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ABSTRACT. The average-distance problem, in the penalized formulation, involves minimizing

Eλµ(Σ) :=

ˆ
Rd

d(x,Σ)dµ(x) + λH1(Σ), (1)

among path-wise connected, closed sets Σ with finite H1-measure, where d ≥ 2, µ is a given
measure, λ is a given parameter and d(x,Σ) := infy∈Σ |x − y|. The average-distance problem can
be also considered among compact, convex sets with perimeter and/or volume penalization, i.e.
minimizing

E(µ, λ1, λ2)(·) :=

ˆ
Rd

d(x, ·)dµ(x) + λ1 Per(·) + λ2 Vol(·), (2)

where µ is a given measure, λ1, λ2 ≥ 0 are given parameters with λ1 + λ2 > 0, and the unknown
varies among compact, convex sets. Very little is known about the regularity of minimizers of (2).
In particular it is unclear if minimizers of (2) are in general C1 regular. The aim of this paper is
twofold: first, we provide in R2 a second approach in constructing minimizers of (1) which are
not C1 regular; then, using the same technique, we provide an example of minimizer of (2) whose
border is not C1 regular, under perimeter penalization only.
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1. INTRODUCTION

The average-distance problem was proposed by Buttazzo, Oudet and Stepanov in [2]. To
guarantee well-posedness, an a priori bound on the H1-measure of admissible minimizers was
given, and this formulation is often referred as “constrained formulation”. To overcome the exces-
sive rigidity imposed by hard constraints on the H1-measure, Buttazzo, Mainini and Stepanov
proposed in [1] the “penalized formulation”:

Problem 1.1. Given d ≥ 2, a compactly supported, nonnegative measure µ, and λ > 0, minimizeˆ
Rd
d(x,Σ)dµ(x) + λH1(Σ), d(x,Σ) := inf

y∈Σ
|x− y|

with the unknown Σ varying in

A := {X ⊆ Rd : X compact, path-wise connected,H1(X) <∞}.
To simplify notations, for future reference let

Fµ : A −→ R, Fµ(Σ) :=

ˆ
Rd
d(x,Σ)dµ

1
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Eλµ : A −→ R, Eλµ(Σ) := Fµ(Σ) + λH1(Σ).

The functional Fµ will be often referred as “average-distance functional”. In the following, any
considered measure will be assumed nonnegative, compactly supported probability measure.
The choice of working with probability measure is for the sake of simplicity, and it is not restric-
tive since the main result is an existence result. Existence of minimizers follows from Blaschke
and Goł̨ab theorems.

In the following the expression “average-distance problem” will refer to Problem 1.1. Moreover,
the H1-measure of a set will be often referred as “length”. Originally this problem stemmed
from mathematical modeling of optimization problems. A classic example can be found in urban
planning: let

• µ be the distribution of passengers in a given region,
• Σ (the unknown) be the transport network to be built.

In this case Fµ(Σ) is the “average distance” of passengers from the network (thus smaller values
of Fµ(Σ) imply that “on average, passengers are quite close to the network Σ”, i.e. “Σ is easily
accessible”), and λH1(Σ) is the cost to build such network. Thus minimizing Eλµ is determining
the network which “optimizes accessibility” for passengers, under cost considerations.

A more recent application can be found in data approximation: let
• µ be the distribution of data points,
• Σ (the unknown) be a one dimensional object which approximates the data.

In this case Fµ(Σ) is the error of such approximation, while λH1(Σ) is the cost associated to its
complexity. Thus minimizing Eλµ is equivalent to determine the “best” approximation, which
balances approximation error and cost.

In applications, sometimes the integrand d(x,Σ) in Fµ(Σ) can be replaced by d(x,Σ)p for
some power p ≥ 1 (the case p = 2 is most common). However for the purposes of this paper
the exponent p is not relevant, and we will consider only the case p = 1. The regularity of
minimizers of Problem 1.1 is quite a delicate problem: it is known that minimizers are union of
at most [1/λ] branches, and such branches are Lipschitz regular (Buttazzo, Oudet, Paolini and
Stepanov [2, 3, 4, 13]), satisfying a curvature estimate (Slepčev et al. [11]), but can fail to be C1

regular (Slepčev [15]). Other results were proven by Santambrogio, Tilli [14, 16] and Lemenant
[8]. A review is available in [7].

Average distance problem among convex sets. As proposed by Lemenant and Mainini in [9],
the average-distance problem can be also considered among compact, convex sets, under perime-
ter and/or volume penalization:

Problem 1.2. Given d ≥ 2, a measure µ, and parameters λ1, λ2 ≥ 0 satisying λ1 + λ2 > 0, minimize

E(·) = E(µ, λ1, λ2)(·) :=

ˆ
Rd
d(x, ·)dµ+ λ1 Per(·) + λ2 Vol(·),

with the unknown varying in

C := {K ⊆ Rd : K compact and convex}.
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Here the “perimeter” of a setE ⊆ Rd is defined as the total variation (in Rd) of its characteristic function
χE , and the “volume” as its Ld measure.

The motivations to study this problem are mainly theoretical, although one could easily find
some applications (see [9]). Some partial results about regularity have been proven in [9]. How-
ever it is unclear if minimizers of Problem 1.2 (under only perimeter or volume penalization,
not both as this case has been discussed in [9]) have C1 regular border. The main result is:

Theorem 1.3. In R2, there exists a measure µ and λ1 > 0 such that

E(µ, λ1, 0)(·) =

ˆ
R2

d(x, ·)dµ+ λ1 Per(·)

admits a minimizer K ∈ C whose border is not C1 regular.

We will actually prove a stronger result (Theorem 4.8), with quantitative lower bound esti-
mates on the size of the jump of the tangent derivate.

Our construction strongly exploits the geometric rigidity of two-dimensional domains in
Lemmas 3.7, 3.8 and 4.7. Moreover we are unable to prove a similar result for the case of volume
penalization only, since the crucial estimates of Lemma 4.5 do not hold in this case. This paper
will be structured as follows:

• Section 2 will recall preliminary results,
• Section 3 will construct (in R2) an explicit example of minimizer of Problem 1.1 failing to

be C1 regular, using an approach different from that used in [15],
• Section 4 will construct, using techniques presented in Section 3, an explicit example of

minimizer K of Problem 1.2 under perimeter penalization only, whose border ∂K is not
C1 regular.

The approach used in Section 3 uses some ideas from [15]: indeed we will approximate the
reference measure µ with a sequence of discrete measures µk

∗
⇀µ. We will use also a result

similar to [15, Lemma 11] (although with a slightly different proof), and similarly to [15], we
will use the same result (Lemma 2.5) to pass to the limit k → +∞. However the core arguments
(Lemmas 3.5, 3.7 and 3.8), which prove that for infinitely many indices k there exists a minimizer
Σk ∈ argmin Eλµk containing a corner vk with turning angle (see Definition 2.4) bounded from
below (roughly corresponding to Steps 5, 6, 7 of in [15, Theorem 12]), are significantly different.
These are specifically tailored for the reference measure considered in Section 3, and cannot be
easily adapted for measures [15, Theorem 12].

It is worth noticing that this approach allows also to construct an example of minimizer of
Problem 1.1 whose set of corners (i.e. points where C1 regularity does not hold) is not closed
([10]).

2. PRELIMINARY RESULTS

The main goal of this section is to introduce some notations and recall well known results
which will be used in Section 3.

The average-distance functional satisfies the following well known properties:
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(1) for any probability measure µ on Rd, and λ > 0, the functional Eλµ is lower semicontinu-
ous w.r.t. dH (here, and in the following, dH will denote the Hausdorff distance),

(2) given Σ ∈ A, and λ > 0, the mapping µ 7→ Eλµ(Σ) is continuous with respect to weak-*
convergence of measures,

(3) if µn
∗
⇀µ, then for any λ > 0, the sequence {Eλµn} Γ-converges to Eλµ , i.e.

• for any Σ and sequence Σn
dH→Σ it holds lim infnE

λ
µn(Σn) ≥ Eλµ(Σ),

• for any Σ there exists a sequence Σ′n
dH→Σ such that lim supnE

λ
µn(Σ′n) ≤ Eλµ(Σ),

(4) consider a sequence µn
∗
⇀µ, and for any n choose Σn ∈ argmin Eλµ . Then upon subse-

quence Σn
dH→Σ ∈ argmin Eλµ .

For further details, we refer to [2, 3, 4, 15].

We recall the notion of Steiner graphs:

Definition 2.1. Given a finite set of points Π := {P1, · · · , Pj} ⊆ Rd, a Steiner graph of Π is a path-wise
connected set with minimal length among all compact, path-wise connected sets containing Π.

