A CRITERION FOR PURE UNRECTIFIABILITY OF SETS (VIA UNIVERSAL VECTOR BUNDLE)

SILVANO DELLADIO

Abstract. Let m, n be positive integers such that m < n and let G(n, m) be the Grassmann manifold of all m- dimensional subspaces of \mathbb{R}^n . For $V \in G(n, m)$ let π_V denote the orthogonal projection from \mathbb{R}^n onto V. The following characterization of purely unrectifiable sets holds. Let A be a \mathcal{H}^m -measurable subset of \mathbb{R}^n with $\mathcal{H}^m(A) < \infty$. Then A is purely m-unrectifiable if and only if there exists a null subset Z of the universal bundle $\{(V, v) | V \in G(n, m), v \in V\}$ such that, for all $P \in A$, one has $\mathcal{H}^{m(n-m)}(\{V \in G(n,m) | (V, \pi_V(P)) \in Z\}) > 0$. One can replace "for all $P \in A$ " by "for \mathcal{H}^m -a.e. $P \in A$ ".

¹⁹⁹¹ Mathematics Subject Classification. Primary 28A75, 28A78, 49Q15; Secondary 53A05. Key words and phrases. Purely unrectifiable sets, Rectifiable sets, Geometric measure theory.