
LINEAR MODELS FOR COMPOSITE THIN-WALLED BEAMS

BY Γ–CONVERGENCE.

PART I: OPEN CROSS-SECTIONS

CESARE DAVINI, LORENZO FREDDI, AND ROBERTO PARONI

Abstract. We consider a beam whose cross-section is a tubular neighbor-
hood, with thickness scaling with a parameter δε, of a simple curve γ whose

length scales with ε. To model a thin-walled beam we assume that δε goes to
zero faster than ε, and we measure the rate of convergence by a slenderness

parameter s which is the ratio between ε2 and δε. In this Part I of the work

we focus on the case where the curve is open.
Under the assumption that the beam has a linearly elastic behavior, for

s ∈ {0, 1} we derive two one-dimensional Γ–limit problems by letting ε go to

zero. The limit models are obtained for a fully anisotropic and inhomogeneous
material, thus making the theory applicable for composite thin-walled beams.

The approach recovers in a systematic way, and gives account of, many features

of the beam models in the theory of Vlasov.

1. Introduction

Composite, i.e., anisotropic and inhomogeneous, thin-walled beams have been
extensively studied by the engineering community. We refrain from citing the abun-
dant literature on the subject; we quote, instead, the opening lines of the abstract
of [12]: “There is no lack of composite beam theories. Quite to the contrary,
there might be too many of them. Different approaches, notation, etc., are used by
authors of those theories, so it is not always straightforward to compare the assump-
tions made and to assess the quantitative consequences of those assumptions.” This
excerpt well describes the status of the research on composite thin-walled beams.
To shed some light on the huge variety of models present in the literature, it is
necessary to overtake a rigorous approach, possibly free of assumptions. The aim
of this paper is to derive mechanical models for composite thin-walled beams by
Γ–convergence (see [2]), starting from the three-dimensional theory of linear elas-
ticity.

This line of research essentially started in [6] where a mechanical model was
obtained for an isotropic homogeneous and linearly elastic thin-walled beam with
rectangular cross section. In that paper the long side of the rectangle scaled with a
small parameter ε > 0 and the other with ε2. This “double” scaling was chosen so
to model a thin-walled beam. One of the main results was a compactness theorem in
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which different orders of convergence for the various components of the displacement
were established. Namely, a sequence of displacements with equi-bounded energy
is such that:

i) the component parallel to the short side of the rectangle is bounded in H1;
ii) the component parallel to the long side of the rectangle divided by ε is

bounded in H1;
iii) the component parallel to the axis of the beam divided by ε2 is bounded in

H1.

Thin-walled beams with a multi-rectangular cross section were studied in [7]. Each
rectangle composing the cross-section had sides that scaled with ε and ε2, respec-
tively. The analysis was carried on by “splitting” the beam in different rectangular
thin-walled beams, so to use the compactness theorem of [6], and then “recom-
posing” the beam by means of appropriate junction conditions. This procedure
circumvented the necessity to prove a compactness theorem specific for the type of
beams considered.

The assumptions of homogeneity and isotropy were completely removed in [8],
where, still for a rectangular thin-walled beam, very detailed convergence results
for the displacements were obtained.

In [4, 5] a hierarchy of models for homogeneous anisotropic thin-walled beams
with a rectangular cross sections have been deduced starting from the three-dimen-
sional theory of nonlinear elasticity. In the nonlinear setting the scaling of the
energy determines the limit model: for “very small” energy a linear model is ob-
tained while for “large” energies different nonlinear limit models are deduced. Some
of the compactness results used in the present paper were inspired by the nonlinear
counterpart studied in [4, 5].

In this paper we consider a fully anisotropic and inhomogeneous thin-walled
beam with arbitrary geometry of the cross-section clamped at one of its bases. More
precisely, the cross-section we take into consideration is a tubular neighborhood,
whose thickness scales with a parameter δε > 0, of a simple planar curve γ whose
length scales with ε. The curve γ can be either open or closed, but not completely
straight. As in [4, 5], the thinness of the “wall” is characterized by the assumption
that

lim
ε→0

δε
ε

= 0.

By allowing the thickness of the wall to scale with δε, instead of simply ε2, we can
study beams with cross-section having different degrees of slenderness. We measure
this quantity by means of a parameter s defined by

s := lim
ε→0

ε2

δε
.

Without loss of generality, it suffices to consider three cases s ∈ {0, 1,+∞}. In this
paper we consider only s ∈ {0, 1}. As in the case of rectangular cross-sections, our
analysis is based on a compactness theorem. Roughly, it establishes that a sequence
of displacements with equi-bounded energy is such that:

i) the projection on the plane of the cross-section divided by δε/ε is bounded
in H1;

ii) the component parallel to the axis of the beam divided by δε is bounded in
H1.
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In the case of rectangular thin-walled beams the compactness theorem follows di-
rectly from a “rescaled” Korn’s inequality. For beams with a curved cross-section,
treated in this paper, it follows from a rescaled Korn’s inequality and a detailed
study of the sequence of the strain components in the direction of the axis of the
beam and in the direction tangent to the midline curve γ of the cross-section (see
Theorem 5.8). The argument used in the proof works only if the curve γ is not
completely straight, thus our result is complementary to that derived in [6] for
rectangular thin-walled beams.

Recently Davoli [3] generalized the works [4, 5] by studying thin-walled beams
with both open and curved cross-section, starting from the three-dimensional the-
ory of non-linear elasticity. Her impressive work does not contain a compactness
theorem as detailed as ours and thus the Γ–convergence analysis is carried on in
terms of strains and not, as customary, in terms of displacements.

A very important kinematical parameter in any beam model is the twist of
the cross-section, hereafter denoted by ϑ. This parameter is “generated by” a
sequence, whose terms involve derivatives of the displacement, bounded in L2 (see
i) of Corollary 5.4 for a precise definition). Thus, a priori ϑ is only an L2–function.
We show that for s = 0 the twist ϑ is an H1–function and in the case s = 1 it
is even an H2–function. This augmented regularity of the twist is essentially a
consequence of the “structure” of the limit displacements.

All the compactness results presented up to Section 6 hold for beams with open
and closed cross-sections, but clearly, a closed cross-section imposes more con-
straints on the limiting displacements than an open. Even if these constraints will
be explored in the second part of this paper, it is worth to mention a few results.
For a closed cross-section it will be proved that ϑ is identically equal to zero. This
result essentially states that the sequence that generates the twist in the case of
open cross-sections is too “crude” and needs to be refined and further rescaled in
the case of closed cross-sections. As it will be shown in Part II, such a refined
sequence strongly depends on the geometry of the cross-section. Moreover, still in
the case of closed cross-sections, further constraints on the limit strains will emerge
and these will drastically affect the Γ–limit.

As already stated, in this paper we consider a fully anisotropic and inhomoge-
neous material. This generality makes part of the analysis quite involved, partic-
uarly the proof of the so-called “recovery sequence” condition. Contrary to what
is customary, we do not construct a recovery sequence but instead prove that there
exists one. In order to do this, we set up a sequence of “auxiliary” minimization
problems and show that the sequence of minimizers is indeed a recovery sequence.
This procedure allows us to circumvent awkward constructions of the full recovery
sequence and to limit ourselves to produce only few partial and simple “recover-
ies”, that are needed in order to show that the sequence of minimizers is indeed a
recovery sequence.

The paper is organized as follows. In Section 2 we define the geometry of the
cross-section, with the relative scaling parameters, and we set up the problem. The
curved cross-section is, by a change of variables, “straightened” in Section 3, while
in Section 4 is “rescaled” to a fixed domain, i.e., independent of ε. In the same
Section we define a system of curvilinear components that will be used throughout
the paper. Several compactness results are proved in Section 5. In particular, in



4 CESARE DAVINI, LORENZO FREDDI, AND ROBERTO PARONI

Subsection 5.1 we obtain compactness results for appropriately rescaled compo-
nents of the displacement, while in Subsection 5.2 correspondent results for strains
are proved. Section 7 is devoted to the characterization of the Γ–limit, while Sec-
tion 6 anticipates the energy density of the limit problem and studies some of its
properties. The proof of the two compactness theorems is given in the Appendix.

Notation

Throughout this article, and unless otherwise stated, we index vector and ten-
sor components as follows: Greek indices α, β and γ take values in the set {1, 2}
and Latin indices i, j, k, l in the set {1, 2, 3}. With (e1, e2, e3) we shall denote
the canonical basis of R3. Lp(A;B) and Hs(A;B) are the standard Lebesgue and
Sobolev spaces of functions defined on the domain A and taking values in B. When
B = R, or when the target set B is clear from the context, we will simply write
Lp(A) or Hs(A); also in the norms we shall systematically drop the target set.
Convergence in the norm, that is the so-called strong convergence, will be denoted
by → while weak convergence is denoted with ⇀. With a little abuse of language,
and because this is a common practice and does not give rise to any confusion, we
use to call “sequences” even those families indicized by a continuous parameter ε
which, throughout the whole paper, will be assumed to belong to the interval (0, 1].
Throughout the paper, the constant C may change from expression to expression
(and even in the same line). The scalar product between vectors or tensors is de-
noted by ·. R3×3

skw denotes the vector space of skew-symmetric 3 × 3 real matrices.
For A = (aij) ∈ R3×3 we denote the Euclidean norm (with the summation conven-

tion) by |A| =
√
A ·A =

√
tr(AAT ) =

√
aijaij . Whenever we write a matrix by

means of its columns we separate the columns with vertical bars (·| · |·) ∈ R3×3.
∂i stands for the distributional derivative ∂

∂xi
. For every a, b ∈ R3 we denote by

a� b := 1
2 (a⊗ b+ b⊗ a) the symmetrized diadic product, where (a⊗ b)ij = aibj .

From Section 5 on, when a function of three variables is independent of one or
two of them we consider it as a function of the remaining variables only. This
means, for instance, that a function u ∈ H1((0, `) × (0, L);Rm) will be identified
with a corresponding u ∈ H1((0, `) × (−h/2, h/2) × (0, L);Rm) such that ∂2u = 0
and a function v ∈ H1((0, L);Rm) will be identified with a corresponding v ∈
H1((0, `) × (−h/2, h/2) × (0, L);Rm) such that ∂1v = ∂2v = 0. The notation da
stands for the area element dx1dx2. As usual,

∫
− denotes the integral mean value.

2. Setting of the problem

We consider a sequence of thin-walled beams whose cross-section is a tubular
neighborhood, with thickness scaling with a parameter δε, of a simple curve γ
whose length scales with ε, as detailed below.

Let (e1, e2, e3) be an orthonormal basis of R3 and ε, δε two positive parameters
converging to zero. We consider a simple curve γ ∈W 3,∞(I;R2 × {0}), where I is
an interval of length ` > 0, for two distinct instances which are:

• I = (0, `), with lim
s→`

γ′(s) = lim
s→0

γ′(s) if lim
s→`

γ(s) = lim
s→0

γ(s);

• I = [0, `], with γ(`) = γ(0) and γ′(`) = γ′(0).

In the former case we will say that the curve is open; in the latter that it is closed.
We assume γ to be parameterized by the arclength parameter s ∈ [0, lenght(γ)], so
that t := γ′ is a unit tangent vector contained in the plane spanned by e1 and e2.
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We denote by n := e3 ∧ t the unit normal to γ and by κ := t′ · n its curvature, so
that t′ = κn and n′ = −κt. We assume that κ is not identically equal to zero.

