
A MULTIPHASE SHAPE OPTIMIZATION PROBLEM FOR

EIGENVALUES: QUALITATIVE STUDY AND NUMERICAL RESULTS

BENIAMIN BOGOSEL , BOZHIDAR VELICHKOV

Abstract. We consider the multiphase shape optimization problem

min
{ h∑

i=1

λ1(Ωi) + c|Ωi| : Ωi open, Ωi ⊂ D, Ωi ∩ Ωj = ∅
}
,

where c > 0 is a given constant and D ⊂ R2 is a bounded open set with Lipschitz boundary.
We give some new results concerning the qualitative properties of the optimal sets and
the regularity of the corresponding eigenfunctions. We also provide numerical results for
the optimal partitions.

1. Introduction

In this paper we consider a multiphase shape optimization problem of the form

min
{
F
(
λ1(Ω1), . . . , λ1(Ωh)

)
+ c

h∑
i=1

|Ωi| : Ωi open, Ωi ⊂ D, Ωi ∩ Ωj = ∅
}
, (1.1)

where D ⊂ R2 is an open set of finite measure, F : Rh → R is a given increasing in each
variable Lipschitz continuous function and, for a generic open set Ω ⊂ R2, λ1(Ω) is the first
eigenvalue of the Dirichlet Laplacian, which is variationally characterized as

λ1(Ω) = min
{∫

Ω
|∇u|2 dx : u ∈ H1

0 (Ω),

∫
Ω
u2 dx = 1

}
, (1.2)

where H1
0 (Ω) is the Sobolev space on Ω. More precisely, we study the following model

problem:

min
{ h∑
i=1

λ1(Ωi) + c|Ωi| : Ωi open, Ωi ⊂ D, Ωi ∩ Ωj = ∅
}

; (1.3)

The variational problem (1.3) is widely studied in the literature in the case c = 0. We
refer to the papers [11], [10], [14] and [3] for a theoretical and numerical analysis in this
case. The other limit case appears when the constant c > 0 is large enough. Indeed, we
recall that the solution of the problem

min
{
λ1(Ω) + c|Ω| : Ω open, Ω ⊂ R2

}
, (1.4)

is a disk of radius rc =

(
λ1(B1)

cπ

) 1
4

. It is straightforward to check that if c > 0 is such

that there are h disjoint disks of radius rc that fit in the box D, then the solution of (1.3)
is given by the h-uple of these disks. Finding the smallest real number c > 0, for which the
above happens, reduces to solving the optimal packing problem

max
{
r : there exist h disjoint balls Br(x1), . . . , Br(xh) in D

}
. (1.5)

The multiphase problem (1.3), in variation of the parameter c > 0, present an interpo-
lation between the optimal partition problem (corresponding to the case c = 0) and the
optimal packing problem (1.5). The aim of this paper is to study the solutions of (1.3),
providing some regularity and qualitative results, as well as some fine numerical results.
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The paper is organized as follows. In Section 2 we recall the results concerning the
existence of optimal configuration and we give the main technical tools concerning the
eigenfunctions of the Dirichlet Laplacian, i.e. the Sobolev functions that realize the mini-
mum in (1.2). In Section 3 prove that the eigenfunctions on the optimal sets are Lipschitz
continuous on R2. In Section 4, we give some results concerning the qualitative behaviour
of the optimal configurations. We recall a result from [7] which states that, for c > 0, there
are no triple boundary points. We prove that there are no double boundary points on ∂D,
provided that ∂D is locally a graph of a Lipschitz function. We also prove that for some
optimal configurations the boundary of the set Ω = Ω1 ∪ · · · ∪ Ωh may contain cusps. In
Section 5 we present a numerical algorithm for calculating the minimizers of (1.3) as well
as some numerical results for different values of h and c and we confirm numerically some
of the theoretical results concerning the lack of triple points and the lack of double points
on the boundary.

2. Preliminaries

2.1. Eigenvalues and eigenfunctions. Let Ω ⊂ R2 be an open set. We denote with
H1

0 (Ω) the Sobolev space obtained as the closure in H1(R2) of C∞c (Ω), i.e. the smooth
functions with compact support in Ω, with respect to the Sobolev norm

‖u‖H1 :=
(
‖∇u‖2L2 + ‖u‖2L2

)1/2
=

(∫
R2

|∇u|2 + u2 dx

)1/2

.

We note that H1
0 (Ω) can be characterized as

H1
0 (Ω) =

{
u ∈ H1(R2) : cap

(
{u 6= 0} \ Ω

)
= 0
}
, (2.1)

where the capacity cap(E) of a measurable set E ⊂ R2 is defined as

cap(E) = min
{
‖u‖2H1 : u ≥ 1 in a neighbourhood of E

}
1.

The kth eigenvalue of the Dirichlet Laplacian can be defined through the min-max varia-
tional formulation

λk(Ω) := min
Sk⊂H1

0 (Ω)
max
u∈Sk

∫
Ω |∇u|

2 dx∫
Ω u

2 dx
, (2.2)

where the maximum is over all non-zero functions u ∈ Sk and the minimum is over all k
dimensional subspaces Sk of H1

0 (Ω). There are functions u1, . . . , uk, . . . in H1
0 (Ω), orthonor-

mal in L2(Ω), that solve the equation

−∆uk = λk(Ω)uk, uk ∈ H1
0 (Ω),

in a weak sense in H1
0 (Ω). In particular, if k = 1, then the first eigenfunction u1 of Ω is

the solution of the minimization problem (1.2). Since |u1| is also a solution of (1.2), from
now on we will always assume that u1 is non-negative and normalized in L2. Moreover, we
have the following properties of u1 on a generic open2 set Ω of finite measure:

• u1 is bounded and we have the estimate3

‖u1‖L∞ ≤ 1

π
λ1(Ω)|Ω|1/2. (2.3)

• u1 ∈ H1(R2), extended as zero outside Ω, satisfies the following inequality in sense
of distributions:

∆u1 + λ1(Ω)u1 ≥ 0 in
[
C∞c (R2)

]′
. (2.4)

