is readily seen by geometric arguments that, for r sufficiently small,

Per(Ωα,r,Ω) = |∂Ω| − 2r cot
(α

2

)
+ (π − α)r
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and

|Ωα,r| = |Ω| − r2 cot
(α

2

)
+
(π − α

2

)
r2 .

Then,
Per(Ωα,r,Ω)

|Ωα,r|
=
|∂Ω| − 2r

[
tan

(
π−α

2

)
− (π−α2 )

]
|Ω| − r2

[
tan

(
π−α

2

)
−
(
π−α

2

)] .
Since the term in squared parenthesis is positive, we see that the inequality

Per(Ωα,r,Ω)
|Ωα,r| <

|∂Ω|
|Ω| is satisfied for r sufficiently small (precisely, for r < 2|Ω|

|∂Ω|).

Let us now prove (14). In view of the equality (13), repeating the above argument at every
α ∈ ΘC(Ω), and setting

f(r) :=

|∂Ω| − 2r
∑

α∈ΘC(Ω)

[
tan

(
π−α

2

)
− (π−α2 )

]
|Ω| − r2

∑
α∈ΘC(Ω)

[
tan

(
π−α

2

)
−
(
π−α

2

)] =
|∂Ω| − 2rτ(Ω)

|Ω| − r2τ(Ω)
,

we have that rΩ minimizes f(r) over the interval
[
0, 2|Ω|
|∂Ω|
]
. Imposing f ′(rΩ) = 0 we obtain

that rΩ solves the second order equation

τ(Ω)r2 − |∂Ω|r + |Ω| = 0 .

We infer that ∆(Ω) := |∂Ω|2 − 4|Ω|τ(Ω) ≥ 0, and that rΩ is equal to one of the two roots

r± :=
|∂Ω| ±

√
|∂Ω|2 − 4|Ω|τ(Ω)

2τ(Ω)
=

2|Ω|
|∂Ω| ∓

√
|∂Ω|2 − 4|Ω|τ(Ω)

.

Since only r− falls into the interval
[
0, 2|Ω|
|∂Ω|
]
, we conclude that rΩ = r−, and consequently

that

h(Ω) =
1

rΩ
=

1

r−
=
|∂Ω|+

√
|∂Ω|2 − 4|Ω|τ(Ω)

2|Ω|
.

Finally, it remains to show that ∆(Ω) is strictly positive. Assume by contradiction that

∆(Ω) = 0. In this case, by (14) we have h(Ω) = |∂Ω|
2|Ω| . Thus,

(16) τ(Ω) =
|∂Ω|2

4|Ω|
= h(Ω)

|∂Ω|
2

.

For α ∈ ΘC(Ω), denote by `α the length of the segment in ∂Ω joining the vertex of ∂Ω
corresponding to the angle α with one of the points at which Γα is tangent to ∂Ω. Then
it holds rΩ cot

(
α
2

)
= `α (with rΩ = (h(Ω))−1). Summing over α ∈ ΘC(Ω), we get

(17)
∑

α∈ΘC(Ω)

tan
(π − α

2

)
= h(Ω)

∑
α∈ΘC(Ω)

`α ≤ h(Ω)
|∂Ω|

2
,

where the last equality holds since, for every α ∈ ΘC(Ω), two segments of length `α are
contained into ∂Ω. By combining (16) and (17), we get

τ(Ω) ≥
∑

α∈ΘC(Ω)

tan
(π − α

2

)
,

which is readily seen to be in contradiction with Definition 15 of τ(Ω).
�
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3. Stationarity conditions and their consequences

In this section we rely on shape derivative arguments in order to get geometrical infor-
mation on a solution to problem (5). The stationarity conditions we obtain are contained
in Lemmas 23, 24, and 25 below. Their consequences on the length of the free sides of
an optimal polygon, and on the measures of the angles formed by them, are given in
Propositions 26, 27, and 28.
Let us begin by observing that, if Ω is a solution to problem (5), there exists a Lagrange
multiplier µ such that Ω is stationary for the shape functional h(Ω)+µ|Ω|. For the sake of
simplicity, up to replacing Ω by a dilate, we can take µ = 1, and work with the stationarity
condition written under the form

(18)
d

dε

∣∣∣
ε=0

(
h(Ωε) + |Ωε|

)
= 0 ,

where Ωε is a one-parameter family of deformations of Ω.

We are going to work in particular with the following two kinds of deformations.

Definition 19. [Rotations around the mid-point]
For a fixed S ∈ F(Ω), with consecutive sides S1 and S2, we denote by Φε(Ω), ε ∈ (−ε0, ε0),
the polygons obtained keeping fixed the other sides and replacing the three sides (S, S1, S2)
by the new sides (Sε, Sε1, S

ε
2) obtained in the following way (see Figure 2):

– Sε lies on the straight-line obtained by rotating of an oriented angle ε, around the
mid-point of S, the straight-line containing S (by oriented angle ε, we mean +ε
or −ε according to whether, respectively, S is rotated clock-wise or counter-clock-
wise);

– Sε1 and Sε2 lie on the same straight-line containing respectively S1 and S2;

– the lengths of Sε, Sε1 and Sε2, are chosen so that the three sides are consecutive
(namely (Sε, Sε1) and (Sε, S2

ε ) have one point in common).