Let ε ∈ (0, 1), Ĩε := εI and γ̃ε : Ĩε → R2 × {0} be the map defined by γ̃ε(s) :=
εγ(s/ε). We set t̃ε = γ̃ε′, ñε = e3 ∧ t̃ε and κ̃ε = t̃ε′ · ñε, so that t̃ε(s) = t(s/ε),
ñε(s) = n(s/ε) and κ̃ε(s) = κ(s/ε)/ε.

Let h > 0. We consider a beam with cross section of diameter that scales with
ε and constant thickness δεh. To deal with thin-walled beams, we assume that

(1) lim
ε→0

δε
ε

= 0.

To define the region occupied by the beam in the reference configuration we set

ω̃ε :=
{

(x̃1, x̃2) ∈ R2 : x̃1 ∈ Ĩε and x̃2 ∈
(
− δεh

2
,
δεh

2

)}
, Ω̃ε := ω̃ε × (0, L),

where L > 0 denotes the length of the beam, and we consider the map χ̃ε : Ω̃ε → R3

defined by

(2) χ̃ε(x̃) := γ̃ε(x̃1) + x̃2ñ
ε(x̃1) + x̃3e3.

Ω

Ω̃ε

Ω̂ε

χ̃ε

rε

x1

x2

x3

x̃2
x̃1

x̃3

Figure 1. The domains Ω̂ε, Ω̃ε, and Ω.

The region occupied by the beam in the reference configuration is

(3) Ω̂ε := χ̃ε(Ω̃ε).

We note that Ω̂ε is an open set independently of the fact that the curve γ is open
or closed. If the curve γ is open (closed) we say that the thin-walled beam has an
open (closed) cross-section (see Figure 2).

Henceforth we denote by

(4) Eû(x̂) := sym(∇û(x̂)) :=
∇û(x̂) +∇û(x̂)T

2
,

the strain corresponding to the displacement û : Ω̂ε → R3.
In what follows we consider an inhomogeneous linear hyper-elastic material with

elasticity tensor Cε, whose components Cεijkl ∈ L∞(Ω̂ε) satisfy the major and minor
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Figure 2. Two cross sections with lim
s→0

γ(s) = lim
s→`

γ(s) but one

closed and the other open.

symmetries, i.e., Cεijkl = Cεijlk = Cεklij . We further suppose Cε to be uniformly
positive definite, that is: there exists c > 0 such that

(5) Cε(x̂)M ·M ≥ c|M |2

for almost every x̂ and for all symmetric matrices M .
We assume the beam to be clamped at x3 = 0, and we denote by

H1
dn(Ω̂ε;R3) :=

{
û ∈ H1(Ω̂ε;R3) : û = 0 on ∂Ω̂ε ∩ {x3 = 0}

}
.

The energy functional of the beam F̂ε : H1
dn(Ω̂ε;R3)→ R is given by

(6) F̂ε(û) :=
1

2

∫
Ω̂ε

CεEû · Eû dx̂− L̂ε(û),

where L̂ε(û) denotes the work done by the loads on the displacements û. Our
analysis will focus on the asymptotic behavior of the elastic energy; the work done
by the loads will be considered only in Remark 7.3.

3. Representation of the deformation gradient and the strains as
fields on Ω̃ε

We shall use the curvilinear coordinates {x̃1, x̃2, x̃3} and the natural basis (g̃ε1, g̃
ε
2, g̃

ε
3),

where the bases vectors are defined by

g̃εi :=
∂χ̃ε

∂x̃i
.

A simple computation yields

g̃ε1 = (1− x̃2κ̃
ε)t̃ε, g̃ε2 = ñε, g̃ε3 = e3.

The dual basis (g̃1
ε , g̃

2
ε , g̃

3
ε), defined by the set of equations g̃iε · g̃εj = δij with δij the

Kronecker’s symbols, turns out to be

g̃1
ε =

t̃ε

1− x̃2κ̃ε
, g̃2

ε = ñε, g̃3
ε = e3.

Since

det∇χ̃ε(x̃) = 1− x̃2κ̃
ε(x̃1) > 1− δε

ε

h|κ(x̃1/ε)|
2

> 0

for any ε small enough, due to assumption (1), then χ̃ε is locally invertible and,
in fact, it is a diffeomorphism, up to a set of measure zero in the case of closed

cross-sections, between Ω̃ε and Ω̂ε.
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For every û : Ω̂ε → R3, let ũ : Ω̃ε → R3 be defined by

ũ := û ◦ χ̃ε,
so that û(x̂) = ũ(x̃) where x̂ = χ̃ε(x̃). By the chain rule we find

(7) H̃εũ := ∇ũ(∇χ̃ε)−1 = (∇û) ◦ χ̃ε.
We set

(8) Ẽεũ := symH̃εũ = (Eû) ◦ χ̃ε.

We refrain from writing the energy on Ω̃ε since it will have no use in our analysis.

4. Problem on a fixed domain

In order to rewrite the problem on a domain which does not depend on ε, let

us introduce the notation: ω := ω̃1 and Ω := Ω̃1, and consider the rescaling map

rε : Ω→ Ω̃ε defined by

rε(x) := (εx1, δεx2, x3).

Let gεi := g̃εi ◦ rε, giε := g̃iε ◦ rε, i.e.,

gε1 =
(
1− δε

ε
x2κ

)
t, g1

ε =
(
1− δε

ε
x2κ

)−1
t, gε2 = g2

ε = n, gε3 = g3
ε = e3.

Accordingly, we associate to ũ : Ω̃ε → R3 the function u : Ωε → R3 defined by

u := ũ ◦ rε,
so that u(x) = ũ(x̃), where x̃ = rε(x). By the chain rule we have(1

ε
∂1u|

1

δε
∂2u|∂3u

)
= (∇ũ) ◦ rε.

Observing that

(9) ∇χ̃ε =
(
g̃ε1|g̃ε2|g̃ε3

)
,

(
∇χ̃ε

)−1
=
(
g̃1
ε |g̃2

ε |g̃3
ε

)T
,

then we have

(10) Hεu :=
(1

ε
∂1u|

1

δε
∂2u|∂3u

)(
g1
ε |g2

ε |g3
ε

)T
=
(
H̃εũ

)
◦ rε,

and

(11) Eεu := symHεu = (Ẽεũ) ◦ rε.
We note that (10) implies

(12)
(1

ε
∂1u|

1

δε
∂2u|∂3u

)
= Hεu

(
gε1|gε2|gε3

)
,

that is

(13)
1

ε
∂1u = Hεu gε1,

1

δε
∂2u = Hεu gε2, ∂3u = Hεu gε3.

Let χε := χ̃ε ◦ rε. By means of (8) we may rewrite (11) as

Eεu = (Ẽεũ) ◦ rε = (Eû) ◦ χε.

Then, by setting Lε(u) := L̂ε(u ◦ χε−1)/(εδε) and
√
gε := 1− (δε/ε)x2κ, we get

(14)
F̂ε(û)

εδε
=

1

2

∫
Ω

CEεu · Eεu
√
gε dx−Lε(u) =: Fε(u)
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where we have assumed that C := Cε ◦ χε is, in fact, independent of ε. The
functional Lε will be discussed in Remark 7.3. The domain of the energy functional
Fε becomes

H1
dn(Ω;R3) :=

{
u ∈ H1(Ω;R3) : u = 0 on ω̃ × {0}

}
for an open cross-section, and

H1
#dn(Ω;R3) :=

{
u ∈ H1

dn(Ω;R3) : u(0, ·, ·) = u(`, ·, ·)
}

for a closed cross-section.
From the assumptions made on the elasticity tensor Cε (see (5)) it follows that

Cijkl ∈ L∞(Ω), that Cijkl = Cijlk = Cklij , and that there exists c > 0 such that

(15) C(x)M ·M ≥ c|M |2

for almost every x and for all symmetric matrices M .
For later use we write

(Hεu)ij := gεi ·Hεu gεj ,

which give the components of Hεu in the local basis {gε1, gε2, gε3}. From (13), they
are

(16)

(Hεu)11 =
1

ε
gε1 · ∂1u, (Hεu)12 =

1

δε
gε1 · ∂2u, (Hεu)13 = gε1 · ∂3u,

(Hεu)21 =
1

ε
gε2 · ∂1u, (Hεu)22 =

1

δε
gε2 · ∂2u, (Hεu)23 = gε2 · ∂3u,

(Hεu)31 =
1

ε
gε3 · ∂1u, (Hεu)32 =

1

δε
gε3 · ∂2u, (Hεu)33 = gε3 · ∂3u.

We also note that

(17) (Eεu)ij := gεi · Eεu gεj =
(Hεu)ij + (Hεu)ji

2
.

5. Kinematic results

Throughout the section we consider a sequence of functions uε ∈ H1
dn(Ω;R3)

such that

(18) sup
ε

1

δε
‖Eεuε‖L2(Ω) < +∞.

Theorem 5.1. There exists a sequence {W ε} ⊆ H1((0, `)× (0, L);R3×3
skw ) such that

i) ‖Hεuε −W ε‖L2(Ω) ≤ Cδε,
ii) ‖W ε‖L2(Ω) + ‖∂3W

ε‖L2(Ω) ≤ C,

iii) ‖∂1W
ε‖L2(Ω) ≤ Cε,

for a suitable C > 0 and every ε small enough. Moreover, there exists W ∈
H1
dn((0, L);R3×3

skw ) such that, up to a subsequence,

(19) W ε ⇀W

in H1((0, `)× (0, L);R3×3
skw ).

Proof. Given in appendix (Section 8).

Theorem 5.2. If {uε} ⊆ H1
#dn(Ω;R3) is a sequence for which (18) holds, then the

conclusions of Theorem 5.1 hold for a sequence {W ε} such that W ε(0, ·) = W ε(`, ·)
for every ε.
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Proof. Given in appendix (Section 8).

For the rest of this section W ε and W will be as in Theorem 5.1.

Corollary 5.3. The following propositions hold up to subsequences.

i) Hεuε →W in L2(Ω;R3×3),

ii) there exists u ∈ H1
dn(Ω;R3) such that uε ⇀ u in H1

dn(Ω;R3).

Proof. Item i) follows from (19), Rellich’s compactness theorem, and part i) of
Theorem 5.1. From (13) and the definition of gεi it follows that∥∥∇uε∥∥

L2(Ω)
≤ ‖

(1

ε
∂1u

ε| 1
δε
∂2u

ε|∂3u
ε
)∥∥
L2(Ω)

=
∥∥Hεuε

(
gε1|gε2|gε3

)∥∥
L2(Ω)

≤ C
∥∥Hεuε

∥∥
L2(Ω)

,

and hence ii) follows from i). 2

Hereafter we set ϑ := n ·Wt. By the regularity of γ we have ϑ ∈ H1
dn(0, L).

Corollary 5.4. There exists B ∈ L2((0, `) × (0, L);R3×3
skw ) such that, up to subse-

quences,

(20)
∂1W

ε

ε
⇀ B

in L2((0, `)× (0, L);R3×3
skw ). Then

i) W ε
21 := gε2 ·W ε gε1 ⇀ ϑ in H1

dn((0, `)× (0, L)),

ii) W = ϑ(n⊗ t− t⊗ n),

iii) Be3 = ∂3ϑn,

iv) u = 0.