With an abuse of notation, in the following we will refer to Steiner graphs of finite sets as
“Steiner graphs”. For future reference, given points p, q ∈ Rd, the notation Jp, qK will denote the
segment {(1− s)p+ sq : s ∈ [0, 1]}.

The next result (from [15]) proves an intrinsic connection between Steiner graphs and mini-
mizers of Problem 1.1, when the reference measure is discrete:

Proposition 2.2. Given d ≥ 2, a discrete measure µ :=
∑n

i=1 aiδxi on Rd, and λ > 0, then any
minimizer Σ ∈ argmin Eλµ is a Steiner graph.

The following classic result (see for instance [5, 6]) proves several geometric properties about
Steiner graphs:

Proposition 2.3. Given a Steiner graph G, it holds:
• G is topologically a tree, i.e. it does not contain loops (subsets homeomorphic to S1, the unit circle

of R2),
• if Ju, vK and Jv, wK are edges, with a common vertex v, then ûvw ≥ 2π/3,
• the maximal degree of any vertex is 3,
• if v is a vertex of degree 3, let Jui, vK, i = 1, 2, 3 be the three different edges containing v, then the

angle between any two such edges is 2π/3, and these edges are coplanar.

In view of Propositions 2.2 and 2.3, the following definition will be useful:

Definition 2.4. Given a discrete measure µ, λ > 0, and Σ ∈ argminAE
λ
µ , a vertex v ∈ Σ is called:

• “endpoint” if has degree 1,
• “corner” if has degree 2,
• “triple junction” if has degree 3.
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If v is a corner, denoting by w, z the two vertices for which Jw, vK and Jv, zK are edges, the “turning
angle” in v is:

TA(v) := π − ŵvz.
Similarly, given a subset A ⊆ Σ, the turning angle of A is defined as

TA(A) :=
∑

u∈A, u corner

TA(u).

Given v ∈ Σ and x ∈ supp(µ), the following expressions will be used:
• “x talks to v”, “x projects on v”, “v talks to x”: all these mean d(v,Σ) = |x− v|;
• “v receives mass from A”, where A ⊆ supp(µ): there exists x ∈ A such that x talks to v;
• TM(µ, v,Σ) (TM(v) when no risk of confusion arises) denotes the total mass of project-

ing on v, which we note may not coincide with the total mass supported on the points
talking to v. The quantity TM(µ, v,Σ) will be often referred as “(amount of) mass pro-
jecting on v”. For a detailed discussion see Lemma 2.1 in [11];
• “H mass projects on v”, where H ≥ 0: this means TM(µ, v,Σ) = H .

Given two points p, q the notation Jp, qK will denote the straight segment {(1−t)p+tq : t ∈ [0, 1]}.
Finally we recall a convergence result :

Lemma 2.5. Given a sequence of curves {γk} : [0, 1] −→ K (k ∈ N), with K ⊆ R2 a given compact set,
satisfying

sup
k
‖γ′k‖BV < +∞, sup

k
H1(γk([0, 1])) < +∞,

then there exists a curve γ : [0, 1] −→ K, such that (upon subsequence) it holds:
(1) γk → γ in Cα, for any α ∈ [0, 1),
(2) γ′k → γ′ in Lp, for any p ∈ [1,∞),
(3) γ′′k

∗
⇀γ′′ in the space of signed Borel measures.

For a detailed proof we refer to [15, Lemma 6].

3. COUNTEREXAMPLE

The aim of this section is to present a different approach in constructing minimizers (of Prob-
lem 1.1) failing to be C1 regular.

Endow R2 with the standard Cartesian coordinate system. Let

µ = µ(r, η) :=

(
1− η
2πr2

(χB′ + χB′′) +
η

πr2
χB

)
· L2, (3)

λ = λ(η) :=
1− η

2
− 10−100, (4)

where χ denotes the characteristic function (of the subscripted set), and

B′ := B((−1, 0), r), B′′ := B((1, 0), r), B := B((0, 1), r).

The constant 10−100 in (4) is chosen such that (upon further choosing η < 1/6− 10−100) it holds
1/3 < λ < (1 − η)/2 (this is the crucial point used in the proof of statement (i) of Lemma 3.2 –
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FIGURE 1. A schematic representation of the support of µ. For the sake of clarity
the radius r has been chosen large.

the particular value 10−100 is not relevant, and chosen only to have an explicit constant to work
with). Parameters η and r will be determined later (see conditions (C1) and (C2)). For the sake
of brevity, we will omit writing dependencies on η and r if no risk of confusion arises.

The next result ([11, Lemma 3.1]) relates λ with the maximum topological complexity of min-
imizers of Eλµ .

Lemma 3.1. Given a measure µ′ and λ′ > 0, then any minimizer of Eλ′µ′ contains at most [1/λ′] end-
points, with [·] denoting the integer part mapping.

The detailed proof is available in [11, Lemma 3.1]. Here we present a sketch of the proof. In
[2] it has been proven that for any compact, path-wise connected, Lipschitz regular set X (note
that any minimizer of Eλ

′
µ′ satisfies such properties) it holds:

• for any sufficiently small ε > 0, endpoint v ∈ X , the set Xε := X\B(v, ε) is also compact,
path-wise connected and Lipschitz regular, andH1(Xε) ≤ H1(X)− ε.

If there exists a minimizer Σ ∈ argmin Eλ
′

µ′ and an endpoint w ∈ Σ such that TM(µ′, w,Σ) < λ,
then (for sufficiently small ε) the competitor Σε := Σ\B(w, ε) satisfies

• H1(Σε) ≤ H1(Σ)− ε,
• since Σε contains points on ∂B(w, ε), it follows

´
R2 d(x,Σε)dµ

′ ≤
´
R2 d(x,Σ)dµ′+εTM(µ′, w,Σ).

Since TM(µ′, w,Σ) < λ, it follows Eλ
′

µ′ (Σε) ≤ Eλ
′

µ′ (Σ) − (λ − TM(µ′, w,Σ))ε < Eλ
′

µ′ (Σ), contra-
dicting the minimality of Σ.

A direct consequence is that if λ > 1/3, any minimizer Σ ∈ argmin Eλµ(r,η) is a simple curve
(or a singleton) independently of r, η.
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Lemma 3.2. Let µ and λ be the quantities defined in (3) and (4). Then there exist r0, η0 > 0 such that
for any r ∈ (0, r0), η ∈ (0, η0), any minimizer Σ ∈ argmin Eλµ satisfies:

(i) Σ ∩B((−1, 0), 0.01) 6= ∅, Σ ∩B((1, 0), 0.01) 6= ∅,
(ii) Σ ⊆ {y < 1/3},

(iii) Σ ⊆ {y ≥ −r}.

Note that (i) precludes the case of Σ being a singleton. The constant 0.01 in statement (i) is also
quite arbitrary, and used to ensure estimate (5), and that any minimizer contains points “close
to” (±1, 0) respectively.

Proof. For any η such that λ > 1/3, Σ is a simple curve (or a singleton) in view of [11, Lemma 3.1].
Choose η1 < 1/3 such that λ(η) > 1/3 for any η ∈ (0, η1). To prove (i), note that passing to the
limit r → 0 the measure µ = µ(r, η) converges (with respect to weak-* topology) to

µ̄ :=
1− η

2
(δ(−1,0) + δ(1,0)) + ηδ(0,1).

Since µ̄((±1, 0)) = (1 − η)/2
(4)
> λ, any minimizer Σ̄ ∈ argmin Eλµ̄ contains {(±1, 0)}: indeed,

if there exists Σ̄ ∈ argminEλµ̄ , Σ̄ 63 (1, 0), choosing an arbitrary w̄ ∈ argminy∈Σ̄ |y − (1, 0)|, the
competitor Σ̄′ := Σ̄ ∪ Jw̄, (1, 0)K satisfies

H1(Σ̄′) ≤ H1(Σ̄) + |w̄ − (1, 0)|,
ˆ
R2

d(x, Σ̄′)dµ̄ ≤
ˆ
R2

d(x, Σ̄)dµ̄− |w̄ − (1, 0)|µ̄((±1, 0)),

hence Eλµ̄(Σ̄′) < Eλµ̄(Σ̄) in view of µ̄((±1, 0)) = (1− η)/2
(4)
> λ, contradicting the minimality of Σ̄.

Thus Σ̄ 3 (1, 0). The proof of Σ̄ 3 (−1, 0) is identical.

Since for sequences rk → 0, {Σk ∈ argminAE
λ
µ(rk,η)} it holds (upon subsequence) Σk

dH→Σ ∈
argminAE

λ
µ̄ , there exists a value r1 > 0 such that for any r ∈ (0, r1), η ∈ (0, η1), statement (i)

holds.