Figure 2. Rotation around the mid-point of a side in FAA, FAO, and FOO.

Definition 20. [Parallel displacement]
For a fixed S ∈ F(Ω), with consecutive sides S1 and S2, we denote by Ψε(Ω), ε ∈ (−ε0, ε0),
the polygons obtained keeping fixed the other sides and replacing the three sides (S, S1, S2)
by the new sides (Sε, Sε1, S

ε
2) obtained in the following way (see Figure 3):

– Sε lies on the straight-line parallel to S having signed distance ε from S (precisely,
by signed distance ε from S, we mean +ε or −ε according to whether, respectively,
Sε does not intersect or intersects Ω);

– Sε1 and Sε2 lie on the same straight-line containing respectively S1 and S2;
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– the lengths of Sε, Sε1 and Sε2, are chosen so that the three sides are consecutive
(namely (Sε, Sε1) and (Sε, S2

ε ) have one point in common).

Figure 3. Parallel displacement of a side in FAA, FAO, and FOO.

Remark 21. If Ω ∈ PN is a a reduced optimal polygon, the arcs of circle contained into its
Neumann-Cheeger set cannot meet a side S ∈ FCR(Ω) at a vertex p corresponding to a
reflex angle. Otherwise, we choose a point q in the relative interior of S which is closer to
p than to the other extreme of S: by rotating S around q, we get a polygon with smaller
area, and the same (or a smaller) Neumann-Cheeger constant.

Remark 22. We observe that, if Ω ∈ PN is a a reduced optimal polygon, in view of
Proposition 17 and Remark 21, for ε sufficiently small the Neumann-Cheeger constant of
the perturbed polygons Φε(Ω) and Ψε(Ω) is still given by formula (14), provided the side
S which is rotated as in Definition 19 or displaced as in Definition 20 satisfies one of the
following conditions:

– S ∈ FCC(Ω) and, denoting by α1, α2 ∈ ΘC(Ω) the angles formed by S and its two
consecutive sides, the two arcs of circumference Γα1 and Γα2 appearing in (13) do
not lie on the same circumference:

– S ∈ FCR(Ω);

– S ∈ FRR(Ω).

Lemma 23. Let Ω ∈ PN be a reduced optimal polygon satisfying (18). Let S ∈ FCC(Ω).
Denoting by a the length of S and by α1, α2 ∈ ΘC(Ω) the angles formed by S and its two
consecutive sides, there holds

α1 = α2(19)

sin(α1)

sin2
(
α1
2

) ≤ a[h(Ω)− ∆(Ω)

h(Ω)

]
(20)

Moreover, if the two arcs of circumference Γα1 and Γα2 in (13) do not lie on the same
circumference, (20) holds as an equality.

Proof. Let us impose the stationarity condition (18) when Ωε are given respectively by
the deformations Φε(Ω) and Ψε(Ω) introduced in Definitions 19 and 20. Assume first
that the two arcs of circumference Γα1 and Γα2 do not lie on the same circumference.
Then, by Remark 22, for ε sufficiently small the Neumann-Cheeger constants h(Φε(Ω))
and h(Ψε(Ω)) are still given by formula (14).
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– Rotations around the mid-point. Let us name the angles α1 and α2 so that, if ε > 0, α1

(resp. α2) is changed into α1− ε (resp. α2 + ε), whereas, if ε < 0, α1 (resp. α2) is changed
into α1 + ε (resp. α2 − ε).
Through elementary geometric arguments, we obtain

|∂(Φ(Ωε))| = |∂Ω|+ a sinα1

2 sin(α1 − ε)
+

a sinα2

2 sin(α2 + ε)
+

a sin ε

2 sin(α1 − ε)
− a sin ε

2 sin(α2 + ε)

|Φ(Ωε)| = |Ω|+ o(ε)

τ
(
Φ(Ωε)

)
= τ(Ω) + tan

(π − α1 + ε

2

)
+ tan

(π − α2 − ε
2

)
−

2∑
i=1

tan
(π − αi

2

)
.

Then, using (14), some long but straightforward computations lead to write condition
(18), when Ωε = Φε(Ω), as

sin(α1+α2
2 ) sin(α2−α1

2 )

sin
(
α1
2

)
sin
(
α2
2

) = a h(Ω) sin(
α2 − α1

2
) .

We infer that:

(21) either α1 = α2, or
sin(α1+α2

2 )

sin
(
α1
2

)
sin
(
α2
2

) = a h(Ω) .

– Parallel displacement. Through elementary geometric arguments, we obtain:

|∂(Ψ(Ωε))| = |∂Ω|+ ε

tanα1
+

ε

tanα2
+

ε

sinα1
+

ε

sinα2

|Ψ(Ωε)| = |Ω|+
ε

2

(
2a+

ε

tanα1
+

ε

tanα2

)
τ
(
Ψ(Ωε)

)
= τ(Ω)

Then, using (14), some long but straightforward computations lead to write condition
(18), when Ωε = Ψε(Ω), as

(22)
sin(α1+α2

2 )

sin
(
α1
2

)
sin
(
α2
2

) = a
[
h(Ω)− ∆(Ω)

h(Ω)

]
.