Proof. The existence of B is a consequence of iii) of Theorem 5.1.
Item i) follows from (19) and the uniform convergence of gε1 and gε2 to t and n,

respectively.
Let W13 := t ·We3 and W23 := n ·We3. From (16) and i)− ii) of Corollary 5.3

we deduce that

(21) W13 = t · ∂3u = ∂3(u · t), W23 = n · ∂3u = ∂3(u · n).

We now claim that

(22) Be3 = ∂3Wt.

Indeed, let ψ ∈ C∞0 ((0, `)× (0, L)). By i) of Theorem 5.1, i) of Corollary 5.3, and
taking into account (12) we have that

0 = lim
ε→0

∫
Ω

(Hεuεe3

ε
− W εe3

ε

)
∂1ψ dx = lim

ε→0

∫
Ω

(∂3u
ε

ε
− W εe3

ε

)
∂1ψ dx

= lim
ε→0

∫
Ω

∂1u
ε

ε
∂3ψ +

∂1W
εe3

ε
ψ dx = lim

ε→0

∫
Ω

Hεuεgε1∂3ψ +
∂1W

εe3

ε
ψ dx

=

∫
Ω

Wt∂3ψ +Be3ψ dx =

∫
Ω

(−∂3Wt+Be3)ψ dx,
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from which we get (22). Since B is a skew-symmetric matrix field we have that
e3 ·Be3 = 0, and hence by (22) it follows that

0 = −e3 · ∂3Wt = t · ∂3We3.

Since t is not constant and also e3 · ∂3We3 = 0, it follows that

∂3We3 = 0.

Thus We3 = 0, because We3 = 0 at {x3 = 0} as W ∈ H1
dn((0, `) × (0, L);R3×3

skw ).
Hence, W13 = W23 = 0 and this implies ii).

From (22) it follows that t ·Be3 = 0, since W is a skew-symmetric matrix field,
and still from (22) we have that n · Be3 = ∂3(n ·Wt) = ∂3ϑ. Hence also iii) has
been proved.

We finally prove iv). Since W13 = W23 = 0 and u ∈ H1
dn(Ω;R3), from (21) we

deduce that u · t = u · n = 0. Therefore, to conclude the proof it suffices to show
that u3 = 0. Indeed, from (16), i) of Theorem 5.1, and since W ε

33 = 0, it follows
that ∂3u

ε
3 → 0 in L2(Ω). Hence, by ii) of Corollary 5.3, we have ∂3u3 = 0 which

implies that u3 = 0, since u3 = 0 on {x3 = 0}. 2

Remark 5.5. The regularityW 3,∞ of the curve γ is fully exploited in i) of Corollary
5.4. Indeed, ∂1W

ε
21 involves ∂1g

ε
1 which, in turn, involves the derivative of the

curvature κ of γ. Thus, under the W 3,∞ regularity of the curve γ we have that
∂1g

ε
1 is in L∞ and ∂1W

ε
21 is an L2 function.

If the regularity of the curve γ were assumed to be W 2,∞, we could only claim
that W ε

21 weakly converges in L2((0, `);H1(0, L)). Thus, a weakening of the regu-
larity of γ weakens also the convergence of W ε

21.

5.1. Limit of rescaled displacements. Since the limit of uε is equal to zero, we
look at the following rescaled components of uε:

(23) v̄ε :=
uε − uε3e3

δε/ε
, vε3 :=

uε3
δε
.

To measure the slenderness of the cross-section we introduce the parameter s defined
by

s := lim
ε→0

ε2

δε
,

where we have assumed that the above limit exists. Without loss of generality, it
suffices to consider three cases s ∈ {0, 1,+∞}. In this paper we consider only the
cases

s ∈ {0, 1}.
Let

γG := −
∫ `

0

γ(x1) dx1.

Lemma 5.6. Up to a subsequence we have

W εe3

ε
−−
∫ `

0

W εe3

ε
dx1 ⇀ ∂3ϑe3 ∧ (γ − γG)

in H1((0, `);L2((0, L);R3)).
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Proof. Let

bε :=
W εe3

ε
−−
∫ `

0

W εe3

ε
dx1.

By Poincare’s inequality and iii) of Theorem 5.1 it follows that bε is bounded in
H1((0, `);L2(0, L)). Thus, there exists a b ∈ H1((0, `);L2((0, L);R3)) such that

bε ⇀ b

in H1((0, `);L2((0, L);R3)), and

(24) −
∫ `

0

b dx1 = 0.

Since ∂1b
ε = ∂1W

εe3/ε, from (20) we deduce that ∂1b = Be3. Thus, by iii) of
Corollary 5.4 we have that

∂1b = ∂3ϑn = ∂3ϑe3 ∧ t = ∂1(∂3ϑ e3 ∧ γ),

and from this identity and (24) we find b = ∂3ϑe3 ∧ (γ − γG). 2

Lemma 5.7. For s ∈ {0, 1}, we have that

v̄ε −−
∫
ω

v̄ε da ⇀ sϑe3 ∧ (γ − γG)

in H1(Ω;R3).

Proof. By i) of Theorem 5.1 we have that

(25)
∥∥Hεuεe3

δε/ε
− W εe3

δε/ε

∥∥
L2(Ω)

≤ Cε,

and by Jensen’s inequality we then have that

(26)
∥∥−∫
ω

Hεuεe3

δε/ε
− W εe3

δε/ε
da
∥∥
L2(0,L)

≤ Cε.

Since
∂3u

ε

δε/ε
−−
∫
ω

∂3u
ε

δε/ε
da =

Hεuεe3

δε/ε
−−
∫
ω

Hεuεe3

δε/ε
da

=
Hεuεe3

δε/ε
− W εe3

δε/ε
−−
∫
ω

Hεuεe3

δε/ε
− W εe3

δε/ε
da(27)

+
(W εe3

ε
−−
∫
ω

W εe3

ε
da
)ε2

δε
,

by taking into account (18), (23), (25), (26), and Lemma 5.6 we deduce that

∂3

(
v̄ε −−

∫
ω

v̄ε da
)
⇀ s∂3

(
ϑe3 ∧ (γ − γG)

)
in L2(Ω;R3). In particular, it follows that the sequence v̌ε := v̄ε − −

∫
ω
v̄ε da is

bounded in H1((0, L);L2(ω;R3)), hence v̌ε ⇀ v̌ in H1((0, L);L2(ω;R3)), up to a
subsequence. Since ∂3(v̌ − sϑe3 ∧ (γ − γG)) = 0 and v̌ − sϑe3 ∧ (γ − γG) = 0 on
{x3 = 0}, it follows that v̌ = sϑe3 ∧ (γ − γG).

To conclude the proof it suffices to show that the sequences {∂1v̌
ε} and {∂2v̌

ε}
are bounded in L2(Ω;R3). By means of (13) we find(

Hεuε −W ε
)
gε1 =

1

ε
∂1u

ε −W εgε1 =
1

ε
∂1

(
uε −−

∫
ω

uε da
)
−W εgε1,
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thus, by the definition of v̌ε, (23), (12), and from i)− ii) of Theorem 5.1 we find

‖∂1v̌
ε‖L2(Ω) ≤ C

ε2

δε
(‖(Hεuε −W ε)gε1‖L2(Ω) + ‖W εgε1‖L2(Ω)) ≤ C

ε2

δε
,

which is bounded for s ∈ {0, 1}. Similarly we find

‖∂2v̌
ε‖L2(Ω) ≤ ε(‖(Hεuε −W ε)gε2‖L2(Ω) + ‖W εgε2‖L2(Ω)) ≤ Cε.

2

Theorem 5.8. Let s ∈ {0, 1}. There exists m̄ ∈ H1
dn((0, L);R3) such that

−
∫
ω

v̄ε da ⇀ m̄

in H1
dn((0, L);R3), up to a subsequence. Moreover, there exists m3 ∈ L2(0, L) such

that, setting

v̄ := m̄+ sϑe3 ∧ (γ − γG),(28)

v3 := m3 − ∂3m̄ · (γ − γG) + s ∂3ϑ

∫ x1

0

(γ − γG) · nds,(29)

up to a subsequence we have

i) v̄ε ⇀ v̄ in H1
dn(Ω;R3),

ii) vε3 ⇀ v3 in H1
dn(Ω).

Proof. Since

+∞ > sup
ε

∥∥ (Eεuε)33

δε

∥∥
L2(Ω)

= sup
ε

∥∥∂3u
ε
3

δε

∥∥
L2(Ω)

= sup
ε

∥∥∂3v
ε
3

∥∥
L2(Ω)

,

by Poincaré inequality we have that

(30) sup
ε
‖vε3‖H1((0,L);L2(ω)) < +∞,

and there exists v3 ∈ H1((0, L);L2(ω)) such that, up to a subsequence, vε3 ⇀ v3 in
H1((0, L);L2(ω)). Also, by (16) and (17) we have

∂2v
ε
3 = gε3 ·

∂2u
ε

δε
= (Hεuε)32 = 2(Eεuε)32 − (Hεuε)23.

By (18), i) of Corollary 5.3, and ii) of Corollary 5.4, this implies that

∂2v
ε
3 →W23 = 0 in L2(Ω).

Thus

(31) vε3 ⇀ v3

in H1((−h/2, h/2)× (0, L);L2(0, `)) and

(32) ∂2v3 = 0.

Let

m̄ε := −
∫
ω

v̄ε da.

From (16) and (17) we have that

2(Eεuε)13

δε/ε
=

1

δε
gε3 · ∂1u

ε +
1

δε/ε
gε1 · ∂3u

ε = ∂1v
ε
3 + gε1 · ∂3v̄

ε(33)

= ∂1v
ε
3 + gε1 · ∂3m̄

ε + gε1 · ∂3(v̄ε − m̄ε).
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Let

hε :=
2(Eεuε)13

δε/ε
− gε1 · ∂3(v̄ε − m̄ε) = ∂1v

ε
3 + gε1 · ∂3m̄

ε

and note that, by (18) and Lemma 5.7, we have that

(34) sup
ε
‖hε‖L2(Ω) < +∞.

Let ψ ∈ C∞0 (0, `), let ϕ ∈ L2(0, L) with ‖ϕ‖L2(0,L) ≤ 1, and denote by

Mε
ϕ :=

∫ L

0

∂3m̄
εϕdx3.

We then have ∫
Ω

hεψϕdx =

∫
Ω

∂1v
ε
3ψϕ+ gε1 · ∂3m̄

εψϕdx

= −
∫

Ω

vε3∂1ψϕdx+

∫
ω

Mε
ϕ · gε1ψ da

and therefore∣∣ ∫
ω

Mε
ϕ · gε1ψ da

∣∣ ≤ ‖ψ‖W 1,∞(0,`)(‖hε‖L2(Ω) + ‖vε3‖L2(Ω)).

Since ∫
ω

Mε
ϕ · gε1ψ da = Mε

ϕ ·
∫
ω

gε1ψ da = Mε
ϕ ·
∫
ω

tψ da,

we find that ∣∣∣Mε
ϕ ·
∫
ω

tψ da
∣∣∣ ≤ ‖ψ‖W 1,∞(0,`)(‖hε‖L2(Ω) + ‖vε3‖L2(Ω)).