To prove (ii) it suffices to note that any set X containing {p1, p2, q}with p1 ∈ B((−1, 0), 0.01),
p2 ∈ B((1, 0), 0.01) and q ∈ {y = 1/3} satisfies

(∀α+ β = 2) H1(X) ≥
√

(α− 0.01)2 + (1/3− 0.01)2 +
√

(β − 0.01)2 + (1/3− 0.01)2, (5)

hence (by taking α = β = 1)

H1(X) ≥ 2
√

0.992 + (1/3− 0.01)2,

and
Eλµ(X) ≥ λH1(X) ≥ 2λ

√
0.992 + (1/3− 0.01)2.

The competitor J(−1, 0), (1, 0)K satisfies

Eλµ(J(−1, 0), (1, 0)K) ≤ 1− η
2

r + η + 2λ.

Passing to the limit r, η → 0 gives

Eλµ(J(−1, 0), (1, 0)K) ≤ 2λ < 2λ
√

0.992 + (1/3− 0.01)2 ≤ λH1(X).
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Thus there exist r2, η2 > 0 such that for any η ∈ (0, η2), r ∈ (0, r2) it holds

Eλµ(J(−1, 0), (1, 0)K) < λH1(X) ≤ Eλµ(X),

i.e. X /∈ argmin Eλµ . The arbitrariness of X implies that for any such η ∈ (0, η2), r ∈ (0, r2), any
minimizer of Eλµ (which intersects {y < 1/3} in view of (i)) cannot intersect {y = 1/3}, hence
statement (ii).

To prove (iii), let
π : R2 −→ R2, π(x, y) := (x,max{y,−r}).

Note that:
• any X ∈ A satisfiesH1(π(X)) ≤ H1(X), with equality holding only if X ⊆ {y ≥ −r},
• for any X ∈ A, x ∈ supp(µ) it holds d(x,X) = d(x, π(X)).

Thus any minimizer Σ ∈ argmin Eλµ satisfies π(Σ) = Σ. Note that the proof of statement
(iii) does not impose any further condition on the “smallness” of η, r. Therefore for any η ∈
(0,min{η1, η2}), r ∈ (0,min{r1, r2}) all the previous conclusions hold, and letting η0 := min{η1, η2},
r0 := min{r1, r2} concludes the proof. �

As consequence we have:

Corollary 3.3. Let µ and λ be the quantities defined in (3) and (4). Then there exist r′0, η
′
0 > 0 such that

for any r ∈ (0, r′0), η ∈ (0, η′0), and minimizer Σ ∈ argmin Eλµ , it holds:

(∀z ∈ B) argminw∈Σ |z − w| ⊆ {−0.01 ≤ x ≤ 0.01},
(∀z′ ∈ B′) argminw′∈Σ |z

′ − w′| ⊆ {−1.01 ≤ x ≤ −0.99},
(∀z′′ ∈ B′′) argminw′′∈Σ |z

′′ − w′′| ⊆ {0.99 ≤ x ≤ 1.01}.

Note that
⋃
z∈B argminw∈Σ |z − w| contains πΣ(B), where

πΣ : R2 −→ Σ, πΣ(x) := the unique point of argminy∈Σ |x− y|.

The “projection” map πΣ is well defined L2-a.e. (for further details we refer to [12]). Thus this
result states that the “projections” of B, B′, B′′ are mutually disjoint and “distant” (with respect
to Hausdorff distance).

Proof. Consider an arbitrary minimizer Σ ∈ argmin Eλµ . Impose η < η0, r < r0 (with η0, r0 from
Lemma 3.2) such that all three statements of Lemma 3.2 hold.

Statement (i) of Lemma 3.2 gives that Σ intersects both B((−1, 0), 0.01) and B((1, 0), 0.01),
hence for any a ∈ [−0.99, 0.99] the intersection Σ∩{x = a} is non empty. Combining statements
(ii) and (iii) of Lemma 3.2 gives that for any a ∈ [−0.99, 0.99] it holds Σ ∩ {x = a} ⊆ {−r ≤ y <
1/3}. Choose arbitrary z ∈ B and w ∈ Σ∩{x = zx}, with zx denoting the x coordinate of z. Note
that |z − w| ≤ 1 + 2r, hence for any z∗ ∈ B it holds |z∗ − w| ≤ 1 + 4r. Thus such w satisfies (for
any r < min{r0, (

√
2− 1)/6}, with r0 from Lemma 3.2)

(∀z ∈ B) |z − w| ≤ 1 + 4r<
√

2− 2r = inf
x∈B, y∈B′

|x− y| = inf
x∈B, y∈B′′

|x− y|.
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The same arguments give the existence of w′, w′′ ∈ Σ such that

(∀z′ ∈ B′) |z′ − w′| ≤ r + ε(r), (∀z′′ ∈ B′′) |z′′ − w′′| ≤ r + ε(r),

where
ε(r) := max{d((−1, 0),Σ), d((1, 0),Σ)}.

From the proof of statement (i) of Lemma 3.2 it follows limr→0+ ε(r) = 0. Thus the proof is
complete. �

Thus choose r, η such that:
(C1) η ≤ 10−100, r/η ≤ 1/48π,
(C2) conclusions of Lemma 3.2 and Corollary 3.3 hold.

Note that the “smallness” of η and r is already hidden in (C2). However (C1) is useful when an
explicit estimate is convenient. The value 10−100 is “highly non optimal”, but sufficient for our
purposes (its role is to ensure that for any x ∈ [0, η/λ] it holds sinx ≥ x/2, tanx ≤ 2x, which will
be used in Lemma 3.8). Condition r/η ≤ 1/48π will be used in the crucial Lemma 3.8.

Discrete measures. Similarly to [15], the first step involves approximating (in the weak-* topol-
ogy) µ with a sequence of discrete measures. Given three points v1, v2, v3, define the “region of
influence” V (v2) as follows:

(1) if v1, v2, v3 are collinear, then V (v2) is the unique line passing through v2 and orthogonal
to v3 − v2,

(2) otherwise, let θi := vi+1−vi
|vi+1−vi| (i = 1, 2), ξ := θ2+θ1

|θ2+θ1| , b := θ2−θ1
|θ2−θ1| , β := TA(v2)/2, and

V (v2) := v2 + {x ∈ R2 : |〈ξ, x〉| ≤ 〈b, x〉 tanβ},

where 〈, 〉 denotes the standard Euclidean scalar product of R2.
Note that if TA(v2) > 0, V (v2) is an angle with vertex v2, of amplitude TA(v2), and the border
∂V (v2) is union of two half-lines l± starting in v2.

For j = 1, 2, · · · , define

µj :=
1− η

2

( 1

](B′ ∩ 1
jZ2)

](B′∩ 1
j
Z2)∑

i=1

δp′i

)
+

1− η
2

( 1

](B′′ ∩ 1
jZ2)

](B′′∩ 1
j
Z2)∑

i=1

δp′′i

)

+ η
( 1

](B ∩ 1
jZ2)

](B∩ 1
j
Z2)∑

i=1

δpi

)
, (6)

where

{p′i} := B′ ∩ 1

j
Z2, {p′′i } := B′′ ∩ 1

j
Z2, {pi} := B ∩ 1

j
Z2,

Geometrically, this means that the mass supported in B (resp. B′, B′′) is uniformly distributed
on the uniform grid B ∩ 1

jZ
2, (resp. B′ ∩ 1

jZ
2, B′′ ∩ 1

jZ
2). Note that in Corollary 3.3 replacing the

reference µwith µj , the same conclusion holds (with the same proof). In particular any point can
receive mass from at most one of the balls B,B′, B′′. For the sake of brevity, in the following we



10 XIN YANG LU

will refer to Corollary 3.3 when using its conclusion, even if the reference measure of the context
is µj instead of µ.

The next result proves that if a positive fraction of the mass supported inB projects on a point
v, then TA(v) > 0.

Lemma 3.4. Consider the family of measures {µj} defined in (6). Let λ be the parameter defined in (4).
Then for any index j and minimizer Σ ∈ argmin Eλµj , if a positive fraction of the mass supported in B
projects on a point v ∈ Σ, then TA(v) > 0.

Proof. Assume for the sake of contradiction there exists an index j, a minimizer Σ ∈ argmin Eλµj ,
and a v ∈ Σ such that TA(v) = 0 but TM(µj , v,Σ) > 0. Let E ⊆ B be the set of points talking to
v. Simple geometric considerations give E ⊆ V (v), which (since TA(v) = 0) is the line through
v orthogonal to v1 − v2.

v1 v2v

vs

B

V (v)

FIGURE 2. This is a schematic representation of the variation.

