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Abstract

We study the Γ-convergence of the power-law functionals

Fp(V ) =
(∫

Ω

fp(x, V (x))dx
)1/p

,

as p tends to +∞, in the setting of constant-rank operator A. We show that the Γ-limit is given by a
supremal functional on L∞(Ω;Md×N ) ∩KerA where Md×N is the space of d×N real matrices. We
give an explicit representation formula for the supremand function. We provide some examples and
as application of the Γ-convergence results we characterize the strength set in the context of electrical
resistivity.
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1 Introduction

In this paper we study the asymptotic behaviour of family of integral functionals of the form

Fp(V ) =
(∫

Ω

fp(x, V (x))dx
)1/p

(1.1)

1



where Ω ⊂ RN is a bounded open set, f : Ω ×Md×N 7→ [0,∞) is a Carathéodory function and V ∈
L∞(Ω;Md×N ) is constrained to satisfy a system of first order linear partial differential equations:

AV :=

N∑
i=1

A(i) ∂V

∂xi
= 0. (1.2)

Here A(i) : Md×N → Rl are linear transformations for every i = 1, · · · , N and the operator A satisfies the
so-called constant-rank property (see [21]).

This type of constraint arise naturally in the setting of continuum mechanics and electromagnestism:
for example,

(a) in the case of solenoidal fields (divergence free fields) which are relevant to treat extreme resistivity:
here

AV = 0 if and only if Div V = 0

where V : Ω→Md×N ;

(b) in the context of effective conductivity (curl free fields) where

AV = 0 if and only if curlV = 0;

(c) in the micromagnetics literature where the constraints are given by Maxwell’s equations;

(d) in the case of higher gradients

(for further details see [18] Section 3).
In [18] Fonseca and Müller study the necessary and sufficient conditions for the (sequential) lower

semicontinuity of integral functionals of the form

I(U, V ) =

∫
Ω

f(x, U(x), V (x))dx (1.3)

when Un → U in measure, Vn ⇀ V weakly in Lp(Ω,Md×N ) (weakly* if p = +∞) and AVn → 0 in
W−1,p(Ω) (AVn = 0 if p = +∞). In this framework they generalize the classical notion of quasiconvexity
(see for example [2], [15]) and prove that a necessary and sufficient condition for the lower semicontinuity
is A-quasiconvexity of f(x, U, ·). We recall that a function f : Md×N → R is A-quasiconvex if

f(Σ) ≤
∫
Q

f(Σ + V (x)) dx

for every V ∈ C∞(RN ;Md×N ) such that V is Q-periodic, AV = 0 and
∫
Q
V dx = 0. Note that if A = curl

then A-quasiconvexity coincides with the well-known notion of quasiconvexity due to Morrey in the case
of the gradients.

So far the asymptotic behaviour of the family (Fp) has been studied in the curl-free case. In [20]
Garroni, Nesi and Ponsiglione study the macroscopic behavior of two phases composite materials for the
first failure dielectric breakdown. They consider the family of the power-law functionals Fp : L1(Ω) →
[0,+∞] given by

Fp(v) :=


(∫

Ω

|λ(x)Dv|p dx
)1/p

if v ∈W 1,p(Ω),

+∞ otherwise

with λ(x) piecewise-constant function (whose constant values represent the two phases) and prove that
(Fp) Γ-converges with respect to the L1-strong topology, as p→∞, to the so called supremal functional

F (v) :=

{
ess sup
x∈Ω

|λ(x)Dv| if v ∈W 1,∞(Ω),

+∞ otherwise.
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In [14] Champion, De Pascale and Prinari consider Fp : C(Ω,Rd)→ [0,∞] of the form

Fp(v) :=


(∫

Ω

fp(x,Dv(x))dx

)1/p

if v ∈W 1,p(Ω;Rd),

+∞ otherwise

where the function f satisfies a linear growth condition and the following generalized Jensen inequality:
for every x ∈ Ω

f

(
x,

∫
Md×N

Σdνx(Σ)

)
≤ νx- ess sup

Σ∈Md×N
f(x,Σ) (1.4)

whenever (νx)x∈Ω is a W 1,p-gradient Young measure for all p ∈ (1,∞). They prove that (Fp) Γ-converges
with respect to the uniform convergence, as p→∞, to the functional

F (v) :=

{
ess sup
x∈Ω

f(x,Dv(x)) if v ∈W 1,∞(Ω;Rd),

+∞ otherwise.
(1.5)

Notice that inequality (1.4) is satisfied, in particular, by the functions that are level convex in the second
variable. We recall that a function f : Md×N → R is level convex if

f(λΣ1 + (1− λ)Σ2) ≤ f(Σ1) ∨ f(Σ2)

for every Σ1,Σ2 ∈ Md×N and λ ∈ [0, 1]. In [24] Prinari removes the hypotheses (1.4) in the scalar case
d = 1 and shows that (Fp) Γ-converges to the functional F̃ given by

F̃ (v) :=

{
ess sup
x∈Ω

f lc(x,Du(x)) if v ∈W 1,∞(Ω),

+∞ otherwise

where f lc(x, ·) is the greatest level convex function less or equal to f(x, ·).
In [9] Bocea and Nesi study the Lp-approximation in the more general framework of A-quasiconvexity.

More precisely, they consider the power-law functionals Fp : L1(Ω;Md×N )→ [0,+∞] defined by

Fp(V ) :=


(∫

Ω

fp(x, V (x))dx

)1/p

if V ∈ Lp(Ω;Md×N ) ∩KerA,

+∞ otherwise,

(1.6)

and, under the assumption that f(x, ·) is A-quasiconvex and satisfies standard growth conditions, they
prove a liminf inequality with respect to the weak convergence in L1 and in particular they show that
(Fp) Γ-converges, with respect to the L1-strong topology as p→∞, to the supremal functional

F (V ) :=

{
ess sup
x∈Ω

f(x, V (x)) if V ∈ L∞(Ω;Md×N ) ∩KerA,

+∞ otherwise.
(1.7)

However in the context of supremal functionals the A-quasiconvexity is too restrictive since it is
not necessary for the lower semicontinuity. For example, if A = curl , under suitable assumptions on
f with respect to the variable x, in [8] Barron, Jensen and Wang prove that a supremal functional is
weakly* lower semicontinuous on W 1,∞(Ω,Rd) if and only if f(x, ·) is (strong) Morrey quasiconvex (see
[8] Definition 2.1). We note that the curl -quasiconvexity, since it is equivalent to the quasiconvexity,
only implies the Morrey quasiconvexity. In fact, if d = 1 or N = 1, we have that the curl -quasiconvexity
coincides with the convexity while the Morrey quasiconvexity is equivalent only to the level convexity.

In this paper we generalize both results proved in [14] and [9] assuming milder assumption on f . More
precisely, in Theorem 4.2 we consider the family Fp : L∞(Ω;Md×N )→ [0,+∞] given by

Fp(V ) :=


(∫

Ω

fp(x, V (x))dx

)1/p

if V ∈ L∞(Ω;Md×N ) ∩KerA,

+∞ otherwise,

(1.8)
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and we prove that, for any Carathéodory function f satisfying linear growth condition, (Fp) Γ-converges,
with respect to the L∞-weak∗ topology as p→∞, to the functional

F̃ (V ) :=

{
ess sup
x∈Ω

f̃(x, V (x)) if V ∈ L∞(Ω;Md×N ) ∩KerA,

+∞ otherwise.
(1.9)

In order to give an explicit formula of the supremand function f̃ we define the class of A-∞ quasiconvex
functions. We say that a function f : Md×N 7→ [0,+∞) is A-∞ quasiconvex if for every Σ ∈Md×N

f(Σ) = lim
p→∞

inf
{(∫

Q

fp(Σ + V (x))dx
)1/p

: V ∈ L∞# (Q;Md×N ) ∩KerA,
∫
Q

V dx = 0
}

where
L∞# (Q;Md×N ) = {V ∈ L∞loc(RN ;Md×N ) : V is Q-periodic} .

We show that the function f̃ coincides with the A-∞ quasiconvex envelope of f , that is, the greatest
A-∞ quasiconvex function below f . In particular, by Theorem 4.2 we have that the A-∞ quasiconvexity
is sufficient for the Lp-approximation of a supremal functional with respect to the L∞- weak* topology. If
f does not depend explicitly on x, in Theorem 4.4 we prove that the A-∞ quasiconvexity is also necessary.

In general A-quasiconvex functions are A-∞-quasiconvex while the viceversa is not true (see Example
5.5). Therefore, in Theorem 4.1 we generalize the results obtained in [9] since we consider the same family
of functionals (Fp) as in (1.6) with f(x, ·) A-∞ quasiconvex and satisfying standard growth conditions.
Under these assumptions we prove that (Fp) Γ-converges, with respect to the L1-strong topology as
p→∞, to F as in (1.7).

Since the Γ-limit is always a lower semicontinuous functional (see Section 2.1), by Theorem 4.2 we
can also conclude, under linear growth condition, that the notion of A-∞ quasiconvexity provides a
sufficient condition for the lower semicontinuity of the supremal functionals under differential constraint.
In particular, the curl -∞ quasiconvex functions are a subclass of (strong) Morrey quasiconvex functions.
Moreover, in the Example 5.9 we show that such inclusion is strict. In a forthcoming paper [4] we
perform a deeper analysis in order to find necessary and sufficient conditions for the lower semicontinuity
of supremal functional of the form (1.7).

In Section 6 we apply the results obtained to characterize via Γ-convergence the effective strength set
Keff in the context of electrical resistivity defined by

Keff := {σ̄ :=

∫
Ω

σ(x) dx : σ(x) ∈ K(x) a.e. x ∈ Ω, div σ = 0}

where σ : Ω 7→ RN is the current and

K(x) = {ξ ∈ RN : f(x, ξ) ≤ 1} .