Since t is not constant, by choosing two appropriate functions ψ one can show that

|Mε
ϕ| ≤ C(‖hε‖L2(Ω) + ‖vε3‖L2(Ω)),

which implies that

‖∂3m̄
ε‖L2(0,L) = sup

‖ϕ‖L2(0,L)≤1

|Mε
ϕ| ≤ C(‖hε‖L2(Ω) + ‖vε3‖L2(Ω)).

Thus, taking into account that v̄ε ∈ H1
dn(Ω;R3) and using (30) and (34), we deduce

that supε ‖m̄ε‖H1(0,L) < +∞, and hence, up to a subsequence,

m̄ε ⇀ m̄

in H1
dn(0, L), which is the first part of the statement. By Lemma 5.7 then we have

(35) v̄ε ⇀ m̄+ sϑe3 ∧ (γ − γG)

in H1
dn(Ω;R3), which proves i).

By (33) it follows that

(36) ∂1v
ε
3 =

2(Eεuε)13

δε/ε
− gε1 · ∂3v̄

ε.
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Hence, also ∂1v
ε
3 is bounded in L2(Ω) and the convergence in (31) is, in fact, weak

in H1(Ω), as stated in ii). By using (18) and (35) to take the limit in (36) we
deduce that

∂1v3 = −t · ∂3(m̄+ sϑe3 ∧ (γ − γG)) = −t · ∂3m̄+ s∂3ϑ(γ − γG) · n

= ∂1

(
− ∂3m̄ · (γ − γG) + s ∂3ϑ

∫ x1

0

(γ − γG) · nds
)
.

Taking into account (32), we conclude that

(37) v3 = m3 − ∂3m̄ · (γ − γG) + s ∂3ϑ

∫ x1

0

(γ − γG) · nds,

with m3 ∈ L2(0, L). 2

In fact, (28) and (29) imply further regularity on m3, m̄ and ϑ.

Theorem 5.9. Let s, m3, m̄ and ϑ be as in Theorem 5.8. Then,

i) m3 ∈ H1
dn(0, L),

ii) m̄ ∈ H2
dn(0, L;R3) := {z ∈ H2(0, L;R3) : z(0) = ∂3z(0) = 0},

iii) if s = 1 then ϑ ∈ H2
dn(0, L). In particular, the displacement v̄ defined

in (28) belongs to the space H2((0, `)× (0, L);R3).

Proof. Let us consider the case s = 0, first. To prove that m3 ∈ H1
dn(0, L) it is

enough to take the integral over (0, `) with respect to the variable x1 in (29). In this

way we get m3 =
∫
−`

0
v3 dx1, which implies m3 ∈ H1

dn(0, L) because v3 ∈ H1
dn(Ω).

Statement ii ) can be proved similarly. Indeed, since the curve γ is W 3,∞ and not

a straight line, then there exist x′1, x
′′
1 ∈ (0, `) such that the vectors

∫ x′
1

0
(γ − γG) ds

and
∫ x′′

1

0
(γ−γG) ds are linearly independent and can be used as a basis in the plane

x3 = 0. Then ii ) follows by integrating (29) with respect to x1 over the intervals
(0, x′1) and (0, x′′1) and by taking a linear combination.

Consider now the case s = 1. Without loss of generality we may take the origin
of the axes coincident with γG, that is γG = 0, and rotate axes e1, e2, if necessary,
so that they coincide with the principal axes of inertia of the curve γ:∫ `

0

γ1γ2 dx1 = 0.

We also introduce a point γSC in the plane of the cross-section and a scalar c to be
chosen in the sequel. Then, by means of the identity

(38)

∫ x1

0

γ · nds =

∫ x1

0

(γ − γSC) · nds+ γSC · e3 ∧ (γ − γ(0)),

the displacement v can be written as

(39) v̄ = ξ̄ + ϑe3 ∧ (γ − γSC), v3 = ξ3 − ∂3ξ̄ · γ + ψ∂3ϑ.

where

ψ := c+

∫ x1

0

(γ − γSC) · nds,(40)

ξ̄ := m̄+ ϑe3 ∧ γSC ∈ H1
dn((0, L);R3),(41)

ξ3 := m3 − ∂3ϑ
(
c+ e3 ∧ γ(0) · γSC

)
∈ L2(0, L).(42)
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By means of (38) it can be shown that γSC and c are uniquely determined by the
requirements

(43)

∫
ω

ψ da =

∫
ω

ψγ1 da =

∫
ω

ψγ2 da = 0.

For such a choice of γSC and c, from (39) and (43) we deduce that∫
ω

ψv3 da =

∫
ω

ψ2 da ∂3ϑ,

hence ϑ ∈ H2
dn(0, L), and that

−
∫
ω

v3 da = ξ3.

Thence ξ3 ∈ H1
dn(0, L), since the left hand side of the above equality is in H1

dn(0, L).
By (42), this implies in particular that m3 ∈ H1

dn(0, L). Finally, we deduce from
(39) that ξ̄ ∈ H2

dn((0, L);R3). The claimed regularity of m̄ follows from (41). 2

In the technical literature the point γSC defined by (43) is called the shear center
and plays a special role in the uncoupling of the torsional and flexural effects. Also,
ψ describes the warping of the cross-section, and the scalar c introduced in (40)
defines the warping at point x1 = 0 on the curve γ.

5.2. Limit of rescaled strains. From (18) it follows that there exists E ∈ L2(Ω;R3×3)
such that

(44)
Eεuε

δε
⇀ E in L2(Ω;R3×3),

up to a subsequence. The following lemmas give a characterization of some com-
ponents of E.

Lemma 5.10. Let E33 := e3 · Ee3. Then

E33 = ∂3v3.

Proof. Indeed, from (16), (17), and (23), we have

(Eεuε)33

δε
=
gε3 · ∂3u

ε

δε
= ∂3v

ε
3

and the thesis follows by applying Theorem 5.8. 2

Lemma 5.11. Let E13 := t · Ee3. Then

E13 = −x2 ∂3ϑ+ η2,

where η2 ∈ L2(Ω) and ∂2η2 = 0.

Proof. Let

ϑε :=
(Hεuε)21 − (Hεuε)12

2
.

We claim that

(45) ∂3ϑ
ε =

1

ε
∂1(Eεuε)23 −

1

δε
∂2(Eεuε)13,

in the sense of distributions. Assuming this, note that

ϑε = (Hεuε)21 − (Eεuε)21 → ϑ in L2(Ω),
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by (18), i) of Corollary 5.3, and the definition of ϑ (see Corollary 5.4). Thus,
using (44) to take the limit in H−1 in (45), we find

∂3ϑ = −∂2E13.

The statement of the lemma follows from the equality above.
Let us now prove (45). Since

2ϑε =
1

ε
gε2 · ∂1u

ε − 1

δε
gε1 · ∂2u

ε,

we have that

2∂3ϑ
ε =

1

ε
gε2 · ∂1∂3u

ε − 1

δε
gε1 · ∂2∂3u

ε

= ∂1(
1

ε
gε2 · ∂3u

ε)− 1

ε
∂1g

ε
2 · ∂3u

ε − ∂2(
1

δε
gε1 · ∂3u

ε) +
1

δε
∂2g

ε
1 · ∂3u

ε.

Since ∂2g
ε
1 = (δε/ε)∂1g

ε
2, then

2∂3ϑ
ε = ∂1(

1

ε
gε2 · ∂3u

ε)− ∂2(
1

δε
gε1 · ∂3u

ε) =
1

ε
∂1(Hεuε)23 −

1

δε
∂2(Hεuε)13

=
1

ε
∂1(2Eεuε)23 −

1

ε
∂1(Hεuε)32 −

1

δε
∂2(2Eεuε)13 +

1

δε
∂2(Hεuε)31

=
1

ε
∂1(2Eεuε)23 −

1

δε
∂2(2Eεuε)13 +

1

δε
∂2(

1

ε
gε3 · ∂1u

ε)− 1

ε
∂1(

1

δε
gε3 · ∂2u

ε)

=
1

ε
∂1(2Eεuε)23 −

1

δε
∂2(2Eεuε)13,

and hence (45) has been proved. 2

Lemma 5.12. Let E11 := t · Et. Then,

(46) E11 = x2 η3 + η1,

with η1 ∈ L2(Ω), η3 = t ·Bn, and ∂2η1 = ∂2η3 = 0.

Proof. Note that

1

δε
∂2(Hεuεgε1) =

1

δε
∂2
∂1u

ε

ε
=

1

ε
∂1
∂2u

ε

δε
=

1

ε
∂1(Hεuεgε2)

= ∂1

(Hεuε

ε

)
gε2 +

1

ε
Hεuε∂1g

ε
2,

and by means of this identity we have that

∂2
(Eεuε)11

δε
=

1

δε
∂2(gε1 ·Hεuεgε1) =

1

δε
∂2g

ε
1 ·Hεuεgε1 +

1

δε
gε1 · ∂2(Hεuεgε1)

=
1

δε
∂2g

ε
1 ·Hεuεgε1 + gε1 · ∂1

(Hεuε

ε

)
gε2 +

1

ε
gε1 ·Hεuε∂1g

ε
2.

Since

∂1g
ε
2 =

ε

δε
∂2g

ε
1 = − κ

1− (δε/ε)x2κ
gε1,

we deduce that

(47) ∂2
(Eεuε)11

δε
= gε1 · ∂1

Hεuε

ε
gε2 −

δε
ε

2κ

1− (δε/ε)x2κ

(Eεuε)11

δε
.
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From i) of Theorem 5.1 and (20) it follows that

∂1
Hεuε

ε
→ B in H−1(Ω;R3×3),

and from (44) we have

∂2
(Eεuε)11

δε
⇀ ∂2E11 in H−1(Ω).

Hence from (47) we deduce that

∂2E11 = t ·Bn.

Since B, t and n do not depend on x2 we have the claim. 2

6. Reduced energy densities for open cross-sections

In this section we introduce and study some properties of two reduced energy
densities that will appear in the Γ-convergence result presented in the next section.

Lemmas 5.10, 5.11, and 5.12, give a partial characterization of the components
E33 = e3 ·Ee3, E13 = t ·Ee3, and E11 = t ·Et of the limit strain E defined by (44).
No information is instead given on the components E12 = t ·En, E22 = n ·En, and
E23 = n · Ee3. Motivated by this fact, with

f(x,M) :=
1

2
C(x)M ·M, M ∈ R3×3

sym,

we define

f0(x,M11,M13,M33) := min
Aij

f
(
x ,M11t(x1)� t(x1) + 2A12t(x1)� n(x1)

+2M13t(x1)� e3 +A22n(x1)� n(x1)(48)

+2A23n(x1)� e3 +M33e3 � e3

)
.

That is, f0 is obtained from f by keeping fixed the components that have been
partially characterized in Section 5.2 and by minimizing over the remaining com-
ponents.

For open cross-sections by Lemmas 5.10, 5.11, and 5.12, we have that

E11 = η1 + x2η3, E13 = −x2∂3ϑ+ η2, E33 = ∂3v3,

where ηi ∈ L2(Ω), i = 1, 2, 3, are functions of (x1, x3) that have not been charac-
terized in terms of v3 and ϑ. This leads us to a second minimization and hence to
the definition of a second reduced energy density. In contrast to the minimization
performed in (48), the minimization over ηi is not completely local because of the
presence of the variable x2 in E11 and E13. For x1 and x3 fixed and a, b ∈ R, let
ηopt
i = ηopt

i (x1, x3, a, b) be the minimizers of

(49) inf
ηi∈R

∫ h/2

−h/2
f0(x, η1 + x2η3,−x2a+ η2, b) dx2.

