IMPROVED BEREZIN-LI-YAU INEQUALITIES WITH MAGNETIC FIELD

HYNEK KOVARIK AND TIMO WEIDL

ABSTRACT. In this paper we study the eigenvalue sums of Dirichlet Laplacians on bounded domains.
Among our results we establish an improvement of the Berezin bound and of the Li-Yau bound in the
presence of a constant magnetic field previously obtained in [5] and [20].

1. Introduction

Let QO C RY be an open bounded domain. We consider the Dirichlet Laplacian —Aq on L?(Q)
defined in the quadratic form sense. Since the embedding Hg) < 1%(Q) is compact, the spectrum
of the non-negative operator —Ag, is discrete and accumulates to infinity only. Denote by {Aj}jen =
{A;(Q)}jen the inreasing sequence of the eigenvalues of —Aq, where we repeat entrees according to
their multiplicity.

In particular, we shall study the so-called Riesz means of these eigenvalues, given by .!

r(—Ag —A)Y =) (A=N(Q)Y, y=>0.
k

Here and below we use the notation x4+ = (|x| &= x)/2. It is well-known that these Riesz means
satisfy the Weyl asymptotics [24]

(1.1) 3 A= M(Q)] =LY IQIATE +o(AYFE), A oo,
k
where
Lc[ — r(y + 1)
v,d d :
4m)2T(y+1+4d/2)

In 1972 Berezin [2] showed that for v > 1 the leading term in (1.1) gives actually a uniform upper
bound on the Riesz means, namely for any y > 1 it holds

(12) > A=N(Q)Y < l0A* 2,

k
In view of the asymptotics (1.1) the constant on the r.h.s. of (1.2) is optimal. The bound (1.2) is
assumed to hold for all 0 < v < 1 as well. However, so far this has been shown for tiling domains
[21] and cartesian products with tiling domains [14] only. On the other hand, it follows from (1.2)
that a similar inequality holds for arbitrary domains and for all 0 < y < 1 with some probably
non-sharp excess factor on the r.h.s. [14]

,
(1.3) D A=N(Q)) < 2<YL> LhlOIAY*E, o<y <],
k

"For y = 0 this is simply the counting function of all eigenvalues A; (Q) < A.
1
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Here we are going to focus on the border-line case y = 1, in which the inequality (1.2) is equiva-
lent, via Legendre transformation, to the lower bound

4mtd

2
_ AT 13,
qp2 @2+

N
(1:4) > AQ) = CalOE NS, Gy
j=1
The above estimate was proved in [17] independently on [2] and it is known as the Li-Yau inequality.
Similarly as in the case of Berezin inequality, the constant C4 cannot be improved, since the right
hand side of (1.4) gives the leading term of the Weyl asymtotic formula, see (3.4) below.

However, the bounds (1.2) and (1.4) can be improved by adding to its right hand side reminder
term of a lower order in A or in N, respectively. Several results in this direction were obtained
recently both for the Berezin inequality [9, 23] (for v > %) and for the Li-Yau estimate [8, 20, 13,
25, 26]. In particular, Melas proved in [20] that there exists a positive constant M4 such that

N
2 2 Q] .
1.5 AN(Q) > CalQITa NG+ My —— N, [(Q) = J —al*d
(1.5) ;]()_ a 10 T+ Magrgy N 1(Q) = min | x—alax,
where My > m. Note that by the Legendre transform (1.5) is equivalent to
1.6 A= n(Q)s < 14 10] (A= Mg 2 v
(1.6) > (A=) < Ly lo] (A-Magas)

k

Alongside with the ordinary Dirichlet Laplacian we shall also consider its magnetic version H(A) =
(iV + A(x))? on L*(Q) generated by the closed quadratic form

(1.7) 1AV + A)ulltaq),  we Hy(Q),

where A is a real-valued vector potential satisfying mild regularity conditions. Moreover, the mag-
netic Sobolev norm on the bounded domain Q) is equivalent to the non-magnetic one and the operator
H(A) has discrete spectrum as well. We notate its eigenvalues by Ay = A (Q; A), repeating eigen-
values according to their multiplicities. Note that the magnetic Riesz means satisfy the very same
Weyl asymptotics (1.1).