In the context of (first failure) models of dielectric breakdown for composite made of two isotropic phases
considered by Garroni, Nesi and Ponsiglione [20], the constraint σ(x) ∈ K(x) is replaced by the condition
that ∇u ∈ K(x) where ∇u is the electric field and f(x, ξ) = λ(x)|ξ| with λ(x) piecewise-constant function
(whose constant values represent the two phases). Such a model is concerned with electrical conductivity
and therefore the relevant fields are curl free. Here we want to model electrical resistivity then the right
differential constraint is the divergence. We recall that in the context of plasticity the set K(x) is called
the yield set.

In [9] Bocea and Nesi characterize the set Keff under the assumptions that f is a Carathéodory
function, div -quasiconvex in the second variable and satisfying growth conditions (see Proposition 6.1
and 6.2 in [9]). Note that in their case, since d = 1, the div -quasiconvexity reduces to the convexity.
In this paper we characterize the set Keff under more general hypotheses; i.e., we assume that f is a
Carathéodory function, div -∞ quasiconvex in the second variable and satisfying a growth condition from
below. This is, in particular, equivalent to suppose that f is level convex in the second variable (see
Proposition 5.4).
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2 Notation and preliminaries

Let Ω be a bounded open subset of RN . We denote by O(Ω) the family of open subsets of Ω. We write
LN (E) for the Lebesgue measure of E ⊂ RN . Let Σ ∈ Md×N , where Md×N stands for the space of

d×N real matrices, with a slight abuse of notation, we denote |Σ| =
∑d
i=1 |Σi|, where Σi is the ith row

of Σ and |Σi| its Euclidean norm. We use ξi also to denote the ith component of a vector ξ. Finally, if
V : Ω→Md×N we define Div V : Ω 7→ Rd such that

(Div V )i = divVi

for every i = 1, · · · , d. Here, and in what follows, A is a constant-rank, first order linear partial differential
operator defined on the space Lp(Ω,Md×N ), 1 < p ≤ ∞, by the formula

AV :=

N∑
i=1

A(i) ∂V

∂xi
(∈W−1,p(Ω;Rl))

where A(i) : Md×N → Rl are linear transformations for every i = 1, · · · , N . We recall that A satisfies the
constant-rank property if there exists r ∈ N such that

rank Aw = r for all w ∈ SN−1

where

Aw =

N∑
i=1

A(i)wi, w ∈ RN .

We define
Lp#(Q;Md×N ) := {V ∈ Lploc(RN ;Md×N ) : V is Q-periodic} ,

for every 1 < p ≤ +∞, where Q denotes the unit cube in RN . Similarly, we denote by C∞# the C∞-
functions that are Q-periodic.

2.1 Γ-convergence

We recall the sequential characterization of the Γ-limit when X is a metric space and when X is the dual
of a separable Banach space that we will use in the sequel.

Proposition 2.1 ([16] Proposition 8.1) Let X be a metric space and let ϕn : X → R ∪ {±∞} for
every n ∈ N. Then (ϕn) Γ-converges to ϕ with respect to the strong topology of X (and we write
Γ(X)- limn→∞ ϕn = ϕ) if and only if

(i) for every x ∈ X and for every sequence (xn) converging to x, it is

ϕ(x) ≤ lim inf
n→∞

ϕn(xn);

(ii) for every x ∈ X there exists a sequence (xn) converging to x ∈ X such that

ϕ(x) = lim
n→∞

ϕn(xn).

We recall that the Γ- limn→∞ ϕn is lower semicontinuous on X (see [16] Proposition 6.8).

Proposition 2.2 Let X be the dual of a separable Banach space and let X be endowed with its weak*
topology. Let ϕn : X → R ∪ {±∞} for every n ∈ N. Assume that there exists Φ : X → R ∪ {±∞} such
that:

lim
‖x‖X→+∞

Φ(x) = +∞,

and ϕn ≥ Φ for every n ∈ N. Then (ϕn) Γ-converges to ϕ with respect to the weak* topology of X (and
we write Γ(w∗-X)- limn→∞ ϕn = ϕ) if and only if
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(i) for every x ∈ X and for every sequence (xn) converging weakly∗ to x ∈ X, it is

ϕ(x) ≤ lim inf
n→∞

ϕn(xn);

(ii) for every x ∈ X there exists a sequence (xn) converging weakly∗ to x ∈ X such that

ϕ(x) = lim
n→∞

ϕn(xn).

The proof of Proposition 2.2 easily follows the one of Proposition 8.10 in [16] with X endowed with its
weak* topology.

Finally we recall also that the function ϕ = Γ(w∗-X)- limn→∞ ϕn is weakly* lower semicontinuous
on X (see [16] Proposition 6.8) and when ϕn = ψ ∀n ∈ N then ϕ coincides with the weakly* lower
semicontinuous (l.s.c.) envelope of ψ, i.e.

ϕ(x) = sup
{
h(x) : ∀h : X → R ∪ {±∞} w∗ l.s.c., h ≤ ψ on X

}
(2.10)

(see Remark 4.5 in [16]).
We will say that a family (ϕp) Γ-converges to ϕ, with respect to the topology considered on X as

p→∞, if (ϕpn) Γ-converges to ϕ for all sequences (pn) of positive numbers converging to ∞ as n→∞.

Finally we state the fundamental theorem of Γ-convergence.

Theorem 2.3 Let (ϕn) be an equi-coercive sequence Γ-converging on X to the function ϕ with respect
to the topology of X. Then we have the convergence of minima

min
X

ϕ = lim
n→∞

inf
X
ϕn.

Moreover we have also the convergence of minimizers: if (xn) is such that limn→∞ ϕn(xn) = limn→∞ infX ϕn
then, up to subsequences, (xn)→ x and x is a minimizer for ϕ.

For a comprehensive study of Γ-convergence we refer to the book of Dal Maso [16] (for a simplified
introduction see [11]), while a detailed analysis of some of its applications to homogenization theory can
be found in [12].

2.2 A-quasiconvexity

In this section we recall the notion of A-quasiconvexity and some related results that we will use in the
sequel.

Definition 2.4 Let f : Md×N 7→ R be a function. We say that f is A-quasiconvex if

f(Σ) ≤
∫
Q

f(Σ + V (x)) dx

for every V ∈ C∞(RN ;Md×N ) such that V is Q-periodic, AV = 0 and

∫
Q

V dx = 0.

In the next theorem we collect the results proved by Fonseca and Müller in [18] concerning the lower
semicontinuity of integral functionals of the form

F (V ) =

∫
Ω

f(x, V (x))dx (2.11)

in the context of the constant-rank operator A.

Theorem 2.5 ([18] Theorems 3.6 - 3.7) Let 1 ≤ p ≤ +∞ and suppose that f : Ω ×Md×N 7→ [0,∞)
is a Carathéodory function. Let F : Lp(Ω;Md×N )→ [0,∞) be the functional given by (2.11).
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1. (sufficiency) Assume that Σ 7→ f(x,Σ) is A-quasiconvex for a.e. x ∈ Ω. If 1 ≤ p < +∞, then
assume further that there exists a constant β > 0 such that

0 ≤ f(x,Σ) ≤ β(1 + |Σ|p)

for every Σ ∈Md×N and a.e. x ∈ Ω. Then

F (V ) ≤ lim inf
n→∞

F (Vn)

for every Vn ⇀ V weakly in Lp(Ω;Md×N ) (weakly* if p = +∞) and AVn → 0 in W−1,p(Ω;Rl)
(AVn = 0 if p = +∞).

2. (necessity) Assume that (f(·, Vn(·))) is equi-integrable whenever (Vn) is a sequence bounded in
L∞(Ω;Md×N ). If

F (V ) ≤ lim inf
n→∞

F (Vn)

for every (Vn) ∈ C∞(Ω̄;Md×N ) such that Vn ⇀ V weakly* in L∞(Ω̄;Md×N ) and AVn = 0 then
f(x, ·) is A-quasiconvex for a.e. x ∈ Ω.

In [13] Braides, Fonseca, and Leoni provide an integral representation formula for the relaxed energy
of an integral functional of the form (2.11) in the case p = +∞.

Theorem 2.6 ([13] Theorem 3.6) Let f : Ω ×Md×N 7→ [0,∞) be a Carathéodory function such that
f ∈ L∞loc(Ω ×Md×N ; [0,∞)). Let F : L∞(Ω;Md×N ) ∩ KerA → [0,∞) be the functional given by (2.11)
and let F : L∞(Ω;Md×N ) ∩KerA → [0,∞) be defined by

F(V ) := inf
{

lim inf
n→∞

F (Vn) : Vn ∈ L∞(Ω;Md×N ) ∩KerA , Vn ⇀ V weakly* in L∞(Ω;Md×N )
}
.

(2.12)
Then we have

F(V ) =

∫
Ω

QAf(x, V (x)) dx,

for every V ∈ L∞(Ω;Md×N ) ∩KerA, where QAf(x, ·) is the A-quasiconvexification of f(x, ·), namely

QAf(x,Σ) := inf
{∫

Q

f(x,Σ + V (y)) dy : V ∈ C∞# (Q;Md×N ) ∩KerA ,
∫
Q

V (y) dy = 0
}
. (2.13)

Remark 2.7 1. If f(x, ·) is upper semicontinuous for a.e. x ∈ Ω then QAf is A-quasiconvex (see [18]
Proposition 3.4.)

2. If f(x, ·) is upper semicontinuous and locally bounded from above, then, applying Fatou’s lemma,
it is easy to show that in the definition of A-quasiconvexity and of A-quasiconvexification the
set of functions C∞(RN ;Md×N ) may be replaced by L∞(RN ;Md×N ). If, in addition, |f(x,Σ)| ≤
β(1 + |Σ|p) for some β > 0, for every Σ ∈ Md×N and for a.e. x ∈ Ω, then C∞(RN ;Md×N ) may be
replaced by Lp(RN ;Md×N ) (see [18] Remark 3.3(ii)).

3. If f satisfies also a coercivity condition then by Proposition 2.2 we have that F , given by (2.12), is the
Γ(w∗-L∞)-limit of the sequence Fn ≡ F , ∀n, and coincides with the weakly* lower semicontinuous
envelope of F .

