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1 Introduction

During the last decade, different theories have been proposed for developing a first order analysis
on metric measure spaces, see for example [14], [17], [16], [7], and [30] for a sample. The
common idea underpinning some of these non-linear theories is that, for a viable theory of first
order calculus in this abstract setting, one needs plenty of curves well distributed along the
space. One way of making this idea precise is to assume that the space supports a p-Poincaré
inequality for some 1 ≤ p < ∞. This a priori analytical property involves the metric, the
measure, and the (upper) gradients, and encodes geometric information about the space. The
exponent p from the p-Poincaré inequality actually also plays a geometrical role. The bigger the
exponent p, the weaker the p-Poincaré inequality, and hence less restriction on the geometry.
The limiting case p =∞ has been studied in [11] and has surprisingly different properties than
the finite p-Poincaré inequality case. One of the key tools used to define the notion of a large
family of curves is the p-modulus of a family of curves, an outer measure defined on the set of
all rectifiable curves. The presence of a p-Poincaré inequality implies that the corresponding p-
modulus of the collection of quasiconvex curves connecting two disjoint sets of positive measure
has to be positive, that is, the space is p-thick quasiconvex. For p =∞ this property turns out
to be special in that ∞-Poincaré inequality is characterized in terms of ∞-thick quasiconvexity;
see [11].

The three main theorems of this paper are Theorem 3.1, Theorem 5.1, and Theorem 5.3.
In Theorem 3.1 we prove that a locally complete doubling metric space admits an ∞-Poincaré
inequality if and only if one can find quasiconvex curves transversal to a given zero measure
set, that is, given a zero measure set N and two points, one can find a quasiconvex curve γ
connecting the two points such that L 1(γ−1(γ ∩ N)) = 0. This purely geometric property
is a very simple, but powerful tool, useful in different applications. Two such applications are
studied in Section 4 of this paper. Furthermore, in Section 3, Theorem 3.1 is also used to answer
two questions posed in [11] and [12]. Theorems 5.1 and 5.3 give analogous characterizations of
p-Poincaré inequality for Ahlfors Q-regular spaces for p > Q and Q ≥ p > Q− 1 respectively.

An immediate consequence of Theorem 3.1 (Corollary 3.7) is that ∞-capacity of points is
always positive when the space supports an ∞-Poincaré inequality. In particular every function
in N1,∞(X) is Lipschitz continuous. This solves an open problem posed in [11] and gives a
complete understanding of the Newtonian function class for p =∞.

It is worth mentioning that one can also apply Theorem 3.1 for p-finite type problems. It
is known that complete metric spaces endowed with a doubling measure and supporting a p-
Poincaré inequality for 1 ≤ p ≤ ∞ are quasiconvex. As far as we know, completeness has been
a crucial hypothesis for all the different proofs of this fact in the literature. As a byproduct
of the main result, we can weaken the hypothesis of completeness to local completeness, see
Remark 3.3.

It was proved by Buckley, Björn, and Keith in [6] that (R, | · |, µ), with µ doubling, will
support a p-Poincaré inequality for some 1 ≤ p < ∞ if and only if µ � L 1 and the Radon-
Nikodym derivative of µ with respect to L 1 is a Muckenhoupt Ap-weight. In contrast, we prove
in Theorem 4.2 that to obtain an ∞-Poincaré inequality, it is both necessary and sufficient to
have L 1 � µ. This completes the picture for n = 1. In higher dimensions it is not known so
far whether doubling measures on Rn supporting a p-Poincaré inequality for some 1 ≤ p < ∞
must necessarily be absolutely continuous with respect to the Lebesgue measure L n. We will
show that in higher dimensional Euclidean setting, if the measure µ satisfies L n � µ, then
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(Rn, | · |, µ) supports an ∞-Poincaré inequality. We do not know whether the converse is true.
However, we use Theorem 3.1 to prove that certain singular measures µ on Rn cannot support
an ∞-Poincaré inequality and hence cannot support a p-Poincaré inequality for any p ≥ 1, see
Example 4.5.

Cheeger [7] proved that doubling p-Poincaré spaces, 1 ≤ p <∞, admit a measurable differen-
tiable structure for which Rademacher’s Theorem holds. Subsequently, Keith [20] obtained the
same conclusion under a weaker hypothesis called the Lip− lip condition, a condition that does
not depend on p. Recently, Bate [4] and Gong [13] have proved independently that the Lip− lip
condition is not only a sufficient, but also a necessary condition for a Cheeger differentiable
structure. In Example 4.7, we construct a complete doubling metric measure space supporting
an ∞-Poincaré inequality but with no measurable differentiable structure. This in turn im-
plies, by Theorem 4.6, that the space does not have the Lip− lip condition. Therefore, without
any extra-hypothesis, there is no relation between the Lip− lip condition and the ∞-Poincaré
inequality. This solves an open question posed in [12].

In the case p < ∞, the property of being p-thick quasiconvex is, in contrast to the p = ∞
case, too weak in order to characterize p-Poincaré inequalities, see [12]. The main reason is that
one would need a more quantitative estimate for the p-moduli of curve families. Estimates of
this nature that characterize p-Poincaré inequalities have been previously given in Heinonen–
Koskela [17] (Loewner property), Keith [21] (Riesz measures), Bonk–Kleiner [5, Theorem 1.3],
Semmes [29] (pencil of curves), and Maz’ya [24] (capacitary estimate); see also [1] for related
results. In the particular case of graphs with polynomial volume growth, Coulhon–Koskela [9]
obtains a characterization in terms of modulus of families of curves for all the range of exponents
1 ≤ p < ∞. In the spirit of [9], in Theorem 5.1 and Theorem 5.3 we give characterizations of
p-Poincaré inequalities for the range of exponents Q− 1 < p <∞. For the range Q− 1 < p ≤ Q
this characterization is in terms of the p-modulus of curves connecting two continua and their
diameter and relative distance. We believe this characterization is not true in general when
p < Q−1. The discrete setting considered in [9] is special in that the local dimension associated
with a graph is 1, and hence locally the measure behaves as if Q = 1 in this case. Thus in [9]
a lower bound is obtained for the p-modulus of curve families joining two continua, in terms
of their relative separation, of a graph with polynomial growth of power Q and supporting a
p-Poincaré inequality, even when 1 ≤ p < Q − 1. Such lower bound could fail in more general
metric measure spaces, for then it is possible to have a 1-dimensional continuum of positive
diameter but with zero p-capacity, as in the standard n-dimensional Euclidean setting for any
n ≥ 3.

2 Thick quasiconvex spaces: preliminaries

In this paper we will assume that X = (X, d, µ) is a metric measure space, that is, (X, d) is a
metric space equipped with a Borel measure µ which is positive and finite on each ball, and that
µ is doubling. Recall that µ is doubling if there is a constant Cµ such that, for each ball B(x, r)
in X,

µ(B(x, 2r)) ≤ Cµ µ(B(x, r)).
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A curve in X is a continuous function γ : I → X for some compact interval I ⊂ R. Such a curve
is rectifiable if its length

`(γ) := sup
t0<t1<···<tn

n∑
j=1

d(γ(tj−1), γ(tj))

is finite. In the above definition of length `(γ), the supremum is taken over all finite subdivisions
t0 < t1 < · · · < tn of the interval I. A rectifiable curve γ can be re-parametrized so that it is
arc-length parametrized, that is, I = [0, `(γ)] and for each s ∈ I, with Is := {t ∈ I : t ≤ s}, we
have

`(γ|Is) = s.

Henceforth in the paper we will assume all rectifiable curves, unless otherwise indicated, to be
arc-length parametrized as above. The integral of a Borel function ρ : X → [0,∞] over an
arc-length parametrized curve γ is defined as∫

γ
ρ ds :=

∫ `(γ)

0
ρ(γ(t)) dt.

The space X is said to be quasiconvex if there exists a constant C ≥ 1 such that given two
points x, y ∈ X, one can find a C-quasiconvex curve joining them, that is, a rectifiable curve γ
such that `(γ) ≤ Cd(x, y).