1for more details see, for example, [13] or [15]
2The same properties hold for the first eigenfunction on quasi-open set of finite measure.
3We note that the infinity norm of u1 can also be estimated in terms of λ1(Ω) only as ‖u1‖L∞ ≤

Cλ1(Ω)d/4. This estimate is more general and can be found in [12, Example 8.1.3].
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• Every point x0 ∈ R2 is a Lebesgue point for u1. Pointwise defined as

u1(x0) := lim
r→0
−
∫
Br(x0)

u(x) dx,

u1 is upper semi-continuous on R2.
• u1 is almost subharmonic in sense that for every x0 ∈ R2, we have

u1(x0) ≤ ‖u1‖L∞λ1(Ω)r2 + −
∫
Br(x0)

u1(x) dx, ∀r > 0. (2.5)

2.2. Monotonicity formulas for eigenfunctions. The monotonicity formula of Alt-
Caffarelli-Friedman is an essential tool in the study of the behaviour of the eigenfunctions
in the points of the common boundary of the optimal sets for (1.1). Since the eigenfunctions
are not subharmonic, but satisfy (2.4), we will need another version of the monotonicity
formula from [2]. We state here the following monotonicity theorem, which contains a
refined version of the result in [11] and we will prove it in the Appendix A.

Theorem 2.1 (Two-phase monotonicity formula). Consider the unit ball B1 ⊂ R2. Let
u+, u− ∈ H1(B1) ∩ L∞(B1) be two non-negative functions with disjoint supports, i.e. such
that

∫
B1
u+u− dx = 0, and let λ+, λ− ≥ 0 be two real numbers such that

∆u+ + λ+u
+ ≥ 0 and ∆u− + λ−u

− ≥ 0.

(a) Then there are constants 1/2 ≥ r0 > 0 and C > 0, depending on d, λ+ and λ−, such
that for every r ∈ (0, r0) we have(

1

r2

∫
Br

|∇u+|2 dx
)(

1

r2

∫
Br

|∇u−|2 dx
)
≤ C

(
1 + ‖u+ + u−‖2L∞(B2r0 )

)2
. (2.6)

(b) If, moreover, the set Ω := B1 ∩ {u+ = 0} ∩ {u− = 0} has positive density in 0, i.e.

lim inf
r→0

|Ω ∩Br|
|Br|

= c > 0,

then there is some ε > 0, depending on d, λ+, λ− and c such that(
1

r2

∫
Br

|∇u+|2 dx
)(

1

r2

∫
Br

|∇u−|2 dx
)

= o(rε). (2.7)

We note that the estimate (2.6) follows by the more general result by Caffarelli, Jerison
and Kenig (see [9] and also the note [17], where the continuity assumption was dropped). In
order to obtain (2.7) we use the idea of Conti, Terracini and Verzini (see [11]), which works
exclusively for eigenfunctions, but can be easily refined to obtain fine qualitative results as
(2.7).

The three-phase version of Theorem 2.1 is the main tool that allows to exclude the
presence of triple boundary points in the optimal configuration. The following three-phase
monotonicity formula was proved for eigenfunctions in [11], while the general three-phase
version of the Caffarelli-Jerison-Kenig result can be found in [7] (see also [17] for the detailed
proof).

Theorem 2.2 (Three-phase monotonicity formula). Consider the unit ball B1 ⊂ R2. Let
u1, u2, u3 ∈ H1(B1) ∩ L∞(B1) be three non-negative functions with disjoint supports, i.e.
such that

∫
B1
uiuj dx = 0 for all i 6= j, and let λ1, λ2, λ3 ≥ 0 be real numbers such that

∆ui + λiui ≥ 0, ∀i = 1, 2, 3.

Then there are constants 0 < r0 ≤ 1/2, C > 0 and ε > 0, depending on d, λ1, λ2 and λ3,
such that for every r ∈ (0, r0) we have

3∏
i=1

(
1

r2

∫
Br

|∇ui|2 dx
)
≤ Crε

(
1 + ‖u1 + u2 + u3‖2L∞(B2r0 )

)3
. (2.8)
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Remark 2.3. In [11] it was proved that one can take ε = 3.

2.3. Existence of optimal configurations. The shape optimization problems of the
form (1.1) admit solutions for a very general cost functionals F(Ω1, . . . ,Ωh). The general
existence result in this direction is well known and is due to the classical Buttazzo-Dal
Maso result from [8]. The price to pay for such a general result is that one has to relax
the problem to a wider class of domains, which contains the open ones. Indeed, one notes
that the capacitary definition of a Sobolev space (2.1) can be easily extended to generic
measurable sets. In particular, it is well known (we refer, for example, to the books [15]
and [5]) that it is sufficient to restrict the analysis to the class of quasi-open sets, i.e.
the level sets of Sobolev functions. Since the definition of the first eigenvalue (1.2) is of
purely variational character, one may also extend it to the quasi-open sets and then apply
the theorem of Buttazzo and Dal Maso [8] to obtain existence for (1.1) in the family of
quasi-open sets under the minimal assumptions of monotonicity and semi-continuity of the
function F . Thus, the study of the problem of existence of a solution of (1.1) reduces to
the analysis of the regularity of the optimal quasi-open sets.

Following the above idea, the existence of an open solution of (1.1) was proved in [7].
More precisely, the following existence result was proved in [7].

Theorem 2.4. Let F : Rh → R be a locally Lipschitz function, increasing in each variable
and let c > 0. Then, for every open set D ⊂ R2 of finite measure, there is a solution of the
problem (1.1). Moreover, every solution (Ω1, . . . ,Ωh) of (1.1) is such that:

(a) the sets Ωi are bounded and we have the estimate diam(Ωi) ≤ C, where C > 0 is a
constant depending on c, λ1(Ωi) and |Ωi|;

(b) the sets Ωi are of finite perimeter and we have the estimate

P (Ωi) ≤ c−1/2λ1(Ωi)|Ωi|1/2; (2.9)

(c) there is a lower bound on the eigenvalue λ1(Ωi) given by

λ1(Ωi) ≥
(
4πc
)1/2

; (2.10)

(d) there are no triple boundary points, i.e. if i, j, k ∈ {1, . . . , h} are three different indices,
then the set ∂Ωi ∩ ∂Ωj ∩ ∂Ωk is empty.