2.3 Young measures

In this section we recall briefly some results on the theory of Young measures (see e.g. [5], [10], [29]). If
D is an open set (not necessarily bounded), we denote by Cc(D;Rk) the set of continuous functions with
compact support in D, endowed with the supremum norm. The dual of the closure of Cc(D;Rk) may be
identified with the set of Rk-valued Radon measures with finite mass M(D;Rk), through the duality

〈µ, ϕ〉 :=

∫
D

ϕ(y) dµ(y) , µ ∈M(D;Rk) , ϕ ∈ Cc(D;Rk) .

A map µ : Ω 7→ M(D;Rk) is said to be weak∗-measurable if x 7→ 〈µx, ϕ〉 are measurable for all ϕ ∈
Cc(D;Rk).
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Definition 2.8 Let (zn) be a bounded sequence in L1(Ω). We say that (zn) is equi-integrable if for all
ε > 0 there exists δ > 0 such that for every measurable E ⊂ Ω if LN (E) < δ then

sup
n

∫
E

|zn(x)| dx < ε .

We say that (zn) is p-equi-integrable if (|zn|p) is equi-integrable.

Theorem 2.9 (Fundamental Theorem on Young Measures) Let Ω ⊂ RN be a measurable set of finite
measure and let (Vn) be a sequence of measurable functions, Vn : Ω 7→ Md×N . Then there exists a
subsequence (Vnk) and a weak∗ measurable map µ : Ω 7→ M(Md×N ) such that the following hold:

1. µx ≥ 0, ‖µx‖M(Md×N ) =

∫
Md×N

dµx ≤ 1 for a.e. x ∈ Ω;

2. if K ⊂Md×N is a compact subset and dist (Vnk ,K)→ 0 in measure, then

suppµx ⊂ K for a.e. x ∈ Ω ;

3. ‖µx‖M(Md×N ) = 1 for a.e. x ∈ Ω if and only if

lim
M→∞

sup
k
LN ({|Vnk | ≥M}) = 0 ;

4. if (3) holds then in (2) we may replace “if” with “if and only if”;

5. if f : Ω ×Md×N 7→ R is a Borel function bounded from below and f(x, ·) is lower semicontinuous
for a.e. x ∈ Ω, then

lim inf
k→∞

∫
Ω

f(x, Vnk(x)) dx ≥
∫

Ω

f̄(x) dx ,

where

f̄(x) := 〈µx, f(x, ·)〉 =

∫
Md×N

f(x, y) dµx(y) ;

6. if (3) holds and if f : Ω×Md×N 7→ R is Carathéodory and bounded from below, then

lim
k→∞

∫
Ω

f(x, Vnk(x)) dx =

∫
Ω

f̄(x) dx < +∞

if and only if (f(·, Vhk(·))) is equi-integrable. In this case

f(·, Vnk(·)) ⇀ f̄ weakly in L1(Ω) .

The map µ : Ω 7→ M(Md×N ) as in Theorem 2.9 is called Young measure generated by the sequence
(Vnk).

Remark 2.10 1. We recall that if (Vn) is a bounded sequence in L1(Ω;Md×N ) and there exists a
continuous function g : [0; +∞)→ [0; +∞) such that

lim
t→+∞

g(t)

t
= +∞ and sup

n

∫
Ω

g(|Vn(x)|) dx < +∞

then the sequence (Vn) is equi-integrable.

2. By Dunford-Pettits Theorem, if (Vn) is bounded in Lq(Ω;Md×N ) for some 1 ≤ q < +∞, then
(f(Vn)) is equi-integrable whenever f : Md×N → [0,+∞) is a continuous function such that

lim
|Σ|→∞

f(Σ)

|Σ|q
= 0. In particular, if f is a continuous function such that |f(Σ)| ≤ β(|Σ| + 1), then

lim
|Σ|→∞

fp(Σ)

|Σ|q
= 0 for every q > p; hence, for every (Vn) bounded in L∞(Ω;Md×N ) we have that

(fp(Vn)) is equi-integrable for every p.

8



3. As a consequence of Theorem 2.9 (6), if (Vn) is equi-integrable then taking f ≡ id we obtain

Vnk ⇀ V̄ weakly in L1(Ω) , V̄ (x) := 〈µx, id〉 .

(See [18] Remark 2.3 (ii)).

Definition 2.11 Let µ be a Young measure. Then µ is said to be homogeneous if there is a Radon
measure µ0 ∈M(Md×N ) such that µx = µ0 for a.e. x ∈ E.

We conclude this section by recalling the following proposition which will represent an important tool to
prove the Lp-approximation Theorems 4.1.

Proposition 2.12 ([18] Proposition 3.8) Let 1 ≤ p <∞ and let (Vn) be a p-equi-integrable sequence
in Lp(Ω;Md×N ) such that AVn → 0 in W−1,p(Ω) if 1 < p < ∞, AVn → 0 in W−1,r(Ω) for some
r ∈ (1, N

N−1 ) if p = 1, and (Vn) generates a Young measure µ. Let Vn ⇀ V weakly in Lp(Ω;Md×N ).

Then for a.e. x0 ∈ Ω there exists a sequence (W̄n) ⊂ Lp#(Q;Md×N ) ∩ KerA that is p-equi-integrable,
generates the homogeneous Young measure µx0

and satisfies∫
Q

W̄n(y)dy = V (x0) .

In particular for a.e. x0 ∈ Ω
f(V (x0)) ≤ 〈µx0

, f〉

for every continuous A-quasiconvex function f such that

|f(Σ)| ≤ β(1 + |Σ|p) (2.14)

for some β > 0 and for all Σ ∈Md×N .

3 New sets of functions

In order to study the asymptotic behavior of the power-law functionals

Fp(V ) :=

(∫
Ω

fp(x, V (x))dx

)1/p

, V ∈ Lp(Ω;Md×N ) ∩KerA

we introduce the classes of A-weak and A-∞ quasiconvex functions. In this section we analyse the main
properties and their mutual connections.

3.1 A-weak and A-∞ quasiconvex functions

We start introducing the notion of A-weak quasiconvexity. It seems the natural definition in the context
of supremal functionals compared with the notion of A-quasiconvexity (see Definition 2.4). However, we
will see that the A-weak quasiconvexity does not play the same role that the A-quasiconvexity plays in
the context of integral functionals.

Definition 3.1 We say that a Borel function f : Md×N 7→ R is A-weak quasiconvex if for all Σ ∈
Md×N

f(Σ) ≤ ess sup
x∈Q

f(Σ + V (x))

for every V ∈ L∞# (Q;Md×N ) ∩KerA with
∫
Q
V dx = 0.

Remark 3.2 1. Note that, by Remark 2.7(2), we have that every A-quasiconvex function (upper
semicontinuous and locally bounded from above) is A-weak quasiconvex.

9



2. If f is curl -weak quasiconvex then f is weak Morrey quasiconvex; i.e.,

f(Σ) = inf
{

ess sup
x∈Q

f(Σ +Dϕ) : ϕ ∈W 1,∞
0 (Q;Rd)

}
,

for all Σ ∈Md×N .

The weak Morrey quasiconvexity, introduced by Barron, Jensen, Wang in [8], is necessary for the
lower semicontinuity of a supremal functional defined on W 1,∞(Ω;Rd). In the scalar case; i.e., d = 1 or
N = 1, such condition is also sufficient and it coincides with the notion of level convexity. We recall that
f : Rk → R is level convex if for every t ∈ R the level set

{
ξ ∈ Rk: f(ξ) ≤ t

}
is convex. It is an open

problem to determine if the weak Morrey quasiconvexity is sufficient also in the vectorial case.
Since the aim of this paper is to prove that under suitable conditions on f the family (Fp) approximates

via Γ-convergence a supremal functional (which is lower semicontinuous being a Γ-limit) we deduce that
the A-weak quasiconvexity may not be the right notion for f . Therefore we introduce the class of A-∞
quasiconvex functions.

Definition 3.3 We say that a Borel function f : Md×N 7→ [0,+∞) is A-∞ quasiconvex if for every
Σ ∈Md×N

f(Σ) = lim
p→∞

inf
{(∫

Q

fp(Σ + V (x))dx
)1/p

: V ∈ L∞# (Q;Md×N ) ∩KerA,
∫
Q

V dx = 0
}
. (3.15)

In the sequel we will denote by

fp(Σ) := inf
{(∫

Q

fp(Σ + V (x))dx
)1/p

: V ∈ L∞# (Q;Md×N ) ∩KerA,
∫
Q

V dx = 0
}
. (3.16)

Remark 3.4 Let f be an upper semicontinuous function. By Remark 2.7(2), if f satisfies also the
growth conditions |f(Σ)| ≤ β(1+ |Σ|) then we may replace the space L∞ with Lp in (3.15); i.e., f is A-∞
quasiconvex if for every Σ ∈Md×N

f(Σ) = lim
p→∞

inf
{(∫

Q

fp(Σ + V (x))dx
)1/p

: V ∈ Lp#(Q;Md×N ) ∩KerA,
∫
Q

V dx = 0
}
.

In the next Proposition 3.6 we study the connections between level convex, A-quasiconvex, A-weak
quasiconvex and A-∞ quasiconvex functions. In particular, we show that

f A-quasiconvex =⇒ f A-∞ quasiconvex =⇒ f A-weak quasiconvex;

and
f level convex and lower semicontinuous =⇒ f A-weak quasiconvex.

We first recall the Jensen inequality introduced by Barron, Jensen, and Liu in [7] for lower semicon-
tinuous and level convex functions (see also [8] Theorem 1.2) that we use in the sequel.

Theorem 3.5 Let f : Rk → R be a lower semicontinuous and level convex function, and let µ be a
probability measure supported on Ω. Then for every function u ∈ L1

µ(Ω;Rk), we have

f

(∫
Ω

u(x)dµ(x)

)
≤ µ- ess sup

x∈Ω
(f ◦ u)(x). (3.17)

Proposition 3.6 Let f : Md×N 7→ [0,+∞) be a Borel function.

1. If fq is upper semicontinuous, locally bounded from above and A-quasiconvex for some q ≥ 1, then
f is A-∞ quasiconvex.

2. If f is A-∞ quasiconvex then f is A-weak quasiconvex.
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3. If f is lower semicontinuous and level convex then f is A-weak quasiconvex.