Consider the variation in Figure 2: for any s < 1/3 define the competitor Σs as

Σs := Σ\Jv1, v2K ∪ (Jv1, vsK ∪ Jv2, vsK),

where vs is the unique point of V (v) ∩ R+ (with R+ denoting the half-plane – delimited by the
line through v1, v2 – containing B) such that |vs − v| = s. Choice s < 1/3 ensures vs /∈ E, since

by construction E ⊆ B ⊆ {y ≥ 1 − r}
(C1)

⊆ {y ≥ 1 − 10−200}, while v ∈ {y < 1/3} (Lemma 3.2).
Combining with E ⊆ V (v) gives that for any w ∈ E it holds |w − vs| = |w − v| − s. Integrating
over E gives

Fµj (Σ)− Fµj (Σs) ≥ µj(E)s = O(s),

since by hypothesis µj(E) = TM(µj , v,Σ) > 0. Note that for for sufficiently small s it holds

H1(Σs)−H1(Σ)=O(s2).
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Thus for sufficiently small s it holds Eλµj (Σs) ≤ Eλµj (Σ) − TM(µj , v,Σ)s + O(s2) < Eλµj (Σ), i.e.
the minimality of Σ is contradicted. �

This result has not been used in [15], and due to the very constructions therein, it is unclear
if the proof we used is valid for the reference measure in of [15, Theorem 12]. The next result
proves a relation between the turning angle of a given corner and the amount of mass projecting
on it.

Lemma 3.5. Consider the family of measures {µj} defined in (6). Let λ be the parameter defined in (4).
Then for any index j, minimizer Σ ∈ argmin Eλµj , and corner v ∈ Σ, it holds:

(i) upper bound estimate on the turning angle:

TA(v) ≤ π

2λ
TM(v),

(ii) estimates on the curvature κ(I) of an arbitrary subset I ⊆ Σ:

κ(I) ≤ π

2λ

∑
v∈I, v corner

TM(v),

(iii) bounds for small turning angles:

TA(v)→ 0+ =⇒ TA(v)

TM(v)/λ
→ 1. (7)

Moreover, if TA(v) ≤ 0.01 then
TA(v)

TM(v)/λ
≥ 1

2
.

The value 0.01 is very arbitrary, and we only use the fact that for any x ∈ [0, 0.01] it holds
tanx ≤ 2x. Statements (i) and (ii) have been proven (or follow easily from) in [15]. However
statement (iii), which will play a crucial role in the following arguments, has not been used in
[15], and it has not been proven explicitly. Although it may follow from [15, Lemma 9], our proof
is somewhat easier.

Proof. Statements (i) and (ii) have been proven in [15]. To prove (iii), note that upon scaling the
configuration is that in Figure 3.

Consider the variations in Figure 3. For any s < 1/3 define the competitor

Σ+
s := Σ\(Jv1, vK ∪ Jv2, vK) ∪ (Jv1, v

+
s K ∪ Jv2, v

+
s K), {v+

s } := β ∩B(v, s).

Note that
• the same argument from the proof Lemma 3.2 gives infy∈Σ+

s ,z∈B |y − z| > 0 (i.e. Σ+
s and

B are “distant”) for any s < 1/3,
• simple geometric considerations give that minz∈V (v)(|z − v| − |z − v+

s |) is achieved for
points z ∈ ∂V (v), which satisfy

|z − v+
s |2 = |z − v|2 + s2 − 2 cos(TA(v)/2)|z − v|s.

For small values of s, in first order approximation, this reads

|z − v+
s |2≥|z − v|2 − 2 cos(TA(v)/2)|z − v|s+O(s2),
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v1 v2

v

v+
s

v−s

β

V (v)

FIGURE 3. This is a schematic representation of the configuration. Here β is the bisector
of V (v), and |v1 − v| = |v2 − v|.

i.e.

|z − v| − |z − v+
s |≥

2 cos(TA(v)/2)|z − v|s+O(s2)

|z − v|+ |z − v+
s |

=s cos(TA(v)/2)+O(s2).

Thus
Fµj (Σ)− Fµj (Σ+

s )≥TM(v)s cos(TA(v)/2)+O(s2). (8)

• For length, direct computation gives

|v1 − v+
s |2 = |v1 − v|2 + s2 − 2 cos

π − TA(v)

2
s|v1 − v|,

which for small values of s gives

H1(Σ+
s )−H1(Σ)=2

(
|v1−v|− |v1−v+

s |
)
+O(s2)=2 cos

π − TA(v)

2
s+O(s2) = 2 sin

TA(v)

2
s+O(s2).

(9)
Combining estimates (8), (9) and minimality condition Eλµj (Σ) ≤ Eλµj (Σ

+
s ) (for any s > 0) yields

TM(v) cos
TA(v)

2
≤ 2λ sin

TA(v)

2
. (10)

The competitor
Σ−s := Σ\(Jv1, vK ∪ Jv2, vK) ∪ (Jv1, v

−
s K ∪ Jv2, v

−
s K),

where v−s is the point on B(v, s) antipodal with respect to v+
s , satisfies:

• for any z it holds |z − v−s | ≤ |z − v|+ s, i.e.

Fµj (Σ
−
s )− Fµj (Σ) ≤ TM(v)s. (11)
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• For length, direct computation gives

|v1 − v+
s |2 = |v1 − v|2 + s2 − 2 cos

TA(v)

2
s|v1 − v|,

i.e.

H1(Σ+
s )−H1(Σ)=2 sin

TA(v)

2
s+O(s2). (12)

Combining estimates (11), (12) and minimality condition Eλµj (Σ) ≤ Eλµj (Σ
−
s ) yields

TM(v) ≥ 2λ sin
TA(v)

2
. (13)

Combining (10) and (13) proves (7). The implication

TA(v) ≤ 1

100
=⇒ TA(v)

TM(v)/λ
≥ 1

2

follows immediately from (10): under assumption TA(v) ≤ 0.01, since for any x ∈ [0, 0.01] it
holds tanx ≤ 2x, inequality (10) reads

TM(v) ≤ 2λ tan
TA(v)

2

TA(v)≤0.01

≤ 2λTA(v),

hence 1
2 ≤

TA(v)
TM(v)/λ , and the proof is complete. �

Lemma 3.6. Consider the family of measures {µj} defined in (6). Let λ be the parameter defined in (4).
Then for any index j, minimizer Σ ∈ argmin Eλµj , and corner v ∈ Σ receiving mass from B, it holds
V (v) ∩ Σ = {v}.

For future reference, the notation ‖ · ‖TV will denote the total variation semi-norm. We will
omit writing the domain if no risk of confusion arises.

Proof. Let f : [0, 1] −→ Σ be a constant speed bijective parameterization, and denote with
tv := f−1(v). Assume there exists another point w := f(tw) ∈ V (v) ∩ Σ, w 6= v. Recall that
by construction, the border ∂V (v) is union of half-lines l± starting in v and orthogonal to the
left/right tangent vector τ± := limt→t±v f

′(t). Since the amplitude of V (v) is TA(v) ≤ πη
2λ (in

view of Corollary 3.3 and Lemma 3.5), it follows ∠(w − v)l− ≤ TA(v) (here ∠(w − v)l− de-
notes the angle between w − v and an arbitrary vector of the form v′ − v, with v′ ∈ l−\v), i.e.
∠(w − v)τ− ∈ [π/2− TA(v), π/2 + TA(v)], thus ‖f ′‖TV ≥ π/2− TA(v). Since

‖f ′‖TV ≤
π

2λ
(1− 2λ)

(4), (C1)

≤ 2π · 10−100

1− 3 · 10−100
<
π

2
− π · 10−100

1− 3 · 10−100

(4), (C1)

≤ π

2
− πη

2λ
≤ π

2
− TA(v),

with the first inequality due to Lemma 3.5, a contradiction has been achieved, concluding the
proof. �

The next result proves that given distinct corners v1 6= v2, then the intersection V (v1) ∩ V (v2)
is empty.
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Lemma 3.7. Consider the family of measures {µj} defined in (6). Let λ be the parameter defined in (4).
Then for any index j, minimizer Σ ∈ argmin Eλµj , and distinct corners vi, v′i receiving mass from B, it
holds V (vi) ∩ V (v′i) = ∅.

The arguments we use in this proof strongly rely on Lemma 3.2, whose proof uses the partic-
ular construction of µ, and cannot be extended (at least without very significant modifications)
to measures considered in [15, Theorem 12].

Proof. For the sake of brevity, given a point p, the notations px (resp. py) will denote the x (resp.
y) coordinate of p. Assume for the sake of contradiction there exist distinct corners v1, v2 such
that V (v1) ∩ V (v2) 3 v.