3. Lipschitz continuity of the eigenfunctions

In this section we prove that the first eigenfunctions on the optimal sets for (1.3) are
Lipschitz continuous. To fix the notation, in the rest of this section we will denote with
(Ω1, . . . ,Ωh) a generic solution of (1.3) and with ui ∈ H1

0 (Ωi) the first eigenfunction on
Ωi, i.e. ui are non-negative function such that

∫
R2 u

2
i dx = 1 satisfying (2.3), (2.4) and the

equation

−∆ui = λ1(Ωi)ui, ui ∈ H1
0 (Ω),

weakly in H1
0 (Ωi).

3.1. Non-degeneracy of the eigenfunctions. We first note that for every ωi ⊂ Ωi, the
optimality of (Ω1, . . . ,Ωi, . . . ,Ωh) tested against the h-uple of open sets (Ω1, . . . , ωi, . . . ,Ωh)
gives the inequality

λ1(Ωi) + c|Ωi| ≤ λ1(ωi) + c|ωi|,

i.e. Ωi is a subsolution for the functional λ1 + c| · |. Thus using the argument from the
Alt-Caffarelli non-degeneracy lemma (see [1, Lemma 3.4] and also [7, Section 3]), we have
the following result.
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Lemma 3.1. Suppose that (Ω1, . . . ,Ωh) is optimal for (1.3). Then there are constants Cnd
and r0 > 0 such that for all the first eigenfunctions ui, every 0 < r ≤ r0 and every x0 ∈ R2

we have the following implication(
Br/2(x0) ∩ Ωi 6= ∅

)
⇒

( 1

r
−
∫
Br(x0)

ui dx ≥ Cnd
)
. (3.1)

Remark 3.2. Together with the estimate (2.5), Lemma 3.1 gives that there is r0 > 0 such
that

‖ui‖L∞(Br/2(x0)) ≤ 5 −
∫
Br(x0)

ui dx, ∀r ≤ r0 such that Br/2(x0) ∩ Ωi 6= ∅. (3.2)

On the common boundary of two optimal sets the non-degeneracy (3.1) of the mean
−
∫
Br(x0) ui dx gives a bound from below for the gradient −

∫
Br(x0) |∇ui|

2 dx. This fact follows

by the elementary lemma proved below.

Lemma 3.3. Let R > 0, BR(x0) ⊂ R2 and U ∈ H1(BR(x0)) be a Sobolev function such
that for almost every r ∈ (0, R) the set {U = 0} ∩ ∂Br(x0) is non-empty. Then we have

1

R
−
∫
BR(x0)

U dH1 ≤ 2

(
−
∫
BR(x0)

|∇U |2 dx

)1/2

. (3.3)

Proof. Without loss of generality we suppose that x0 = 0. We first note that for almost
every r ∈ (0, R) the restriction U |∂Br is Sobolev. If, moreover, {U = 0}∩ ∂Br 6= ∅, then we
have ∫

∂Br

U2 dH1 ≤ 4r2

∫
∂Br

|∇U |2 dH1.

Applying the Cauchy-Schwartz inequality and integrating for r ∈ (0, R), we get( 1

R
−
∫
BR

U dx
)2
≤ 1

R2
−
∫
BR

U2 dx ≤ 4 −
∫
BR

|∇U |2 dx.

�

Corollary 3.4. Suppose that (Ω1, . . . ,Ωh) is optimal for (1.3). Then there is a constant
r0 > 0 such that for every x0 ∈ ∂Ωi ∩ ∂Ωj, for some i 6= j we have

−
∫
Br(x0)

|∇ui|2 dx ≥ 4C2
nd,∀r ∈ (0, r0), (3.4)

where Cnd > 0 is the non-degeneracy constant from Lemma 3.1.

Proof. Since x0 ∈ ∂Ωi ∩ ∂Ωj , we have that for every r > 0 Ωi ∩ Br(x0) 6= ∅ and Ωj ∩
Br(x0) 6= ∅. In view of Lemma 3.1, it is sufficient to check that Ωi ∩ ∂Br(x0) 6= ∅ and
Ωj ∩ ∂Br(x0) 6= 0, for almost every r ∈ (0, r0). Indeed, suppose that this is not the case
and that Ωi ∩ ∂Br(x0) = ∅. Since Ωi is connected, we have that Ωi ⊂ Br(x0), which gives
λ1(Ωi) ≥ λ1(Br0), which is impossible if we choose r0 small enough. �

3.2. Growth estimate of the eigenfunctions on the boundary. We now prove the
two key estimates of the growth of ui close to the boundary ∂Ωi. We consider two kinds
of estimates, one holds around the points, where two phases Ωi and Ωj are close to each
other, and is reported in Lemma 3.5. The other estimate concerns the one-phase points,
i.e. the points on one boundary, say ∂Ωi, which are far away from all other sets Ωj .

Lemma 3.5. Suppose that (Ω1, . . . ,Ωh) is optimal for (1.3). Then there are constants C2

and r0 > 0 such that if x0 ∈ ∂Ωi is such that Ωj ∩ Br(x0) 6= ∅, for some j 6= i and r ≤ r0,
then

‖ui‖L∞(Br(x0)) ≤ C2r. (3.5)
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Proof. Without loss of generality we suppose that 0 = x0 ∈ ∂Ωi. Let now 0 < r ≤ r0 be
such that Ωj ∩Br 6= ∅. Choosing r0 small enough we may apply Lemma 3.1 obtaining that

−
∫
B3r

uj dx ≥ 3Cnd r.

Again by choosing r0 small enough we may suppose that for every r ∈ (0, r0) we have
∂B3r ∩ Ωi 6= 0. Indeed, if this is not the case for some r, then the set Ωi is entirely
contained in B3r and so λ1(Ωi) ≥ λ1(B3r) ≥ λ1(B3r0), contradicting the optimality of Ωi.
Thus, we may apply the estimate (3.3) for uj obtaining

C2
nd ≤

( 1

3r
−
∫
B3r

uj dx
)2
≤ 4 −

∫
B3r

|∇uj |2 dx.