From the pointwise diamagnetic inequality (see e.g. [18, Thm.7.21])

(1.8) ‘Vlu(x)l ‘ < ’(iV + A)u(x) ] a.e. xe€Q,

it follows that A7(Q; A) > A1(Q;0) = A1(Q). However, the estimate Aj(Q;A) > Aj(Q;0) = A;(Q)
fails in general if j > 2. Therefore, it is a priori not clear whether bounds similar to (1.2)-(1.5)
remain true when the eigenvalues A;()) are replaced by their magnetic counterparts A;(Q; A).

By now it has been shown that

o the sharp bound (1.2) holds true for arbitrary magnetic fields if y > % ([15]),

e the sharp bound (1.2) holds true for constant magnetic fields if y > 1 ([5]),

e in the dimension d = 2 the bound (1.3) holds true for constant magnetic fields if 0 <y < 1
and the constant on the r.h.s. of (1.3) cannot be improved ([7]) even in the class of constant
magnetic fields and tiling domains Q.

So far it is not known, whether the bound (1.2) holds true for arbitrary magnetic fields if 1 <y < %

For vy = 1 and constant magnetic field the magnetic version of (1.2) is again dual to the magnetic
version of the Li-Yau bound (1.4). Since (1.2) fails without excess factor for all y < 1, the case
v = 1 is the threshold case, in which the Berezin bound with the classical constant remains true.
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Therefore it is of a particular interest to study, whether either the magnetic Berezin bound for y = 1
or equivalently the magnetic Li-Yau bound admits any further improvement by lower order remainder
terms. It should be mentioned that the method of Melas cannot be applied in the presence of a
magnetic field.

The purpose of this paper is twofold. First, we establish an improved Li-Yau bound with an
additional term of the Melas order for magnetic Dirichlet Laplacians on planar domains Q C R?
with constant magnetic field. For this end we prove a different version of the Melas result (1.5) in
the non-magnetic case. We obtain a reminder term of the same order as in (1.5), but with a different
geometrical factor, see Theorem 3.1 and Corollary 3.2. Our proof is based on a new approach and, in
contrast to the classical Melas proof, extends to a lower bound for the magnetic eigenvalues A\, (Q; A)
as well, see Theorem 3.7 and Corollary 3.8.

Secondly, we will prove a Berezin inequality with a reminder term which is, with as well as
without a magnetic field, of a better order than the Berezin-type equivalent (1.6) of the Melas bound,
see Theorems 3.5 and 3.9.

2. Preliminaries
Given a set Q C RY we denote its volume by |Q|. Moreover, we denote by

2.1 d(x) = dist (x,0Q) = min |x —y|
yeoQ

the distance between a given x € () and the boundary of ), and by

Ri(Q) = sup 5(x)
xeQ

the in-radius of Q. Given [3 > O we introduce
Qp ={xe€Q:5(x) < B} p >0,
and define the quantity
Q
(2.2) o(Q):= inf M
0<PB<Ri(Q)
Note that o(Q) > 0 since the right hand side of (2.2) is a positive continuous function of (3 and
Q
lim inf M > 0.
B—0 [3
The quantity o(Q), which depends only on the geometry of QQ, will play an important role in the
sequel. Throughout the paper we will suppose that Q) satisfies the following condition:
Assumption 2.1. The domain QO C R is open bounded and such that

2.3) g JolVuP

-1
Jolr Q) >o.
werl(Q) [ Iu?/82 n (Q)

Note that ¢y, (Q)) is the best constant in the Hardy inequality

2
2.4) JQ 'g((;‘))L dx < ch(Q) L Vu()Pdx  YueHYQ).
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Remark 2.2. Assumption 2.1 is satisfied, for example, for all open bounded domains with Lipschitz
boundary, see [1]. It is know that for simply connected planar domains c,(Q) < 16, [1], and for
convex domains cy(Q) =4, see e.g. [3, 19],