By combining (21) and (22), we infer that either α1 = α2, or ∆(Ω) = 0. Since the latter
possibility is excluded by virtue of Proposition 17, we conclude that α1 = α2. Moreover,
by inserting this condition into (22), we obtain that (20) holds as an equality, and the
lemma is proved under the assumption made at the beginning of the proof that Γα1 and
Γα2 lie on the same circumference.

Let us now deal with the case when the two arcs of circumference Γα1 and Γα2 lie on the
same circumference. Let p1, p2 denote the two vertices of ∂Ω corresponding to the angles
α1, α2, let o denote the center of the circumference Γ of radius (h(Ω))−1 touching S and
its two consecutive sides S1, S2, ant let q1, q2 denote the tangency points ∂C(Ω) ∩ S1 and
∂C(Ω) ∩ S2.
Since Ω is optimal for problem (5), the area of the pentagon with vertices o, q1, q2, p1, p2

must be minimal among all the pentagons P (x1, x2) having three vertices fixed at o, q1, q2,
and the other two vertices x1, x2 free to move so that the three segments [q1x1], [x1x2],
and [q2x2] remain tangent to the circumference Γ. Indeed, all these pentagons have a
Neumann-Cheeger constant lower than or equal to h(Ω), so that Ω needs to minimize the
area in order to be a solution to problem (6).
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Now, denoting by θ1 and θ2 the inner angles of the pentagon P (x1, x2) at x1 and x2, and
by θ0 the fixed angle formed by the segments [oq1] and [oq2], by summing the inner angles
of P (x1, x2) we see that θ1 and θ2 must obey the linear constraint θ1 + θ2 = 2π − θ0.
Through elementary geometric arguments, we see that the area of P (x1, x2) is given by

|P (x1, x2)| = (h(Ω))−2
[

tan
(π − θ1

2

)
+ tan

(π − θ2

2

)]
,

cf. Figure 4. Minimizing this function under the constraint θ1 + θ2 = 2π − θ0, we find
θ1 = θ2, which proves (19).

x1

o

x2

q1

q2

Figure 4. A pentagon P (x1, x2).

Finally, let us show that also the inequality (20) remains true. We recall it was obtained
by considering the parallel displacement deformation Ψε(Ω). Now, since Γα1 and Γα2 lie
on the same circumference, if the parallel displacement brings S towards the exterior of Ω
(namely if ε > 0, cf. Definition 20), the Cheeger constant of Ψε(Ω) is no longer given by
(14). Nonethless, formula (14) can be applied to Ψε(Ω) if the parallell displacement brings
S towards the interior Ω (namely if ε < 0). We conclude that the stationarity condition
(18) can be replaced by the following inequality for the left derivative:

(23)
d−

dε

∣∣∣
ε=0

(
h(Ψε(Ω)) + |Ψε(Ω)|

)
≤ 0 ,

Then, by arguing as above, we see that (23) is equivalent to the inequality (20).
�

Lemma 24. Let Ω ∈ PN be a reduced optimal polygon satisfying (18). Let S ∈ FRR(Ω).
Denoting by b the length of S and by β1, β2 ∈ ΘR(Ω) the angles formed by S and its two
consecutive sides, there holds

β1 = β2(24)

sin(β1)

sin2
(β1

2

) = b
[
h(Ω)− ∆(Ω)

h(Ω)

]
(25)

Proof. We are going to proceed in a similar way as done in the proof of Lemma 23,
namely, we impose the stationarity condition (18) when Ωε are given respectively by the
deformations Φε(Ω) and Ψε(Ω). Since S ∈ FRR(Ω), by Remark 22 for ε sufficiently small
the Neumann-Cheeger constants h(Φε(Ω)) and h(Ψε(Ω)) are still given by formula (14).

– Rotations around the mid-point. Let us name the angles β1 and β2 so that, if ε > 0, β1

(resp. β2) is changed into β1 − ε (resp. β2 + ε), whereas, if ε < 0, β1 (resp. β2) is changed
into β1 + ε (resp. β2 − ε).
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Through elementary geometric arguments, we obtain

|∂(Φ(Ωε))| = |∂Ω|+ a sinβ1

2 sin(β1 − ε)
+

a sinβ2

2 sin(β2 + ε)
+

a sin ε

2 sin(β1 − ε)
− a sin ε

2 sin(β2 + ε)

|Φ(Ωε)| = |Ω|+ o(ε)

τ
(
Φ(Ωε)

)
= τ(Ω) .

Then, by using as usual (14) and some algebraic computations, we can rewrite condition
(18), when Ωε = Φε(Ω), as

(26) sin
(β2 − β1

2

)
= 0 .