4. If f is continuous, level convex and there exist α > 0 such that

f(Σ) ≥ α|Σ| for every Σ ∈Md×N

then f is A-∞ quasiconvex.

Proof.

1. By Definition 2.4 and Remark 2.7(2) for q ≥ 1 we have that

fq(Σ) = inf
{∫

Q

fq(Σ + V (x))dx : V ∈ L∞# (Q;Md×N ) ∩KerA,
∫
Q

V dx = 0
}

for every Σ ∈Md×N ; hence,

f(Σ) = inf
{(∫

Q

fq(Σ + V (x))dx
)1/q

: V ∈ L∞# (Q;Md×N ) ∩KerA,
∫
Q

V dx = 0
}

= fq(Σ).

For every p ≥ q and V ∈ L∞# (Q;Md×N ) ∩KerA with
∫
Q
V dx = 0, by Hölder’s inequality, we have

that

f(Σ) ≤
( ∫

Q

fq(Σ + V (x))dx
)1/q ≤ ( ∫

Q

fp(Σ + V (x))dx
)1/p

.

In particular

f(Σ) ≤ inf
{(∫

Q

fp(Σ + V (x))dx
)1/p

: V ∈ L∞# (Q;Md×N ) ∩KerA,
∫
Q

V dx = 0
}
≤ f(Σ).

This implies that
fp(Σ) ≡ f(Σ)

for every Σ ∈Md×N and p ≥ q. Therefore we get in particular that f(Σ) = limp→∞ fp(Σ) for every
Σ ∈Md×N , i.e. f is A-∞ quasiconvex.

2. Let Σ ∈Md×N . Then

f(Σ) = lim
p→∞

inf
{(∫

Q

fp(Σ + V (x))dx
)1/p

: V ∈ L∞# (Q;Md×N ) ∩KerA,
∫
Q

V dx = 0
}

≤ inf
{

ess sup
x∈Q

f(Σ + V (x)) : V ∈ L∞# (Q;Md×N ) ∩KerA,
∫
Q

V dx = 0
}

≤ f(Σ)

which concludes the proof.

3. Let V ∈ L∞# (Q;Md×N ) ∩ KerA be such that
∫
Q
V dx = 0, applying Jensen’s inequality (3.17), we

have that

f(Σ) = f
(
−
∫
Q

Σ + V (x) dx
)
≤ ess sup

x∈Q
f(Σ + V (x)).

Then f is A-weak quasiconvex.

4. Let (fp)∗∗ be the convex envelope of the function fp. By Jensen’s inequality we have that

(fp)∗∗(Σ) ≤
∫
Q

(fp)∗∗(Σ + V (x)) dx ≤
∫
Q

fp(Σ + V (x)) dx

for every V ∈ L∞# (Q;Md×N ) ∩KerA such that
∫
Q
V dx = 0. It follows that

(fp)∗∗(Σ) ≤ inf
{∫

Q

fp(Σ +V (x))dx : V ∈ L∞# (Q;Md×N )∩KerA,
∫
Q

V dx = 0
}

= fpp (Σ); (3.18)

hence, ((fp)∗∗)1/p ≤ fp ≤ f . Moreover, since f is continuous, level convex and satisfies a linear
growth condition, we have that limp→∞((fp)∗∗)1/p = f (see e.g. [24] Remark 3.12). Hence, passing
to the limit as p→∞ we get that in particular f = limp→∞ fp; i.e., f is A-∞ quasiconvex.

ut
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Remark 3.7 1. In Section 5.2 we will exhibit some counter-examples (see Examples 5.9 and 5.5)
which show that if d,N > 1 then

f A-weak quasiconvex 6=⇒ f A-∞ quasiconvex;

f A-∞ quasiconvex 6=⇒ f A-quasiconvex;

respectively.

2. The coercivity assumption cannot be dropped in the statement of Proposition 3.6(4) (see Example
5.9).

3.2 A-∞ quasiconvex envelope

For any function f : Md×N → R we define

Q∞A f(Σ) := sup{h(Σ) : h is A-∞ quasiconvex and h ≤ f} (3.19)

the A-∞ quasiconvex envelope of f . In the next proposition we prove, among others, that for any
continuous function f , the A-∞ quasiconvex envelope can be obtained as limit of the A-quasiconvex
functions fp, as p tends to ∞.

Proposition 3.8 Let f : Md×N → [0,+∞) be a continuous function and let fp be defined as in (3.16)
for every p > 1. Then

1. fpp is A-quasiconvex;

2. Q∞A f(Σ) is A-∞ quasiconvex;

3. (fp) converges to Q∞A f , as p→∞; i.e.,

Q∞A f(Σ) = lim
p→∞

inf
{(∫

Q

fp(Σ+V (y)) dy
)1/p

: V ∈ L∞# (Q;Md×N )∩KerA,
∫
Q

V dy = 0
}
, (3.20)

for every Σ ∈Md×N .

Proof. We recall that

fp(Σ) := inf
{(∫

Q

fp(Σ + V (x))dx
)1/p

: V ∈ L∞# (Q;Md×N ) ∩KerA,
∫
Q

V dx = 0
}
.

Note that (fp) is an increasing sequence; hence, there exists the pointwise limit f̃ = limp→∞ fp and

fp ≤ f̃ for every p.

1. By Remark 2.7 (1) QAfp is A-quasiconvex; hence, since fpp (Σ) = QAfp(Σ) we have that also fpp is
A-quasiconvex.

2. Fix Σ ∈Md×N and ε > 0. Let hε be a A-∞ quasiconvex function such that hε ≤ f and such that

Q∞A f(Σ) ≤ hε(Σ) + ε.

Since hε ≤ Q∞A f we have that (hε)p ≤ (Q∞A f)p. This implies

Q∞A f(Σ) ≤ hε(Σ) + ε = lim
p→∞

(hε)p(Σ) + ε ≤ lim
p→∞

(Q∞A f)p + ε

and, by the arbitrariness of ε > 0, we obtain that

Q∞A f(Σ) ≤ lim
p→∞

(Q∞A f)p(Σ) ≤ Q∞A f(Σ).
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3. Since by definition Q∞A f ≤ f , we get that for every p > 1 (Q∞A f)p ≤ fp. Since Q∞A f is A-∞
quasiconvex, passing to the limit as p → ∞, we obtain Q∞A f ≤ f̃ . In order to show the converse
inequality, we recall that by definition fp ≤ f for every p > 1, passing to the limit as p → ∞, we

obtain that f̃ ≤ f . Therefore if we show that f̃ is A-∞ quasiconvex, we get that f̃ ≤ Q∞A f which
concludes the proof of step 3.

We already know that fpp is A-quasiconvex and fp ≤ f̃ ; hence,

fp(Σ) ≤
(∫

Q

fpp (Σ + V (x)) dx
)1/p

≤
(∫

Q

f̃p(Σ + V (x)) dx
)1/p

≤ ess sup
x∈Q

f̃(Σ + V (x)) (3.21)

for every p > 1 and V ∈ L∞# (Q;Md×N ) ∩KerA,
∫
Q
V dx = 0. By (3.21), we have that

f̃(Σ) = lim
p→∞

fp(Σ)

≤ lim
p→∞

inf
{(∫

Q

f̃p(Σ + V (x)) dx
)1/p

: V ∈ L∞# (Q;Md×N ) ∩KerA,
∫
Q

V dx = 0
}

≤ inf
{

ess sup
x∈Q

f̃(Σ + V (x)) : V ∈ L∞# (Q;Md×N ) ∩KerA,
∫
Q

V dx = 0
}

≤ f̃(Σ).

By Definition 3.3 we get that f̃ is A-∞ quasiconvex.

ut

Proposition 3.9 Let f : Md×N → [0,+∞) be a continuous function satisfying weak growth condition:
there exists α > 0 such that

f(Σ) ≥ α|Σ| for every Σ ∈Md×N .

Then for every p > 1, the function fp given by (3.16) is continuous. In particular Q∞A f is a lower
semicontinuous function.

Proof. We start by proving that, for every p > 1, fp is upper semicontinuous; i.e., for every sequence
(Σn) ∈Md×N converging to Σ ∈Md×N we have that

lim sup
n→∞

fp(Σn) ≤ fp(Σ) . (3.22)

Without loss of generality we may assume that fp(Σ) < +∞. Let Vε ∈ L∞# (Q;Md×N ) ∩ KerA be such

that
∫
Q
Vε dx = 0 and

fp(Σ) ≥
(∫

Q

fp(Σ + Vε(x))dx
)1/p

− ε.

By definition of fp we have that

fp(Σn) ≤
(∫

Q

fp(Σn + V (x))dx
)1/p

for every V ∈ L∞# (Q;Md×N ) ∩KerA,
∫
Q
V dx = 0. In particular, taking Vε as test function we have

lim sup
n→∞

fp(Σn) ≤ lim sup
n→∞

(∫
Q

fp(Σn + Vε(x))dx
)1/p

.
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Since f is continuous and Vε ∈ L∞# (Q;Md×N ) ∩KerA, applying the Lebesgue theorem, we have that

lim sup
n→∞

fp(Σn) ≤
(∫

Q

fp(Σ + Vε(x))dx
)1/p

≤ fp(Σ) + ε .

By the arbitrariness of ε we get (3.22).
Let us deal with the lower semicontinuity of fp; i.e., fp(Σ) ≤ lim infn→∞ fp(Σn). Since f is continuous

and satisfies the weak growth condition, by Remark 2.7 (2)-(3) the functional

V 7→
∫
Q

fpp (V ) dx =

∫
Q

(QAfp)(V ) dx

is weak* lower semicontinuous in L∞. Hence, for every converging sequence Σn → Σ we have that

fpp (Σ) =

∫
Q

fpp (Σ) dx ≤ lim inf
n→∞

∫
Q

fpp (Σn) dx = lim inf
n→∞

fpp (Σn) ,

which concludes the proof of the lower semicontinuity of fp. By (3.22) there follows that fp is continuous.
In particular, since Q∞A f = supp fp, we can conclude that Q∞A f is lower semicontinuous. ut

We can prove now that, under suitable growth conditions, the A-∞ quasiconvex functions satisfy a Jensen
inequality for a particular class of Young measures.