In Section 6.1 it is proved that ηopt
i , for i = 1, 2, 3, are unique and that they can be

written as a linear combination of a and b with L∞–coefficients. In particular, the
maps ηopt

i : (0, `)× (0, L)× R× R→ R defined by

(x1, x3, a, b) 7→ ηopt
i (x1, x3, a, b)
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are measurable. Then we can define the function f00 : Ω× R× R→ R as

(50) f00(x, a, b) := f0(x, ηopt
1 + x2η

opt
3 ,−x2a+ ηopt

2 , b)

where the ηopt
i are evaluated in (x1, x3, a, b).

From the definition of f0 it follows that there exists a constant c > 0 such that

(51) f0(x,M11,M13,M33) ≥ c (M2
11 + 2M2

13 +M2
33).

and from this inequality and the definition of f00 we deduce that there exists a
constant c > 0 such that

(52)

∫ h/2

−h/2
f00(x, a, b) dx2 ≥ c (a2 + b2).

The given definitions are sufficient to prove the so called liminf inequality (see
Theorem 7.1). On the other hand, to provide the so called recovery sequence (see
Theorem 7.2) several properties of f0, f00 and their minimizers are needed. These
properties will be determined in the next lemmas.

In order to keep the notation compact we shall not use the components of E, as
done in (48) and (50), but work with tensors. For fixed x1, let

S(x1) := span{t(x1)� n(x1), n(x1)� n(x1), n(x1)� e3},
and

S⊥(x1) := span{t(x1)� t(x1), t(x1)� e3, e3 � e3},
so that

R3×3
sym = S(x1)⊕ S⊥(x1).

Thus any tensor M ∈ R3×3
sym can be uniquely written as

M = MS +M⊥,

with

MS := 2(t ·Mn) t� n+ (n ·Mn)n� n+ 2(n ·Me3)n� e3 ∈ S(x1)

and

M⊥ := (t ·Mt) t� t+ 2(t ·Me3) t� e3 + (e3 ·Me3) e3 � e3 ∈ S⊥(x1).

The decomposition of E, as given by (44), is such that E⊥ contains the components
of the strain E that have been partially characterized by Lemmas 5.10, 5.11 and
5.12, and ES contains the remaining components. With a slight abuse of notation
we may write

(53) f0(x,M⊥) = min
MS∈S(x1)

f(x,MS +M⊥).

We shall denote by E0M
⊥ the “full” tensor achieving the (unique) minimum in

(53), i.e.,

(54) E0M
⊥ := MS0 +M⊥ for f(x,MS0 +M⊥) = min

MS∈S(x1)
f(x,MS +M⊥).

Hence E0 maps the fixed part of the strain M⊥ to the “full” minimizer of (53) as
stated by (54). Since f is a quadratic function we have that E0 ia a linear operator
from S⊥ to R3×3

sym. We also have

(55) f0(x,M⊥) = f(x,E0M
⊥),
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and

(56) (I− P)E0M
⊥ = M⊥

for every M⊥ ∈ S⊥, since (I−P)MS = 0 for every MS ∈ S. To write the mapping
E0 explicitly, and in compact form, we introduce the projection operator

(57)
P(x1) : R3×3

sym → S(x1)

M 7→ PM := MS .

Then M⊥ = (I− P)M , where I denotes the identity.

Lemma 6.1. The mapping E0 defined by (54) is given by

(58) E0 = I− (PCP)−1PC.
Moreover, for every M ∈ R3×3

Sym we have that

(59) PCM = 0 if and only if M = E0M
⊥,

and

(60) CE0M
⊥ ·B⊥ = CE0M

⊥ · E0B
⊥ for every B⊥ ∈ S⊥.

Proof. Set Ẽ0 := I− (PCP)−1PC. We first prove that (59) holds with Ẽ0 in place
of E0. Note that PCP : S → S is an invertible operator, since

PCPUS · US = C(PUS) · (PUS) = CUS · US ≥ c|US |2,
where we used the facts PUS = US for every US ∈ S and PU ·V = PV ·U for every
U, V ∈ R3×3

sym. Since M = PM +M⊥, then PCM = 0 holds if and only if

PC(PM +M⊥) = 0,

that is
PCP(PM) = −PCM⊥,

or
PM = −(PCP)−1PCM⊥,

which is equivalent to
PM +M⊥ = Ẽ0M

⊥.

Thus, (59) holds for Ẽ0 in place of E0.
Let MS0 ∈ S(x1) be the minimizer of (53), i.e.,

f(x,MS0 +M⊥) = min
MS∈S(x1)

f(x,MS +M⊥).

The minimality conditions for (53) are
C(MS0 +M⊥) · t� n = 0,

C(MS0 +M⊥) · n� n = 0,

C(MS0 +M⊥) · n� e3 = 0,

that is PC(MS0 +M⊥) = 0. Thus, by (59) with Ẽ0 in place of E0, as proved above,
we deduce that

MS0 +M⊥ = Ẽ0M
⊥,

and hence, from (54), we conclude that Ẽ0 = E0.
To prove (60) note that

CE0M
⊥ ·B⊥ = CE0M

⊥ · (I−P)E0B
⊥ = (I−P)CE0M

⊥ ·E0B
⊥ = CE0M

⊥ ·E0B
⊥,
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where the first identity follows from (56) while the last one has been obtained by
applying (59). 2

The previous lemma characterizes the minimizer of f0. We now study the mini-
mizers of f00.

6.0.1. Properties of f00 for beams with an open cross-section. Let E be the limit
strain defined by (44). Then

E⊥ = (η1 + x2η3)t� t+ 2η2t� e3 + EK(∂3ϑ, ∂3v3),

where EK(∂3ϑ, ∂3v3) is the part of E⊥ that is known in terms of v3 and ϑ, that is

(61) EK(a, b) := −2x2a t� e3 + b e3 � e3,

for every a, b ∈ R. By means of the minimizers ηopt
i of (49) we define the mapping

E00 by

(62) E00E
K(a, b) := (ηopt

1 + x2η
opt
3 )t� t+ 2ηopt

2 t� e3 + EK(a, b),

so to rewrite (50), with the slight abuse of notation introduced in (53), as

(63) f00(x, a, b) = f0(x,E00E
K(a, b)).

Thus E00 essentially associates to the known part of the strain the “full” minimizer
of (49) as stated by (63).

Thus the mappings E0 and E00 allows us to rewrite the densities f0 and f00 in
terms of f

(64) f00(x, a, b) = f0(x,E00E
K(a, b)) = f(x,E0E00E

K(a, b)),

as follows from (55) and (63).
Hereafter, still to keep the notation compact, we denote by

〈·〉 := −
∫ h/2

−h/2
· dx2

the average over the x2 variable.

Lemma 6.2. For a, b ∈ R let M ∈ R3×3
sym be a tensor field such that

(65) M⊥ = (η1 + x2η3)t� t+ 2η2t� e3 + EK(a, b),

where ηi = ηi(x1, x3, a, b) and EK is defined by (61). Then,

(66) M⊥ = E00E
K(a, b) (i.e., ηi = ηopt

i ) ⇐⇒


〈CE0M

⊥〉 · t� t = 0,

〈CE0M
⊥〉 · t� e3 = 0,

〈x2CE0M
⊥〉 · t� t = 0.

Moreover, if M⊥ = E00E
K(a, b) then

(67) 〈CE0E00E
K(a, b) · EK(c, d)〉 = 〈CE0E00E

K(a, b) · E0E00E
K(c, d)〉

for every a, b, c, d ∈ R.

Proof. Let us denote by EU (ηi) := (η1 + x2η3)t � t + 2η2t � e3 so that E⊥ =
EU (ηi) + EK(a, b). By (55) we may rewrite the minimization problem (49) as

〈f(x,E0(EU (ηopt
i ) + EK(a, b))〉 = inf

ηi∈R
〈f(x,E0(EU (ηi) + EK(a, b))〉
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whose minimality condition is

〈CE0(EU (ηopt
i ) + EK(a, b)) · E0E

U (ξi)〉 = 0 ∀ξi ∈ R.
Thus, since f is convex and E0 is a linear operator, we have that

ηi = ηopt
i ⇐⇒ 〈CE0(EU (ηi) + EK(a, b)) · E0E

U (ξi)〉 = 0 ∀ξi ∈ R,
which, by (60), is equivalent to

ηi = ηopt
i ⇐⇒ 〈CE0(EU (ηi) + EK(a, b)) · EU (ξi)〉 = 0 ∀ξi ∈ R,

and this, in turn, is equivalent to (66).
To prove (67) note that

〈CE0E00E
K(a, b) · EK(c, d)〉 =

= 〈CE0E00E
K(a, b) · E00E

K(c, d)〉 = 〈CE0E00E
K(a, b) · E0E00E

K(c, d)〉,
where the first equality follows from (66) and the last from (60). 2

Remark 6.3. By taking a = c and b = d in (67) and using that C is positive
definite, we deduce that there exists a constant C ≥ 0 such that

|E0E00E
K(a, b)| ≤ C|EK(a, b)|

for every a, b ∈ R.

6.1. Computation of the reduced energy densities. In this subsection we
outline the computation of the energy densities. Let

E11 := t · Et, E13 := t · Ee3, E33 := e3 · Ee3.

From (55) we find

f0(x,E11, E13, E33) = f(x,E0E
⊥) =

1

2
CE0E

⊥ · E0E
⊥

=
1

2
CE0(E11 t� t+ 2E13 t� e3 + E33 e3 � e3)

·E0(E11 t� t+ 2E13 t� e3 + E33 e3 � e3)

=
1

2

 c11(x) c12(x) c13(x)
c12(x) c22(x) c23(x)
c13(x) c23(x) c33(x)

 E11

E13

E33

 ·
 E11

E13

E33


where cij are given by

(68)
c11 = CE0(t� t) · E0(t� t), c22 = 4CE0(t� e3) · E0(t� e3),
c12 = 4CE0(t� t) · E0(t� e3), c23 = 4CE0(t� e3) · E0(e3 � e3),
c13 = 2CE0(t� t) · E0(e3 � e3), c33 = CE0(e3 � e3) · E0(e3 � e3).

The ηopt
i may be computed by solving the system

(69)

 〈c11〉 〈c12〉 〈x2c11〉
〈c12〉 〈c22〉 〈x2c12〉
〈x2c11〉 〈x2c12〉 〈x2

2c11〉

 ηopt
1

ηopt
2

ηopt
3

 =

 〈x2c12〉a− 〈c13〉b
〈x2c22〉a− 〈c23〉b
〈x2

2c12〉a− 〈x2c13〉b

 ,

since (69) is equivalent to (66). Indeed, let E⊥ be as in (65) with ηi = ηopt
i , then

by means of (60) and (68) we have

0 = 〈CE0E
⊥〉 · t� t = 〈CE0E

⊥ · t� t〉 = 〈CE0E
⊥ · E0(t� t)〉

= 〈c11〉ηopt
1 + 〈x2c11〉ηopt

3 + 〈c12〉ηopt
2 − 〈x2c12〉a+ 〈c13〉b,



22 CESARE DAVINI, LORENZO FREDDI, AND ROBERTO PARONI

and hence the first equation of (69) is equivalent to the first equation of (66). The
equivalence of the other equations is proved similarly.