Lemma 3.6 implies v /∈ {v1, v2}, V (v1) 6⊆ V (v2) and V (v2) 6⊆ V (v1). Lemma 3.2 gives Σ ⊆
{y < 1/3}, while B ⊆ {y > 2/3}.

v2

v1

v

V (v2)

V (v1)

Σ

Σ

FIGURE 4. This is a schematic representation of the configuration.

Since Σ is a simple curve, let f : [0, 1] −→ Σ be a constant speed bijective parameterization.
Let

t1 = f−1(v1), t2 = f−1(v2),

and assume t1 < t2. Note that the triangle 4v1vv2 is non degenerate, thus min{v̂2v1v, v̂v2v1} <
π/2. Assume (by symmetry) v̂2v1v < π/2. Thus

{ε > 0 : (∀t ∈ (t1, t1 + ε))(∃z ∈ Jv1, v2K ∩ {x =
(
f(t)

)
x
}) : zy >

(
f(t)

)
y
} 6= ∅, (14)

and let

ε∗ := sup{ε > 0 : (∀t ∈ (t1, t1 + ε))(∃z ∈ Jv1, v2K ∩ {x =
(
f(t)

)
x
}) : zy >

(
f(t)

)
y
}.
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Clearly ε∗ ≤ t2 − t1. Consider the competitor

Σ̃ := Σ\f([t1, t1 + ε∗]) ∪ Jf(t1), f(t1 + ε∗)K,

constructed by replacing f([t1, t1 + ε∗]) with the straight segment Jf(t1), f(t1 + ε∗)K. By con-
struction it holds H1(Σ̃) < H1(Σ). Let q ∈ B be an arbitrary point. Choose an arbitrary
tw ∈ (t1, t1+ε∗) such that |q−f(tw)| = d(q,Σ), and by definition there exists w̃ ∈ Jf(t1), f(t1+ε∗)K
satisfying w̃x =

(
f(tw)

)
x
, w̃y >

(
f(tw)

)
y
. Thus

z ∈ {y > (w̃y +
(
f(tw)

)
y
)/2} =⇒ |z − w̃y| < |z − f(tw)|.

Since any point of f([t1, t1 + ε∗]) can only talk to masses supported in B ⊆ {y > 2/3}, while
Jf(t1), f(t1 + ε∗)K ⊆ {y < 1/2}, it follows

(∀z ∈ B)(∀t ∈ [t1, t1 + ε∗]) |z − f(t)| ≥ |z − w̃t|,
where w̃t is the unique point satisfying

(w̃t)x =
(
f(t)

)
x
, (w̃t)y >

(
f(t)

)
y
, w̃t ∈ Jf(t1), f(t1 + ε∗)K.

Thus it follows Fµ(Σ̃) ≤ Fµ(Σ). SinceH1(Σ̃) < H1(Σ), the minimality of Σ is contradicted. Thus
such a point v cannot exist. �

The next result is the core argument of our construction.

Lemma 3.8. Consider the family of measures {µj} defined in (6). Let λ be the parameter defined in (4).
Then for any sufficiently large index j and Σj ∈ argmin Eλµj , there exists a corner vj ∈ Σj such that
TM(µj , vj ,Σj) ≥ η/4. Moreover, TA(vj) ≥ η/6.

Since we will use Lemma 3.7, this proof cannot be used for measures considered in [15, The-
orem 12]. Note also that the choice of the denominator in TA(vj) ≥ η/6 is quite arbitrary (and
certainly not optimal), but acceptable for the purposes of this section (any lower bound estimate
on TA(vj) independent of j is sufficient for our purposes).

Proof. Fix an index j, and choose a minimizer Σ ∈ argmin Eλµj . Let f : [0, 1] −→ Σ be a constant
speed bijective parameterization, and let {vi}Hi=1 be the set of corners receiving positive mass
from B. Recall that Corollary 3.3 implies that such {vi} can talk only to mass supported in B.

Let ti := f−1(vi) andMi := TM(µj , vi,Σ). If there exist two indices i1, i2 such thatMi1 +Mi2 ≥
η/2, then the proof is complete. Thus in the following we will assume

(∀i1, i2, i1 6= i2) Mi1 +Mi2 ≤ η/2. (15)

The goal is to prove that this assumption leads to a contradiction.

Lemma 3.5 gives
Mi

2λ
≤ TA(vi) ≤

Mi

λ
, i = 1, · · · , H,

and combining with Lemma 3.2 gives

d(vi, B) ≥ 1

3
sin TA(vi) ≥

1

6
TA(vj). (16)
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The last inequality holds since TA(vj) ≤ η/λ, and with (C1) and (4) ensure that for any x ∈
[0, η/λ] it holds sinx ≥ x/2. Let l±i be the two half-lines forming the border ∂V (vi), Lemma 3.7
proves that V (vi1) ∩ V (vi2) = ∅whenever i1 6= i2.

• Claim: for any corner vi, except at most two, both half-lines l±i must intersect the border
∂B.

Let vi1 , vi2 be the two corners for which (upon renaming) l+i1 ∩ ∂B = l+i2 ∩ ∂B = ∅ (clearly if such
a couple vi1 , vi2 does not exist, then the claim is true). The goal is to prove that it does not exist
a third corner vi3 for which (upon renaming) l+i3 ∩ ∂B = ∅.

vi1

vi2

Σ

θ1

θ2

R1 R1

R2

FIGURE 5. This is a schematic representation of the configuration.

Assume (upon renaming) i1 < i2, and both l−i1 and l−i2 intersect ∂B since:

• vi1 and vi2 receive mass from B, thus V (vi1) ∩B and V (vi2) ∩B are both non empty,
• l+i1 and l+i2 do not intersect ∂B,
• if l−i1 (resp. l−i2) does not intersect ∂B, then B ⊆ V (vi1) (resp. B ⊆ V (vi2)) and Lemma 3.7

implies B ∩ V (vi2) = ∅ (resp. B ∩ V (vi1) = ∅). This is a contradiction.
Thus there exist half-lines θ1 ⊆ V (vi1) (resp. θ2 ⊆ V (vi2)) starting in v1 (resp. v2) and tangent

to ∂B. Note that
R2\(f([ti1 , ti2 ]) ∪ θ1 ∪ θ2)

is divided in two connected components R1 and R2, of which (upon renaming) R1 contains B.
Note also that any half-line contained in R1 must intersect ∂B.

Choose another corner vi3 : since it talks to some mass in B, the intersection V (vi3) ∩ B is not
empty, thus there exists a half-line φ ⊆ V (vi3). Lemma 3.6 implies V (vi3) ∩ Σ = {v3}, and since
V (vi3) is connected, it intersects B, but not θ1∪ θ2 (Lemma 3.7). Thus it holds V (vi3)\{vi3} ⊆ R1.
Since any half-line contained in R1 must intersect ∂B, we conclude that both l±i3 intersect ∂B,
and the claim is proven.

Using (16) gives that any corner vi such that both l±i intersect ∂B satisfies

min
z∈l−i , |z−vi|≥1/3

d(z, l+i ) ≥ 1

3
sin TA(vi)≥

1

6
TA(vi), (17)
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since Lemma 3.5 gives TA(vi) ≤ πη/(2λ)
(4), (C1)

≤ π · 10−100/(1 − 3 · 10−100), and for any x ∈
[0, πη/(2λ)] it holds sinx ≥ x/2. Since for any index i except at most two (which will be denoted
by i′ and i′′), both l±i intersect ∂B, choose w±i ∈ l±i ∩ ∂B, and clearly V (vi) ∩ ∂B is an arc
connecting w−i and w+

i . Combining with (17) gives

H1(V (vi) ∩ ∂B) ≥ min
z∈l−i , |z−vi|≥1/3

d(z, l+i ) ≥ 1

6
TA(vi),

and using Lemma 3.5 gives TA(vi) ≥
Mi

2λ
, i.e.

H1(V (vi) ∩ ∂B) ≥ 1

6
TA(vi) ≥

1

6

Mi

2λ
≥ 1

12
Mi. (18)

Recalling that V (vi1)∩V (vi2) = ∅whenever i1 6= i2, summing over indices i ∈ {1, · · · , H}\{i′, i′′}
gives

H1(∂B) ≥
H∑
i=1

i 6=i′,i′′

H1(V (vi) ∩ ∂B)
(18)
≥

H∑
i=1

i 6=i′,i′′

1

12
Mi

(15)
≥ η

24

(C1)
> 2πr = H1(∂B),

which is a contradiction.