3. Main results
3.1. Li-Yau inequalities for Dirichlet Laplacian.
Theorem 3.1. For any N € N we have

1 a?(Q)

6en(@) JQF

N
3.1) 3 A(Q) > CqlQI E N 4

For convex domains, in particular, we have

Corollary 3.2. Let Q C RY satisfy assumption 2.1 and suppose moreover that Q is convex. Then
for any N € N it holds
N
2 2
3.2 AN(Q) > CqlQIaNTa 4 ——
(32) ];]( ) > Cql0l G R0)
Remark 3.3. Let us compare the lower bound (3.2) with (1.5). Assume that a € R4 is such that
Q) = [ox— al? dx and let B(a, R) be the ball centered in a with radius R chosen such that
IB(a, R)| = |Q)]. Then it is easily seen that
d 2

33 I(Q) > I(B(a,R —— |Q|R“.
(3.3) ()_(M))d+ﬂ|
By using the fact that R > R;(Q) we thus obtain

1 S d Q]
R.Z(O_) —d+2I1(Q)
Hence, for convex Q, 1nequahty (3.2) implies (1.5) with M4 =
the lower bound M4 > >3 ZIEEm)) d ) obtained in [20].
On the other hand, for domains which are wide in one direction and thin in another the esti-
mate (3.2) is much sharper than (1.5) due to the fact that A;(Q) is proportional to Ri(Q)~2. In-
deed, consider for example the rectangle Q, = (0,e') x (0,¢) in RZ. Then as ¢ — 0 we find

1Q¢|/1(Q¢) ~ 3&?, while on the right hand side of (3.2) we have RIZ(QE) = ¢~ which is of the
same order of ¢ as the left hand side.

(d+2) For d > 3 this is better than

Remark 3.4. The reminder terms in both bounds (3.2) and (1.5) are not sharp in the order of N.
This follows from the refined Weyl asymptotic

mm

o N'""a(1+0(1)) N = oo,

N
(3.4) 3 N(Q) =CqlQI T N™E £ Kg ——
with a positive constant K4 depending only d. The asymptotic equation (3.4) was first proven by
Ivrii [11, 12] for smooth domains under an additional assumption on the set of all periodic geodesic
billiards in Q, see also [22]. Recently, (3.4) was extended to all domains with C o boundary (with
« > 0) by Frank and Geisinger [6].
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3.2. Berezin inequalities for Dirichlet Laplacian. We put 1 = u(Q) = +/cn(Q) and introduce

the constant

_2tp (4 + 4u)*zzﬁf.

K(Q):
We then have

Theorem 3.5. For any A > A\ (Q) it holds

Q)\F % a1
(3.5) Y (A-AQ) < LY I0IATE — L K(Q) o(Q) <G( )> AT
A (Q)<A

In particular, if Q) is convex, then

Lcl
(3.6) Y (A=N@) < L QIATE - A R(Q)F QI AT,
A (Q)<A

d 1
Remark 3.6. The order A2 " Z+& of the reminder term in (3.5) is larger than in (1.6) by additional
factor ZJTL Note also that 1 > 2 and that the second term in the Weyl asymptotics (1.1) is of the

a1
order A272.

3.3. Li-Yau inequalities for magnetic Dirichlet Laplacian. As already mentioned in the intro-
duction, our approach enables us to extend the bound (3.1) to the magnetic Dirichlet Laplacian. Let
B € R be a non-zero constant define vector potential A(x) = %(—sz, Bx1) so that curl A = B. We
then have

Theorem 3.7. Let d = 2. Then for any N € N it holds

N
27t N2 1 o?(Q)
3.7 A(Q;A) > N.
D 2NN =T Teqar T
Corollary 3.8. Let Q C R? be bounded and convex. Then
N
2mtN? N
3.8 A(ODA) > + .
e ; (A = g 64 R2(Q)
3.4. Berezin inequalities for magnetic Dirichlet Laplacian. As above we denote u = /c(Q).
Moreover, we put
~ 2+ 1 _243p
K(Q) := 242 250,
(Q) = Jg o 2 2w