Proposition 3.10 Let V, (Vn) ⊂ L1(Ω,Md×N ) be such that AVn = 0, Vn ⇀ V weakly in Lq(Ω;Md×N )
for every 1 < q <∞. Assume that (Vn) generates a Young measure µ. Then there exists a negligible set
N ⊂ Ω such that

f(

∫
Md×N

Σdµx(Σ)) ≤ µx- ess sup
Σ∈Md×N

f(Σ)

for every x ∈ Ω \ N and for every continuous and A-∞ quasiconvex function f : Md×N → [0,+∞)
satisfying the following standard growth conditions: there exist α, β > 0 such that

α|Σ| ≤ f(Σ) ≤ β(|Σ|+ 1) for every Σ ∈Md×N .

Proof. Since the sequence (Vn)n is weakly converging in Lm, we have that (Vn) is m-equi-integrable.
Moreover, by Propositions 3.9 and 3.8 we have that fmm is a continuous and A-quasiconvex function
satisfying (2.14) and fm ≤ f (where fm is given by (3.16) with m in place of p).

By Proposition 2.12 applied to the subsequence (Vn)n, with the function fmm in place of f and m in
place of p, we have that for every m ≥ 1 there exists a negligible set Em ⊂ Ω (independent on f) such
that

fmm (V (x)) ≤ 〈µx, fmm 〉 ≤ 〈µx, fm〉 =

∫
Md×N

fm(Σ) dµx(Σ)

for every x ∈ Ω \ Em. In particular, we have that

fm(V (x)) ≤
(∫

Md×N
fm(Σ) dµx(Σ)

)1/m

for every m ≥ 1 and for every x ∈ Ω \
⋃
mEm. Hence, passing to the limit as m→∞, we obtain that

lim
m→∞

fm(V (x)) ≤ µx- ess sup
Σ∈Md×N

f(Σ)

for every x ∈ Ω \
⋃
mEm. Since f is A-∞-quasiconvex, we can conclude that

f(

∫
Md×N

Σdµx(Σ)) = f(V (x)) = lim
m→∞

fm(V (x)) ≤ µx- ess sup
Σ∈Md×N

f(Σ)

for a.e. x ∈ Ω. ut
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4 The Lp-approximation theorems

In this section we study the Lp-approximation, via Γ-convergence, of supremal functional under differen-
tial constraint with respect to the L1-strong topology (see Theorem 4.1) and to the L∞- weak* topology
(see Theorems 4.2). The results obtained generalize the Γ-convergence theorems proved by Bocea and
Nesi in [9] and by Champion, De Pascale, and Prinari in [14]. We prove also that the A-∞ quasiconvexity
is a necessary and sufficient condition for the Lp-approximation with respect to the L∞- weak* topology
(see Theorem 4.4).

We start stating all theorems to easily compare the results obtained according to the different hy-
potheses and topologies considered. In Section 4.1 we collect the proofs of the theorems.

Theorem 4.1 Let f : Ω × Md×N → [0,+∞) be a Carathéodory function such that f(x, ·) is A-∞
quasiconvex for a.e. x ∈ Ω and satisfying the standard growth conditions: there exist α, β > 0 such that

α|Σ| ≤ f(x,Σ) ≤ β(|Σ|+ 1) for a.e x ∈ Ω, for every Σ ∈Md×N . (4.23)

Let Fp : L1(Ω;Md×N )→ R ∪ {+∞} be the functional defined by

Fp(V ) :=


(∫

Ω

fp(x, V (x))dx

)1/p

if V ∈ Lp(Ω;Md×N ) ∩KerA,

+∞ otherwise,

(4.24)

and let F : L1(Ω;Md×N )→ R ∪ {+∞} be the functional defined by

F (V ) :=

{
ess sup

Ω
f(x, V (x)) if V ∈ L∞(Ω;Md×N ) ∩KerA,

+∞ otherwise.
(4.25)

Then,

(i) for every V ∈ L1(Ω;Md×N ) and (Vp) ⊂ L1(Ω;Md×N ) such that Vp ⇀ V weakly in L1(Ω;Md×N ),
we have

F (V ) ≤ lim inf
p→∞

Fp(Vp);

(ii) for every V ∈ L1(Ω;Md×N ) there exists (Vp) ⊂ L1(Ω;Md×N ) such that Vp → V strongly in
L1(Ω;Md×N ) and

lim sup
p→∞

Fp(Vp) ≤ F (V ).

In particular, (Fp) Γ- converges to F , as p→ +∞, with respect to the L1- strong convergence.

Theorem 4.2 Let f : Ω × Md×N → [0,+∞) be a Carathéodory function satisfying the weak growth
condition: there exists α > 0 such that

f(x,Σ) ≥ α|Σ| for a.e x ∈ Ω, for every Σ ∈Md×N . (4.26)

Let Fp : L∞(Ω;Md×N )→ R ∪ {+∞} be the functional defined by

Fp(V ) :=


(∫

Ω

fp(x, V (x))dx

)1/p

if V ∈ L∞(Ω;Md×N ) ∩KerA,

+∞ otherwise,

(4.27)

and let F̃ : L∞(Ω;Md×N )→ R ∪ {+∞} be the functional defined by

F̃ (V ) :=

{
ess sup
x∈Ω

Q∞A f(x, V (x)) if V ∈ L∞(Ω;Md×N ) ∩KerA,

+∞ otherwise
(4.28)

where Q∞A f(x, ·) is the A-∞ quasiconvex envelope of f(x, ·). Then (Fp) Γ- converges to the functional F̃ ,
as p→ +∞, with respect to the L∞- weak* convergence.

In particular, if f(x, ·) is also A-∞ quasiconvex for a.e. x ∈ Ω, then (Fp) Γ- converges to the
functional F given by (4.25) with respect to L∞- weak* convergence.

15



Remark 4.3 Let f : Ω×Md×N → [0,+∞) be a Carathéodory function satisfying the standard growth
conditions (4.23) and let Fp be given by (4.27). It is easy to show that Fp Γ- converges to the functional
F given by (4.25) with respect to the L∞-strong convergence without additional assumptions.

Note that Theorem 4.2 imply that the A-∞ quasiconvexity is sufficient to get the Lp-approximation
of the supremal functional F with respect to the L∞-weak* convergence. The following theorem shows
that if f does not depend explicitly on x then the A-∞ quasiconvexity is also a necessary condition for
the Lp-approximation of the supremal functional F .

Theorem 4.4 Let f : Md×N → [0,+∞) be a continuous function satisfying the weak growth condition
(4.26). Let Fp, F : L∞(Ω;Md×N )→ R ∪ {+∞} be given by

Fp(V ) :=


(∫

Ω

fp(V (x))dx

)1/p

if V ∈ L∞(Ω;Md×N ) ∩KerA,

+∞ otherwise,

(4.29)

and

F (V ) :=

{
ess sup
x∈Ω

f(V (x)) if V ∈ L∞(Ω;Md×N ) ∩KerA,

+∞ otherwise,
(4.30)

respectively. Then the following statement are equivalent:

(i) f is A-∞ quasiconvex function;

(ii) Fp Γ-converges to F , as p→∞, with respect to the L∞- weak* topology.

4.1 Proofs of Theorems

We first prove the following lemma.

Lemma 4.5 Let f : Ω×Md×N → [0,+∞) be a Carathéodory function. Then

lim inf
q→∞

(∫
Ω

∫
Md×N

f(x,Σ)qdµx(Σ)dx

)1/q

= ess sup
x∈Ω

(
µx- ess sup

Σ∈Md×N
f(x,Σ)

)
,

for every Young measure (µx)x∈Ω.

Proof. The following inequality

lim inf
q→∞

(∫
Ω

∫
Md×N

f(x,Σ)qdµx(Σ)dx

)1/q

≤ ess sup
x∈Ω

(
µx- ess sup

Σ∈Md×N
f(x,Σ)

)
is straighforward. Let us prove the converse inequality. Without loss of generality we assume that

lim inf
q→∞

(∫
Ω

∫
Md×N

f(x,Σ)qdµx(Σ)dx

)1/q

< +∞. (4.31)

For every fixed q > r, by the convexity of t 7→ tq/r on [0,+∞), we can apply the Jensen’s inequality and
we get that (∫

Ω

∫
Md×N

f(x,Σ)qdµx(Σ)dx

)1/q

≥

(∫
Ω

(∫
Md×N

f(x,Σ)rdµx(Σ)

)q/r
dx

)1/q

. (4.32)

Passing to the limit as q →∞, by the convergence of the Lq-norm to the L∞-norm, we have that

lim
q→∞

(∫
Ω

(∫
Md×N

f(x,Σ)rdµx(Σ)

)q/r
dx

)1/q

= ess sup
x∈Ω

(∫
Md×N

f(x,Σ)rdµx(Σ)

)1/r

. (4.33)
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We now denote

gr(x) :=

(∫
Md×N

f(x,Σ)rdµx(Σ)

)1/r

.