– Parallel displacement. Through elementary geometric arguments, we obtain:

|∂(Ψ(Ωε))| = |∂Ω|+ ε

tanβ1
+

ε

tanβ2
+

ε

sinβ1
+

ε

sinβ2

|Ψ(Ωε)| = |Ω|+
ε

2

(
2a+

ε

tanβ1
+

ε

tanβ2

)
τ
(
Ψ(Ωε)

)
= τ(Ω)

Then condition (18), when Ωε = Ψε(Ω), can be rewritten as

(27)
sin(β1+β2

2 )

sin
(β1

2

)
sin
(β2

2

) = a
[
h(Ω)− ∆(Ω)

h(Ω)

]
.

By combining (26) and (27), we obtain (24) and (25). �

Lemma 25. Let Ω ∈ PN be a reduced optimal polygon satisfying (18). Let S ∈ FCR(Ω).
Denoting by c the length of S and by α0 ∈ ΘC(Ω) and β0 ∈ ΘR(Ω) the angles formed by
S and its two consecutive sides, there holds

sin
(
α0+β0

2

)
sin
(
α0
2

)
sin
(
β0
2

) = c
[
h(Ω)− ∆(Ω)

h(Ω)

]
(28)

sin
(
β0−α0

2

)
sin
(
α0
2

)
sin
(
β0
2

)h(Ω) c =
cos2

(
α0
2

)
sin2

(
α0
2

)(29)

tan
(α0

2

)
= − tan

(β0

2

)√∆(Ω)

h(Ω)
.(30)

Proof. The proof proceeds along the same line of Lemmas 23 and 24. Also in this case, we
impose the stationarity condition (18) when Ωε are given respectively by the deformations
Φε(Ω) and Ψε(Ω). Again, since S ∈ FCR(Ω), by Remark 22 for ε sufficiently small the
Neumann-Cheeger constants h(Φε(Ω)) and h(Ψε(Ω)) are still given by formula (14).

– Rotations around the mid-point. If ε > 0, we change α0 (resp. β0) into α0 − ε (resp.
β0 + ε), whereas, if ε < 0, we change α0 (resp. β0) into α0 + ε (resp. β0 − ε).
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Through elementary geometric arguments, we obtain

|∂(Φ(Ωε))| = |∂Ω|+ a sinα0

2 sin(α0 − ε)
+

a sinβ0

2 sin(β0 + ε)
+

a sin ε

2 sin(α0 − ε)
− a sin ε

2 sin(β0 + ε)

|Φ(Ωε)| = |Ω|+ o(ε)

τ
(
Φ(Ωε)

)
= τ(Ω) + tan

(π − (α0 − ε)
2

)
− tan

(π − α0

2

)
− ε

2
.

Then by (14) and some algebraic computations one can check that condition (18), when
Ωε = Φε(Ω), is equivalent to (29).

– Parallel displacement. Through elementary geometric arguments, we obtain:

|∂(Ψ(Ωε))| = |∂Ω|+ ε

tanα0
+

ε

tanβ0
+

ε

sinα0
+

ε

sinβ0

|Ψ(Ωε)| = |Ω|+
ε

2

(
2a+

ε

tanα0
+

ε

tanβ0

)
τ
(
Ψ(Ωε)

)
= τ(Ω)

Then by (14) and some algebraic computations one can check that condition (18), when
Ωε = Ψε(Ω), is equivalent to (28).

Multiplying the two equalities (28) and (29), we see that the length c simplifies and we
get the equality

sin
(α0 + β0

2

)
sin
(β0 − α0

2

)
=
[
1− ∆(Ω)

(h(Ω))2

]
sin2

(β0

2

)
cos2

(α0

2

)
.

Then some immediate trigonometric computations yield

sin2
(
β0
2

)
cos2

(
α0
2

)
− cos2

(
β0
2

)
sin2

(
α0
2

)
sin2

(
β0
2

)
cos2

(
α0
2

) =
[
1− ∆(Ω)

(h(Ω))2

]
,

which in turn gives

tan2
(α0

2

)
= tan2

(β0

2

) ∆(Ω)

(h(Ω))2
.

The equality (30) follows by recalling that α0
2 ∈ (0, π2 ) and β0

2 ∈ (π2 , π).
�

We now turn to the consequences of Lemmas 23, 24, and 25.

Proposition 26. Let Ω ∈ PN be a reduced optimal polygon satisfying (18). Then, it holds[
h(Ω)− ∆(Ω)

h(Ω)

]
> 0 .

Consequently, the subclass FRR(Ω) is empty.

Proof. Thanks to equality (14), we have

(h(Ω))2 −∆(Ω) =
( |∂Ω|+ ∆(Ω)

2|Ω|

)2
−∆(Ω)

=
|∂Ω|2

4|Ω|2
+

∆2(Ω)

4|Ω|2
+
( |∂Ω|

2|Ω|2
− 1
)

∆(Ω)

>
( |∂Ω|

2|Ω|2
− 1
)

∆(Ω) .
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Now, we observe that the term which multiplies ∆(Ω) in the last line above is strictly
positive. Indeed, by imposing the vanishing of the derivative of ε 7→

(
h(εΩ) + |εΩ|

)
at

ε = 1, we see that h(Ω) = 2|Ω|. Thus,

|∂Ω|
2|Ω|2

=
|∂Ω|
|Ω|

1

2|Ω|
=
|∂Ω|
|Ω|

1

h(Ω)
> 1 ,

where the latter inequality holds by the definition of h(Ω).
The fact that FRR(Ω) is empty follows then from equality (25) in Lemma 24. Indeed, we
have just proved that the right member of such equality is positive. It follows from (25)
that sin(β1) is positive, against the fact that β1 ∈ (π, 2π). �

Proposition 27. Let Ω ∈ PN be a reduced optimal polygon satisfying (18). If α0 and β0

are two consecutive angles in ∂Ω belonging respectively to ΘC(Ω) and ΘR(Ω), it holds

π < α0 + β0 < 2π .