With this notation we have
Theorem 3.9. Let Q C R? and let A = §(—Bxz, Bx1). Then for any A > A\ (Q; A) it holds

Q
(3.9) > A-AQA) < '8'

s
JA (BA)<A

a(Q))ﬁl stu

A2 —K(Q)o(Q) ( o Az



6 HYNEK KOVARIK AND TIMO WEIDL

In particular, if Q) is convex, then

|_Q_| /\5/4
.1 — A\ (Q; < — — .
(3.10) 2 ASNGA) < g (A - s
JA (A) <A

4. Proofs of the main results: Li-Yau inequalities
4.1. Dirichlet Laplacian. Given A > 0 we denote by
n(A) = card{A;(Q) : N(Q) <A}

the counting function. Let {u;}jen be the set of eigenfunctions of —Aq corresponding to the eigen-
values A;(Q)). We assume that the eigenfunctions are normalised in [%(Q) and denote by 1;(&) the
Fourier transform of u; extended by zero to RY;

(4.1) ﬁj(a)z(zn)—d/zj e 8 (x) dx.
Q
Then
> A-N@) = Y| (AR - VP = 3| (AP (R d
A (Q) <A j<n(A) 72 j<n(A) “R
— (A — 16 10;(8) dé
4.2) J (|a|2A)+R1(A,a)daJ (A—[EP)4 Ra(A, £) dE,
Rd Rd
where

RiAE) = Y IR RAE = ) Ig(E)A

i<n(A) i>n(A)
Since {1 }jen is an orthonormal basis of [%(Q)and ||e ¢ H%Z( Q) = |Q], the Parseval identity implies
(4.3) Ri(AE) + Ro(AE) =D I(E)F = (2m) Q] VEeRY
jeN
Note also that, by the Pythagoras theorem, we have
(4.4) Ra(AE) = (zm—dJ e 8 — (2m) /2 Z (&) wj(x)|* dx.
Q
]<n

Our aim is to estimate Ry(A.&) from below by a function of A, uniformly in &. Since |a — b2 >
%Ial2 — [bJ? for all a, b € C, from (4.4) it follows that for any f > 0

(4.5) Ry (A E) > (zn)dJ e e — (2m) /2 Z (& \ dx
Qp

j<n(A

1

> 5 (201051 - | |FA(a,x)|2dx,
Qp

where we used the shorthand

(4.6) FAlEx) = ) O(8) w(x).
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Since FA(&,-) € H(])(Q) for each A > 0 and each & € RY, the Hardy inequality (2.4) in combination
with (4.3) gives

2 2 IFA(E,x)I? o[ IFALEX)P?
JQB Falg,x)P dx < B JQB P ax < JQ A ax
<Ben(0) | VFAExIFdx=Brenl0) T M) 5(e)F
o j<n(A)

4.7) < B*Ach(Q) (2m) 4 Ql.
Hence in view of (4.5) and (4.7) we get

—d 1 |Q[3|
(48) RaA, &) > (21 (3 =5 ~ ABen(Q)|0]) B.
Now we choose

o(Q) -1

4.9 = AT
@2 Zen(0)[0)

where ¢, (Q) is the constant from the Hardy inequality (2.4). Note that the latter implies
1

(4.10) MO > —————.
ch(Q) RI(Q)
Using the definition of o(Q) we then find that for any A > A;(Q) it holds
U(Q) 1 1 -1 Rl(Q)
4.11 <— A Q) ——— A (O) < .
(1D b= raiaa MY = o MY =
From (2.2) it thus follows that with our choice of 3 we have
1Qpl
— > o(Q).
B
Inserting the above estimate together with (4.9) into (4.8) we obtain
1 a2(Q)

4.12 Ry(AE) > —— (2)7¢ AT
Proposition 4.1. For any A > A\ (Q) it holds

I_d O'Z(O_) d
4.1 A—N(Q)) < LS QA2 — ——1d A2

i (Q)<A
where
1

(4.14) Lt

L= 2dd2T(2 1 d/2)"
Proof. Since R1(A,§) > 0, equations (4.2) and (4.3) imply
> A-n@) < @otiol] (A-le)de- | (AP RaA E) dE
JA (Q)<A R4 R
The claim now follows by inserting the lower bound (4.12) and integrating with respect to &. W

Note that the right hand side of (4.13) is positive for all A > A;(Q) in view of inequality (4.10) and
o(Q) < [QI/Ri(Q).