By the two-phase monotonicity formula applied for ui and uj , we get that there is a constant
C > 0 such that

4C

C2
nd

≥ −
∫
B3r

|∇ui|2 dx.

Since Br∩Ωj 6= ∅, by choosing r0 small enough an reasoning as above we may suppose that
for every r̃ ∈ (r, 3r) ∂Br̃ ∩ Ωj 6= 0. Thus, reasoning as in Lemma 3.3, we get that

4(3r)2

∫
B3r\B2r

|∇ui|2 dx ≥
∫
B3r\B2r

u2
i dx ≥

1

5πr2

(∫
B3r\B2r

ui dx
)2
.

By the mean value formula, there is R ∈ (2r, 3r) such that∫
∂BR

ui dx ≤
1

r

∫ 3r

2r

(∫
∂Bs

ui dH1
)
ds ≤ 27r

(∫
B3r

|∇ui|2 dx
)1/2

(3.6)

We now note that by (2.4) the function v(x) = ui(x)− λ1(Ωi)‖ui‖L∞(R2 − |x|2) is subhar-
monic. Then, for every x ∈ Br, we use the Poisson formula

ui(x)− λ1(Ωi)‖ui‖L∞(3r)2 ≤ R2 − |x|2

2πR

∫
∂BR

ui(y)

|y − x|2
dH1(y) ≤ 9 −

∫
∂BR

ui dH1. (3.7)

Using the non-degeneracy of ui (Lemma 3.1) and combining the estimates from (3.6) and
(3.7) we get

‖ui‖L∞(Br) ≤ 36r
(∫

B3r

|∇ui|2 dx
)1/2

≤ 2
√
C36

Cnd
r. (3.8)

�

The following Lemma is similar to [1, Lemma] and can be found also in [4].

Lemma 3.6. Suppose that (Ω1, . . . ,Ωh) is optimal for (1.3). Then there is are constants
C1 > 0 and r0 > 0 such that if x0 ∈ ∂Ωi and 0 < r ≤ r0 are such that Ωj ∩ B2r(x0) = ∅,
for every j 6= i, then

‖ui‖L∞(Br(x0)) ≤ C1r. (3.9)

Proof. Without loss of generality we may suppose that x0 = 0. Since Ωj ∩ B2r = ∅, for
every j 6= i, we may use the h-uple (Ω1, . . . ,Ωi ∩ B2r, . . . ,Ωh) to test the optimality of
(Ω1, . . . ,Ωi, . . . ,Ωh). Thus we have∫

R2

|∇ui|2 dx+ c|Ωi| = λ1(Ωi) + c|Ωi| ≤ λ1(Ωi ∪B2r) + c|Ωi ∪Br|

≤
∫
R2 |∇ũi|2 dx∫

R2 ũ2
i dx

+ c|Ωi ∪B2r| ≤
∫
R2

|∇ũi|2 dx+ c|Ωi ∪B2r|,

(3.10)
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where we used the test function ũi ∈ H1
0 (Ωi ∩ B2r) defined as ũi = vi1B2r + ui1Bc

2r
and

vi ∈ H1(B2r) is the solution of the obstacle problem

min
{∫

B2r

|∇v|2 dx : v ∈ H1(B2r), v − ui ∈ H1
0 (B2r), v ≥ ui

}
. (3.11)

By (3.10) an the fact that vi is harmonic on the set {vi > ui}, we get∫
B2r

|∇(ui − vi)|2 dx =

∫
B2r

(
|∇ui|2 − |∇vi|2

)
dx ≤ c|B2r \ Ωi|. (3.12)

Now, reasoning as in [1, Lemma 3.2] (see also [16, Lemma 4.3.20] and [7]), there is a constant
C > 0 such that∣∣{ui = 0} ∩B2r

∣∣ ( 1

2r
−
∫
∂B2r

ui dH1

)2

≤ C
∫
B2r

|∇(ui − vi)|2 dx. (3.13)

Now we note that by the optimality of Ωi, we have Ωi = {ui > 0} and |B2r ∩ {ui = 0}| > 0
(if |B2r ∩ {ui = 0}| = 0, then by the optimality vi = ui in B2r; thus ui is superharmonic
in B2r and so ui > 0 in B2r, which contradicts the assumption 0 ∈ ∂Ωi). Now (3.12) and
(3.13) give

1

2r
−
∫
∂B2r

ui dH1 ≤
√
C/c. (3.14)

Since the function
{
x 7→

(
ui(x)− λ1(Ωi)‖ui‖L∞(4r2 − |x|2)

)}
is subharmonic, we can use

the Poisson formula for every x ∈ Br

ui(x)− 4λ1(Ωi)‖ui‖L∞r2 ≤ (2r)2 − |x|2

4πr

∫
∂B2r

ui(y)

|y − x|2
dH1(y) ≤ 4 −

∫
∂B2r

ui dH1.

(3.15)
By the non-degeneracy of ui (Lemma 3.1) and (3.15), we have that for r0 small enough

‖ui‖L∞(Br)

r
≤ 5

2r
−
∫
∂B2r

ui dH1 ≤ 5
√
C/c,

which gives the claim. �

We combine the estimates from Lemma 3.6 and Lemma 3.5, obtaining the following

Proposition 3.7. Suppose that (Ω1, . . . ,Ωh) is optimal for (1.3). Then there are constants
r0 > 0 and C12 > 0 such that for every i ∈ {1, . . . , h} we have

‖ui‖L∞(Br(x0)) ≤ C12 r, ∀r ∈ (0, r0). (3.16)

3.3. Lipschitz continuity of the eigenfunctions. We now use the estimate from Propo-
sition 3.7 to deduce the Lipschitz continuity of ui. The argument is standard and we recall
it briefly for the sake of completeness. It is based on the following classical lemma.

Lemma 3.8. Suppose that Br ⊂ R2, f ∈ L∞(Br) and u ∈ H1(Br) satisfies the equation

−∆u = f weakly in [H1
0 (Br)]

′.