Proof. The inequality α0 + β0 > π is trivially satisfied, since α0 > 0 and β0 > π. The
inequality α0 + β0 < 2π is a consequence of equality (28) in Lemma 25. Indeed, from
Proposition 26 we know that the right member of such equality is strictly positive. Since
0 < α0

2 < π
2 and π

2 <
β0
2 < π, also the terms sin

(
α0
2

)
and sin

(β0
2

)
are positive. We infer

that sin
(α0+β0

2

)
is positive, whence α0+β0

2 < π. �

Proposition 28. Let Ω ∈ PN be a reduced optimal polygon satisfying (18). Let Γ ⊂ ∂Ω
be a chain of consecutive free sides. Set ΓCC := FCC(Ω) ∩ Γ, ΓCR := FCR(Ω) ∩ Γ, and
denote by ΘC(Γ) (resp. ΘR(Γ)), the family of the angles in ΘC(Ω) (resp. ΘR(Ω)) formed
by a side of Γ and its two consecutive sides.
Then there exist angles α ∈ (0, π), β ∈ (π, 2π), such that

(31) θ = α ∀θ ∈ ΘC(Γ) and θ = β ∀θ ∈ ΘR(Γ) ,

and the values of α and β are related by the equality (30).
Moreover, all the sides in ΓCC , resp. ΓCR, have the same length.

Proof. From equality (19) in Lemma 23 and equality (30) in Lemma 25, we see that there
exist a common value α for all the elements of ΘC(Γ), and a common value β for all
the elements of ΘR(Γ), which are mutually determined through the equality (30). This
implies in particular that, if there exist two or more sides in ΓCC which are tangent to
a same circumference of radius (h(Ω))−1, all these sides must have the same length `.
On the other hand, by Lemma 23, if there exist two or more sides in ΓCC which are not
tangent to a same circumference of radius (h(Ω))−1, all these sides must have the same
length a (obtained by (20) as an equality). Then the inequality (20) in Lemma 23 tells
us that ` ≥ a. But clearly ` ≤ a, since ` is minimal among the length of sides in ΓCC
(because there exist at least two consecutive sides of length ` which are tangent to the same
circumference of radius (h(Ω))−1). We conclude that all the sides in ΓCC have necessarily
the same length. The same assertion holds for all the sides in ΓCR thanks to Lemma 25,
as the value this length c can be obtained from one of the two equations (28) or (29).

�

4. No self-intersections and no reflex angles

By exploiting the results obtained in the previous section, we are now in a position to
prove first that the self-intersection set is of an optimal polygon is actually empty (see
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Proposition 29), and then that an optimal polygon is necessarily convex (see Proposition
30).

Proposition 29. Let Ω ∈ PN be a reduced optimal polygon. Then Ω ∈ PN , namely it is
a simple polygon.

Proof. We obtain the proposition in two steps, arguing by contradiction.

Step 1: We claim that, if Ω is not a simple polygon, then necessarily there exists a loop L
in ∂Ω which contains only a connected component of the self-intersection set (i.e., either
only a self-intersection point, or only a self-intersection segment).
In order to prove the claim, let us choose an oriented parametrization of ∂Ω: for definite-
ness, assume that Ω lies on the left side of each edge (recall that, since Ω is connected,
∂Ω is a closed lace). Clearly, along ∂Ω there is a finite number of self-intersections, which
may be either points or line segments. For simplicity, assume they all are points; if there
are also some line segments, we can still treat them as points from a topological point of
view, and apply the same arguments below. Then, if we cover once ∂Ω according to the
chosen parametrization, each intersection point appears at least twice. If it appears just
twice, we call it a simple self-intersection point; if it appears more than twice, we call it a
multiple self-intersection point.
Let us consider first the case when p is a simple self-intersection point. Then there exist
four line segments which meet at p and lie on sides on ∂Ω. We refer to two of these
segments as γi, γi+1 for some index i, if they are consecutive when covering ∂Ω according
to our parametrization, and we denote by [γi, γi+1] the path obtained by following in the
order γi and γi+1.
Let B be a small ball centered at p (precisely, of radius sufficiently small in order that
∂B meets the segments γi, γi+1). We observe that the portion of Ω ∩ B lying on the left
side of [γi, γi+1] (and as well the portion lying on the left side of [γj , γj+1]) is necessarily
connected. In other words, among the two configurations represented in Figure 5, only the
type (I) represented on the left is possible. Namely, in case of the type (II) represented on
the right, by covering the portion of ∂Ω which starts at p, follows γi+1 and continues up
to arriving back to p along γj , we would find a connected component of Ω different from
Ω itself, contradiction.