Then (gr) is an increasing positive sequence pointwise converging to the function

g(x) := µx- ess sup
Σ∈Md×N

f(x,Σ)

as r → ∞. Moreover, by (4.31)-(4.33), we have that supr ||gr||∞ < +∞. In particular, by Lebesgue
Theorem, we have that gr ⇀ g weakly* in L∞. By (4.32), (4.33) and the weak* lower semicontinuity of
the L∞-norm, we have that

lim inf
q→∞

(∫
Ω

∫
Md×N

f(x,Σ)qdµx(Σ)dx

)1/q

≥ ess sup
x∈Ω

(
µx- ess sup

Σ∈Md×N
f(x,Σ)

)
,

which concudes the proof. ut

Proof of Theorem 4.1. The limsup inequality (ii) easily follows by the convergence of the Lp-
norm to the L∞-norm. We now deal with the liminf inequality (i). Let (Vp) ∈ L1(Ω;Md×N ) be a
sequence L1-weakly converging to V ∈ L1(Ω;Md×N ). Without loss of generality, we can assume that
M = lim infp→∞ Fp(Vp) < +∞; hence, we have in particular that there exists p0 > 1 such that

Fp(Vp) ≤M + 1

for every p ≥ p0. This implies that Vp ∈ Lp(Ω;Md×N ) ∩KerA, for every p ≥ p0. By Hölder’s inequality
and (4.23) we have that(∫

Ω

|Vp(x)|qdx
)1/q

≤ LN (Ω)1/q−1/p
(∫

Ω

|Vp(x)|pdx
)1/p

≤ LN (Ω)1/q−1/p 1

α
Fp(Vp)

≤ LN (Ω)1/qM + 1

α
(4.34)

for every p ≥ q ≥ p0. Then (Vp)p≥q is bounded in Lq(Ω,Md×N ) and it converges weakly in Lq(Ω;Md×N )
to V for every q ≥ p0. We now prove that V ∈ L∞(Ω,Md×N ). By (4.34) we have that(∫

Ω

|V (x)|qdx
)1/q

≤ lim inf
p→∞

(∫
Ω

|Vp(x)|qdx
)1/q

≤ LN (Ω)1/qM + 1

α
(4.35)

for every q ≥ p0. Moreover, for every x0 ∈ Ω, r > 0 and q ≥ p0, by Hölder’s inequality, we have that

−
∫
Br(x0)

|V (x)|dx ≤
(
−
∫
Br(x0)

|V (x)|qdx
)1/q

≤ LN (Br(x0))−1/q
(∫

Ω

|V (x)|qdx
)1/q

.

Letting q → +∞ and using (4.35) we get

−
∫
Br(x0)

|V (x)|dx ≤ M + 1

α

for every r > 0 and for every x0 ∈ Ω. In particular, if x0 is a Lebesgue point of V , it follows that

|V (x0)| ≤ lim
r→0+

−
∫
Br(x0)

|V (x)|dx ≤ M + 1

α
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which implies that V ∈ L∞(Ω;Md×N ). In particular, V ∈ L∞(Ω,Md×N ) ∩KerA. In fact,

〈AV, φ〉 = lim
p→+∞

〈AVp, φ〉 = 0, ∀φ ∈ C∞0 (Ω,Md×N ).

By the density of the C∞0 (Ω,Md×N ) functions in W 1,1
0 (Ω,Md×N ) with respect to the strong convergence

we get that also V satisfies the constraint AV = 0.
Since (Vp) is L1-weakly converging then (Vp) is also equi-integrable; hence, by Remark 2.10(3), we

have that (Vp) generates a Young measure (µx)x∈Ω such that

V (x) =

∫
Rd×N

Σ dµx(Σ)

for a.e. x ∈ Ω. In particular, by Theorem 2.9(5) for any fixed q > 1, we have that

lim inf
p→∞

Fq(Vp) = lim inf
p→∞

(∫
Ω

fq(x, Vp(x))dx

)1/q

≥
(∫

Ω

∫
Md×N

fq(x,Σ)dµx(Σ)dx

)1/q

.

Applying Lemma 4.5 we obtain

lim inf
q→∞

lim inf
p→∞

Fq(Vp) ≥ ess sup
x∈Ω

(
µx- ess sup

Σ∈Md×N
f(x,Σ)

)
. (4.36)

Now, by assumption f(y, ·) is A-∞ quasiconvex for a.e. y ∈ Ω; hence, we denote by

Ω′ := {y ∈ Ω : f(y, ·) is A-∞ quasiconvex} .

Note that LN (Ω \Ω′) = 0. Since (Vp)p≥q is bounded in Lq(Ω,Md×N ), by Proposition 3.10 there exists a
negligible set N ⊂ Ω such that

f(y, V (x)) ≤ µx- ess sup
Σ∈Md×N

f(x,Σ)

for every y ∈ Ω′ and x ∈ Ω \N . In particular for every x ∈ Ω′ ∩ (Ω \N) we have that

f(x, V (x)) ≤ µx- ess sup
Σ∈Md×N

f(x,Σ).

Therefore
ess sup
x∈Ω

f(x, V (x)) ≤ ess sup
x∈Ω

(
µx- ess sup

Σ∈Md×N
f(x,Σ)

)
. (4.37)

Finally, gathering (4.36) and (4.37), we infer

F (V ) = ess sup
x∈Ω

f(x, V (x))

≤ ess sup
x∈Ω

(
µx- ess sup

Σ∈Md×N
f(x,Σ)

)
≤ lim inf

q→∞
lim inf
p→∞

Fq(Vp)

≤ lim inf
q→∞

lim inf
p→∞

LN (Ω)1/q−1/pFp(Vp)

= lim inf
p→∞

Fp(Vp) (4.38)

which implies the liminf inequality. ut
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Remark 4.6 In the proof of Theorem 4.1 we deal with L1-weakly convergent sequences (Vp) that are
bounded in Lq(Ω;Md×N ) for every p0 ≤ q < +∞, for some p0 > 1, and we prove that their limit functions
are in L∞(Ω;Md×N ). In view of Theorem 4.2 we want to observe that the following boundedness condition
(see (4.34))

sup
1≤q<+∞

sup
p≥q
||Vp||Lq(Ω,Md×N ) < +∞ ,

does not imply that (Vp) is also bounded in L∞(Ω;Md×N ) as the counter-example below shows. Therefore
it does not give rise to a L∞(Ω;Md×N )-weak* convergence to V .

Let us consider, the sequence Vp(x) = 1
p log x where x ∈ (0, 1). For every 1 ≤ q < +∞ we have

that (Vp) ⊂ Lq(Ω,Md×N ), Vp ⇀ 0 weakly in Lq(Ω,Md×N ) and it is not bounded in L∞(Ω,Md×N ).
Nevertheless, for every 1 ≤ q < +∞, by Hölder’s inequality, we have that

Iq :=
(∫ 1

0

| log x|qdx
)1/q

=
(∫ 1

0

q| log x|q−1dx
)1/q

≤ q
1
q (Iq)

q−1
q

which implies that
Iq ≤ q.

Therefore (Vp) satisfies the condition

sup
1≤q<+∞

sup
p≥q
||Vp||Lq(Ω,Md×N ) ≤ sup

q≥1

1

q

( ∫ 1

0

| log x|qdx
)1/q ≤ 1.

Proof of Theorem 4.2. Let us consider the sequence of functionals (Fp) given by

Fp(V ) :=


(∫

Ω

fpp (x, V (x))dx

)1/p

if V ∈ L∞(Ω,Md×N ) ∩KerA,

+∞ otherwise.

Since fpp = QAfp, by Remark 2.7(3) we have that for every p the functional Fp is the lower semicontinuous

envelope of the functional Fp on L∞(Ω,Md×N )∩KerA with respect to the L∞-weak* topology. Moreover
(Fp) is non-decreasing. Therefore, by [16] Proposition 5.4, we have that

Γ(w∗-L∞)- lim
p→∞

Fp(V ) = lim
p→∞

Fp(V ) = sup
p>1
Fp(V ). (4.39)

We recall that (fp) is an increasing sequence pointwise converging to Q∞A f (see Proposition 3.8(3));
hence, for every p > 1

Fp(V ) =
(∫

Ω

fpp (x, V (x))dx
)1/p

≤ LN (Ω)
1
p ess sup

x∈Ω
Q∞A f(x, V (x))

for every V ∈ L∞(Ω,Md×N ) ∩KerA. In particular,

sup
p>1
Fp(V ) ≤ lim

p→∞
LN (Ω)

1
p F̃ (V ) = F̃ (V ) (4.40)

By (4.39) and (4.40) we get that

Γ(w∗-L∞)- lim
p→∞

Fp(V ) ≤ F̃ (V )

for every V ∈ L∞(Ω,Md×N ).
We now prove the converse inequality; i.e.,

Γ(w∗-L∞)- lim
p→∞

Fp(V ) ≥ F̃ (V )

for every V ∈ L∞(Ω,Md×N ). Let V be such that F̃ (V ) <∞. Hence, V ∈ L∞(Ω,Md×N )∩KerA and, by
(4.39), it is sufficient to show that supp>1 Fp(V ) ≥ F̃ (V ).
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For every fixed ε > 0 there exists a measurable set Bε ⊂ Ω such that LN (Bε) > 0 and

ess sup
x∈Ω

Q∞A f(x, V (x)) ≤ Q∞A f(x, V (x)) + ε

for every x ∈ Bε. This implies

ess sup
x∈Ω

Q∞A f(x, V (x))LN (Bε) ≤
∫
Bε

Q∞A f(x, V (x))dx+ εLN (Bε).

By Proposition 3.8(3), Beppo Levi Theorem, and Hölder’s inequality we obtain

ess sup
x∈Ω

Q∞A f(x, V (x))LN (Bε) ≤ lim
p→∞

∫
Bε

fp(x, V (x))dx+ εLN (Bε)

≤ lim
p→∞

(∫
Bε

fpp (x, V (x))dx
) 1
pLN (Bε)

1− 1
p + εLN (Bε).

This implies

ess sup
x∈Ω

Q∞A f(x, V (x)) ≤ lim
p→∞

Fp(V )LN (Bε)
− 1
p + ε = sup

p>1
Fp(V ) + ε . (4.41)

By (4.39), (4.41), and the arbitrariness of ε we have that

Γ(w∗-L∞)- lim
p→∞

Fp(V ) ≥ ess sup
x∈Ω

Q∞A f(x, V (x)) = F̃ (V )

for every V ∈ L∞(Ω;Md×N ) ∩KerA.
Let V ∈ L∞(Ω;Md×N ) be such that F̃ (V ) = +∞. In particular, we consider the non trivial case where
V ∈ L∞(Ω,Md×N ) ∩ KerA and ess supx∈ΩQ∞A f(x, V (x)) = +∞. Hence, for every fixed M > 0 there
exists a measurable set BM ⊂ Ω such that LN (BM ) > 0 and for every x ∈ BM

Q∞A f(x, V (x)) > M .

Let δ > 0 be such that LN (BM ) > δ, by Egoroff Theorem there exists Eδ such that LN (Eδ) < δ and

lim
p→∞

‖fp(·, V (·))−Q∞A f(·, V (·))‖L∞(Ω\Eδ;Md×N ) = 0 .