Given E ⊂ X, let Γ+
E denote the family of curves γ in X such that L 1(γ−1(γ ∩ E)) > 0,

where L 1 is the usual 1-dimensional Lebesgue measure on the line. We denote by ΓE the family
of curves γ such that γ ∩ E 6= ∅.

Definition 2.1 Given a family Γ of curves in X, set F (Γ) to be the family of all Borel measur-
able functions ρ : X → [0,∞] such that∫

γ
ρ ds ≥ 1 for all γ ∈ Γ.

We define the ∞-modulus of Γ by

Mod∞(Γ) = inf
ρ∈F (Γ)

‖ρ‖L∞(X),

and for 1 ≤ p <∞ the p-modulus of Γ is

Modp(Γ) = inf
ρ∈F (Γ)

∫
X
ρp dµ.

Note that if every curve in Γ is contained in a fixed ball B, then

Modp(Γ)1/p ≤ µ(B)1/p Mod∞(Γ),

and therefore
lim sup
p→∞

[Modp(Γ)]1/p ≤ Mod∞(Γ).

We next recall a characterization of path families whose ∞-modulus is zero.
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Lemma 2.2 [10, Lemma 5.7] Let Γ be a family of curves in X. The following conditions are
equivalent:

(a) Mod∞ Γ = 0.

(b) There is a Borel function ρ ≥ 0 with ‖ρ‖L∞(X) = 0 such that
∫
γ ρ ds = +∞ for each γ ∈ Γ.

Definition 2.3 For 1 ≤ p ≤ ∞ we say that (X, d, µ) is a p-thick quasiconvex space if there exists
C ≥ 1 such that for all x, y ∈ X, all 0 < ε < 1

4d(x, y), and all measurable sets E ⊂ B(x, ε),
F ⊂ B(y, ε) satisfying µ(E)µ(F ) > 0 we have

Modp(Γ(E,F,C)) > 0,

where Γ(E,F,C) denotes the collection of all curves γp,q connecting p ∈ E and q ∈ F with
`(γp,q) ≤ Cd(p, q). Here we do not require quantitative control on the modulus of the curve
family, but we do require a quantitative control over the length of the curves, the control being
exercised by the constant C.

Remark 2.4 Every complete thick quasiconvex space X supporting a doubling measure is
quasiconvex; see [11]. It was shown in [11] and [12] that if X supports a p-Poincaré inequality
for some 1 ≤ p ≤ ∞, then X is a p-thick quasiconvex space. It was also proved in [11] that
∞-thick quasiconvexity is also sufficient for the validity of an ∞-Poincaré inequality. However,
the examples in [12] show that p-thick quasiconvexity is not sufficient for the validity of a p-
Poincaré inequality when 1 ≤ p < ∞. The proof of Theorem 3.1 will also show that we can
replace completeness of X with local completeness of X in the results mentioned above.

A non-negative Borel measurable function g on X is said to be a p-weak upper gradient of a
function u : X → [−∞,∞] if there is a family Γ of non-constant curves with Modp(Γ) = 0 such
that whenever γ is a rectifiable curve in X with γ /∈ Γ, we have

|u(y)− u(x)| ≤
∫
γ
g ds,

where x and y denote the end points of γ. The above inequality should also be interpreted to
mean that

∫
γ g ds =∞ if at least one of u(x), u(y) is not finite; see [17]. We say that a p-weak

upper gradient g is an upper gradient if the above inequality holds for each rectifiable curve γ
on X.

Definition 2.5 We say that X supports a p-Poincaré inequality, 1 ≤ p ≤ ∞, if there are
constants C > 0, λ ≥ 1 such that for each measurable function u on X, each p-weak upper
gradient g of u, and each ball B ⊂ X we have∫

B
|u− uB| dµ ≤ C rad(B)

(∫
λB
gp dµ

)1/p

.

Here λB denotes the ball concentric with B (with respect to the pre-determined center) but with
radius λ-times the radius of B. When p =∞, the term inside the parenthesis on the right-hand
side of the above inequality should be interpreted to mean ‖g‖L∞(λB). For arbitrary A ⊂ X
with 0 < µ(A) <∞ we write

uA =
∫
A
u :=

1
µ(A)

∫
A
u dµ.
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It is well known that complete metric spaces endowed with a doubling measure and sup-
porting a p-Poincaré inequality are quasiconvex (a property that does not depend on p); see
for example [16], [7], and [22]. One in fact gains more information; X is p-thick quasiconvex,
see [11] and [12].

For 1 ≤ p ≤ ∞, let Ñ1,p(X) be the class of all p-integrable functions on X that have a
p-weak upper gradient in Lp(X). For u ∈ Ñ1,p(X) we define

‖u‖N1,p := ‖u‖Lp(X) + inf
g
‖g‖Lp(X),

where the infimum is taken over all p-weak upper gradients g of u. Now, we define in Ñ1,p(X)
an equivalence relation by u1 ∼ u2 if and only if ‖u1 − u2‖N1,p = 0. Then the corresponding
Newtonian space is defined as the quotient N1,p(X) = Ñ1,p(X)/ ∼ and it is equipped with the
norm ‖u‖N1,p(X) := ‖u‖N1,p . It has been proved that N1,p(X) is a Banach space (see [30] for
the case 1 ≤ p <∞ , and see [10] for the case p =∞.)

From the results in [30] and [15] we know that when 1 ≤ p <∞, given u ∈ N1,p(X) there is a
unique p-weak upper gradient gu ∈ Lp(X) of u such that whenever g ∈ Lp(X) is a p-weak upper
gradient of u we have gu ≤ g almost everywhere in X. Such gu is called the minimal p-weak
upper gradient of u. Given the non-locality of the norm of L∞(X), such minimal weak upper
gradients of functions in N1,∞(X) are not readily verified to exist; however, using the approach
of quasi-Banach function lattices, the paper [23] proved the existence of minimal p-weak upper
gradients even for the case p =∞.

The papers [2] and [3] together show that if the metric space X is metrically doubling and
complete, then for 1 < p <∞ Lipschitz functions are dense in N1,p(X) and N1,p(X) is reflexive.
If X supports a p-Poincaré inequality and the measure is doubling, then the above results hold
even if X is not complete [30]. The case p = ∞ is slightly different; see [10], [12], and [11].
The results in [11] show that when X is complete and µ is doubling, X supports an ∞-Poincaré
inequality if and only if for each u ∈ N1,∞(X) there is a function u0 ∈ LIP∞(X) such that u = u0

µ-a.e. in X and the respective energy seminorms are comparable. Here LIP∞(X) denotes the
space of all bounded Lipschitz functions on X endowed with the norm given by

‖u‖LIP∞(X) = sup
x∈X
|u(x)|+ sup

x,y∈X;y 6=x

|u(y)− u(x)|
d(x, y)

,

where the second term forms the energy seminorm for LIP∞(X).
Associated with (locally) Lipschitz functions u on X there are two local “Lipschitz constant”

functions that act like the (modulus of the) derivative of u:

Lipu(x) := lim sup
r→0+

sup
0<d(y,x)≤r

|u(y)− u(x)|
r

,

and
lipu(x) := lim inf

r→0+
sup

0<d(y,x)≤r

|u(y)− u(x)|
r

.

It was shown in [7] that for complete metric spaces, Lipu and lipu are almost everywhere
comparable to each other if µ is doubling and supports a p-Poincaré inequality for some 1 ≤
p < ∞. In Section 4 we will show that the above two “constant” functions are not necessarily
related under ∞-Poincaré inequality, even if µ is doubling.
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3 Thick quasiconvex spaces: the main theorem

In this section we state and prove the first of the three main theorems of this paper. The
following theorem answers two open questions posed in [11] and [12]. See Corollary 3.7 and
Example 4.7.

Theorem 3.1 Suppose that X is a locally complete metric space supporting a doubling Borel
measure µ which is nontrivial and finite on balls. Then the following conditions are equivalent:

(a) X supports an ∞-Poincaré inequality.

(b) X is ∞-thick quasiconvex.

(c) X is connected and LIP∞(X) = N1,∞(X) with comparable energy seminorms.

(d) X supports an ∞-Poincaré inequality for functions in N1,∞(X).