Then there is a dimensional constant C > 0 such that the following estimate holds

‖∇ui‖L∞(Br/2) ≤ C
(
‖f‖L∞(Br) +

‖u‖L∞(Br)

r

)
. (3.17)

Theorem 3.9. Let D ⊂ R2 be a bounded open set. Let (Ω1, . . . ,Ωh) be optimal for (1.3).
Then the corresponding first eigenfunctions u1, . . . , uh are locally Lipschitz continuous in
D. If, moreover, D is such that the weak solution wD of the problem

−∆wD = 1, wD ∈ H1
0 (D),

is Lipschitz continuous on R2, then the first eigenfunctions u1, . . . , uh are globally Lipschitz
continuous on R2.
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Proof. Let r0 > 0 be the constant from Proposition 3.7 and fix r1 ≤ r0/2. Let x0 ∈ Ωi be
such that dist(x0, ∂D) ≥ r1. If r := dist(x0, ∂Ωi) ≥ r1, then by (3.17), we have

|∇ui(x0)| ≤ C
(
λ1(Ωi) + r−1

1

)
‖ui‖L∞ . (3.18)

If r := dist(x0, ∂Ωi) < r1, then we set y0 ∈ ∂Ωi to be such that |x0 − y0| = dist(x0, ∂Ωi).
Using Proposition 3.7 and again (3.17), we have

|∇ui(x0)| ≤ C
(
λ1(Ωi)‖ui‖L∞ +

‖ui‖L∞(Br(x0))

r

)

≤ C
(
λ1(Ωi)‖ui‖L∞ +

‖ui‖L∞(B2r(y0))

r

)
≤ C

(
λ1(Ωi)‖ui‖L∞ + 2C12

)
,

(3.19)
which gives the local Lipschitz continuity of ui.

If the function wD is Lipschitz continuous on Rd, we consider for every point x0 ∈ Ωi

two possibilities for r := dist(x0, ∂Ωi): if 3r ≥ dist(x0, ∂D), then the maximum principle
ui ≤ λ1(Ωi)‖ui‖L∞wD and the gradient estimate (3.17) gives

|∇ui(x0)| ≤ C
(
λ1(Ωi)‖ui‖L∞ +

‖ui‖L∞(Br(x0))

r

)

≤ Cλ1(Ωi)‖ui‖L∞

(
1 +
‖∇wD‖L∞

r

(
dist(x0, ∂D) + r

))

≤ Cλ1(Ωi)‖ui‖L∞

(
1 + 4‖∇wD‖L∞

)
.

(3.20)

If 3r ≤ dist(x0, ∂D) and r ≤ r0/2, then the gradient estimate (3.17) gives again (3.19). If
r ≥ r0/2, then we have (3.18) with r1 = r0/2 and this concludes the proof. �

4. Qualitative properties of the optimal sets

4.1. Lack of triple points. The lack of triple points was proved in [7] in the more general
case of partitions concerning general functionals depending on the spectrum of the Dirichlet
Laplacian. We recall here the result for the problem (1.3), which is a simple consequence
of the non-degeneracy of the gradient (Corollary 3.4) and the three-phase monotonicity
formula (Theorem 2.2).

Proposition 4.1. Let D ⊂ R2 be a bounded open set. Let (Ω1, . . . ,Ωh) be optimal for (1.3).
Then for any three distinct indices i, j, k ∈ {1, . . . , h}, we have that ∂Ωi ∩ ∂Ωj ∩ ∂Ωk = ∅.
4.2. Lack of two-phase points on the boundary of the box. Our first numerical
simulations showed the lack of double points (i.e. points on the boundary of two distinct
sets) on the boundary of the box D. There is a quick argument that proves the above claim
in the case when the boundary ∂D is smooth. Indeed, if this is the case and if x0 ∈ ∂D,
then there is a ball B ⊂ Dc such that x0 ∈ ∂B. Since the gradient of the first eigenfunction
u on B satisfies the non-degeneracy inequality (3.4), we can deduce as in Section 4.1 that
for any distinct i, j ∈ {1, . . . , h} we have x0 /∈ ∂Ωi ∩ ∂Ωj . If the boundary ∂D is only
Lipschitz a more refined argument is needed.

Proposition 4.2. Let D ⊂ R2 be a bounded open set with Lipschitz boundary ∂D. Let
(Ω1, . . . ,Ωh) be optimal for (1.3). Then for any pair of distinct indices i, j ∈ {1, . . . , h}, we
have that ∂Ωi ∩ ∂Ωj ∩ ∂D = ∅.
Proof. Suppose, by absurd, that there is a point x0 ∈ ∂Ωi ∩ ∂Ωj ∩ ∂D. If ui and uj are the
first eigenfunctions on Ωi and Ωj , by Corollary 3.4 we have

−
∫
Br(x0)

|∇ui|2 dx ≥ Cnd and −
∫
Br(x0)

|∇uj |2 dx ≥ Cnd, (4.1)
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for small enough r > 0 and some non-degeneracy constant Cnd > 0. Since ∂D is Lipschitz,

we have the density estimate lim inf
r→0

|Dc ∩Br(x0)|
|Br|

> 0 and so, we can apply Theorem 2.1

(B), obtaining a contradiction. �

4.3. Remarks on the regularity of the free boundary. Let again D ⊂ R2 be a
bounded open set and let (Ω1, . . . ,Ωh) be a solution of (1.3). We also denote with E the

set R2 \
(⋃h

i=1 Ωi

)
. The lack of triple boundary points (Section 4.1) allows to classify the

boundary points in three categories:

• One-phase points, i.e. points x0 ∈ ∂Ωi such that x0 /∈ ∂Ωj , for j 6= i.
• Internal two-phase points, i.e. points x0 ∈ ∂Ωi ∩ ∂Ωj such that x0 /∈ ∂ME, i.e.
|Br(x0) ∩ E| = 0, for some r > 0.
• Boundary two-phase points, i.e. points x0 ∈ ∂Ωi ∩ ∂Ωj such that |Br(x0) ∩ E| > 0,

for every r > 0.