Thus there exist indices i′, i′′ such that Mi′ + Mi′′ ≥ η/2, i.e. max{Mi′ ,Mi′′} ≥ η/4 indepen-
dently of j. Using Lemma 3.5, we conclude that max{TA(vi′),TA(vi′′)} ≥ η

8λ , and since 8λ < 6
in view of (4) and (C1), the proof is complete. �

Passing to the limit. Now we can pass to the limit j → +∞. The arguments we use are quite
standard, and similar to those used in [15] (mainly Step 8 of Theorem 12). For any j choose

Σj ∈ argmin Eλµj , and since µj
∗
⇀µ, upon subsequence it holds Σj

dH→Σ ∈ argmin Eλµ . Let

(j = 1, 2, · · · ) fj : [0, 1] −→ Σj , f : [0, 1] −→ Σ

be constant speed bijective parameterizations, such that fj → f uniformly. Lemma 3.8 proves
that for any j there exists a corner vj = f−1

j (tj) such that TA(vj)≥η/6. In other words, the
measure f ′′j has an atom of measure at least η/6 in tj . Note that conditions of Lemma 2.5 are
satisfied:

• supj ‖f ′j‖TV ≤ 1/λ in view of [11, Theorem 5.1],
• the minimality condition Σj ∈ argmin Eλµj , j = 1, 2, · · · implies:

– supj H1(Σj) < +∞, since the opposite would imply the existence of a subsequence
{Σj(k)} satisfying λH1(Σj(k))→ +∞,

– there exists a compact set K containing
⋃
j Σj , since the opposite, i.e. there exists a

subsequence {Σj(k)} and a sequence hk → +∞ such that Σj(k)∩
(
R2\B((0, 0), hk)

)
6=

∅ for any k, would imply

lim
k→+∞

(
inf

y∈Σj(k), z∈supp(µj(k))
|y − z|

)
≥ lim

k→+∞
hk − sup

j
H1(Σj) = +∞,
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hence Fµj(k)
(Σj(k))→ +∞.

Thus upon subsequence tj → t, and the convergence f ′′j
∗
⇀f ′′ (given by Lemma 2.5), implies that

the measure f ′′ has an atom of size at least η/6 in t. Corollary 3.3 gives f(t) ∈ {−0.01 ≤ x ≤
0.01}, thus f(t) is not an endpoint. Since an atom for the measure f ′′ corresponds to a jump for
the tangent derivative f ′, we conclude that Σ admits a corner in f(t), with TA(f(t)) ≥ η/6.

Thus we have proven:

Theorem 3.9. Let µ be the measure defined in (3) and λ the parameter defined in (4). Then there exists a
minimizer Σ ∈ argmin Eλµ containing a corner v with TA(v) ≥ η/6.

Corollary 3.10. The minimizer Σ from Theorem 3.9 is also minimizer for the constrained problem

min
H1(·)≤H1(Σ)

ˆ
R2

d(x, ·)dµ. (19)

Proof. In [2] it has been proven that any minimizer Σ̃ of (19) satisfies H1(Σ̃) = H1(Σ), thus if Σ
is not a minimizer of (19), choosing Σ∗ minimizer of (19) would giveˆ

R2

d(x,Σ∗)dµ <

ˆ
R2

d(x,Σ)dµ, H1(Σ∗) = H1(Σ),

contradicting Σ ∈ argmin Eλµ . �

4. AVERAGE DISTANCE PROBLEM AMONG CONVEX SETS

The aim of this section is to analyze regularity properties of minimizers of Problem 1.2. In
particular we construct a minimizer failing to be C1 regular, under perimeter penalization only.
Unfortunately, the arguments we use cannot be extended to the case of volume penalization. We
recall if both perimeter and volume are penalized, it has been proven in [9] that minimizers can
fail to be C1.

The considered energy will be

E = E(µ, λ) : C −→ [0,∞), E(µ, λ)(K) :=

ˆ
R2

d(x,K)dµ+ λPer(K),

where C and Per(·) have been defined in Problem 1.2, µ is a given measure and λ > 0 a given
parameter. For the sake of brevity, we will omit writing the dependencies on µ, λ when no risk
of confusion arises. Existence of minimizers, as proven in [9], follows from Blaschke and Goł̨ab
theorems.

Let
p1 := (−δ/2, 0), p2 := (δ/2, 0), p := (0, a), δ := 10−100

µr,a,η :=


1− η

2

(
1

πr2
L2
xB(p1,r)

+
1

πr2
L2
xB(p2,r)

)
+ η

(
1

πr2
L2
xB(p,r)

)
if r > 0

1− η
2

(δp1 + δp2) + ηδp if r = 0.

(20)

Here for given point q, the notation “δq” denotes the Dirac measure in q. The exact value of δ is
not relevant, but required to be “small” (its “smallness” will be used Lemmas 4.2 and 4.4, allow-
ing for λ to be chosen such that λδ is “small”). Parameters a, η, r will be determined later. Note
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that for any r < δ/4, the balls B(p1, r), B(p2, r), B(p, r) are mutually disjoint. The construction
of the counterexample will be achieved over three steps:

(1) first, prove the existence of parameters λ, η, a, such that any minimizer of E(µ0,a,η, λ)
contains {p1, p2} but not p (Lemma 4.1),

(2) then, choose suitable r, approximate µr,a,η with a sequence of discrete measures µj
∗
⇀µr,a,η,

and prove that minimizers of E(µj , λ) contain a corner with uniformly bounded ampli-
tude (Lemma 4.7),

(3) finally, take the limit j → +∞.
The choice to approximate µr,a,η is advantageous since:

(i) given an atomic measure ν (i.e. ν is sum of finitely many Dirac measures) and parameter
λ, there exists a polygon K ∈ argminC E(ν, λ),

(ii) given sequences νj
∗
⇀ν, {Cj ∈ argminC E(νj , λ)}, it holds (upon subsequence)

Cj
dH→C ∈ argminC E(ν, λ).

The proof is identical to the case of average distance problem among trees (Problem 1.1), noting
that the convex hull of finitely many points is a convex polygon.

Basic configuration. A key result is:

Lemma 4.1. Consider the family of measures {µr,a,η} defined in (20). Then there exist λ, η > 0 and
a > 1 such that the unique minimizer of E(µ0,a,η, λ) is an isosceles triangle4p1p2q, with base Jp1, p2K
and q = (0, qy) ∈ R2, qy ∈ (0, a).

The proof will be split over several lemmas.

Lemma 4.2. Consider the family of measures {µr,a,η} defined in (20). Then for any a ≥ 1, there exist
λ0, η0 > 0 such that for any λ ∈ (0, λ0), η ∈ (0,min{η0, λ/2}), any minimizerK ∈ argmin E(µ0,a,η, λ)
contains {p1, p2}.

Condition λ > η/2 will be crucial for the proof of Lemma 4.4.

Proof. Choose arbitrary a ≥ 1. Note that

E(µ0,a,η, λ)(Jp1, p2K) = aη + λδ,

thus for any minimizer K it holds

λPer(K) ≤ E(µ0,a,η, λ)(K) ≤ E(µ0,a,η, λ)(Jp1, p2K) = aη + λδ. (21)

Let π : R2 −→ K be the projection map, and assume (for the sake of contradiction) p1 /∈ K, i.e.

π(p1) 6= p1. Let e1 :=
p1 − π(p1)

|p1 − π(p1)|
, and let e2 be a unit vector orthogonal to e1. Consider the

family of linear applications

Tε : R2 −→ R2, Tεei = (1 + ε)ei, i = 1, 2.

By construction it holds

(∀ε > 0)(∀E ⊆ R2) E convex =⇒ TεE convex.
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Moreover

Fµ0(K)− Fµ0(TεK) ≥ µ0({p1})ε =
1− η

2
ε, Per(TεK)− Per(K)=εPer(K)+o(ε) (22)

This yields
λPer(TεK)− λPer(K) ≤ λεPer(K) ≤ (aη + λδ)ε,

thus there exist λ∗, η∗ = η∗(a) such that for any λ ∈ (0, λ∗), η ∈ (0, η∗) it holds

(aη + λδ)ε ≤ 0.3ε. (23)

Let λ0 := λ∗ and η0 := min{η∗, 0.6}. Combining (23) and (22) (for λ ∈ (0, λ0), η ∈ (0, η0)
satisfying λ > η/2) yields

λPer(TεK)− λPer(K) ≤ (aη + λδ)ε ≤ 0.3ε <
1− η

2
ε ≤ Fµ0(K)− Fµ0(TεK),

contradicting the minimality of K, and concluding the proof. �

The values 0.3 and 0.6 appearing in the proof are arbitrary, the key point is that by choosing
suitable λ and η it holds aη + λδ ≤ (1− η)/2.