(e) (X, d, µ) is a very thick quasiconvex space, that is, there exists C ≥ 1 such that for all
x, y ∈ X, with d(x, y) > 0 we have that

Mod∞(Γ({x}, {y}, C)) > 0,

where Γ({x}, {y}, C) denotes the set of C-quasiconvex curves in X connecting x and y.

(f) There is a constant C ≥ 1 such that, for every null set N of X, and for every pair of
points x, y ∈ X there is a C-quasiconvex path γ in X connecting x to y with γ /∈ Γ+

N .

Furthermore, under any of the above equivalent conditions, there is a constant C ≥ 1 such that
whenever x, y ∈ X are distinct,

1
d(x, y)

≥ Mod∞(Γ({x}, {y}, C)) ≥ 1
C d(x, y)

.

Remark 3.2 The implication (d) =⇒ (b) does not require the local completeness hypothesis.
The equivalence of (a), (b), (c), and (d) has already been established in Theorem 4.7 of [11]. We
point out here that while [11] assumed X to be complete, the proof of Theorem 4.7 there did
not require the completeness of X (indeed, we need the local completeness of X for the proof
of (b) =⇒ (f)). Therefore, to prove the first part of the above theorem, it suffices to establish
the equivalence of (b), (e), and (f).

Proof. (f) =⇒ (e) Assume (X, d, µ) is not a very thick quasiconvex space with respect to the
constant C, where C is the constant from Condition (f). Then there exist x,y ∈ X such that
Mod∞(Γ({x}, {y}, C)) = 0. By Lemma 2.2 (b), there exists a non-negative Borel measurable
function g ∈ L∞(X) such that

∫
γ g ds = ∞ for each γ ∈ Γ({x}, {y}, C) and ‖g‖L∞(X) = 0.

Observe that N = {x ∈ X : g(x) > 0} has zero measure. Then for each quasiconvex curve
connecting x to y, L 1(γ−1(γ ∩ N)) > 0. Hence Γ({x}, {y}, C) ⊂ Γ+

N , which then violates the
hypothesis of (f). Therefore (e) holds true whenever (f) is true, with the constant associated
with Condition (e) no larger than the constant associated with Condition (f).

(e) =⇒ (f) Assume that (X, d, µ) is a very thick quasiconvex space. Let N be a zero measure
set. Because µ(N) = 0, we have Mod∞(Γ+

N ) = 0 (since ∞ · χN0 ∈ F (Γ+
N ), where N0 is a Borel
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set containing N such that µ(N0) = 0). Therefore Mod∞(Γ({x}, {y}, C)\Γ+
N ) > 0 and hence we

have condition (f), with the associated constant no more than the constant from Condition (e).
(b) =⇒ (f) Fix x, y ∈ X, with d(x, y) > 0. Since the space is locally complete, we can

choose 0 < ε1 ≤ 1
4d(x, y) such that B(x, 6Cε1) and B(y, 6Cε1) are complete, where C is the

constant associated to ∞-thick quasiconvexity. Let N ⊂ X such that µ(N) = 0. Note that
Mod∞(Γ+

N ) = 0, and since the space is ∞-thick quasiconvex, we have

Mod∞(Γ(B(x, ε1), B(y, ε1), C) \ Γ+
N ) > 0.

Thus there exist points x1 ∈ B(x, ε1), y1 ∈ B(y, ε1), and a curve γ1 in X connecting x1 and y1,
such that γ1 /∈ Γ+

N and
`(γ1) ≤ Cd(x1, y1) ≤ 2Cd(x, y).

It now suffices to be able to connect x1 to x by a curve β1 of length `(β1) ≤ C d(x1, x), and
connect y1 to y by a curve β2 of length `(β2) ≤ C d(y1, y), such that L 1(β−1

1 (β1∩N)∪β−1
2 (β2∩

N)) = 0. The concatenation of the three curves γ1, β1, and β2 would then give the desired curve
γ connecting x to y such that L 1(γ−1(γ ∩N)) = 0. The curves β1 and β2 are constructed in a
manner similar to the construction of a Cantor set, as follows.

Let I0 = [0, 1], and for k ∈ N we inductively construct Ik,j , j = 1, · · · , 2k−1, as follows. Let
I1,1 = [1/3, 2/3], and at step k = 2, we set I2,1 = [1/9, 2/9], I2,2 = [7/9, 8/9] etc., so that for
each k ∈ N the intervals Ik,j , j = 1, · · · , 2k−1, are of length 3−k. We also consider the intervals
Jk,j which are the “gaps” at step k − 1, that is, the complements of the interiors of intervals
Ik,j . In this way at step k = 1 we set J2,1 = [0, 1/3], J2,2 = [2/3, 1], and so on, so that for each
k ∈ N the complement [0, 1] \

⋃k
i=1

⋃2k−1

j=1 int(Ii,j) is the union of intervals Jk+1,j , j = 1, · · · , 2k.
Note that the Cantor set is given by

⋂
k∈N

⋃2k

j=1 Jk+1,j .
With this notation, by reparametrizing we may think of γ1 as a Lipschitz map γ1 = γ1,1 :

I1,1 → X with Lipschitz constant at most 3C d(x1, y1) ≤ 6C d(x, y), connecting x1 = x1,1 ∈
B(x, ε1) to y1 = y1,1 ∈ B(x, ε1).

Now set ε2 = 1
4 min{ε1, d(x, x1), d(y, y1)}. Then there exist points x2,1 ∈ B(x, ε2); y2,1 ∈

B(x1,1, ε2); x2,2 ∈ B(y1,1, ε2); and y2,2 ∈ B(y, ε2), and C-quasiconvex curves γ2,1 : I2,1 → X
connecting x2,1 to y2,1 and γ2,2 : I2,2 → X connecting x2,2 to y2,2 with γ2,1, γ2,2 /∈ Γ+

N such that

`(γ2,1) ≤ Cd(x2,1, y2,1) ≤ 2Cd(x, x1,1) ≤ C

2
d(x, y)
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and
`(γ2,2) ≤ Cd(x2,2, y2,2) ≤ 2Cd(y, y1,1) ≤ C

2
d(x, y).

Now we can define γ̃ : I2,1 ∪ I1,1 ∪ I2,2 ∪ {0, 1} → X by setting γ̃ = γk,j on each interval Ik,j
and γ̃(0) = x, γ̃(1) = y. It is not difficult to see that γ̃ is Lipschitz with constant 6Cd(x, y) on
I2,1 ∪ I1,1 ∪ I2,2 ∪ {0, 1}. For example, if s ∈ I2,1 and t ∈ I1,1, noting that the gap between the
two intervals is J3,2 which has length 3−2 and so |s− t| ≥ 3−2, we have that

d(γ̃(s), γ̃(t)) ≤ d(γ2,1(s), y2,1) + d(y2,1, x1,1) + d(x1,1, γ1,1(t))

≤ 6Cd(x, y)|s− (2/9)|+ 1
4
· 1

4
d(x, y) + 6Cd(x, y)|(1/3)− t|

≤ 6Cd(x, y)|s− t|.

We now iterate this process. Suppose we have already constructed step k − 1, and we have
the corresponding map γ̃ :

⋃k−1
i=1

⋃2i−1

j=1 Ii,j ∪ {0, 1} → X which is 6Cd(x, y)-Lipschitz. Consider
εk = 1

4 min{εk−1,∆}, where ∆ is the minimum of all distances d(γ̃(sk,j), γ̃(tk,j)) where sk,j , tk,j
are the end points of the intervals Jk,j that form the gap at step k−1, j = 1, · · · , 2k−1. We obtain
as before for j = 1, · · · , 2k−1 points xk,j , yk,j in X and a C-quasiconvex curve γk,j : Ik,j → X
joining them, such that γk,j 6∈ Γ+

N . In this way we extend γ̃ to a 6Cd(x, y)-Lipschitz map on⋃k
i=1

⋃2i−1

j=1 Ii,j ∪ {0, 1}.
Thus we can create a sequence of intervals {Ii}i∈N := {Ik,j} k∈N

j=1···2k−1
with each Ii ⊂ I0, and

a 6C d(x, y)-Lipschitz continuous function

γ̃ :
⋃
i∈N

Ii → Z = γ1 ∪B(x, ε1) ∪B(y, ε1).