Remark 4.3. The boundary of an optimal set Ωi around a one-phase point x0 ∈ ∂Ωi is
analytic. Indeed, there is a ball Br(x0) such that Br(x0) ∩ Ωj = ∅, for every j 6= i. Thus,
Ωi solves the problem

min
{
λ1(Ω) + c|Ω| : Ω open, Ω∆Ωi ⊂ Br(x0)

}
.

Thus, applying the classical Alt-Caffarelli technique from [1], one can obtain that ∂Ωi ∩
Br(x0) is analytic. We refer to [4] for the proof of this fact.

Remark 4.4. The boundary of an optimal set Ωi around an internal two-phase point x0 ∈
∂Ωi ∩ ∂Ωj is C2,α, for every α ∈ (0, 1). Indeed, since there is a ball Br(x0) such that
|Br(x0) ∩ E| = 0, we have that the pair (Ωi,Ωj) is a solution of the optimal partition
problem

min
{ 2∑
k=1

λ1(ωk) : ω1, ω2 ⊂ Dij open, ω1 ∩ ω2 = ∅
}
, (4.2)

where Dij := Ωi ∪ Ωj ∪ Br(x0). Applying the regularity result from [10], we get that the
free boundary ∂Ωi ∩ ∂Ωj ∩Br(x0) is C2,α, for every α ∈ (0, 1).

Remark 4.5. If x0 ∈ ∂Ωi ∩ ∂Ωj is a boundary two-phase point, then the set Ωi ∩ Ωj has a
measure theoretic cusp in x0, i.e. we have that

lim inf
r→0

|E ∩Br(x0)|
|Br|

= 0.

Indeed, if this is not the case we can use the non-degeneracy of ui and uj (Corollary 3.4)
and the improved monotonicity estimate (Theorem 2.1 (B)) to obtain a contradiction.

Unfortunately, we are not able to give a complete regularity result for the boundary ∂Ωi,
the reason is that there is no available estimates even on the one-dimensional Hausdorff
measure of the set of boundary two-phase points. Nevertheless, the numerical evidence we
provide below suggests that the number of boundary value points is finite.

5. Numerical Results

5.1. Approximation of the optimal sets. In order to calculate numerically the shape
and the position of the optimal sets, we will need a suitable approximation of the optimal
sets with optimal potentials. We use the technique developed in [3], which is based on some
fine Γ-convergence results. This technique applies also to multiphase problems involving
higher eigenvalues, treated in [7]

min
{ h∑
i=1

λk(Ωi) + c|Ωi| : Ωi ⊂ D quasi-open, Ωi ∩ Ωj = ∅
}
. (5.1)
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where with λk(Ω) we denote the kth eigenvalue of the Dirichlet Laplacian on Ω ⊂ D,
variationally characterized as

λk(Ω) := min
Sk⊂H1

0 (Ω)
max
u∈Sk

∫
Ω |∇u|

2 dx∫
Ω u

2 dx
,

where the minimum is over all k-dimensional subspaces Sk of H1
0 (Ω).

For a given measurable function ϕ : Ω ∈ [0, 1] and constant C > 0, we consider the
spectrum of the operator −∆+C(1−ϕ) on D, consisting on the eigenvalues with variational
characterization

λk(ϕ,C) := min
Sk⊂H1

0 (Ω)
max
u∈Sk

∫
Ω |∇u|

2 + C(1− ϕ)u2 dx∫
Ω u

2 dx
,

where the minimum is over all k-dimensional subspaces Sk of H1
0 (D). The corresponding

kth eigenfunction satisfies the equation

−∆uk + C(1− ϕ) = λk(ϕ,C)uk, uk ∈ H1
0 (D),

∫
D
u2
k dx = 1. (5.2)

By the general existence theorem of Buttazzo and Dal Maso [8], there is a solution(
φC1 , . . . , φ

C
h

)
of the problem

min
{ h∑
i=1

(
λk(ϕi, C) + c

∫
D
ϕi dx

)
: ϕi : D → [0, 1] measurable,

h∑
i=1

ϕi ≤ 1
}
. (5.3)

Moreover, by the approximation result [3, Theorem 2.4] we have that, for every i = 1, . . . , h,

lim
C→+∞

λk(ϕ
C
i , C) = λk(Ωi) and lim

C→+∞
ϕCi = 1Ωi ,

where the second limit is strong in L1(D) and the h-uple (Ω1, . . . ,Ωh) is optimal for (5.1).

5.2. Algorithm for finding the optimal sets in the unit square. In the numerical
computations we perform we consider the box D = (0, 1) × (0, 1). In view of the results
discussed in the preceding section, we represent each of the sets Ωl by a function ϕl :
D → [0, 1]. Each of these functions is then numerically approximated by its values on a
regular even spaced grid of N × N points with spacing h = 1/(N − 1). For each Ωl and

its corresponding function ϕl we consider the discretization (ϕl)i,j = ϕli,j := ϕl
(

i
N−1 ,

j
N−1

)
and the following finite difference approximation of the eigenvalue problem (5.2)

4U li,j − U li+1,j − U li−1,j − U li,j+1 − U li,j−1

h2
+ C(1− ϕli,j)U li,j = λk(C,ϕl)U

l
i,j , (5.4)

for every 1 ≤ i, j ≤ N − 1. Note that the above discrete formulation can be written
as a matrix eigenvalue problem AŨ l = λŨ l, where Ũ l is a column vector, obtained as a
concatenation of the columns of the matrix (U li,j)

N
i,j=1. Thus, for every l = 1, . . . , h, the

discretized matrix eigenvalue problem above gives us the values of λk(ϕl, C).

We note that setting ϕh+1 := 1−
∑h

i=1 ϕi, one may write the multiphase problem (5.3)
in the equivalent form

min
{ h∑
i=1

λk(ϕi, C)− c
∫
D
ϕh+1 dx : ϕi : D → [0, 1] measurable,

h+1∑
i=1

ϕi = 1
}
, (5.5)

which is more suitable for the numerical implementation we perform and which approxi-
mates (5.1) reformulated as an optimal partition problem

min
{ h∑
i=1

λk(Ωi)− c|Ωh+1| : Ωi ⊂ Rd quasi-open, Ωi ∩ Ωj = ∅, for i, j = 1, . . . , h+ 1
}
.
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To finish the numerical cost computation for the above problem we use the discrete approx-
imation of the volume of Ωh+1 given by

|Ωh+1| '
1

N2

N2∑
i,j=1

ϕh+1
i,j .