γi+1

γi

γj

γj+1

p

γj+1

γi

γj

γi+1

p

Figure 5. The case of a simple self-intersection point: configuration of
type (I) on the left, and of type (II) on the right.
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In the case when p is a multiple self-intersection point, for the same reason explained
above, among all the line segments which meet at p and lie on sides on ∂Ω, there cannot
be 4 segments in the configuration of type (II). Thus there exist 4 segments meeting at p
in the configuration of type (I).
We claim that, for any other couple of segments [γh, γh+1] meeting at p, if B is a small
ball centered at p, the portion of Ω ∩ B lying on the left side of [γh, γh+1] is necessarily
connected. Indeed, assume this is not the case. Then we observe firstly that there must
be a further pair of segments γk, γk+1 meeting at p (otherwise there would be some self-
intersection segment contained into two consecutive sides of Ω, which is excluded since
we are considering a reduced optimal polygon) and then that the two paths [γh, γh+1],
[γk, γk+1] would be in the configuration of type (II) above, hence Ω would be disconnected
(see Figure 6, right).
We have so far obtained that, for every self-intersection point P (simple or multiple it may
be), there exist two or more paths [γi, γi+1] meeting at p in such way that the portion of
Ω ∩B lying on the left side of [γi, γi+1] is connected (see Figure 6, left).

γi+1

γi

γj

γj+1

γhγh+1

γk γk+1

p
γi+1

γi

γj

γj+1

γhγk+1

γk γh+1

p

Figure 6. The case of a multiple self-intersection point.

For any of these paths, say [γi, γi+1], since ∂Ω is a lace, there exists another one, say
[γj , γj+1], such that γi+1 and γj lie on a same loop Lp contained into ∂Ω. Then two cases
may occur: either such loop Lp does not contain any self-intersection point other than p
(and in this case our claim is proved), or there is some other self intersection point q lying
on Lp. In this case, by applying the same arguments above to the point q, we infer that
there exist two or more paths [ξi, ξi+1] meeting at q so that that the portion of Ω∩B lying
on the left side of [ξi, ξi+1] is connected. Moreover, for any of these paths, say [ξi, ξi+1],
there exists another one, say [ξj , ξj+1], such that ξi+1 and ξj lie on a same loop Lq (with
Lq 6= Lp) contained into ∂Ω.
Again, two cases may occur: either Lq does not contain any self-intersection point other
than q (and in this case our claim is proved), or there is some other self intersection point
r lying on Lq.



A FABER-KRAHN INEQUALITY FOR THE CHEEGER CONSTANT OF N -GONS 21

We go on proceeding in this way: since the number of self-intersections is finite, either at
some moment we find a loop as claimed in Step 1, or it happens that every loop contained
in ∂Ω touches some other loop (see Figure 7). In the former case, the proof of Step 1 is
achieved. In the latter case Ω would be disconnected, contradiction.

Figure 7. Chains of consecutive loops.

Step 2: If Ω is not a simple polygon, the existence of a loop L as in Step 1 allows to reach
a contradiction.
Namely, let Γ be the chain of consecutive free sides of Ω contained into L. With the
same notation as in Proposition 28, denote by kC and kR are the numbers of vertices in
the loop which correspond respectively to angles in ΘC(Γ) and in ΘR(Γ). By applying
Proposition 28 to the chain Γ, we obtain that there exist α, β belonging respectively to
(0, π) and (π, 2π) such that (31) holds. We denote by θi the inner angles of Ω formed
by two consecutive non-free sides contained into L (so that i = 1, 2 if L contains a self-
intersection segment, whereas i = 1 if L contains a self-intersection point). The sum of all
inner angles of the loop is given by

(32)

∑
i(2π − θi) + kR(2π − β) + kC(2π − α)

=
∑

i(2π − θi) + kR(2π − β) + [kR + (kC − kR)](2π − α)

=
∑

i(2π − θi) + kR[4π − (α+ β)] + (kC − kR)(2π − α)

> 2πkR + π(kC − kR) = π(kC + kR)

where the strict inequality follows from the fact that θi < 2π, kC ≥ kR (by Proposition
26), α+ β < 2π (by Proposition 27), and α < π.
Next we observe that, since the loop L is chosen as in Step 1, denoting by k the number
of vertices on L, it holds

(33) kC + kR =

{
k − 2 if L contains only a self-intersection segment

k − 1 if L contains only a self-intersection point.