Since (Z, d|Z) is complete there exists a 6C d(x, y)-Lipschitz continuous extension γ : I0 → Z.
Furthermore, we have that L 1(I0 \

⋃
i∈N Ii) = 0, and from the construction we have γ /∈ Γ+

N and

`(γ) =
∑
i∈N

`(γ|Ii) ≤ 6Cd(x, y).

It follows that γ is a 6C-quasiconvex curve connecting x to y, where C is the thick quasiconvexity
constant from (b).

(e) =⇒ (b) is straightforward. This completes the proof of the first part of the theorem.
We next prove the second part of the theorem. To this end, we assume that Conditions (a)–

(f) hold. Fixing x0, y0 ∈ X such that x0 6= y0, we denote the collection of all rectifiable curves
in B(x0, 4Cd(x0, y0)) connecting x0 to y0 by Γx0,y0 . Let g ∈ L∞(X) be a nonnegative Borel
measurable function on X such that for all γ ∈ Γx0,y0 , the integral

∫
γ g ds ≥ 1 and set g0 = g in

B(x0, 2Cd(x0, y0)) and g0 = g + 1/[2Cd(x0, y0)] on X \B(x0, 2Cd(x0, y0)). We then set

ũ(z) = inf
γ path connecting z to x0

∫
γ
g0 ds,

and consider u = min{ũ, 2}. By the definition of u and by Condition (f), we can see that u is
Lipschitz continuous on X. Indeed, if z, w ∈ X, then setting N to be the collection of all points
y ∈ X for which g0(y) > ‖g0‖L∞(X) and noting that µ(N) = 0, there must be a C-quasiconvex
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curve γ in X connecting z to w with L 1(γ−1(γ∩N)) = 0. Hence by the fact that g0 is an upper
gradient of u, we have |u(z)− u(w)| ≤

∫
γ g0 ds ≤ C ‖g0‖L∞(X) d(z, w). From the definition of ũ

it follows that u(x0) = 0, and by the choice of g and g0, it also follows that u(y0) ≥ 1. Note that
ũ and hence u is measurable (see [18]) and that g0 is an upper gradient of u; (see [11]) hence
u ∈ N1,∞(X).

Now for each i ∈ Z define Bi = B(x0, 21−id(x0, y0)) if i ≥ 0, and Bi = B(y0, 21+id(x0, y0))
if i ≤ −1. We can choose the constant C in the above discussion to be large enough so that
C > 2λ where λ is the scaling constant related to the ∞-Poincaré inequality of Condition (a).
So on the ball λBi we know that g0 = g. Since we know that x0 and y0 are Lebesgue points for
u, we have that

1 ≤ |u(x0)− u(y0)| ≤
∑
i∈Z

∣∣∣ ∫
Bi
udµ−

∫
Bi+1

udµ
∣∣∣ ≤ Cµ∑

i∈Z

∫
Bi

∣∣∣u− ∫
Bi
udµ

∣∣∣dµ
≤ CµCd(x0, y0)

∑
i∈Z

2−|i|‖g0‖L∞(λBi)

= CµCd(x0, y0)
∑
i∈Z

2−|i|‖g‖L∞(λBi)

≤ Cd(x0, y0)‖g‖L∞(X).

Hence
‖g‖L∞(X) ≥

1
C d(x0, y0)

.

Taking the infimum over all such g we obtain the inequality

Mod∞(Γx0,y0) ≥ 1
C d(x0, y0)

.

For m ≥ 1 we set Λ(x0, y0,m) = Γx0,y0 \Γ({x0}, {y0},m). Each curve in Λ(x0, y0,m) has length
at least md(x0, y0), and so the function ρm = [md(x0, y0)]−1χB(x0,4Cd(x0,y0)) ∈ F (Λ(x0, y0,m)).
It follows that

Mod∞(Λ(x0, y0,m)) ≤ 1
md(x0, y0)

.

So if m = 2C, then we have that

Mod∞(Γ({x0}, {y0}, 2C) ≥ Mod∞(Γx0,y0)−Mod∞(Λ(x0, y0, 2C)) ≥ 1
2C d(x0, y0)

.

For the upper bound, consider the constant function g1 = 1
d(x0,y0) . If γ is a rectifiable curve

connecting x0 to y0, then the length of γ is at least d(x0, y0), and hence 1 ≤
∫
γ g1 ds. Therefore,

Mod∞(Γ({x0}, {y0}, C) ≤ ‖g1‖L∞(X) =
1

d(x0, y0)
.

This completes the proof of Theorem 3.1. �
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Remark 3.3 Observe that ∞-thick quasiconvexity does not a priori imply quasiconvexity of
the space. It only implies that given two points x, y in the space, we can find two points, one
close to x and the other close to y, that can be connected by a quasiconvex curve. In general
non-compact spaces this does not automatically give a quasiconvex curve connecting x and y
themselves. However, a careful look at the proof of (b) =⇒ (f) of Theorem 3.1 reveals that a
locally complete metric space (X, d) supporting a doubling Borel measure µ and a p-Poincaré
inequality for some 1 ≤ p ≤ ∞ is quasiconvex. Previous results required completeness of the
space X, see [16], [7], [21], and [22].

Remark 3.4 It was proven in [11, Corollary 4.15] that the Sierpiński carpet endowed with the
Euclidean distance and the s-dimensional Hausdorff measure with s = log 8

log 3 does not support an
∞-Poincaré inequality. Theorem 3.1 proves that for each m ∈ N, there exists a null set N of the
carpet X and a pair of points x, y ∈ X such that every m-quasiconvex path γ in X connecting
x to y belongs to γ ∈ Γ+

N . This fact could help to understand the set of rectifiable curves in
fractal type sets with no Poincaré inequalities.

Remark 3.5 Notice that Theorem 3.1 does not hold for 1 ≤ p < ∞. In particular, the im-
plication (b) =⇒ (e) is false. For example (Rn, | · |,L n) has a 1-Poincaré inequality but the
p-modulus of curves passing through a point is zero when 1 ≤ p ≤ n.

Definition 3.6 The p-capacity of a set E ⊂ X with respect to the space N1,p(X) is defined by

Capp(E) = inf
u
‖u‖N1,p(X),

where the infimum is taken over all functions u in N1,p(X) such that u|E ≥ 1.

Corollary 3.7 Under the hypothesis of Theorem 3.1, if X supports an ∞-Poincaré inequality,
then Mod∞(Γx0) > 0 for each x0 ∈ X, where Γx0 denotes the collection of all non-constant
curves passing through the point x0. In particular, Cap∞({x0}) > 0 so each equivalence class
[u] ∈ N1,∞(X) has exactly one element in it. Thus every Newtonian function in N1,∞(X) is
Lipschitz continuous.

Proof. Observe that for a set F ⊂ X with µ(F ) = 0 we have Cap∞(F ) = 0 if and only if
Mod∞(ΓF ) = 0. Indeed, if µ(F ) = 0 and Mod∞(ΓF ) = 0, then the function u = χF belongs
to N1,∞(X) with the constant function 0 as an ∞-weak upper gradient; in this case u is a test
function for computing Cap∞(F ), whence we obtain Cap∞(F ) = 0. For the converse, see [10,
Lemma 5.17]. Since the measure of a singleton set in a quasiconvex doubling measure space is
zero, the result follows. �

Remark 3.8 As the slit disc in the Euclidean plane shows, the converse of the above corollary
does not hold.