In order to use an optimization algorithm we need to compute the derivative of the
eigenvalues λk(ϕl, C) with respect to the discretization points of the grid. The precise
expression of this derivative was given in [3] and has the form

∂i,jλk(ϕl, C) = −C(U li,j)
2, (5.6)

where U l is the lth normalized eigenvector solution of the discrete equation (5.4). We give
below a formal justification of formula (5.6) using a slightly different approach, while for
the detailed proof we refer to [3].

Let ϕ and θ be two given functions on D. We consider the perturbation A(t) := −∆ +
C(1−ϕ− tθ) of the operator A(0) := −∆ +C(1−ϕ). Let λk(t) := λk(φ+ tθ, C) be the kth
eigenfunction of A(t) and uk(t) be the corresponding eigenfunction, normalized in L2(D)
and satisfying the equation

A(t)uk(t) = λk(t)uk(t), uk ∈ H1
0 (D).

Suppose that the functions λk(t), uk(t) and A(t), depending on the variable t are differ-
entiable in a neighbourhood of t = 0. Taking the derivative of the above equation we
get

A′(t)uk(t) +A(t)u′k(t) = λ′k(t)uk(t) + λk(t)u
′
k(t).

Multiplying both sides by uk(t) and integrating on D for t = 0, we get

−C
∫
D
θuk(0)2 dx+

∫
D
uk(0)A(0)u′k(0) dx = λ′k(0)

∫
Dr
uk(0)2 dx+ λk(0)

∫
D
u′k(0)uk(0) dx.

Since A(0) is self-adjoint, we obtain

d

dt
λk(ϕ+ tθ, C)

∣∣∣∣
t=0

= −C
∫
D
θu2

k dx.

Considering the discrete case of the above directional derivative formula for ϕl and θ = δi,j
we obtain (5.6).

Reasoning in a similar way we get that the directional derivative of

∫
D
ϕh+1 dx in the

direction of θ is just

∫
D
θ dx and thus the discrete derivative of the volume is

∂i,j |Ωh+1| = 1/N2.

In order to perform the optimization under the constraint
∑h+1

l=1 ϕl = 1 we will use the
projection operator on the simplex

Sh =
{
X = (X1, .., Xh+1) ∈ [0, 1]h+1 :

h+1∑
l=1

Xl = 1
}
,

defined by (
ΠShϕ

l
)
i,j

=
|ϕli,j |∑h+1
l=1 |ϕli,j |

.

More details about the justification of the choice of the projection operator and the algo-
rithm used can be found in [3].
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Algorithm 1 General form of the projected gradient algorithm

Require: k, c, h, α, αmin, αmax, ω, ε, pmax
1: p = 1
2: repeat
3: for i = 1 to h do
4: Compute the eigenpair (λk(ϕ

l), Uk(ϕ
l)) of the operator A(ϕl)

5: ϕltemp ← ϕl − α∇dλk(ϕl)
6: end for
7: ϕh+1

temp ← ϕh+1 − α∇d|Ωh+1|
8: ϕltemp ← ΠShϕ

l
temp, l = 1..h+ 1

9: Compute Jp =
∑h+1

l=1 λk(ϕ
l)− c

∫
D ϕ

h+1

10: if Jp ≤ Jp−1 then

11: ϕl ← ϕltemp, l = 1..h+ 1
12: α← min((1 + ω)α, αmax)
13: else
14: α← max((1− ω)α, αmin)
15: end if
16: p← p+ 1
17: until p = pmax or supi,j α|(ΠShϕ

l)i,j | < ε

5.3. Numerical results. In this section we present some numerical simulations that con-
firm some the theoretical results from Section 4 and the paper [7]. Most of the tests we
made were in the case k = 1, but the algorithm works for higher eigenvalues as well. The
main issue in the case of higher eigenvalues concerns the differentiability of the eigenvalues
with respect to perturbations, which is well known to be closely related to their multiplic-
ity. Nevertheless, we were able to obtain some interesting numerical results also in the case
k = 2 and one example can be seen in Figure 2.

In all the cases the lack of triple junction points, proved in [7], is clearly observed,
provided that the parameter c > 0 is large enough. The lack of double points on the
boundary of the square proved in Proposition 4.2 can also be noticed on Figure 1. Another
phenomenon that can be observed is that the sets Ωi near the corner of the square D
will not fill the corner. This is a fact that can be easily proved by adding a ball B (i.e.
subsolution for the functional λ1 + c| · |) outside D, for which the corner of the square lies
on the sphere ∂B. Now the claim can be deduced by the monotonicity Theorem 2.1 (B),
as in Proposition 4.2.

In conclusion, we considered the periodic version of the problem (1.3) on the square
[0, 1]× [0, 1] in attempt to simulate a ”partition” of the whole space R2 (see Figure 2). For
small enough constant c > 0 we obtain a configuration with touching hexagons with rounded
corners, in support of the numerical results in [3]. We note that there is a critical value
of the parameter c > 0, for which the optimal configuration is formed of pentagons with
rounded corners. This phenomenon appears as a consequence of the fact that the empty
space E grows larger, while the phases (Ωi)

h
i=1 tend to maintain a balanced distribution.

Appendix A. Proof of the two-phase monotonicity formula

The proof of Theorem 2.1 is based on Lemma A.2, which involves the auxiliary functions
ũ+ and ũ− constructed below. Let λ := max{λ+, λ−} and let r0 > 0 be small enough such
that there is a positive radially symmetric function ϕ ∈ H1(Br0) satisfying

−∆ϕ = λϕ in Br0 , 0 < a ≤ ϕ ≤ b, (A.1)



A MULTIPHASE SHAPE OPTIMIZATION PROBLEM FOR EIGENVALUES: QUALITATIVE STUDY AND NUMERICAL RESULTS13

Figure 1. k = 1, 200 × 200 non-periodic grid, 3 phases (c = 170, 100, 80)
and 4 phases (c = 250, 150, 100)

Figure 2. k = 1, 200×200 periodic grid, 8 phases, c = 500, 580 and k = 2,
8 phases, c = 270

for some constants 0 < a ≤ b depending on d, λ and r0. We now introduce the notation

U1 :=
u+

ϕ
and U2 :=

u−

ϕ
. (A.2)

Remark A.1. A direct computation of the gradient and the Laplacian of Ui on Br0 gives

∇U1 = ϕ−1∇u+−ϕ2u+∇ϕ and ∆U1 = ϕ−1∆u+−2ϕ−2(1+ϕ−1u+)∇u+·∇ϕ−ϕ−2u+∆ϕ.