8 HYNEK KOVARIK AND TIMO WEIDL

Proof of Theorem 3.1. From (4.13) it follows that

1 O‘Z(Q)>

. < cl ]+g _
D (A=A(Q) <LigIaIA 2<1 16¢,(Q) QP A

A (Q)<A

1 odQ)\'"?
~ Tech(Q) KM2A>

1 o)\
~ T6cn(Q) QP )
Since both sides of the above inequality are convex functions of A, we can apply the Legendre
transform. This yields (3.1). R

sHMQA”3@

=HMm<A

Convex domains.

Lemma 4.2. Let Q C RY be bounded and convex. Then

Q|
(4.15) o(Q) = .
Ri(Q)
Proof. Let us first prove the statement for domains with C' boundary. We are going to show that
[oxy
f(B) =—~
B

is a decreasing function of 3 on (0, R;(Q)). To this end let By € (0, R;(Q)) and consider the sets
Eo={xe€Q:058(x)>pRo}, and E{={xe€ Q\Ep: dist(x,Eq) <t}, t>0.

From the convexity of () it follows that 6 is concave and therefore E( is a compact convex set. Hence
by the Steiner formula, see e.g. [10], it holds

d
(4.16) B =) Kj(Eo) ¥,
j=0

where K;(Eo) are non-negative coefficients depending on the geometry of Eo. We claim that
“4.17) Ep,—p UEo = _O_E, 0 < B < Po,

where QE = O\ Qg is the complement of Qg in Q. Indeed, let y € 0Ey and denote by Ty the
half-line emanating from y perpendicularly to the tangent plane of dE, at y. Let zy € 0(Q) be given
by the intersection of 0Q) and 1. Since 6(y) = Bo we have

(4.18) dist(y, zy) = 8(y) = Po, y € 0ko.
Now let x € Qf. Then there exists an y(x) € 9k such that x € (). Hence
dist(y(x),x) = 8(y(x)) —dist(x, zy(x)) = Bo — dist(x, zy(x)) < Bo —8(x) < Bo — B.

This implies that Q‘é C Ep,—p U Eo. To prove the opposite inclusion, let x € (Eg,—p U Eo). By the
triangle inequality and (4.18)

o < dist(x, Eo) +8(x) < fo— B + 8(x),
which shows that x € QE. Therefore (4.17) holds true and consequently
4.19) |_O.(5| =|Q|— |Ef50*f5 U Epl.
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In view of (4.16) it follows that [Eg,_g U Eol is a convex function of 3. Hence |Qg| is a concave
function of 3 on (0, Bo), see (4.19), and since |Qy| = 0, we easily verify that f(3) = [Qg|/B is
decreasing on (0, Bo) for any By < Ri(Q) . This proves the statement of the Lemma for C' smooth
domains.

If 9Q is not C', then we approximate Q by a sequence of domains Q™ with C' smooth boundary
and such that the Hausdorf distance between QO and Q™ tends to zero as n — oo. Then

Since a pointwise limit of a sequence of decreasing functions is a decreasing function, we again
conclude that f(3) is decreasing. This completes the proof. |

Proof of Corollary 3.2. The claim follows from Theorem 3.1, Lemma 4.2 and the fact that for convex
domains ¢, (QQ) = 4 independently of Q, [3, 19]. B

4.2. Magnetic Dirichlet Laplacian. Let Py be the orthogonal projection onto the kth Landau level
B(2k — 1) of the Landau Hamiltonian with constant magnetic field B in L?(R?). Denote by Py (x,y)
the integral kernel of Py. Note that

(4.20) Pr(x,x) = ]