Corollary 3.9 Under the hypothesis of Theorem 3.1, if X supports an ∞-Poincaré inequality
then there exists a constant C ≥ 1 such that for each u ∈ LIP∞(X)

sup
x∈X

Lipu(x) ≤ C‖Lipu‖L∞(X).
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Proof. Let u ∈ LIP∞(X) and K = ‖Lipu‖L∞(X) < ∞. Then there exists a null set N such
that Lipu(z) ≤ K for each z ∈ X \N . Now, given x, y ∈ X, take γ in X connecting x and y,
parametrized by the arc-length such that `(γ) ≤ Cd(x, y) and L 1(γ−1(γ ∩N)) = 0. Then since
Lipu(γ(t)) ≤ K for L 1−a.e. t ∈ [0, `(γ)], we have

|u(x)− u(y)| ≤
∫
γ

Lipu ds =
∫ `(γ)

0
Lipu(γ(t))dt ≤ K`(γ) ≤ KCd(x, y).

Therefore, supx∈X Lipu(x) ≤ C‖Lipu‖L∞(X). �

4 Singular measures and Lip-lip condition

In this section we give some applications of Theorem 3.1 to the case of doubling measures on
Euclidean spaces and, furthermore, we give a characterization of doubling measures on the real
line that support an ∞-Poincaré inequality. We begin with the following simple Lemma.

Lemma 4.1 If µ is a doubling measure on Rn and L n � µ, then (Rn, | · |, µ) supports an
∞-Poincaré inequality.

Proof. Recall that (Rn, | · |,L n) supports an ∞-Poincaré inequality. Hence if N ⊂ Rn is such
that µ(N) = 0, then L n(N) = 0; now Condition (f) of Theorem 3.1 applied to (Rn, | · |,L n)
tells us that for each x, y ∈ Rn we can find a C-quasiconvex curve in Rn connecting x to y such
that γ /∈ Γ+

N . Thus (Rn, | · |, µ) also satisfies Condition (f) of Theorem 3.1 and so supports an
∞-Poincaré inequality. �

In the case n = 1 we can also obtain a converse result.

Theorem 4.2 Let µ be a doubling measure on R. Then (R, | · |, µ) supports an ∞-Poincaré
inequality if and only if L 1 � µ.

Proof. Given the above lemma, it suffices to prove that if L 1 6� µ then (R, | · |, µ) does
not support any ∞-Poincaré inequality. Suppose that there is a measurable set E in R with
L 1(E) > 0 and µ(E) = 0. Choose two points x, y ∈ R such that L 1([x, y] ∩ E) > 0, and
consider N = [x, y] ∩ E. Now let γ : [a, b] → R be an arc-length parametrized rectifiable curve
connecting x to y. By connectedness, we have that

γ([a, b]) ⊃ [x, y] ⊃ N.

Thus by the arc-lengh parametrization, L 1(γ−1(γ ∩N)) > 0. Thus each curve γ connecting x
and y belongs to Γ+

N , and therefore by Theorem 3.1 we have that (R, | · |, µ) does not support
any ∞-Poincaré inequality. �

Remark 4.3 A result in [6] tells us that when µ is doubling, then (R, | · |, µ) supports a p-
Poincaré inequality for some 1 ≤ p < ∞ if and only if µ � L 1 and the Radon-Nikodym
derivative of µ with respect to L 1 is a Muckenhoupt Ap-weight. In contrast, Theorem 4.2 tells
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us that to obtain ∞-Poincaré inequality, it is both necessary and sufficient to have L 1 � µ.
In particular, if ν is a singular doubling measure on R, then µ = L 1 + ν would support an
∞-Poincaré inequality even though µ is not absolutely continuous with respect to L 1. Recall
that there are doubling measures on R that are mutually singular to L 1, such as the Riesz
measure constructed in [33] (see also [32] and [12]).

Remark 4.4 Unlike in the situation of Theorem 4.2, we do not know whether a doubling
measure µ on Rn, n ≥ 2, supporting an∞-Poincaré inequality, must necessarily satisfy L n � µ.
That is, the converse of the above lemma is not known when n ≥ 2.

The next example illustrates another application of Theorem 3.1. Given the above remark,
we cannot immediately claim that a singular measure µ on Rn cannot support an ∞-Poincaré
inequality; we instead use Theorem 3.1.

Example 4.5 Let µ be given by µ = µ1 × ν, where µ1⊥L 1 is a doubling measure on R and
ν is an arbitrary doubling measure on Rn−1. Then (Rn, | · |, µ) does not support ∞-Poincaré
inequality. Indeed, since µ1 is singular, there exists a set E such that µ1(E1) = 0 while L 1(E1) >
0. Let E = E1 × Rn−1 and notice that µ(E) = 0. Choose two points x = (x1, · · · , xn) and
y = (y1, · · · , yn) in Rn with x1 < y1 such that L 1(E1 ∩ [x1, y1]) > 0 and a curve γ connecting
x to y. Then H1(E ∩ γ) ≥ H1(P1(E ∩ γ)) = L 1(P1(E ∩ γ)) > 0 where P1 denotes the
projection onto the first axis. We thus deduce that L 1(γ−1(γ ∩E)) is positive, and so γ ∈ Γ+

E .
Therefore (Rn, | · |, µ) does not support ∞-Poincaré inequality because µ violates Condition (f)
of Theorem 3.1. We thank the anonymous referee for this improved version of our original
example.

We conclude this section by considering the so-called Lip− lip property of Keith [20]. In [7]
Cheeger proved that doubling p-Poincaré spaces admit a (non-degenerate) differentiable struc-
ture for which Lipschitz functions are differentiable µ-a.e. in the sense that there exists a
countable collection of pairs {(Xα,xα)} of measurable sets Xα ⊂ X (charts) and Lipschitz maps

xα = (x1
α, . . . , x

Nα
α ) : X −→ RNα

(coordinates), that satisfy the following conditions:

(i) µ
(
X \

⋃
αXα

)
= 0;

(ii) There exists N ≥ 1 such that Nα ≤ N for each (Xα,xα);

(iii) If u : X → R is Lipschitz, then for each (Xα,xα) there exists a unique (up to a set of zero
measure) measurable function dαu : Xα −→ RNα such that

lim sup
y→x
y 6=x

|u(y)− u(x)− dαu(x) · (xα(y)− xα(x))|
d(y, x)

= 0 (1)

for µ-a.e. x ∈ Xα.

If the above holds, we say that (X, d, µ) supports a measurable differentiable structure.
Observe that the exponent p is present in the hypothesis of this result, but it has no role in

the conclusions. Keith, in [20] weakened the hypotheses so as not to depend on p. He defined the
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Lip− lip condition as follows: a metric measure space X is said to satisfy a Lip− lip condition if
there exists a constant K ≥ 1 such that whenever u : X −→ R is a Lipschitz function, we have

Lipu(x) ≤ K lipu(x)

for µ-a.e. x ∈ X. The thesis [20, Section 1.4] conjectures that this condition can be understood
as a version of Cheeger’s theorem for p =∞.

It is known that complete doubling metric measure spaces which admit a p-Poincaré inequal-
ity for any 1 ≤ p <∞ satisfy the Lip− lip condition as well. On the other hand, it is clear that
the Lip− lip condition does not imply the validity of a p-Poincaré inequality for any 1 ≤ p ≤ ∞.
A non-empty non-quasiconvex open set of Rn has the Lip− lip condition with K = 1, but does
not support any p-Poincaré inequality, 1 ≤ p ≤ ∞.

Very recently it has been proved that the Lip− lip condition is not only sufficient but also
a necessary condition for the validity of a Rademacher theorem in the metric measure setting.
The complete characterization is the following.

Theorem 4.6 ([4, Corollary 10.4], [13, Theorem 1.3]) Let (X, d) be a complete metric
space endowed with a Radon measure µ. Then (X, d, µ) supports a Cheeger differentiable struc-
ture if and only if the measure µ is pointwise doubling and if there exists a countable collection
of measurable sets {Zn} with associated constants Mn such that µ

(
X \

⋃
n Zn

)
= 0 and for each

n ∈ N, the space (Zn, d, µ) satisfies a Lip− lip condition with constant Mn.

Concerning the above Theorem, see also [28, Page 7]. In the next example we will construct
a complete doubling metric measure space supporting an ∞-Poincaré inequality but with no
measurable differentiable structure which in turn implies by Theorem 4.6 that the space does
not satisfy the Lip− lip condition. Therefore, without any extra-hypothesis, there is no relation
between the Lip− lip condition and the ∞-Poincaré inequality.