There follows that for every ε > 0 there exists pε such that for every p > pε

fp(x, V (x))−Q∞A f(x, V (x)) > −ε

for every x ∈ Ω \ Eδ; hence, in particular

fp(x, V (x)) > M − ε , ∀x ∈ BM \ Eδ .

Then, we have

Fp(V ) =

(∫
Ω

fpp (x, V (x))dx

)1/p

≥ (M − ε)LN (BM \ Eδ)1/p .

Passing to the limit as p→ +∞ we get, by the arbitrariness of ε, that for every fixed M > 0

sup
p>1
Fp(V ) ≥M ;

hence, also supp>1 Fp(V ) = +∞; i.e., supp>1 Fp(V ) = F̃ (V ).

Proof of Theorem 4.4. (i) =⇒ (ii): follows by Theorem 4.2. (ii) =⇒ (i): by Theorem 4.2 we have
that

Γ(w∗-L∞)- lim
p→∞

Fp(V ) = F̃ (V )
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for every V ∈ L∞(Ω;Md×N ), with F̃ given by (4.28). Therefore, by assumption we have that

ess sup
x∈Ω

Q∞A f(V (x)) = F (V ) = ess sup
x∈Ω

f(V (x))

for every V ∈ L∞(Ω;Md×N ) ∩KerA. In particular, we get

Q∞A f(Σ) = f(Σ)

for every Σ ∈Md×N . By Proposition 3.8(2), we can conclude that f is A-∞ quasiconvex. ut

5 Some remarks and examples

In this section we characterize the A-∞ quasiconvex functions for some particular choice of the constant-
rank operator A and of the dimension d and N .

5.1 A-∞ quasiconvexity: some particular cases

We recall the following inequality characterizing the level convex function f :

f(tΣ1 + (1− t)Σ2) ≤ max{f(Σ1) , f(Σ2)} ∀t ∈ (0, 1) , Σ1 6= Σ2 ∈Md×N . (5.42)

Proposition 5.1 Let f : Md×N 7→ [0,+∞) be a Borel function.

1. If f is A-weak quasiconvex function; i.e.,

f(Σ) = inf
{

ess sup
x∈Q

f(Σ + V (x)) : V ∈ L∞# (Q;Md×N ) ∩KerA,
∫
Q

V dx = 0
}

for every Σ ∈ Md×N , then f satisfies (5.42) with (Σ1 − Σ2) ∈ KerA(w) for every vector w of the
canonical basis.

2. If f is upper semicontinuous and A-∞ quasiconvex then f satisfies (5.42) with (Σ1 − Σ2) ∈ Λ,
where

Λ :=
⋃

w∈SN−1

KerA(w) . (5.43)

Proof.

1. Let Σ1,Σ2 ∈ Md×N and let w ∈ RN be a vector of the canonical basis such that (Σ1 − Σ2) ∈
KerA(w). We define

V (x) =

 (1− t)(Σ1 − Σ2) , x ∈ A1

−t(Σ1 − Σ2) , x ∈ A2

where
A1 = {x ∈ RN : j < 〈x,w〉 < j + t , j ∈ Z} ,
A2 = {x ∈ RN : j + t < 〈x,w〉 < j + 1 , j ∈ Z}

for fixed t ∈ (0, 1). Since (Σ1 − Σ2) ∈ KerA(w), we may easily check that AV = 0 (see e.g. [3]
Theorem 4.2 Step 3). Moreover, by construction V ∈ L∞# (Q;Md×N ) and satisfies

∫
Q
V dx = 0.

Hence,

f(Σ) ≤ ess sup
x∈A1∪A2

f(Σ + V (x))

= max{ess sup
x∈A1

f(Σ + (1− t)(Σ1 − Σ2)) , ess sup
x∈A2

f(Σ− t(Σ1 − Σ2))} .

In particular, for Σ = tΣ1 + (1− t)Σ2 we have that

f(tΣ1 + (1− t)Σ2) ≤ max{f(Σ1) , f(Σ2)} .

21



2. Since f is upper semicontinuous, by [18] Proposition 3.4 we have that

QAfp(Σ1 + (1− t)Σ2) ≤ tQAfp(Σ1) + (1− t)QAfp(Σ2) ≤ max{fp(Σ1) , fp(Σ2)} .

for every p ≥ 1 and (Σ1 − Σ2) ∈ Λ. By definition of fp we have that

fp(tΣ
1 + (1− t)Σ2) ≤ (QAfp)1/p(tΣ1 + (1− t)Σ2) ≤ max{f(Σ1) , f(Σ2)}

passing into the limit as p→ +∞ we get that

f(tΣ1 + (1− t)Σ2) ≤ max{f(Σ1) , f(Σ2)} .

for every Σ1,Σ2 ∈Md×N such that (Σ1 − Σ2) ∈ Λ.

ut

Proposition 5.2 1. (A = div , d = 1). Let f : RN 7→ [0,+∞) be an upper semicontinuous and
div -∞ quasiconvex function. Then f is level convex; i.e., f satisfies (5.42).

2. (A = Div , d ≥ N > 1). Let f : Md×N 7→ [0,+∞) be an upper semicontinuous and Div -∞
quasiconvex function. Then f is rank-(N − 1) level convex; i.e., f satisfies (5.42) with rank (Σ1 −
Σ2) ≤ (N − 1).

3. (A = curl). Let f : Md×N 7→ [0,+∞) be an upper semicontinuous and curl-weak quasiconvex
function. Then f is rank-1 level convex; i.e., f satisfies (5.42) with rank (Σ1 − Σ2) ≤ 1. In
particular, if either d = 1 or N = 1 then f is level convex.

Proof.

1. If d = 1 and A = div we can prove that

KerA(w) = {ξ ∈ RN : 〈ξ, w〉 = 0}

for every w ∈ SN−1, which implies that Λ = RN . Note that, since for every ξ1 6= ξ2 there always
exists w ∈ SN−1 such that 〈ξ1 − ξ2, w〉 = 0, we have in particular that (ξ1 − ξ2) ∈ Λ. Hence, by
Proposition 5.1(2), f satisfies (5.42) for every ξ1, ξ2 ∈ RN ; i.e., f is level convex.

2. We recall that if d > 1, we define Div V : Ω 7→ Rd such that

(Div V )i = div(V )i

for every i = 1, · · · , d. Hence, assuming that d ≥ N > 1 we can generalize the case d = 1 and prove
that if (Σ1 −Σ2) ∈ Λ then rank (Σ1 −Σ2) ≤ (N − 1). Hence, by Proposition 5.1(2) we have that f
satisfies (5.42) for every Σ1 6= Σ2 ∈Md×N with rank (Σ1 − Σ2) ≤ (N − 1).

3. By Proposition 5.1(2) we have that f satisfies (5.42) for every (Σ1 − Σ2) ∈ Λ, where Λ is given by
(5.43). By [18, Remark 3.3 (iii)] we have that

KerA(w) = {ξ ⊗ w ∈Md×N : ξ ∈ Rd, w ∈ SN−1}.

Therefore f is level convex along any rank-one directions; i.e., f is rank-1 level convex. It is easy
to see that if either d = 1 or N = 1, then the rank-1 level convexity reduces to level convexity.

ut
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Remark 5.3 Higher gradients. Let A be the constant-rank operator defined by

AV :=
( ∂

∂xi
Vjk −

∂

∂xk
Vji

)
1≤i,j,k≤N

for every V ∈ C∞# (RN ;Ed2 ) with Ed2 := {symmetric 2-linear maps RN 7→ Rd}. In this case{
V ∈ C∞# (Q;Ed2 ) ∩KerA,

∫
Q

V dx = 0
}

= {D2u : u ∈ C∞# (Q;Rd)}

and
Λ =

⋃
w∈SN−1

KerA(w) =
⋃

w∈SN−1

{Σ ∈ Ed2 : Σ = a⊗ w ⊗ w for some a ∈ Rd}

(see [18], Example 3.10 (d)). Hence, if f is upper semicontinuous and A-∞ quasiconvex then, by Propo-
sition 5.1(2), we have that f satisfies (5.42) for every t ∈ (0, 1) and Σ1 6= Σ2 ∈Md×N with (Σ1−Σ2) ∈ Λ.
In particular, if d = 1 we have that Λ is strictly included in the set of rank-1 matrices.

Proposition 5.4 Let f : Md×N → [0,+∞) be a continuous function satisfying the weak growth condition
(4.26).

1. If d = 1 then f is level convex ⇐⇒ div -∞ quasiconvex.

2. If either d = 1 or N = 1 then f is level convex⇐⇒ curl -weak quasiconvex⇐⇒ curl -∞ quasiconvex.

Proof. By Proposition 5.2 and Proposition 3.6(2)-(4) we get the thesis. ut

5.2 Examples

In this section we discuss some examples which clarify the connection between the different classes of
functions introduced in Section 3. More precisely, we start by constructing a A-∞ quasiconvex function
which is not A-quasiconvex in the case A = curl . In particular such example allows us to conclude that
the Γ-convergence result in Theorem 4.1 generalize the Theorem 3.2 in [9] proved by Bocea and Nesi. We
recall that a function f is curl -quasiconvex if and only if f is quasiconvex.

Example 5.5 Let f : Md×N → [0,+∞) be the continuous function given by

f(Σ) :=

 |Σ| if |Σ| ≤ 1
1 if 1 ≤ |Σ| ≤ 2

1
2 |Σ| if |Σ| ≥ 2

Then f is curl -∞ quasiconvex since it is level convex (see Proposition 3.6(4)) but it is not quasiconvex
since it is not rank-1 convex.

We now recall the definition of polylevelconvex functions. Note that such functions have been referred
in [8] as polyquasiconvex functions.

Definition 5.6 A measurable function g : Md×N → R is called polylevelconvex if there exists a level
convex function f : Rc(N,d) → R such that g(Σ) = f(T (Σ)) where c(N, d) is given by

c(N, d) =

min(N,d)∑
s=1

d!N !

(s!)2(N − s)!(d− s)!

and T : Md×N → Rc(N,d) is the map consisting of Σ and all of its s× s minors for s ≤ min(N, d).