Corollary 4.3. Consider the family of measures {µr,a,η} defined in (20). Then there exist η, λ, a, sat-
isfying λ > η/2, such that any minimizer K ∈ argmin E(µ0,a,η, λ) is an isosceles triangle with base
Jp1, p2K.

Proof. Lemma 4.2 implies that for suitable choice of parameters η, λ, a, any minimizer K ∈
argmin E(µ0,a,η, λ) contains {p1, p2}. Since for any convex set E the projection map πE : R2 −→
E is well defined, it follows that any minimizer K ∈ argmin E(µ0,a,η, λ) should be the convex
hull of three points (namely p1, p2 and πK(p)), i.e. a triangle with an edge Jp1, p2K. Since p lies on
the axis of Jp1, p2K, and for any triangle with fixed base and height the isosceles one minimizes
the perimeter, the proof is complete. �

Lemma 4.4. Consider the family of measures {µr,a,η} defined in (20). Then there exist η, λ, a, satisfying
λ > η/2 and (23), such that any minimizer K ∈ argmin E(µ0,a,η, λ) is a non degenerate triangle not
containing the point p = (0, a).

Before the proof, note that a sufficient condition for (23) is aη < 0.15 and λδ < 0.15. Since
δ = 10−100, for any λ < 1, condition λδ < 0.15 is satisfied (both values 0.15 are used here simply
because 0.15 + 0.15 ≤ 0.3, with 0.3 appearing in (23)). A potential issue can be present when
choosing η and a, since it is required that “choosing η small does not force to choose a large”.
This will be essentially the main point of this lemma.

Proof. Corollary 4.3 implies that there exist η, λ, a, such that any minimizerK ∈ argmin E(µ0,a,η, λ)
is a non degenerate isosceles triangle with base Jp1, p2K. Let h be its height (relative to the base
Jp1, p2K), and the third vertex has the form qh := (0, h) ∈ R2. Direct computation gives

ψ(h) := E(µ0,a,η, λ, α)(4p1p2qh) = (a− h)η + λ(δ +
√
δ2 + 4h2)

and
d

dh
ψ(h) = −η +

4hλ√
δ2 + 4h2

, (24)
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thus the optimal value for h is

h∗ = 4δ

(
4λ2

η2
− 1

)
.

Choosing λ > η/2 guarantees h∗ > 0. Note that further imposing λ/η ≤ 103 yields h∗ ≤
4δ
√

4 · 106 − 1 (103 is again an arbitrary value, and the particular form of the upper bound for
h∗ is not relevant, the key point is that h∗ can be just bounded from above) , thus choosing
a ∈ [3, 5] (the extremes 3 and 5 are arbitrary, the key point is a > h∗, which is satisfied since
h∗ ≤ 400δ < 3), η < 0.15/5, λ ≤ 1 gives

aη < 0.15, λδ < 0.15,

hence the compatibility with (23). Since the unique minimizer of E(µ0,a,η, λ) is a triangle with
vertices p1, p2, qh∗ := (0, h∗), and we just proved h∗ < a, it follows p = (0, a) /∈ 4p1p2qh∗ ,
concluding the proof. �

Proof. (of Lemma 4.1) The proof follows by combining Lemmas 4.2, 4.4 and Corollary 4.3, and
noting that these are valid if λ, η, a satisfy:

aη < 0.15, λδ < 0.15, 3 ≤ a ≤ 5, 0.7 ≤ λ

η
≤ 103 <

1

2

√
1 +

1

2δ
.

Here the value 0.7 is used only to ensure λ > 2η, while λ/η ≤ 103 is used to ensure h∗ < 3 ≤ a

(note that with such bounds we get h∗ = 4δ(4λ2/η2 − 1)
δ=10−100

≤ 4
√

4 · 106 − 1 · 10−100 < 3 ≤ a).
Since there exist triplets (λ, η, a) satisfying these conditions, the proof is complete. �

Note that it is possible to further impose
η

λ
≤ 0.01.

This condition will be used in Lemma 4.7. The value 0.01 is arbitrary here, and we will only use
the fact that for any x ∈ [0, 0.01] it holds sinx ≥ x/2.

Construction of the counterexample. Choose parameters λ, η, a such that any minimizer K ∈
argmin E(µ0,a,η, λ) satisfies 0 < d(p,K) =: b (this choice is possible due to Lemma 4.1). Note
there exists r such that for any minimizer K ∈ argmin E(µr,a,η, λ) it holds:

• distance estimate:
dH(B(p, r),K) ≥ b/4, (25)

• for any minimizer Cj ∈ argminC E(µj , λ), the “projection” sets⋃
z∈B(p,r)

argminw∈∂K |z − w|,
⋃

z′∈B(p′,r)

argminw∈∂K |z
′ − w|,

⋃
z′′∈B(p′′,r)

argminw∈∂K |z
′′ − w|

are mutually disjoint. This is possible in view of Lemma 4.1,
• and

2πr <
bη

48λ
. (26)

This condition will be used in Lemma 4.7.
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Choose λ, η, a, r such that all the conditions and results mentioned (until now) in this section
hold. From now parameters λ, η, a, r will be fixed.

Similarly to (6), let

µj :=
1− η

2

( 1

](B(p′, r) ∩ 1
jZ2)

∑
x∈B(p′,r)∩ 1

j
Z2

δx

)
+

1− η
2

( 1

](B(p′′, r) ∩ 1
jZ2)

∑
x∈B(p′′,r)∩ 1

j
Z2

δx

)

+ η
( 1

](B(p, r) ∩ 1
jZ2)

∑
x∈B(p,r)∩ 1

j
Z2

δx

)
. (27)

The results we use to analyze minimizers of E(µj , λ) are adapted versions of Lemmas 3.5, 3.7
and 3.8.

Lemma 4.5. Consider the family of measures {µj} defined in (27). Then for any index j, there exists a
convex polygon K minimizing E(µj , λ) and satisfying

(∀v ∈
⋃

z∈B(p,r)

argminw∈∂K |z − w|)
Mv

2λ
≤ TA(v) ≤ πMv

2λ
,

where Mv := TM(µ, v, ∂K).

Proof. The proof is done by adapting the arguments from Lemma 3.5, to deal with the convexity
constraint. Let K be a convex polygon minimizing E(µj , λ), v ∈ K be an arbitrary corner receiv-
ing mass from B(p, r). Choose v1, v2 ∈ ∂K such that Jv1, vK, Jv2, vK are straight segments and
|v1 − v| = |v2 − v| > 0. Note that it is possible to choose such points v1, v2 exactly because K is a
convex polygon.

• Upper bound estimate TA(v) ≤ πMv

2λ
.

Consider the modification in Figure 6. The point v−s ∈ K is chosen on the bisector of the angle
v̂1vv2 such that |v − v−s | = s (s is a free parameter, and we will be interested in the behavior for
small s). Define the competitor

Ks := conv
((
∂K\(Jv1, vK ∪ Jv2, vK)

)
∪ Jv1, v

−
s K ∪ Jv2, v

−
s K
)
,

where conv(·) denotes the convex hull. By construction

∂Ks = ∂K\(Jv1, vK ∪ Jv2, vK) ∪ (Jv1, v
−
s K ∪ Jv2, v

−
s K). (28)

Direct computation gives

Per(K)− Per(Ks)=s sin
TA(v)

2
+o(s),

ˆ
R2

d(x,Ks)dµj ≤
ˆ
R2

d(x,K)dµj +Mvs,

and using the minimality of K gives the upper bound estimate.

• Lower bound estimate TA(v) ≥ Mv

2λ
.
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K

∂K

v2v1

v−s

v

FIGURE 6. This is a schematic representation of the considered variation. The
green dash-dotted line is the bisector of the angle v̂1vv2.

Consider the modification in Figure 7. The point v+
s /∈ K is chosen on the bisector of the angle

v̂1vv2 such that |v − v+
s | = s (s is a free parameter, and we will be interested in the behavior for

small s). Let

K̃s := conv
((
∂K\(Jv1, vK ∪ Jv2, vK)

)
∪ Jv1, v

+
s K ∪ Jv2, v

+
s K
)
.