Example 4.7 Take any singular doubling measure with constant C in R denoted µs and define
µ = µs + L 1. Observe that µ is a doubling measure. Indeed,

µ(B(x, 2r)) ≤µs(B(x, 2r)) + L 1(B(x, 2r)) ≤ Cµs(B(x, r)) + 2L 1(B(x, r))

≤max{2, C}(µs(B(x, r)) + L 1(B(x, r))).

By Theorem 4.2, (R, |·|, µ) supports an∞-Poincaré inequality. On the other hand, since µs⊥L 1,
there exists a set N such that µ(N) > 0 whereas L 1(N) = 0. A classical result by Choquet [8]
states that given a set E ⊂ R, there exists a Lipschitz function u0 : R → R which is non-
differentiable at any point of x ∈ E if and only if L 1(E) = 0. Using this result we can construct
a Lipschitz function u0 that is Euclidean differentiable nowhere in N . Assume that (R, | · |, µ)
has a measurable differentiable structure in the sense of Cheeger. For simplicity assume that R
is decomposed in one single chart denoted by Xα (if there is more than one chart, one can merely
focus on one of the charts, choose a point of density of that chart, and ignore the remaining part
of R without difficulties in the following argument). Then, there exists a unique measurable
function du0 : Xα −→ RNα such that

lim
y→x
y 6=x

|u0(y)− u0(x)− du0(x) · (xα(y)− xα(x))|
|y − x|

= 0 (2)
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for µ-a.e. x ∈ Xα. In particular, by [27, Corollary 6.30] combined with [28, Lemma 4.1],
or else by [13, Corollary 6.5], we know that we can choose the coordinate functions to be a
certain collection of distance functions. More precisely, there exist points x1, x2, ..., xNα ∈ R
such that xα(x) = (|x1 − x|, |x2 − x|...., |xNα − x|). Denote by Z the set of points where u0

is non-differentiable with respect to the chart Xα. Observe that the function xα : R → RNα

is Euclidean differentiable on R \ {x1, x2, ..., xNα}. Since µ being doubling cannot charge finite
sets, we know that there is a point x0 in (Xα ∩N) \ Z (that is not any of x1, x2, ..., xNα), such
that (2) holds for x = x0, that is, u0 is differentiable at x0 with respect to the chart Xα. In
particular u0 is differentiable at x0 with respect to the standard Euclidean coordinate functions,
with Euclidean derivative given by

Nα∑
i=1

αi
1

|x0 − xi|
(x0 − xi),

where (α1, α2, ..., αNα) is the metric derivative of u0 (with respect to the chart (Xα, xα)) at x0,
yielding a contradiction.

5 A characterization of p-Poincaré inequality in Ahlfors Q-regular
spaces for p > Q− 1

Poincaré and Sobolev inequalities for functions in the Sobolev classes have proven to be useful
tools in the study of solutions to PDEs, and hence it is of interest to know what Euclidean
domains, and more generally, metric measure spaces, support such inequalities. The first to
study such inequalities and the associated embedding theorems was Sobolev, see [31]. Charac-
terizations of such inequalities in terms of isoperimetric inequality and condenser inequalities, in
the setting of Euclidean spaces and manifolds were given by Maz′ya [25], [26]; a nice exposition
can be found in [24]. However, in this section we are concerned more with obtaining a char-
acterization of p-Poincaré inequalities in terms of p-moduli of curve families. In the case that
the metric measure space is complete and Ahlfors Q-regular, a geometric (Loewner property)
characterization of Q-Poincaré inequality was first given in [17]. In this section, we focus on
Ahlfors Q-regular metric measure spaces with Q > 1, and wish to characterize p-Poincaré in-
equality in terms of p-moduli of curve families that connect two sets, for the two cases p > Q and
Q− 1 < p ≤ Q. Such a characterization for graphs was obtained by Coulhon and Koskela [9].

Given the characterization of ∞-Poincaré inequality from Theorem 3.1, it is natural to ask
whether there is a similar characterization of p-Poincaré inequality for large enough p. Given
the Morrey embedding theorem, we consider p > Q with Q the Ahlfors regularity exponent of
µ. Recall that a measure µ is Ahlfors Q-regular if there is a constant C > 0 such that whenever
x ∈ X and 0 < r < diamX, rQ/C ≤ µ(B(x, r)) ≤ CrQ.

A version of the following theorem holds if µ is known to be doubling, where Q is the
logarithm of the doubling constant of µ. However, for the sake of simplicity we focus only on
Ahlfors regular measures. Interested readers can easily modify the argument, but in this case
the constant C depends not only on ‖gu‖Lp(B(x,τd(x,y))) but also on the choice of a compact
subset K ⊂ X that contains B(x, τd(x, y)).

Theorem 5.1 Let X be a complete Ahlfors Q-regular space and p > Q. Then the following
conditions are equivalent:
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(1) X supports a p-Poincaré inequality.

(2) There are constants C > 0, τ ≥ 1 such that every u ∈ N1,p(X) is (1−Q
p )-Hölder continuous

and for all x, y ∈ X we have

|u(x)− u(y)| ≤ C‖gu‖Lp(B(x,τd(x,y)) d(x, y)1−Q
p ,

where gu is the minimal p-weak upper gradient of u.

(3) There is a constant C ≥ 1 such that, for every pair of distinct points x, y ∈ X,

Modp(Γ({x}, {y}, C)) ≥ 1
C d(x, y)p−Q

,

where Γ({x}, {y}, C) denotes the family of C-quasiconvex curves connecting x to y.

Remark 5.2 Let Γx0 denote the collection of all non-constant rectifiable curves intersecting x0.
Condition (3) directly implies that Modp(Γx0) > 0 and therefore Capp({x0}) > 0.

Note also that if X is not connected, then there are two non-empty disjoint open sets U, V
such that X = U ∪V ; and then for x0 ∈ U and R > 0, choosing a C-Lipschitz function ηR on X
such that ηR = 1 on B(x0, R), ηR = 0 on X \ B(x0, R + 1), and 0 ≤ ηR ≤ 1 on X, we see that
Condition (2) fails for large R for the functions uR = ηR χU . Thus Condition (2) also implies
that X is connected.

Finally, observe that by considering the function ρ(z) = d(x, y)−1χB(x,2Cd(x,y))(z) and noting
that it is a test function for computing the p-modulus of Γ({x}, {y}, C), from Condition (3) above
we also obtain

C

d(x, y)p−Q
≥ Modp(Γ({x}, {y}, C)) ≥ 1

C d(x, y)p−Q
.

This is comparable to the comparison of the ∞-modulus Mod∞(Γ({x}, {y}, C)) in terms of
d(x, y)−1 obtained in Theorem 3.1.

Proof. [Proof of Theorem 5.1.] That (1) =⇒ (2) follows from the Morrey embedding theorem,
see for example [30, Theorem 5.1.] or [16, Theorem 5.1]. To show that (2) =⇒ (1), we suppose
that (2) holds. Let u ∈ N1,p(X) with minimal p-weak upper gradient gu, and let B be a ball in
X. Then by Condition (2),

|u(x)− u(y)| ≤ C d(x, y)1−Q/p

(∫
B(x,τd(x,y))

gpu dµ

)1/p

whenever x, y ∈ B. Note that B(x, τd(x, y)) ⊂ 3τB whenever x, y ∈ B. Therefore

|u(x)− u(y)| ≤ C d(x, y)1−Q/p
(∫

3τB
gpu dµ

)1/p

.

Let R be the radius of B. Then by the fact that p > Q and the Ahlfors Q-regularity of µ, for
x, y ∈ B we have

|u(x)− u(y)| ≤ C R
(

1
µ(B)

∫
3τB

gpu dµ

)1/p

.
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Integrating over x and y in B, we obtain∫
B
|u− uB| dµ ≤

∫
B

∫
B
|u(x)− u(y)| dµ(x) dµ(y) ≤ C R

(∫
3τB

gpu dµ

)1/p

.

That is, u, gu satisfy the p-Poincaré inequality on B, with λ = 3τ . Thus we have the desired
Poincaré inequality for all functions in N1,p(X), and hence for all Lipschitz functions u and
their corresponding natural upper gradients Lipu. It follows from a result of Keith [21] that X
supports a p-Poincaré inequality for all function-p-weak upper gradient pairs. This proves (1).