In the next proposition we prove that, under a suitable growth condition, the polylevelconvex functions
are also curl -∞ quasiconvex.
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Proposition 5.7 Let f : Rc(N,d) → [0,+∞) be a continuous level convex function satisfying the weak
growth condition (4.26). Then the polylevelconvex function g = f ◦ T is curl -∞ quasiconvex.

Proof. Let gp and fp be defined by (3.16) and let (fp)∗∗ be the convex envelope of the function fp.
Reasoning as in the proof of Proposition 3.6(4) we have that

(fp)∗∗(T (Σ)) ≤ fp(T (Σ)) = gp(Σ)

and
f(T (Σ)) = lim

p→∞
((fp)∗∗)1/p(T (Σ))

for every Σ ∈Md×N . Since the function (fp)∗∗◦T is polyconvex it is in particular quasiconvex. Moreover,
gpp is the quasiconvexification of gp; hence,

(fp)∗∗(T (Σ)) ≤ gpp(Σ)

for every Σ ∈Md×N , which implies

((fp)∗∗)1/p(T (Σ)) ≤ gp(Σ) ≤ g(Σ)

for every Σ ∈Md×N . Then, passing to the limit as p→∞ in the previous inequality we get that

g(Σ) = f(T (Σ)) = lim
p→∞

((fp)∗∗)1/p(T (Σ)) ≤ lim
p→∞

gp(Σ) ≤ g(Σ)

for every Σ ∈Md×N ; i.e., g is curl -∞ quasiconvex. ut

In the following example we show that the class of A-∞ quasiconvex functions strictly contains the
class of the A-quasiconvex functions and the class of the level convex functions.

Example 5.8 We consider the following family of functions gc : M2×2 → [0,+∞) given by

gc(Σ) = (arctan det Σ) ∨ c|(Σ,det Σ)|

where c is a positive constant and (Σ,det Σ) denotes the vector (Σ11,Σ12,Σ21,Σ22,det Σ) for every
Σ ∈M2×2.

Then

1. for every c > 0 the function gc is curl -∞ quasiconvex. In fact, if we consider the level convex
function fc : R5 → [0,+∞) given by

fc(ξ) = (arctan ξ5) ∨ c|ξ|,

we have that gc = fc ◦ T . Therefore, by Definition 5.6, we have that gc is polylevelconvex. By
Proposition 5.7 we conclude that gc is curl -∞ quasiconvex.

2. for every 0 < c < arctan 1
4 the function gc is not level convex. In fact, let Σ1 :=

(
1 0
0 0

)
and

Σ2 :=

(
0 0
0 1

)
; then for every λ ∈ (0, 1

2 ]

gc(λΣ1 + (1− λ)Σ2) ≥ arctan det(λΣ1 + (1− λ)Σ2) = arctan(λ(1− λ)) > 0

and
gc(Σ

2) = gc(Σ
1) = (arctan det Σ1) ∨ c|(1, 0, 0, 0, 0)| = 0 ∨ c = c.

In particular when 0 < c < arctan 1
4 we have that gc(

1
2Σ1 + 1

2Σ2) > c = gc(Σ
1) ∨ gc(Σ2) which

implies that gc is not level convex.
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3. there exists c0 > 0 such that the function gc is not quasiconvex for every 0 < c < c0. At this end,
we first note that the function g0(Σ) = (arctan det Σ) ∨ 0 is not quasiconvex. In fact, assume that
g0 is quasiconvex then it is also rank-1 convex. Since g0 is bounded then g0 is in particular constant
(see [12] Exercise 4.2) but this is false.
Since g0 is not quasiconvex there exists Σ0 ∈M2×2 and a Q-periodic function V0 ∈ C∞(RN ;Md×N )
satisfying curlV0 = 0,

∫
Q
V0(x) dx = 0, and such that

g0(Σ0) >

∫
Q

g0(Σ0 + V0(x))dx ≥ 0.

Since g0 ≤ gc, we have that

g0(Σ) ≤ gc(Σ) ≤ g0(Σ) + c|(Σ,det Σ)| (5.44)

for every Σ ∈M2×2. Therefore we get that∫
Q

g0(Σ0 + V0(x))dx

≤
∫
Q

gc(Σ0 + V0(x))dx

≤
∫
Q

g0(Σ0 + V0(x))dx+ c

∫
Q

|(Σ0 + V0(x),det(Σ0 + V0(x))|dx (5.45)

for every c > 0. By (5.44) and (5.45) it follows that

lim
c→0+

gc(Σ0)−
∫
Q

gc(Σ0 + V0(x))dx = g0(Σ0)−
∫
Q

g0(Σ0 + V0(x))dx > 0

which implies that there exists c0 > 0 such that

gc(Σ0)−
∫
Q

gc(Σ0 + V0(x)dx > 0

for every 0 < c < c0; i.e., gc is not quasiconvex for every 0 < c < c0.

Note that, for every 0 < c < min{c0, arctan 1
4}, the function gc is curl -∞ quasiconvex but it is neither

quasiconvex nor level convex.

In Proposition 3.6(2) we prove that if f is coercive, continue and level convex, then f is A-∞ quasi-
convex. In the following example we show that if we drop the coercivity assumption this implication can
be false. Moreover, Example 5.9 allows us to deduce that the curl -weak quasiconvex functions are not
necessarily curl -∞ quasiconvex and that the class of curl -∞ quasiconvex functions is strictly contained
in the class of (strong) Morrey quasiconvex functions.

Example 5.9 Let us consider the continuous function f : R→ [0,+∞) given by

f(t) :=

 0 if t ≤ 0
t if 0 ≤ t ≤ 1
1 if t ≥ 1

Then

1. f is curl -weak quasiconvex and (strong) Morrey quasiconvex since f is level convex.

2. f is not curl -∞ quasiconvex. In fact, since we are in the scalar case, fpp coincides with the convex
envelope (fp)∗∗. Moreover fp is bounded then fpp = (fp)∗∗ = 0. This implies that Q∞curl f = 0;
hence, f(t) > Q∞curl f(t), for every t > 0. Therefore f cannot be curl -∞ quasiconvex.
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6 An application to the effective strenght for resistive materials

In this section we apply the results obtained to characterize via Γ-convergence the effective strength set
Keff in the context of electrical resistivity (how strongly a given material opposes the flow of electric
current). More precisely, we consider

Keff = {ξ ∈ RN : ∃σ ∈ L∞(Q;RN ),

∫
Q

σ dx = 0, div σ = 0, f(x, ξ + σ(x)) ≤ 1 a.e. x ∈ Q}. (6.46)

Thanks to Theorem 4.2 we can characterize the set Keff by assuming that f is a Carathéodory
function, div -∞ quasiconvex in second variable and satisfying the weak growth condition (4.26). Note
that, by Proposition 5.4, this is equivalent to supposing that f is level convex in the second variable and
not necessarily convex as in [9].

Theorem 6.1 Let f : Q×RN 7→ [0,+∞) be a Carathéodory function, level convex in the second variable
and satisfying the weak growth condition (4.26). For any ξ ∈ RN let

jeff
p (ξ) := inf

{(∫
Q

fp(x, ξ + σ(x))dx
)1/p

: σ ∈ L∞(Q;RN ),

∫
Q

σ dx = 0, div σ = 0
}
.

Then, for any ξ ∈ RN , jeff
p (ξ) converges to jeff

∞ (ξ) given by

jeff
∞ (ξ) := inf

{
ess sup
x∈Q

f(x, ξ + σ(x)) : σ ∈ L∞(Q;RN ),

∫
Q

σ dx = 0, div σ = 0
}
.

Moreover, the set Keff is described by

Keff = {ξ ∈ RN : jeff
∞ (ξ) ≤ 1}. (6.47)

Proof. For a fixed ξ ∈ RN we consider the functional Gp : L∞(Q;RN )→ R ∪ {+∞} given by

Gp(σ) :=


(∫

Q

fp(x, σ(x) + ξ)dx

)1/p

if σ ∈ L∞(Q;RN ), div σ = 0,

∫
Q

σ dx = 0

+∞ otherwise.

We state that

Γ(w∗-L∞)- lim
p→∞

Gp(σ) =


ess sup
x∈Q

f(x, σ(x) + ξ) if σ ∈ L∞(Q;RN ), div σ = 0,

∫
Q

σ dx = 0

+∞ otherwise.

In fact, by Theorem 4.2 the Γ-liminf inequality is straightforward. The proof of the Γ-limsup inequality
is an immediate consequence of the convergence of the Lp-norm to the L∞-norm.

By Theorem 2.3, it follows that for any ξ ∈ RN

lim
p→∞

jeff
p (ξ) = jeff

∞ (ξ).

We now prove (6.47). Let ξ ∈ Keff , by (6.46), there exists σ ∈ L∞(Q;RN ) such that
∫
Q
σ dx = 0, div σ = 0

and
f(x, σ(x) + ξ) ≤ 1

for a.e. x ∈ Q. This implies that

jeff
∞ (ξ) ≤ ess sup

x∈Q
f(x, σ(x) + ξ) ≤ 1.
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Conversely, let ξ ∈ RN be such that jeff
∞ (ξ) ≤ 1. By definition, there exists a sequence σn ∈ L∞(Q;RN )

such that
∫
Q
σn dx = 0, div σn = 0 and

lim
n→∞

ess sup
x∈Q

f(x, ξ + σn(x)) = jeff
∞ (ξ)

Thanks to the weak growth condition (4.26), there exists a subsequence of (σn) (not relabelled) such
that σn ⇀ σ weakly* in L∞(Q;RN ) with

∫
Q
σ dx = 0, div σ = 0. Since f is level convex, the functional

ess supx∈Q f(x, σ(x) + ξ) is weakly* lower semicontinuous on L∞(Q;RN ). It follows that

ess sup
x∈Q

f(x, ξ + σ(x)) ≤ lim inf
n→∞

ess sup
x∈Q

f(x, ξ + σn(x)) = jeff
∞ (ξ) ≤ 1

and therefore ξ =
∫
Q
ξ + σ(x) dx ∈ Keff . ut
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