We note that (69), and hence (66), has a unique solution since 〈c11〉 〈c12〉 〈x2c11〉
〈c12〉 〈c22〉 〈x2c12〉
〈x2c11〉 〈x2c12〉 〈x2

2c11〉

 a1

a2

a3

 ·
 a1

a2

a3


= −

∫ h/2

−h/2

(
c11 c12

c12 c22

)(
a1 + x2a3

a2

)
·
(
a1 + x2a3

a2

)
dx2

≥ c−
∫ h/2

−h/2

∣∣∣∣( a1 + x2a3

a2

)∣∣∣∣2 dx2 ≥ c (a2
1 + a2

2 + a2
3)

for every a1, a2, a3 ∈ R. The first inequality above is a consequence of (51).

Remark 6.4. From (69) we also deduce that the maps ηopt
i are measurable. In-

deed, from the measurability of C and the Lipschitz continuity of the projection
P we deduce the measurability of E0 thanks to (6.1). Then, from (68) it follows
immediately that the coefficients cij are measurable.

7. Γ-limit for beams with an open cross-section

Let Jε : H1(Ω;R3)→ R ∪ {+∞} be defined by

(70) Jε(u) =

{
1
2

∫
Ω
CEεu · Eεu

√
gε dx if u ∈ H1

dn(Ω;R3),

+∞ if u ∈ H1(Ω;R3) \H1
dn(Ω;R3).

In this section we shall prove the Γ-convergence of the functional Jε/δ
2
ε under an

appropriate topology. In order to define the Γ-limit we set

As := {(v, ϑ) ∈ H1(Ω;R3)×H1+s
dn (0, L) : ∃ m̄ ∈ H2

dn(0, L;R3), ∃m3 ∈ H1
dn(0, L)

such that v = v̄ + v3e3, where v̄ = m̄+ sϑe3 ∧ (γ − γG),

and v3 = m3 − ∂3m̄ · (γ − γG) + s∂3ϑ
∫ x1

0
(γ − γG) · nds}.

The Γ-limit will be the functional J0 : H1(Ω;R3)×H1(0, L)→ R ∪ {+∞} defined
by

J0(v, ϑ) =

{∫
Ω
f00(x, ∂3ϑ, ∂3v3) dx if (v, ϑ) ∈ As,

+∞ otherwise.

We split the Γ-convergence analysis in two parts. In the next theorem we study
the liminf inequality.

Theorem 7.1 (liminf inequality). For every sequence {uε} ⊆ H1(Ω;R3) and every
(v, ϑ) ∈ H1(Ω;R3)×H1(0, L) such that

v̄ε + vε3e3 ⇀ v in H1(Ω;R3),

and
gε2 ·Hεuεgε1 ⇀ ϑ in H1(Ω),

where

v̄ε =
uε − uε3e3

δε/ε
, vε3 =

uε3
δε
, gε2 ·Hεuεgε1 =

1

ε
gε2 · ∂1u

ε,

we have

lim inf
ε→0

Jε(u
ε)

δ2
ε

≥ J0(v, ϑ).
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Proof. Without loss of generality we may assume that

lim inf
ε→0

Jε(u
ε)

δ2
ε

= lim
ε→0

Jε(u
ε)

δ2
ε

< +∞,

since otherwise the claim is trivially satisfied. By (5), it follows that the sequence
{uε} satisfies (18) and hence all the theorems contained in Section 5 hold. In
particular, by Theorems 5.8 and 5.9 we have that (v, ϑ) ∈ As. From (44), the
convexity of f , and (48) we find

lim inf
ε→0

Jε(u
ε)

δ2
ε

= lim inf
ε→0

∫
Ω

f(x,
Eεuε

δε
)
√
gε dx ≥

∫
Ω

f(x,E) dx

≥
∫

Ω

f0(x,E11, E13, E33) dx

=

∫
Ω

f0(x, η1 + x2η3,−x2∂3ϑ+ η2, ∂3v3) dx

where the last equality has been obtained by means of Lemmas 5.10, 5.11, and 5.12.
Here ηi do not depend on x2 and have the regularity prescribed in the lemmas just
quoted. Thus from (49) and (50) we deduce that

lim inf
ε→0

Jε(u
ε)

δ2
ε

≥
∫ L

0

∫ `

0

inf
ηi(x1,x3)

∫ h/2

−h/2
f0(x, η1(x1, x3) + x2η3(x1, x3),

−x2∂3ϑ+ η2(x1, x3), ∂3v3) dx2dx1dx3

=

∫
Ω

f00(x, ∂3ϑ, ∂3v3) dx = J0(v, ϑ),

and hence the theorem is proved. 2

We now prove the existence of a recovery sequence.

Theorem 7.2 (recovery sequence). For every (v, ϑ) ∈ H1(Ω;R3)×H1(0, L) there
exists a sequence {uε} ⊆ H1(Ω;R3) such that

v̄ε + vε3e3 ⇀ v in H1(Ω;R3),

gε2 ·Hεuεgε1 ⇀ ϑ in H1(Ω),

where

v̄ε =
uε − uε3e3

δε/ε
, vε3 =

uε3
δε
, gε2 ·Hεuεgε1 =

1

ε
gε2 · ∂1u

ε,

and

lim sup
ε→0

Jε(u
ε)

δ2
ε

≤ J0(v, ϑ).

Proof. Let (v, ϑ) ∈ H1(Ω;R3) × H1(0, L) be given. To avoid trivial cases we
assume that J0(v, ϑ) < +∞. Thence (v, ϑ) ∈ As. Let

(71) EK(∂3ϑ, ∂3v3) := −2x2∂3ϑt� e3 + ∂3v3e3 � e3,

and

(72) Eopt := E0E00E
K(∂3ϑ, ∂3v3).

At the end of Section 6 we have remarked that the maps ηopt
i are measurable.

From (62) it follows that E0 and hence Eopt are measurable. Moreover, from
Remark 6.3 it follows immediately that Eopt ∈ L2(Ω;R3×3).
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Define Rε : H1
dn(Ω;R3)→ R by

Rε(u) :=
1

2

∫
Ω

C
(Eεu
δε
− Eopt

)
·
(Eεu
δε
− Eopt

)
dx.

It follows that for each ε the functionalRε has a minimizer. Let uε be the minimizer,
i.e.,

Rε(uε) = inf
u
Rε(u).

By (15), we trivially find that ‖Eεuε‖L2(Ω) ≤ Cδε, and hence from Corollary 5.4
and Theorem 5.8 we deduce that

v̄ε + vε3e3 ⇀ ˇ̄v + v̌3e3 =: v̌ in H1(Ω;R3),

gε2 ·Hεuεgε1 ⇀ ϑ̌ in H1(Ω).

Moreover, we also have

Eεuε

δε
⇀ Ě in L2(Ω;R3×3).

We split the proof into several claims.

Claim 1.: Ě = E0Ě
⊥, thus f0(x, Ě⊥) = f(x, Ě);

Claim 2.: Ě⊥ = E00Ě
K(∂3ϑ̌, ∂3v̌3), thus f00(x, ∂3ϑ̌, ∂3v̌3) = f0(x, Ě⊥);

Claim 3.: ϑ̌ = ϑ, and v̌ = v.

Assuming that the claims hold we easily conclude the proof. Indeed, from Claim 3
we deduce that

v̄ε + vε3e3 ⇀ v in H1(Ω;R3),

gε2 ·Hεuεgε1 ⇀ ϑ in H1(Ω),

and from the three claims it follows that

Ě = E0E00E
K(∂3ϑ, ∂3v3) = Eopt,

where the last identity is a consequence of (72).
The minimizer uε of Rε satisfies the following problem

(73)

∫
Ω

C
(Eεuε
δε
− Eopt

)
· E

εψ

δε
dx = 0 for every ψ ∈ H1

dn(Ω;R3).

For later use we note that this problem is equivalent to

(74)

∫
Ω

C
(Eεuε
δε
− Eopt

)
· H

εψ

δε
dx = 0 for every ψ ∈ H1

dn(Ω;R3).

By taking ψ = uε in (73) we find∫
Ω

C
Eεuε

δε
· E

εuε

δε
dx =

∫
Ω

C
Eεuε

δε
· Eopt dx
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and hence, by (64),

lim
ε

Jε(u
ε)

δ2
ε

= lim
ε

1

2

∫
Ω

C
Eεuε

δε
· E

εuε

δε

√
gε dx = lim

ε

1

2

∫
Ω

C
Eεuε

δε
· E

εuε

δε
dx

= lim
ε

1

2

∫
Ω

C
Eεuε

δε
· Eopt dx =

1

2

∫
Ω

CĚ · Eopt dx

=
1

2

∫
Ω

CE0E00E
K(∂3ϑ, ∂3v3) · E0E00E

K(∂3ϑ, ∂3v3) dx

=

∫
Ω

f(x,E0E00E
K(∂3ϑ, ∂3v3)) dx =

∫
Ω

f00(x, ∂3ϑ, ∂3v3) dx,

= J0(v, ϑ)

which is the thesis of the theorem. We now prove the claims.

Proof of Claim 1. With ϕi ∈ C∞0 (Ω), for i = 1, 2, 3, let

ψ = δ2
ε

(∫ x2

−h/2
ϕ1(x1, ζ, x3) dζ t+

∫ x2

−h/2
ϕ2(x1, ζ, x3) dζ n+

∫ x2

−h/2
ϕ3(x1, ζ, x3) dζ e3

)
.

Then
Hεψ

δε
→ ϕ1t⊗ n+ ϕ2n⊗ n+ ϕ3e3 ⊗ n

uniformly. From (74) we deduce that∫
Ω

C(Ě − Eopt) · (ϕ1t⊗ n+ ϕ2n⊗ n+ ϕ3e3 ⊗ n) dx = 0,

which implies that

(75) PC(Ě − Eopt) = 0,

where P is defined in (57). Since, by (59), PCEopt = PCE0E00E
K(∂3ϑ, ∂3v3) = 0

it follows that

(76) PCĚ = 0.

Hence, Claim 1 follows from (59).

Proof of Claim 2. Let

ψ = δεε
(∫ x1

0

ϕ1(ζ, x3)t(ζ) dζ +

∫ x1

0

ϕ2(ζ, x3) dζ e3

)
,

with ϕi ∈ C∞0 ((0, `)× (0, L)) for i = 1, 2. Then

Hεψ

δε
→ ϕ1t⊗ t+ ϕ2e3 ⊗ t

uniformly. By passing to the limit in (74) we deduce that∫
Ω

C(Ě − Eopt) · (ϕ1t⊗ t+ ϕ2e3 ⊗ t) dx = 0,

and hence

(77)

{
〈C(Ě − Eopt)〉 · t� t = 0,

〈C(Ě − Eopt)〉 · t� e3 = 0.