Let us prove now that (2) =⇒ (3). Fix x0, y0 ∈ X. We denote by Γx0,y0 the collection of all
rectifiable curves in X with end points x0 and y0. We wish to show that

Modp(Γx0,y0) ≥ 1
C d(x0, y0)p−Q

.

This is clear if Modp(Γx0,y0) = +∞. Otherwise, consider a nonnegative Borel measurable func-
tion g ∈ Lp(X) such that for all γ ∈ Γx0,y0 , the integral

∫
γ g ds ≥ 1. We then set

ũ(z) = inf
γ path connecting z to x0

∫
γ
g ds.

By Corollary 1.10 of [18] and using the assumption that X is complete, we know that ũ is
measurable. Note that g is an upper gradient of min{ũ, 2}, since if x, y ∈ X and γ is a rectifiable
curve connecting x to y and β is a rectifiable curve connecting x to x0, then the concatenation
β + γ is a rectifiable curve connecting y to x0.

Now let η a be Lipschitz function which satisfies the conditions η = 1 on B(x0, τd(x0, y0)),
η = 0 on X \ B(x0, 2τd(x0, y0)), and 0 ≤ η ≤ 1 on X, and consider u = ηmin{ũ, 2}. Then
it follows that u(x0) = 0 and, by the choice of g, u(y0) ≥ 1. Notice that u ∈ Lp(X), and,
since Lip η is an upper gradient of η, it can be easily checked that g̃ = g + 2 Lip η is an upper
gradient of u. In particular, we have that u ∈ N1,p(X). Note that because η is constant on
B(x0, τd(x0, y0)), we have that g is an upper gradient of u in B(x0, τd(x0, y0)). Therefore, by
the hypothesis,

1 ≤ |u(x0)− u(y0)| ≤ C‖g̃‖Lp(B(x0,τd(x0,y0))) d(x0, y0)1−Q
p

= C‖g‖Lp(B(x0,τd(x0,y0))) d(x0, y0)1−Q
p .

Taking the infimum over all such g we obtain the estimate

Modp(Γx0,y0) ≥ 1
C d(x0, y0)p−Q

.

Given a positive integer m, let Γ({x0}, {y0},m) denote the collection of all rectifiable curves
connecting x0 to y0 of length at most md(x0, y0). Set

Λ(x0, y0,m) = Γx0,y0 \ Γ({x0}, {y0},m).

Then by the subadditivity property of the modulus, we have

Modp(Γ({x0}, {y0},m)) + Modp(Λ(x0, y0,m)) ≥ 1
C d(x0, y0)p−Q

.
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On the other hand, since ρ := [md(x0, y0)]−1χB(x0,md(x0,y0)) is admissible for computing the
p-modulus of Λ(x0, y0,m), we have

Modp(Λ(x0, y0,m)) ≤ µ(B(x0,md(x0, y0)))
mp d(x0, y0)p

≤ 1
C1mp−Q d(x0, y0)p−Q

,

where C1 is a constant depending only on the Ahlfors Q-regularity constant. Hence, when

m >

(
2C
C1

)1/(p−Q)

,

we must then have
Modp(Γ({x0}, {y0},m)) ≥ 1

2C d(x0, y0)p−Q
.

Thus, choosing the quasiconvexity constant to be 1 +
(

2C
C1

)1/(p−Q)
, we obtain the desired con-

clusion.
To complete the proof of the theorem, let us prove that (3) =⇒ (2). Let u ∈ N1,p(X) and

consider its minimal p-weak upper gradient gu. Fix x0, y0 ∈ X Lebesgue points for u with
u(x0) 6= u(y0). Recall that µ−a.e. point is a Lebesgue point of every locally integrable function

in X. Consider now the function v =
|u− u(x0)|
|u(y0)− u(x0)|

and observe that v(x0) = 0, v(y0) = 1.

The function gv =
gu

|u(y0)− u(x0)|
is the minimal p-weak upper gradient of v, and so for p-almost

every rectifiable curve connecting x0 and y0 we have

1 = |v(x0)− v(y0)| ≤
∫
γ
gv ds.

Note that the curves in Γ({x0}, {y0}, C) stay inside B(x0, 2C d(x0, y0)). In particular we ob-
tain that gvχB(x0,2Cd(x0,y0)) is an admissible function for computing the p-modulus of curves in
Γ({x0}, {y0}, C) that satisfy the above inequality; note that the remaining curves in Γ({x0}, {y0}, C)
form a family of p-modulus zero. Hence, by hypothesis we have∫

B(x0,2C d(x0,y0))

gpu
|u(y0)− u(x0)|p

dµ ≥ Modp(Γ({x0}, {y0}, C)) ≥ 1
C d(x0, y0)p−Q

,

and so
|u(y0)− u(x0)|p ≤ Cd(x0, y0)p−Q‖gu‖pLp(B(x0,2C d(x0,y0))).

Thus u is (1 − Q
p )-Hölder continuous on its Lebesgue set, which is dense in X. Thus u admits

a unique Hölder continuous extension to the whole space X. This extension defines the same
element in N1,p(X) (notice that by Remark 5.2, points have positive capacity), and verifies the
required inequality of Condition (2). �

We next focus on the case Q− 1 < p ≤ Q.
Recall first the definition of the restricted maximal function defined by

MR(u)(x) = sup
0<r<R

∫
B(x,r)

|u|dµ.
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We also recall the notions of Hausdorff content and Hausdorff measure. Given s > 0, 0 <
R ≤ ∞, and E ⊂ X, the s-dimensional Hausdorff R-content (simply called the s-dimensional
Hausdorff content when R =∞) is the number

HsR(E) = inf
{∑

j

diam(Bj)s : E ⊂
⋃
j

Bj ,diam(Bj) < R

}
.

The s-dimensional Hausdorff measure of E is the number

Hs(E) = lim
R→0+

HsR(E).

Theorem 5.3 Let X be a complete, Ahlfors Q−regular metric measure space. Then X supports
a p-Poincaré inequality for some Q − 1 < p ≤ Q if and only if X is path-connected and there
exists a constant C ≥ 1 such that for every two disjoint continua E,F in a ball BR of radius
R > 0, we have

Modp(Γ(E,F,C BR)) ≥ 1
CR1−Q+p

min{diam(E),diam(F )}, (3)

where Modp(Γ(E,F,C BR)) denotes the modulus of rectifiable curves connecting E to F inside
CBR.

Recall that CBR is the ball that is concentric with BR but with radius CR.
Proof. We first prove that if either X supports a p-Poincaré inequality, or X is path-connected
and satisfies the estimate (3), then X is quasiconvex. We already know that if X supports
a p-Poincaré inequality, then X is quasiconvex because X is complete, see Theorem 3.1(e).
So it suffices to show quasiconvexity under the hypothesis that X satisfies (3). Indeed, since
X is path-connected, whenever x ∈ X and 0 < r < diam(X)/2, the connected component
K(x, r) of B(x, r) containing x must satisfy diam(K(x, r)) ≥ r/2. Fix x, y ∈ X and set E =
K(x, d(x, y)/10), F = K(y, d(x, y)/10). Then by (3), with R = 10d(x, y),

Modp(Γ(E,F,CBR)) ≥ d(x, y)Q−p

C
.

For m > 0 we let Γm denote the collection of curves in Γ(E,F,CBR) with length at most
mR = 10md(x, y). By the Ahlfors Q-regularity it follows that µ is doubling, and from the fact
that (mR)−1χCBR is admissible for computing the modulus of Γ(E,F,CBR) \ Γm, we see that

Modp(Γ(E,F,CBR) \ Γm) ≤ Cµ d(x, y)Q−p

mp
.