Then, by combining (32) and (33) we reach a contradiction since the sum of the inner
angles of the loop is equal to π(k − 2) (as k is the number of vertices of the loop). �

Proposition 30. Let Ω ∈ PN be a solution to problem (5) satisfying (18). Then ΘR(Ω)
is empty, namely Ω is a convex polygon.
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Proof. Assume by contradiction that there exists β ∈ ΘR(Ω). Denote by p the correspond-
ing vertex of ∂Ω, by p1 and p2 its two consecutive vertices, and by S1 = pp1 and S2 = pp2

the two sides of ∂Ω which form the angle β.
By Proposition 29, Ω is a simple polygon. Moreover, by Proposition 26, both sides S1 and
S2 belong to FCR(Ω). Hence, by Proposition 28, S1 and S2 have the same length (say c),
and the two (convex) inner angles of ∂Ω at p1 and p2 are equal to the same angle (say α).
The geometry is illustrated in Figure 8 below.
Denote by η be the straight line passing through p which which bisects the angle β. Set
T := c cos

(
π − β

2

)
and, for t ∈ [0, T ], let γt be the straight line perpendicular to η, such

that the intersection point between η and γt lies outside Ω at distance t from p. Then, γt

meets S1 and S2; we set

qt1 := γt ∩ S1 and qt2 := γt ∩ S2 .

Notice in particular that q0
1 = q0

2 = p, whereas qT1 = p1 and qT2 = p2.
For t ∈ (0, T ), we denote by Πt the half-plane determined by γt not containing p, or
equivalently containing p1 and p2. We extend this definition also for t = 0 and for t = T ,
setting Π0 and ΠT respectively the half-plane determined by γ0 containing p1 and p2, and
the half-plane determined by γT not containing p.
Now, for t ∈ [0, T ], we define:

∆t := the triangle with vertices p, qt1 and qt2
At1 := the connected component of Ω ∩Πt containing p1 in its boundary

At2 := the connected component of Ω ∩Πt containing p2 in its boundary.

Notice that, though in Figure 8 the sets At1 and At2 are represented for simplicity as
triangles, they might be more general polygons.

p1 p2

p

qt1 qt2

η

γt

Figure 8. The triangle ∆t (in light grey) and the set At1 ∪At2 (in grey).

We claim that there exists t̂ ∈ (0, T ) such that

(34) |At̂1 ∪At̂2| = |∆t̂| .
Indeed, the function ψ(t) := |At1 ∪ At2| − |∆t| is clearly continuous in [0, T ]. Moreover, it
satisfies

ψ(0) > 0 and ψ(T ) < 0 .
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Namely, the condition ψ(0) > 0 follows immediately from the fact that the triangle ∆0 is
degenerated into the point p whereas the sets A0

1 and A0
2 have positive area. The condition

ψ(T ) < 0 follows from the fact that the triangle ∆T coincides with the triangle pp1p2 (in
particular it has positive area), whereas the sets AT1 and AT2 are degenerated respectively
into the points p1 and p2. We emphasize that the last assertion is due to the fact that the
angle α is convex and satisfies the condition α + β < 2π (thanks to Propositions 26 and
27).
Then, we define the modified polygon

Ω̂ :=
(
Ω \ (At̂1 ∪At̂2)

)
∪∆t̂ .

By the equality (34), Ω̂ has the same area as Ω; moreover, by construction, it has at least
one vertex less than Ω: with respect to Ω, it has gained (at most) two vertices (lying on
γt), and lost (at least) three vertices (that is, p, p1, and p2).
We are now going to obtain a contradiction by considering the Cheeger set of Ω. We
distinguish two cases.

Case 1: C(Ω) is contained into Ω̂.

In this case, we have h(Ω̂) ≤ h(Ω); since |Ω| = |Ω̂|, we infer that Ω̂ is as well a solution

to problem (6). But since we know Ω̂ has at least one vertex less than Ω, this contradicts
the fact that any optimal domain for problem (5) (and hence also for problem (6)) has
exactly N vertices (cf. Proposition 9).

Case 2: C(Ω) is not contained into Ω̂.

In this case, we denote by H the connected component of the set
(
R2 \Πt̂

)
\ C(Ω) which

contains p in its boundary, and we consider the subset E of Ω̂ given by

E :=
(
C(Ω) ∩ Ω̂

)
∪H ,

see Figure 9.

Figure 9. The set E (in grey) locally near p

It follows by construction that

Per(E;R2) ≤ Per(C(Ω);R2) and |E| ≥ |C(Ω)| .

In particular, the latter inequality comes from the fact that

|H| ≥ |∆t̂| = |At̂1 ∪At̂2| ≥ |C(Ω) \ Ω̂| .

so that

|C(Ω)| = |C(Ω) ∩ Ω̂|+ |C(Ω) \ Ω̂| ≤ |C(Ω) ∩ Ω̂|+ |H| = |E| .
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We conclude that

h(Ω̂) ≤ Per(E;R2)

|E|
≤ Per(C(Ω);R2)

|C(Ω)|
= h(Ω)

Thus, as in Case 1, it turns out that Ω̂ is optimal for problem (5), against the fact that
any optimal domain has exactly N vertices. �

5. Conclusion and further remarks

Proof of Theorem 1. The statement follows by exploiting the results contained in Section
4. Namely, let Ω ∈ PN be a solution to problem (5). Up to an homothety, and using
Proposition 11 (iii), we may assume that Ω is a reduced optimal polygon which satisfies
condition (18). Then, by Propositions 29 and 30, Ω is a simple convex polygon. Finally,
by Proposition 28, we deduce that Ω is the regular N -gon. �

Remark 31. (Stronger version of Theorem 1) Note that the proof above yields a state-
ment stronger than Theorem 1, as we have shown that the regular N gon minimizes the
Neumann-Cheeger constant h under a volume constraint over the class PN .