We define the function Φ : [0, r0]→ R+ as

Φ(r) :=

(
1

r2

∫
Br

ϕ2|∇U1|2 dx
)(

1

r2

∫
Br

ϕ2|∇U2|2 dx
)

(A.3)
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Lemma A.2. Consider the unit ball B1 ⊂ R2. Let u+, u− ∈ H1(B1) ∩ L∞(B1) be as in
Theorem 2.1 and let Φ : [0, r0]→ R+ be given by (A.3). Then

(a) Φ is decreasing on the interval (0, r0);
(b) If, moreover, the set Ω := B1 ∩ {u+ = 0} ∩ {u− = 0} has positive density in 0, then

there are constants C > 0 and ε > 0 such that

1

rε
Φ(r) ≤ C

rε0
Φ(r0).

Proof. We first estimate the derivative of Φ, using the notations ∇nu and ∇τu respectively
for the normal and the tangential part of the gradient ∇u on the boundary of ∂Br.

Φ′(r)

Φ(r)
= −4

r
+
∑
i=1,2

∫
∂Br

ϕ2|∇Ui|2 dH1∫
Br
ϕ2|∇Ũi|2 dx

≥ −4

r
+
∑
i=1,2

∫
∂Br

ϕ2
(
|∇τUi|2 + |∇nUi|2

)
dH1∫

∂Br
ϕ2Ui|∇nUi| dH1

(A.4)

≥ −4

r
+
∑
i=1,2

2
(∫

∂Br
ϕ2|∇nUi|2 dH1

)1/2 (∫
∂Br

ϕ2|∇τUi|2 dH1
)1/2

(∫
∂Br

ϕ2U2
i dH1

)1/2 (∫
∂Br

ϕ2|∇nUi|2 dH1
)1/2

(A.5)

= −4

r
+ 2

∑
i=1,2

(∫
∂Br
|∇τUi|2 dH1∫

∂Br
U2
i dH1

)1/2

(A.6)

≥ −4

r
+ 2

∑
i=1,2

√
λ1(∂Br ∩ {Ui > 0})

≥ −4

r
+
∑
i=1,2

2π

H1(∂Br ∩ {Ui > 0})
, (A.7)

where (A.4) follows by integration by parts and the inequality −div(φ2∇Ui) ≥ 0 obtained
using Remark A.1; (A.5) is obtained by applying the mean quadratic-mean geometric in-
equality in the nominator and the Cauchy-Schwartz inequality in the denominator; (A.6)
is due to the fact that ϕ is constant on ∂Br; (A.7) follows by a standart symmetrization
argument. Setting

θ(r) :=
H1(Ω ∩ ∂Br)
H1(∂Br)

,

and applying the mean arithmetic-mean harmonic inequality to (A.7), we get

Φ′(r)

Φ(r)
≥ 4

r

(
− 1 +

1

1− θ(r)

)
≥ 4θ(r)

r
, (A.8)

which gives (a). In order to prove (b), we note that for r0 > 0 small enough we have the
density estimate

|Ω ∩Br| ≥ c|Br|, ∀0 < r ≤ r0.

Using the fact that ∂
∂r |Ω ∩Br| = H

1(Ω ∩ ∂Br) = 2πrθ(r) we get∫ r

0
2πs(θ(s)− c) ds ≥ 0, ∀r ∈ (0, r0). (A.9)

As a consequence we have that∫ r

rc/2
2πs

(
θ(s)− c

2

)
ds ≥ 0, ∀r ∈ (0, r0). (A.10)
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Indeed, if this is not the case, then

0 ≤
∫ r

0
2πs(θ(s)− c) ds ≤

∫ cr/2

0
2πs(1− c) ds−

∫ r

cr/2
2πs

c

2
ds ≤ −πr2c(1− c)2,

which is in contradiction with (A.9). By (A.10), we get that there is a constant c0 > 0 such
that ∫ r

rc/2
θ(s) ds ≥ c0r, ∀r < r0. (A.11)

By (A.8) we have

log
(
r−εΦ(r)

)
− log

((
rc/2

)−ε
Φ(rc/2)

)
=

∫ r

rc/2

(
−ε
s

+
Φ′(s)

Φ(s)

)
ds

≥
∫ r

rc/2

4

s

(
−ε

4
+ θ(s)

)
ds ≥ ε log(c/2) + 4c0,

which is positive for ε > 0 small enough. Thus, we obtain that the sequence

an := r−εn Φ(rn), where rn = (c/2)nr0,

is decreasing and so, by rescaling we obtain (b). �

Proof of Theorem 2.1. We first note that as a consequence of Remark A.1, we have the
estimates:∫

Br

|∇u±|2

|x|d−2
dx ≤ 2

∫
Br

ϕ2 |∇ũ±|2

|x|d−2
dx+ 2‖ϕ−1∇ϕ‖2L∞(Br0 )

∫
Br

u2

|x|d−2
dx,

∫
Br

ϕ2 |∇ũ±|2

|x|d−2
dx ≤ 2

∫
Br

|∇u±|2

|x|d−2
dx+ 2‖ϕ−1∇ϕ‖2L∞(Br0 )

∫
Br

u2

|x|d−2
dx.

(A.12)

Taking in consideration the inequality∫
Br0

|∇u±|2

|x|d−2
dx ≤ C

(
1 +

∫
B2r0

|u±|2 dx

)
, (A.13)

proved in [9], we obtain Theorem 2.1 (a) and (b) by Lemma A.2 and simple arithmetic. �
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