Thus if mp = 2CCµ + 1, we have

Modp(Γm) ≥ d(x, y)Q−p

2C
> 0,

and so we can find a rectifiable curve γ with length at most 10md(x, y) connecting a point
in B(x, d(x, y)/10) to B(y, d(x, y)/10). Let τx = dist(γ, x). Then τx ≤ d(x, y)/10. We set τy
similarly. If τx = τy = 0 then we are done.
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So suppose that τx > 0. We now repeat the argument above with E = K(x, τx/10) and F a
connected component of γ ∩ [B(x,Cτx) \B(x, τx)] that connects B(x, τx) to X \B(x,Cτx) if γ
does not lie in B(x,Cτx), and F = γ otherwise. Thus we obtain a rectifiable curve γ1 connecting
γ to some point in B(x, τx/10) with length at most 10mτx, where m satisfies mp = 2CCµ + 1 as
before. If γ1 passes through x we are done, for then we can take the concatenation of the two
curves γ and γ1 which would connect a point in B(y, d(x, y)/10) to x (and a symmetric argument
for y would then yield the desired quasiconvex curve). If not, then we again repeat the argument
with τx,2 = dist(x, γ1) < 10md(x, y)/(102). By induction we obtain a curve connecting γ to x,
with length at most 10m

∑
i τx,i ≤ Cq d(x, y), as wanted.

If X supports a p-Poincaré inequality for some Q− 1 < p ≤ Q, it follows from [17, Theorem
5.9] that Condition (3) holds (use s = 1 and the fact that Hs∞(E) ≥ diam(E) when E is a
continuum); see also the argument in [1]. Strictly speaking, Theorem 5.9 of [17] deals only with
continuous functions u that satisfy u ≥ 1 on E and u ≤ 0 on F , and obtains the lower bound
estimate (3) for weak upper gradients of u, and hence [17, Theorem 5.9] shows that the continuous
relative p-capacity of the condenser (E,F,CBR) is bounded below by the estimate (3). However,
the results of [19] show that when X is complete and the measure µ is doubling and supports
a p-Poincaré inequality (as we have in our setting), the continuous relative p-capacity of the
condenser is equal to the p-modulus of the family Γ(E,F,CBR). In the setting of (3), we know
that g is admissible for computing the p-modulus of the collection of all curves in Γ(E,F,CBR)
for which the upper gradient inequality between u and its upper gradient g holds. The collection
of remaining curves from Γ(E,F,CBR) forms a zero p-modulus collection, and so we can use g
to compute the p-modulus of Γ(E,F,CBR) itself.

For the converse, we model our proof along that of Lemma 5.17 of [17]. We suppose that
Condition (3) holds. We fix a ball B in X, and let x, y ∈ C−1

q B, where Cq is the quasiconvexity
constant of X. Let u be a continuous function on X with upper gradient ρ, and let γ be a
Cq-quasiconvex curve in X connecting x to y. Then γ ⊂ 2B. It will be sufficient to consider the
case where u(x) 6= u(y) so, by rescaling u if needed, we can assume that |u(x)− u(y)| = 1. Let
M > max{2, Cq} be a large constant, and for each j ∈ N, we set

Aj = B(x,M−3jτ) \B(x,M−3j−2τ),

where τ > 0 is chosen so that the sphere centered at x with radius τ intersects γ at its midpoint.
Here, by midpoint we mean the point ζ on γ for which the length of the subcurve of γ with
end points x and ζ equals the length of the subcurve of γ with end points ζ and y. It is easy
to see that 0 < τ ≤ Cqd(x, y). The goal is to show that we have a Haj lasz type inequality (4)
for u, see below. For each j let γj denote a subcurve of γ lying in Aj and connecting the two
spheres, centered at x, of radii M−3jτ and M−3j−2τ . Let Γj denote the collection of curves in
B connecting γj to γj+1 in B(x,M−3j+2τ). Now using (3) we obtain that there is a constant
C ′ > 0 such that, for all j, we have

Modp(Γj) ≥ C ′
τQ−p

M3j(Q−p) .

Let
aj = inf

β∈Γj

∫
β
ρ ds.

Case 1: For µ-almost every x, y ∈ C−1
q B there is a choice of j for which

apjM
3jp ≥ 1
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Since ρ/aj is then admissible for computing Modp(Γj), we have that

M2τ (ρp)(x) ≥
∫
B(x,M−3j+2τ)

ρp dµ ≥ 1
µ(B(x,M−3j+2τ))

apj Modp(Γj) ≥ c apj
M3jp

τp
≥ c

τp
,

for some constant c that depends only on the data of X and the choice of M . In this case, we
have that (by recalling our choice of τ such that 0 < τ ≤ Cqd(x, y)),

c1/p |u(x)− u(y)| = c1/p ≤ (M2τ (ρp)(x))1/p Cqd(x, y),

from which we obtain the Haj lasz type inequality

|u(x)− u(y)| ≤ Cq

c1/p
d(x, y)

[
(M2τ (ρp)(x))1/p + (M2τ (ρp)(y))1/p

]
. (4)

Note that if we have the above inequality for µ-almost all x, y ∈ C−1
q B, then we obtain a

p-Poincaré inequality for the function u and its upper gradient ρ, see [17, Lemma 5.15] or [16].

Case 2: There is a set of positive measure in C−1
q B for which no such choice of j exists. Fix

x, y from that set. Then for each j we have that

aj <
1

M3j

Then there is a curve βj ∈ Γj , connecting γj to γj+1, so that∫
βj

ρ ds <
1

M3j
.

If βj and βj+1 intersect for each j, then we can concatenate them to obtain (using a similar
argument with x replaced with y) a rectifiable curve β connecting x to y such that

|u(x)− u(y)| = 1 ≤
∫
β
ρ ds ≤

∞∑
j=1

M−3j =
1

M3 − 1
,

which is not possible since (M3 − 1) ≥ 1. So there is some j for which βj and βj+1 do not
intersect. For such j we let Λj be the collection of all rectifiable curves in B(x,M−3j+2τ)
connecting βj to βj+1. We now set

bj = inf
α∈Λj

∫
α
ρ ds.

As in Case 1, if we have that for some choice of j,

bpjM
3jp ≥ 1

then because ρ/bj is admissible for computing Modp(Γj), we have the Haj lasz-type inequality (4)
for u. So we assume that for each j,

bj <
1

M3j
,
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and hence we can choose a curve αj connecting βj and βj+1 so that∫
αj

ρ ds <
1

M3j
.

Now we can concatenate βj , αj , and βj+1 for all such j, and concatenate βj and βj+1 when they
do intersect, to obtain a curve connecting x to y on which the path integral of ρ is smaller than
1, violating the upper gradient property of ρ again.

Therefore, in Case 2 there is some choice of j for which we have

bj ≥
1

M3j
,

and so we have (4).
Combining Cases 1 and 2, we see that for each x, y ∈ C−1

q B,

|u(x)− u(y)| ≤ C d(x, y)
[
(M2τ (ρp)(x))1/p + (M2τ (ρp)(y))1/p

]
.

It follows that X supports a p-Poincaré inequality for u and its upper gradient ρ.
The cases 1 and 2 together demonstrate that X supports a p-Poincaré inequality for all

continuous functions and their upper gradients. It now follows by the results of [21] that X
supports a p-Poincaré inequality for all function-upper gradient pairs (indeed, the results of [21]
state that to verify p-Poincaré inequality for all functions and their upper gradients, it suffices to
verify the p-Poincaré inequality for Lipschitz continuous functions and their upper gradients).

�

Remark 5.4 The case p = Q corresponds to Loewner spaces of Heinonen–Koskela [17]. Recall
that an Ahlfors Q-regular space is said to be a Q-Loewner space if there is a nonincreasing
function ψ : (0,∞) → (0,∞) such that whenever E,F ⊂ B ⊂ X (with B a ball in X) are
disjoint nondegenerate continua, then

ModQ(Γ(E,F,CB)) ≥ ψ(dist(E,F )/min{diam(E), diam(F )}).

We point out here that the Q-Loewner property characterization of Q-Poincaré inequality for
Ahlfors Q-regular spaces is stronger than ours since we require a specific type of function ψ,
namely ψ(t) = 1/t. For a related characterization of Q-Poincaré inequality, see [5].
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Math. Pures Appl. 26 (1947), 115–226.

[9] T. Coulhon, P. Koskela: Geometric interpretations of Lp Poincaré inequalities on graphs
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in metric measure spaces. Michigan Math. Journal 61 No.1 (2012), 63–85.

[12] E. Durand-Cartagena, N. Shanmugalingam, A. Williams: p-Poincaré inequality versus
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