2
@21 | (] PP ax)ay=| J Pely,x )mdy) dx
=y

B
= —|( ! .
Zn' |
Let ¢; be the normalised eigenfunctions of Hq (A) corresponding to the eigenvalues A;(Q; A). Put

fiej(y) = JQ Pe(y, ) (x)dx,  y € B2,

Our goal is to establish an analog of Proposition 4.1 for magnetic Dirichlet Laplacians on planar
domains. Let A > 0. We have

Y AANGA) = Y (AlldillEg) — 10V + Al )

A (QA) <A A (QA) <A

= Y (Al — GV + Al )
A (Q3A) <A keN

= > D) (A=B2k—1)lfill{2 e, -

A (Q;A) <A keN
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In analogy with the procedure in the non-magnetic case we split

(4.22) Y A=NA) = ) ) (A=B2k—1)filltame

A (QA) <A A (QA) <A kEN

= Y D> (A=B2k—1)|fijlltame

JA (QA)<A KAS>B(2k—T1)

+ Y > (A=B2k—)Ifillt2 g2

N (QA)<A KA<B(2k—T1)

= ) (A=BZk—=1)) fijllt2me

k:A>B(2k—1) jeN
- ) (BZk—=T1)=A)Ri(AK)
kA<B(2k—1)
- ) (A=B2k—1)R(AK),
k:A>B(2k—1)
where
RiAK = Y Ifklitzeey,  RAK =3 Ifklizee-
I (QA)<A JN (QA) A

By Parseval’s identity and equation (4.21) it follows that for all A > 0 and all k € N we have

2
(4.23) D Ifilltae) = RilAK) + Ra(A k) = J ZJ Pi(y, x)dj(x)dx | dy
jeN R? Hien Y0

B
_ P 2 _ Ql.
= JRZ J | k(y) X)| dXdy 27.[| |

Let
(4.24) Ay A = > figly) §(x).
I (A <A
We now use identities (4.20)-(4.21) to find that, similarly as in section 4, for any 3 < Ri(Q) it holds
2
429 R = (] Pixul - kAl ax) ay
r2 \JQ

1
zJ J |Pk(x,y)|2dxdy—j J Qi v AP dx dy
rR2JO, Rz JO,

B
20— | | ik AR axay.
T R2 JQg

Since Qx(-,y;A) € Hé(Q) for all k € N,y € R? and A > 0, the Hardy inequality (2.4) in
combination with (1.8) yield

JQ Qulx AN dx < 7 |
B

QBN g gz [ QR R o,
Qp

5% (x) o 2(x)
< B?en(Q) JQ I(iVy + A) Qi(x, y; A)J? dx

=B7cn(Q) D IfUIPN(A) < BPen( @A Y Ifiiy)

JA (A <A JA (A <A
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By inserting the above estimate into (4.25) and using (4.23) again we obtain

B 2 2
Ra(AK) = 2 Qg = Bren(QIA D i ltaee)
JA (QA)<A
B

>
— 47

('Qst' —~2B Acn(Q)10]) B.

Note that in view of (1.8) we have
(4.20) AM(Q;A) > A (Q).

Hence choosing 3 as in (4.9) and following the reasoning in (4.11) we conclude that f < R;(Q)/4

and therefore % > o(Q). This implies

B o?(Q) ,
42 Ry(A k) > A keN.
(4.27) 2K = ) T VkeN

Proposition 4.3. Let d = 2. For any A > A\ (Q; A) it holds

2
(4.28) Y A-a@ay < Do 1 ol0)

— A.
ir (<A 87 128 ten(QQ) Q)
A (O

Proof. Put M = [%—i—%] and m = {%—i—%}andthusM—i—m: %—F%.Then
5 A
> (A-B(2k—1))=MA—-BM?=BM 5 M
kA>B(2k—1)

_p(AL1 AT,
Pl ™)\ 2™

(E-4)