We now take

ψ = δεεx2ϕt− ε2

∫ x1

0

ϕndx1,



26 CESARE DAVINI, LORENZO FREDDI, AND ROBERTO PARONI

with ϕ ∈ C∞((0, `)× (0, L)) and ϕ = 0 nearby x3 = 0.
After some calculations we can check that

Eεψ

δε
→ x2∂1ϕt⊗ t

uniformly. By passing to the limit in (73) we get∫
Ω

C(Ě − Eopt) · x2∂1ϕt⊗ t dx = 0.

Let ϕ :=
∫ x1

0
φ(ζ, x3) dζ, with φ ∈ C∞0 ((0, `) × (0, L)). Then, the above equation

implies that

(78) 〈x2C(Ě − Eopt)〉 · t� t = 0.

Since Eopt = E0E00E
K(∂3ϑ, ∂3v3), and by Claim 1 we have that Ě = E0Ě

⊥, from
(77), (78) we deduce that 

〈CE0Ě
⊥〉 · t� t = 0,

〈CE0Ě
⊥〉 · t� e3 = 0,

〈x2CE0Ě
⊥〉 · t� t = 0,

since the part involving Eopt in (77) and (78) disappears by applying Lemma 6.2.
Thus, still by Lemma 6.2, it follows that

Ě⊥ = E00E
K(∂3ϑ̌, ∂3v̌3).

Proof of Claim 3. Let ζ̄ ∈ H2
dn(0, L;R2), ζ3 ∈ H1

dn(0, L) , and φ ∈ H2
dn(0, L).

Set

ψ̄ :=
δε
ε
ζ̄ + εφe3 ∧ (γ − γG)− δεφx2t

and

ψ3 := δεζ3−δε∂3ζ̄ ·(γ−γG+
δε
ε
x2n)+ε2∂3φ

∫ x1

0

(γ−γG)·nds−δεε∂3φx2(γ−γG)·t.

With ψ := ψ̄ + ψ3e3 we have

Eεψ

δε
= −2x2∂3φ

(
1− δε

2ε
κx2

)
gε1 � e3 +

∂3ψ3

δε
e3 � e3,

and hence

Eεψ

δε
→ −2x2∂3φt�e3 +

(
∂3ζ3−∂3∂3ζ̄ ·(γ−γG)+s∂3∂3φ

∫ x1

0

(γ−γG) ·nds
)
e3�e3,

uniformly. By passing to the limit in (73) we deduce that

(79)

∫
Ω

C(Ě − Eopt) · (−2x2∂3φt⊗ e3 + ∂3w3e3 � e3) dx = 0,

where

w3 := ζ3 − ∂3ζ̄ · (γ − γG) + s∂3φ

∫ x1

0

(γ − γG) · nds.

Equality (79) holds for every w3 as above and every φ ∈ H2
dn(0, L). By density it

also holds for every φ ∈ H1+s
dn (0, L). In view of (72) and Claims 1 and 2, we have∫

Ω

CE0E00E
K(∂3(ϑ̌− ϑ), ∂3(v̌3 − v3)) · EK(∂3φ, ∂3w3) dx = 0,



LINEAR COMPOSITE THIN-WALLED BEAMS 27

and by (67) it follows that also∫
Ω

CE0E00E
K(∂3(ϑ̌− ϑ), ∂3(v̌3 − v3)) · E0E00E

K(∂3φ, ∂3w3) dx = 0.

By taking φ = ϑ̌− ϑ and w3 = v̌3 − v3, and by using (64) we deduce

(80)

∫
Ω

f00(x, ∂3(ϑ̌− ϑ), ∂3(v̌3 − v3)) dx = 0.

Thus (80) and (52) imply that

∂3(ϑ̌− ϑ) = 0, ∂3(v̌3 − v3) = 0.

Thus, using the boundary conditions, ϑ̌ = ϑ and v̌3 = v3. From these equalities we
also deduce that ˇ̄v = v̄. 2

Remark 7.3. The energy considered in (14) includes the work done by the loads,
while the Γ-convergence analysis deals with the elastic energy only (see (70)). Let
Lε(u

ε) denotes the work of the loads rescaled by εδε, as in (14), and assume that
(1/δ2

ε)Lε(u
ε) continuously converges to L0 with respect to the convergence used

in Theorems 7.1 and 7.2. Then, the Γ-limit of (1/δ2
ε)Fε := (1/δ2

ε)(Jε − Lε) is
F0 := J0 −L0. For instance, the simplest case is

Lε(u
ε) =

∫
Ω

bε · uε
√
gε dx,

where

bεα = δεε bα α = 1, 2, and bε3 = δε b3

with bα, b3 ∈ L2(Ω). By taking (23) into account we get

Lε(u
ε) = δ2

ε

∫
Ω

( ε
δε

(b1u
ε
1 + b2u

ε
2) +

1

δε
b3u

ε
3

)√
gε dx

= δ2
ε

∫
Ω

(b1v
ε
1 + b2v

ε
2 + b3v

ε
3)
√
gε dx,

and

(81) L0(v, ϑ) =

∫
Ω

b1v1 + b2v2 + b3v3 dx,

where we have used the notation of Theorems 7.1 and 7.2. In the case s = 1, the
right hand side of (81) could be written in terms of m̄,m3, ϑ, and their derivatives.
In the case s = 0, the dependence on ϑ drops out unless a more general sequence
of loads is considered.

8. Appendix - Proof of Theorems 5.1 and 5.2

The proofs given in this appendix freely use ideas introduced by Kohn and
Vogelius [10], Anzellotti, Baldo, and Percivale [1], Friesecke, James, and Muller [9],
Freddi, Mora, and Paroni [4].

In order to prove Theorems 5.1 and 5.2 it is useful to extend our functions and
their domain of definition. The proof will be carried on for closed cross-section,
since the proof for open cross-sections could be obtained by simplifying sligthly
that given for closed cross-section beams.
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We consider the extension

Ωe :=
(
0, 2`

)
×
(
− h

2
,
h

2

)
×
(
− L,L

)

of the reference domain Ω = (0, `)× (−h2 ,
h
2 )× (0, L). The extension in the variable

x3 will simplify the analysis of the boundary condition at x3 = 0, while that in the
first variable will be used to take into account the periodicity of displacements. We
note, incidentally, that in the case of an open cross-section it would be enough to
extend the domain in the x3 variable only.

Hereafter, we will consider, without mentioning it, the extension of some func-
tions defined on Ω to the domain Ωe.

First of all, we extend the base curve γ to the interval (0, 2`) by setting γ(x1+`) =
γ(x1). We also extend uε by translation in the variable x1, while we set it equal to
zero when x3 ∈ (−L, 0). By the boundary conditions at x3 = 0 then we have

uε ∈ H1(Ωe;R3).

We wish to split the domain Ωe into small cube–like sub-domains whose edges
have length approximately equal to δεh. To this aim, let the natural numbers

nε3 :=
[ L
δεh

]
, nε1 :=

[ ε`
δεh

]
,

be defined as the integer part of L/(δεh) and ε`/(δεh), respectively, and subdivide
Ωe into the 2nε1 × 2nε3 rectangular boxes

Qijε :=
( i`
nε1
,

(i+ 1)`

nε1

)
× (−h

2
,
h

2

)
×
(jL
nε3
,

(j + 1)L

nε3

)

with i = 0, ..., 2nε1 − 1 and j = −nε3, ..., 0, ..., nε3 − 1. Then, the corresponding

subdomains of Ω̂eε are given by

Q̂ijε :=
{
x̂ : x̂ = εγ

( i`
nε1

+ y1

)
+ δεy2n

( i`
nε1

+ y1

)
+
(jL
nε3

+ y3

)
e3

with y ∈ Cε :=
(
0,

`

nε1

)
×
(
− h

2
,
h

2

)
×
(
0,
L

nε3

)}
.

The lengths of the edges of Qijε are `/nε1, b and L/nε3 and they approximately
correspond to the lengths indicated in Figure 3, as it is straightforward to check.
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Qijε χε := χ̃ε ◦ rε
Q̂ijε

x2

x1

x3

∼ δεh

∼ δεh

∼ δεh

∼ δεh

h

∼ δεh/ε
χε

Figure 3. The domains Qijε and Q̂ijε .

The following lemma states that there is a function that maps Q̂ijε onto a fixed
cube and whose gradient is arbitrarily close to a rescaled rotation.

Lemma 8.1. Let C = (0, 1) × (−1/2, 1/2) × (0, 1). For any pair of indices i ∈
{0, ..., 2nε1−1} and j ∈ {−nε3, ..., 0, ..., nε3−1} there exists a diffeomorphism ψ̂ijε and

a rotation Rij0 such that

ψ̂ijε : Q̂ijε → C

and

(82) |δεhRij0
T
∇ψ̂ijε (x̂)− I| ≤ cε ∀x̂ ∈ Q̂ijε with cε → 0.

Proof. Write Qijε in the form

Qijε =
{
x : x =

(
i
`

nε1
, 0, j

L

nε3

)
+ y with y ∈ Cε

}
and define φijε : Qijε → C by

φijε (x) :=
(nε1
`
x1 − i,

1

b
x2,

nε3
L
x3 − j

)
,

and ψ̂ijε : Q̂ijε → C by

ψ̂ijε := φijε ◦ (χε)−1,

where we recall that χε(x) := χ̃ε ◦ rε = εγ(x1) + δεx2n(x1) + x3e3. Then, from
∇χε = ((ε− δεκx2)t|δεn|e3), we have

∇ψ̂ijε = ∇φijε ◦ (χε)−1∇(χε)−1

= diag
(nε1
`
,

1

h
,
nε3
L

)( 1

(ε− δεκx2)
t| 1
δε
n|e3

)T
=

( nε1
`(ε− δεx2κ)

t| 1

δεh
n|n

ε
3

L
e3

)T
,

where the intrinsic basis {t, n, e3} is evaluated at x1 = i`/nε1 + y1.
By calling R0(x1) the rotation that transforms the local basis {t(x1), n(x1), e3}

into the Cartesian one {e1, e2, e3}, that is R0(x1) :=
(
t(x1)|n(x1)|e3

)T
, we have
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ψijε

φijε

QijεC

χε

Q̂ijε

x̄2

x̄1

x̄3

Figure 4. The domains C, Qijε , and Q̂ijε .

therefore ∣∣δεh∇ψ̂ijε −R0

∣∣ =
∣∣([ nε1δεh

`(ε− δεy2κ)
− 1
]
t|0|
[nε3δεh

L
− 1
]
e3

)∣∣
≤ C

(∣∣ nε1δεh

`(ε− δεy2κ)
− 1
∣∣+
∣∣nε3δεh

L
− 1
∣∣)

≤ cε

where cε are constants independent of the pair (i, j) and such that lim
ε→0

cε = 0.

Let now Rij0 := R0

( (i+ 1
2 )`

nε1

)
. Since R0 ∈W 1,∞(0, 2`;R3×3) it follows that

|R0(x1)−Rij0 | ≤ C
`

nε1
≤ C δε

ε

for every x1 ∈
(
i`
nε
1
, (i+1)`

nε
1

)
. Therefore, recalling that δε

ε → 0 as ε→ 0, we have

|δεh∇ψ̂ijε −R
ij
0 | ≤ |δεh∇ψ̂ijε −R0|+ |R0 −Rij0 | → 0

or, equivalently,

|δεh∇ψ̂ijε −R
ij
0 | ≤ cε.