For the sake of brevity, given points w, z ∈ ∂K, the notation Jw, zK∂K will denote the unique
clockwise (this is well defined since we endowed R2 with an orthogonal coordinate system, and
∂K is homeomorphic to the unit circle S1) path in ∂K with endpoints in w and z. In this case

∂K̃s = ∂K\(Jw1, vK∂K ∪ Jv, w2K∂K) ∪ Jw1, v
+
s K∂K ∪ Jv+

s , w2K∂K ,

where w1 and w2 are the intersections between ∂K and the two half-lines lines starting in v+
s

and tangent to K. Direct computation gives
ˆ
R2

d(x, K̃s)dµj ≤
ˆ
R2

d(x,K)−Mvs cos
TA(v)

2
. (29)

By construction it holds

Per(K̃s) ≤ H1
((
∂K\(Jv1, vK ∪ Jv2, vK)

)
∪ Jv1, v

+
s K ∪ Jv2, v

+
s K
)
, (30)

and direct computation gives

H1
((
∂K\(Jv1, vK ∪ Jv2, vK)

)
∪ Jv1, v

+
s K ∪ Jv2, v

+
s K
)
− Per(K)=s sin

TA(v)

2
+o(s). (31)
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K

∂K

v2v1

v+
s

v

w2

w1

FIGURE 7. This is a schematic representation of the considered variation. The
quantity |v+

s − v| = s has been purposely exaggerated for the sake of clarity. The
green dash-dotted line is the bisector of the angle v̂1vv2.

Combining (29), (30), (31) with the minimality of K (compared against K̃s) gives the desired
inequality. �

Lemma 4.6. Consider the family of measures {µj} defined in (27). Then for any sufficiently large index
j, there exists a polygon Kj ∈ argminC E(µj , λ) satisfying:

• given distinct corners v1, v2 ∈
⋃
z∈B(p,r) argminw∈∂Cj |z−w|, i.e. v1, v2 receive mass only from

B(p, r), it holds V (v1) ∩ V (v2) = ∅.

Proof. Note that
• r has been chosen such that (25) holds,
• for any sequence of minimizers {Cj ∈ argminC E(µj , λ)} it holds (upon subsequence)

Cj
dH→C ∈ argminC E(µr,a,η, λ).

Thus for sufficiently large j, any minimizer Cj ∈ argmin E(µj , λ) satisfies dH(Cj , B(p, r)) ≥
b/8 (for the definition of b, see the arguments immediately before (25)). Note also that (upon
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choosing sufficiently large index j), for any minimizer Cj ∈ argmin E(µj , λ), the sets⋃
z∈B(p,r)

argminw∈∂Cj |z − w|,
⋃

z′∈B(p′,r)

argminw∈∂Cj |z
′ − w|,

⋃
z′′∈B(p′′,r)

argminw∈∂Cj |z
′′ − w|

are mutually disjoint. Intuitively, this implies that any point of ∂Cj receives mass from at most
one of the balls B(p, r), B(p′, r), B(p′′, r). Then the conclusion follows by using the same con-
struction from the proof of Lemma 3.7, which can be applied without modification since it pre-
serves convexity. �

Lemma 4.7. Consider the family of measures {µj} defined in (27). Then for any sufficiently large index
j, there exists a minimizer Kj ∈ argmin E(µj , λ) satisfying:

• there exists a corner vj ∈ ∂Kj , receiving mass from B(p, r), such that TA(vj) ≥ η/(8λ).

Again the denominator 8λ is quite arbitrary, but sufficient for the purposes of this section
(indeed any positive lower bound to TA(vj) independent of j, and valid for any sufficiently
large j, is sufficient). The proof follows by applying straightforwardly the same argument from
the proof of Lemma 3.8, with the roles of Lemmas 3.5 and 3.7 replaced by Lemmas 4.5 and 4.6.
However, since this result is crucial for the purposes of this section, we will report its proof.

Proof. Let B := B(p, r). Consider an index j, a polygon Kj ∈ argminC E(µj , λ), and let {vi}i∈I ⊆
Kj be the (finite) set of corners receiving mass from B, with I a suitable set of indices. Similarly
to the proof of Lemma 3.8, for any index i ∈ I let V (vi) be the wedge of vi, and let l±i the two
half-lines (the order is not relevant) forming the border ∂V (vi).

Again it holds (with the same proof from Lemma 3.8):

• for any index i ∈ I, except at most two, both half-lines l±i must intersect ∂B.

Let Mi := TM(µj , vi, ∂Kj) (i ∈ I). If there exists a couple of indices i′, i′′ ∈ I such that
Mi′ +Mi′′ ≥ η/2, then the proof is complete. Thus assume:

(∀i′, i′′ ∈ I, i′′ 6= i′′) Mi′ +Mi′′ ≤ η/2. (32)

The goal is to prove that (32) gives a contradiction.
Let J ⊆ I be the set of indices i such that both half-lines l±i intersect ∂B. This implies that

there exist points p±i ∈ l±i ∩ ∂B; for any index i ∈ J choose an arc of minimal length φi ⊆
∂B ∩ V (vi) connecting p−i and p+

i . ClearlyH1(φi) ≥ |p−i − p
+
i |. However, since dH(Kj , B) ≥ b/8

and TA(vi) ≥ Mi/(2λ) (Lemma 4.5), elementary geometry (combined with the fact that Mi and
TA(vi) are very small) gives

|p−i − p
+
i | ≥ |vi − p

−
i | sin TA(vi) ≥

b

8
sin TA(vi) ≥

b

12
TA(vi) ≥

bMi

24λ
.

The last inequality hold since TA(vi) ≤ Mi/λ ≤ η/λ ≤ 0.01, hence Lemma 4.5 can be applied.
The second-to-last inequality holds since we imposed η/λ ≤ 0.01, for any x ∈ [0, η/λ] it holds
sinx ≥ x/2.



26 XIN YANG LU

Lemma 4.6 gives that the wedge of distinct corners are disjoint, and in particular the arcs φi
(i ∈ J ) are mutually disjoint. Thus summing over indices i ∈ J gives∑

i∈J
H1(φi) ≥

b

24λ

∑
i∈J

Mi

(32)
≥ bη

48λ
, (33)

while by construction it holds φi ⊆ ∂B (i ∈ J ⊆ I), yielding∑
i∈J
H1(φi) ≤ 2πr. (34)

Combining inequalities (33) and (34) gives

2πr = H1(∂B) ≥
∑
i∈J
H1(φi) ≥

bη

48λ
,

which contradicts condition (26). Thus there exists a couple of indices i′, i′′ ∈ I such that Mi′ +
Mi′′ ≥ η/2, hence max{Mi′ ,Mi′′} ≥ η/4, and using Lemma 4.5 gives max{TA(vi′),TA(vi′′)} ≥
η/(8λ), concluding the proof. �

Now it is possible to pass to the limit: for any j choose a minimizer Kj ∈ argmin E(µj , λ)
such that the conclusion of Lemma 4.7 holds. Let ϕj : [0, 1] −→ ∂Kj be a constant speed param-
eterization, and it is clear that

sup
j
‖ϕj‖L1 < +∞, sup

j
‖ϕj‖TV < +∞,

since the former (which is a uniform bound on perimeter) follows from the minimality of Kj ,
and the latter (which is a uniform bound on curvature) follows from the convexity of Kj .Note
also

• there exists a compact set containing
⋃
jKj .

Indeed the uniform bound on perimeters supj H1(Kj) < +∞ gives also a uniform bound on
diameters (since for any convex set its diameter does not exceed its perimeter), hence if there
exists a subsequence (which we do not relabel) {Σj} and a sequence {wj} satisfying

wj ∈ Kj , |wj | → +∞,
then

inf
w∈Kj , z∈supp(µj)

|w − z| → +∞ =⇒ Eλµj (Kj) ≥
ˆ
R2

d(x,Kj)dµj ≥ inf
w∈Kj , z∈supp(µj)

|w − z| → +∞.

This contradicts Kj ∈ argmin Eλµj for any sufficiently large j, since supp(µj) ⊆ B ∪ B′ ∪ B′′
gives

sup
j

minEλµj ≤ sup
j
Eλµj ({(0, 0)}) ≤

ˆ
R2

d(x, {(0, 0)})dµj ≤ 1 + r.

Upon subsequence Kj
dH→K, with K convex, thus ∂Kj

dH→∂K. Lemma 2.5 gives (upon subse-
quence) the existence of a limit curve ϕ = limj ϕj (this limit is taken in the C0 topology) param-
eterizing ∂K. Since for any j, the measure ϕ′′j (which does not change sign due to the convexity
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of Kj) has an atom of measure at least η/(8λ) at some time tj , and (upon subsequence) tj → t,
the convergence (upon subsequence) ϕ′′j

∗
⇀ϕ′′ implies that the measure ϕ′′ has an atom of size at

least η/(8λ) at time t. Since an atom for the curvature measure ϕ′′ is equivalent to a jump for the
tangent derivative ϕ′, it follows:

Theorem 4.8. Let µr,a,η be the measure defined in (20). Then for suitable choice of parameters λ, a, η, r,
there exists a minimizer K ∈ argmin E(µr,a,η, λ) whose border ∂K is not C1 regular.
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