Since Ry (A, k) > 0, the above identity together with (4.22) and (4.23) implies

Ql ., 1 o?(Q)
A—AM(Q;A)) < S2 A2 A
j')\‘(fék/\ ( it ) 8 128cr(Q) 7t Q)]
A (O
1 2 /10 1 2(Q)
g2(l Q-
B (2 m) (271 32men(Q) IQl/\)'

The last term on the right hand side of the last inequality is negative since Acp(Q) >
AM(Q)en(Q) > R;Z(Q), by (2.4) and (4.26), and o(Q) < |Q|/Ri(Q). The claim now follows.
|

Proof of Theorem 3.7. Inequality (3.7) now follows from Proposition 4.3 by the Legendre transfor-
mation in the same as in the case of the Dirichlet Laplacian. |

Corollary 3.8 is a consequence of Theorem 3.7 and Lemma 4.2.
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5. Proofs of the main results: Berezin inequalities

The order of the reminder term in (4.28) can further be improved applying a straightforward gener-
alization of a result by Davies, [4]. We are grateful to Rupert Frank who pointed this fact out to us.
The proof relies on the following result.

Proposition 5.1. Ler Q C RY be an open bounded set. Let A € C(Q,R?) and let H(A) be the
associated magnetic Dirichlet Lalpacian in L2(Q). Assume that the Hardy inequality

2
S.h J iVu 4 Auf? dx > C_ZJ %dx, ue CPQ),
Q fe) S
holds for some ¢ > 2. Then for every 5 > 0,
(5:2) L u dx < 2B IH(A) | [H(A)ou]
B

for any W in the operator domain of H(A).

Proposition 5.1 was proved in [4] for the case A = 0. However, a detailed inspection of the proof of
[4, Thm. 4] shows that the same method applies also to the magnetic Dirichlet Laplacian.

5.1. Dirichlet Laplacian.

Proof of Theorem 3.5. Consider the function Fa (&, x) given by (4.6). Since F (£, ) belongs to the
operator domain of —A, we can apply Proposition 5.1 with A = 0 and ¢ = u = /cp(Q). This
yields

| Faenpaxswpd | X voge] | T @@
8 j<n(A) j<n(A)

1/2 1/2

— Wp)E Y Q) ()P 3 AR Q) y(E)P

ji<n(A) j<n(A)

2 1
< (up)e AT 2m) Y0,

TN

where we have taken into account (4.3). This together with (4.5) implies the bound

(-3) Ra(A, &) > (2m) ¢ (?{3[3' _/\]+:*f3]+f‘liz+i0|> 6.
We now put
S = Lt (SO

K Q]

Since 1 > 2, 0(Q)/1Q| < Ri(Q)7", by definition, and A > A1(Q) > u?Ri(Q) 72, by (2.4), it is
easily seen that the right hand side of (5.4) is less than Ri(Q)). Hence |Qg|/B > o(Q) for B given
by (5.4). By using this bound in (5.3) and inserting there (5.4) we find that

o(Q) > [ e
+u
1Q
In view of (4.2) this proves (3.5). Inequality (3.6) then follows from Lemma 4.2. &

Ro(A &) > (274 K(Q) o(Q) (
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5.2. Magnetic Dirichlet Laplacian.

Proof of Theorem 3.9. Let us fix k € Nand y € R?. Since Qy(-,y;/A) belongs to the domain of
H(A) for any A > 0, see (4.24), we can apply inequality (5.2), with c = u = /ch(Q), to the
function u = Qy/(,y; A). This yields

2 1 2 1 B
| IQuixyiARar < (™ EATE S iR < AT S a,
Qp JA (A <A
where we have also used (4.23). From (4.25) we thus obtain the estimate
Qg _
26
Inserting (5.4) into the right hand side together with the estimate [Qg|/B > o(Q) then gives

B 2 2 1
RaAK) = — (520 — whip!t i AlTujal) .
T

o(Q) ) T _liw
24p
Q]

We now follow the arguments of the proof of Proposition 4.3 with the lower bound (4.27) replaced
by (5.5) and arrive at (3.9). The upper bound (3.10) then follows again by Lemma 4.2. &

(5.5) Ra(AK) = BK(Q) () (
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