Inequality (82) follows by recalling that |Rij0 A| = |A|, since Rij0 is orthogonal. 2

Proof of Theorems 5.1 and 5.2. Setting

φ̂ijε (x̂) := δεhR
ij
0

T
ψ̂ijε (x̂)

we have that the diffeomorphism φ̂ijε : Q̂ijε → δεhR
ij
0

T
C satisfies the inequality

|∇φ̂ijε − I| ≤ cε
where cε is the same constant as in Lemma 8.1. Since limε→0 cε = 0 together
with the fact that Korn’s constant is invariant under rotations and homogeneous

dilations of the domain, imply that Korn’s inequality holds true in the sets Q̂ijε with
a constant that does not depend either on ε or on {i, j} (see for a similar argument
Pideri and Seppecher [11]). Hence, for every ε > 0 and every i = 0, ..., 2nε1 − 1 and
j = −nε3, ..., nε3 − 1 there exists a skew symmetric constant tensor W ij

ε such that∫
Q̂ij

ε

|∇ûε −W ij
ε |2dx̂ ≤ C

∫
Q̂ij

ε

|Eûε|2dx̂.
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Or also, after a change of variables,

(83)

∫
Qij

ε

|Hεuε −W ij
ε |2
√
gε dx ≤ C

∫
Qij

ε

|Eεuε|2
√
gε dx.

Set

W
ε

:=
∑
ij

W ij
ε χQij

ε

with χQij
ε

the characteristic function of Qijε . Then, from (83), we get

(84)

∫
Ωe

|Hεuε −W ε|2
√
gε dx ≤ C

∫
Ωe

|Eεuε|2
√
gε dx.

We notice that W
ε

could be identified with a function of (x1, x3) only. Hereafter
we shall tacitly make this identification. Furthermore, the periodicity condition
W

ε
(x1 + `, ·) = W

ε
(x1, ·) for every x1 ∈ [0, `] holds true, and W

ε
(x) = 0 whenever

x3 ∈ (−L, 0).

We need now to estimate the variation of W
ε

from the parallelepiped Qijε to the
next one in Ωe. To this aim, for a same thin-walled beam occupying the physical

domain Ω̂ε, we consider different subdivisions of the set Ωe described below.
In place of the pair ij we use a multi-index

(85) α := (α1, 0, α3) =
(
(
1

2
+ i)

`

nε1
, 0, (

1

2
+ j)

L

nε3

)
.

With this notation we set

Qε(α) =
{(
α1 +

`

nε1
y1, h y2, α3 +

L

nε3
y3

)
: y ∈

(
− 1

2
,

1

2

)3}
,

the parallelepiped centered in α and with side lengths `/nε1, h, and L/nε3. Likewise,
we denote by

Q(3)
ε (α) =

{(
α1 +

3`

nε1
y1, h y2, α3 +

3L

nε3
y3

)
: y ∈

(
− 1

2
,

1

2

)3}
the parallelepiped with the same center and side lengths 3`/nε1, h, and 3L/nε3. We

will denote by W
ε
(α) and W

ε

(3)(α) the rotations appearing in Korn’s inequality

(83) when Qijε is replaced by Qε(α) and Q
(3)
ε (α), respectively.

By Korn’s inequality, for any ε small enough there exists a skew symmetric
constant tensor W

ε

(3)(α) such that

(86)

∫
Q(3)

ε (α)

|W ε

(3)(α)−Hεuε|2
√
gε dx ≤ C

∫
Q(3)

ε (α)

|Eεuε|2
√
gε dx,

which holds whenever Q
(3)
ε (α) ⊆ Ωe.

Let now β = α+ λ with α as in (85) for some i and j, and

λ =
(
λ1, 0, λ3

)
∈
{(

0, 0, 0
)
,−
( `
nε1
, 0,

L

nε3

)
,
( `
nε1
, 0,

L

nε3

)}
.
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Since Qε(β) ⊆ Q(3)
ε (α), then

|Qε(β)| |W ε
(β)−W ε

(3)(α)|2 ≤ 2

∫
Qε(β)

|W ε
(β)−Hεvε|2

√
gε dx

+2

∫
Q

(3)
ε (α)

|W ε

(3)(α)−Hεvε|2
√
gε dx.

Therefore, using (83) and (86), we have that

(87) |Qε(β)| |W ε
(β)−W ε

(3)(α)|2 ≤ C
∫
Q(3)

ε (α)

|Eεvε|2
√
gε dx.

Since |W ε
(α)−W ε

(β)|2 ≤ 2
(
|W ε

(α)−W ε

(3)(α)|2 + |W ε
(β)−W ε

(3)(α)|2
)
, by (87)

and its special case α = β (that is λ = 0)

(88) |Qε(β)| |W ε
(α)−W ε

(β)|2 ≤ C
∫
Q(3)

ε (α)

|Eεvε|2
√
gε dx,

which can also be written, being W
ε

piecewise constant,∫
Sε(α)

|W ε
(x′ + λ′)−W ε

(x′)|2 dx′ ≤ C

h

∫
Q(3)

ε (α)

|Eεvε|2
√
gε dx

where x′ := (x1, x3), λ′ := (λ1, λ3), and

Sε(α) =
{

(α1 +
`

nε1
y1, α3 +

L

nε3
y3) : (y1, y3) ∈ (−1

2
,

1

2
)2
}
.

Then, for η′ = (η1, η3) ∈ R2 such that |η′|∞ := max{|η1|, |η3|} ≤ max(`/nε1, L/n
ε
3),

we get ∫
Sε(α)

|W ε
(x′ + η′)−W ε

(x′)|2 dx′ ≤ C

h

∫
Q(3)

ε (α)

|Eεvε|2
√
gε dx.

Let now V ′ be an open set compactly contained in V = (0, 2`) × (−L,L) and
consider a more general translation vector η′ ∈ R2 such that |η′|∞ < dist(V ′, ∂V ).
Let

N := max
{[ |η1|
`/nε1

]
, [
|η3|
L/nε3

]
}

and pick η′0,..., η′N+1 such that η′0 = (0, 0), η′N+1 = η′, |η′k+1−η′k|∞ ≤ max(`/nε1, L/n
ε
3).

Then,

|W ε
(x′ + η′)−W ε

(x′)|2 ≤ (N + 1)

N∑
k=0

|W ε
(x′ + η′k+1)−W ε

(x′ + η′k)|2

and therefore∫
Sε(α)

|W ε
(x′ + η′)−W ε

(x′)|2dx′ ≤ C(N + 1)

h

N∑
k=0

∫
Q(3)

ε (α+ηk)

|Eεvε|2
√
gε dx,

with ηk := (ηk1, 0, ηk3). Summing over all Sε(α) ∩ V ′ 6= ∅ and using the fact that

each z ∈ Ωe is contained in at most N + 1 of the sets Q
(3)
ε (α+ ηk) we deduce that∫

V ′
|W ε

(x′ + η′)−W ε
(x′)|2dx′ ≤ C

(ε|η1|
δε
∨ |η3|

δε
+ 1
)2 ∫

Ωe

|Eεvε|2
√
gε dx.
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By using assumption (18) it follows that

(89)

∫
V ′
|W ε

(x′ + η′)−W ε
(x′)|2dx′ ≤ C

(
ε|η1| ∨ |η3|+ δε

)2
for any η′ = (η1, η3) such that |η′|∞ < dist(V ′, ∂V ).

Let us extend W
ε

to the whole of R2 by successive reflections. Let ηε be any
sequence of mollifiers which will be made precise in the following and define

W ε(y′) := W
ε ∗ ηε(y′) =

∫
ηε(z

′)W
ε
(y′ − z′) dz′.

Using the fact that
∫
ηε = 1 and Hölder’s inequality, we observe that

(90)

‖W ε −W ε‖2L2(V ′) =

∫
V ′

∣∣ ∫ ηε(z
′)
(
W

ε
(y′ − z′)−W ε

(y′)
)
dz′
∣∣2dy′

≤
∫
|ηε(z′)|2dz′

∫
supp ηε

∫
V ′
|W ε

(y′ − z′)−W ε
(y′)|2 dy′ dz′.

Let us now choose the sequence of mollifiers as follows. For i = 1, 3, let ηi ∈
C∞c (−1/2, 1/2), ηi ≥ 0,

∫
ηi = 1 and define

ηε(z
′) :=

ε

δ2
ε

η1(
εz1

δε
)η3(

z3

δε
).

Then ηε ∈ C∞c ((−δε/2ε, δε/2ε) × (−δε/2, δε/2)) and
∫
ηε = 1. In particular, for

any ε small enough, supp ηε is contained into a ball with radius smaller than the
distance from V ′ to ∂V . Therefore we can apply estimate (89) in (90) and substitute
the expression of ηε, so obtaining

‖W ε −W ε‖2L2(V ′) ≤ C
∫
|ηε(z′)|2dz′

∫
supp ηε

(
(ε|z1| ∨ |z3|) + δε

)2
dz1dz3

≤ C
∫
| ε
δ2
ε

η(x′)|2 δ
2
ε

ε
dx′
∫

supp ηε

δ2
ε dz

′ ≤ Cδ2
ε

which implies that

(91) ‖W ε −W ε‖L2(V ) ≤ Cδε,

since the constant C does not depend on the choice of V ′. From (84) and (91) it
follows that

‖Hεuε −W ε‖2L2(V ) ≤ Cδ
2
ε .

Applying Hölder’s inequality and proceeding as above, we have∫
V ′
|∂3W

ε|2dy′ =

∫
V ′

∣∣ ∫ ∂3ηε
(
W

ε
(y′ − z′)−W ε

(y′)
)
dz′
∣∣2dy′

≤
∫

supp ηε

|∂3ηε|2dz′
∫
V ′

∫
supp ηε

|W ε
(y′ − z′)−W ε

(y′)|2 dz′dy′

≤ C ε

δ4
ε

∫
supp ηε

(
(ε|z1| ∨ |z3|) + δε

)2
dz′ ≤ C

which implies

(92) ‖∂3W
ε‖L2(V ) ≤ C.

Analogously, it can be proved that

(93) ‖∂1W
ε‖L2(V ) ≤ Cε.
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By Poincaré inequality and (92) we have

(94) ‖W ε‖L2(V ) ≤ C‖∂3W
ε‖L2(V ) ≤ C.

Thus, the sequence {W ε} is bounded in H1(V ;R3) and thence there exists W ∈
H1(V ;R3) such that

(95) W ε ⇀W in H1(V ;R3).

Therefore the theorems are proved by taking the restrictions to Ω (of the trivial
extensions to Ωe) of W ε and W . In particular,

• i) of Theorem 5.1 follows from (84), (91) and (18),
• ii) of Theorem 5.1 follows from (94) and (92),
• iii) of Theorem 5.1 follows from (93),
• W ∈ H1

dn(0, L;R3×3
skw ). In particular, it depends only on the variable x3 as

a consequence of iii) and of the fact that W ε is independent of x2. The
boundary condition follows instead from the convergence (95), since W ε(x)
is zero for x3 ∈ (−L,−δε/2) and limε→0 δε = 0.

This proves Theorem 5.1.
Theorem 5.2 follows by noticing that uε ∈ H1

#dn(Ω;R3) implies that W ε(x1 +

`, ·) = W ε(x1, ·) for every x1 ∈ [0, `]. In particular, we have that W ε(0, ·) = W ε(`, ·)
for every ε. 2
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