Remark 32. (The case of simple convex polygons) As mentioned in the Introduction, the
proof of Theorem 1 would become straightforward if one would restrict attention to the
case of simple convex polygons. Actually let us show that, if a simple convex polygon Ω
solves problem (5), then necessarily Ω is the regular N -gon of area c. (For a weaker form
of such statement, see [3, Theorem 3]). Denote by Ω∗ the regular N -gon with |Ω∗| = c,
and assume by contradiction that Ω 6= Ω∗. By Proposition 17 and Remark 16, there holds

h(Ω) =
|∂Ω|+

√
|∂Ω|2 − 4τ(Ω)|Ω|

2|Ω|
=

|∂Ω|+
√
|∂Ω|2 − 4

( ∑
α∈Θ(Ω)

[
tan

(
π−α

2

)]
− π

)
|Ω|

2|Ω|
.

By the isoperimetric inequality for convex polygons (see [3, Lemma 5] and [12, Theorem
2]), we have

|∂Ω|2

4|Ω|
≥

∑
α∈Θ(Ω)

tan
(π − α

2

)
,

with equality sign if and only if Ω is a circumscribed polygon (meaning that it contains a
ball which is tangent to every side of ∂Ω). Then we obtain

h(Ω) ≥
|∂Ω|+

√
4π|Ω|

2|Ω|
.

Now we observe that |Ω| = |Ω∗| (since both are equal to c) and |∂Ω∗| < |∂Ω| (since the
regular N -gon is the unique minimizer of perimeter among simple polygons with N sides
under volume constraint (see e.g. [7]). Hence

h(Ω) >
|∂Ω∗|+

√
4π|Ω∗|

2|Ω∗|
.

Finally, we observe that the right hand side of the above inequality coincides with h(Ω∗)
(see [16, Section 4] or [3, Theorem 3]), and we conclude that h(Ω) > h(Ω∗), contradiction.
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Remark 33. (Possible extensions) It would be interesting to extend the validity of Theorem
1 to more general classes of polygons. Indeed, one could study for instance the non-simply
connected case, namely work over the class of open sets homeomorphic to an annulus,
whose boundary consists of two polygonal lines with a total number of sides less than or
equal to N . It would also be intriguing to consider general crossed polygons, which cannot
by approximated in the Hc topology by simple polygons: in this case the Cheeger constant
(and the eigenvalues in general) has not a clear definition, since the index of every point
of the plane with respect to the boundary has somehow to be counted.

Remark 34. (Faber-Krahn inequalities for Dirichlet eigenvalues on polygons) Let λp denote
the first Dirichlet eigenvalue of the p-Laplacian. For Ω ∈ PN , let Ω∗N denote the regular
polygon with N sides having the same area. With the help of Theorem 1, it is possible to
prove a lower bound of the form

λp(Ω) ≥ γp,Nλp(Ω∗N ) ∀Ω ∈ PN ,

for a constant γp,N less than 1, which can be explicitly determined. Indeed, one may argue
that

(35) λ1/p
p (Ω) ≥ cph(Ω) ≥ cph(Ω∗N ) ≥ cpkp,Nλ1/p

p (Ω∗N ) ,

where the first inequality is known to hold with cp = 1/p (see [16]), the second one is
due to Theorem 1, and the last one can be easily proved by taking the distance from the
boundary of Ω∗N as a trial function. Indeed, set d(x) := dist(x, ∂Ω∗N ), L the perimeter of
Ω∗N , and ρ its in-radius; by using the identity |∇d(x)| = 1, the coarea formula, and the
equality H1

(
{d(x) = t}

)
= L

(
1− t

ρ

)
, we get :

λp(Ω
∗
N ) ≤

∫
Ω∗N
|∇d(x)|p dx∫

Ω∗N
|d(x)|p dx

=

∫ ρ
0 L
(
1− t

ρ

)
dt∫ ρ

0 t
pL
(
1− t

ρ

)
dt

=
1

ρp
(p+ 1)(p+ 2)

2
,

hence

|Ω∗N |
1
2λ1/p

p (Ω∗N ) ≤
√
N tan

π

N

[(p+ 1)(p+ 2)

2

] 1
p
.

On the other hand, since Ω∗N is circumscribed, it holds

h(Ω∗N ) =
|∂Ω∗N |+

√
4π|Ω∗N |

2|Ω∗N |

and so

|Ω∗N |
1
2h(Ω∗N ) =

2N sin π
N +

√
2πN sin 2π

N√
2N sin 2π

N

.

Hence,

h(Ω∗N ) ≥ kp,Nλ1/p
p (Ω∗N ) with kp,N :=

[
1 +

√
2πN sin 2π

N

2N sin π
N

][ 2

(p+ 1)(p+ 2)

]1/p
.

We point out that both the values of cp and kp,N determined as above are far from being
optimal, and we address the open problem of replacing them by larger constants in order
to refine the estimate (35).
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