
RIGIDITY OF ASYMPTOTICALLY CYLINDRICAL GRADIENT

SHRINKING RICCI SOLITON

GIOVANNI CATINO, ALIX DERUELLE, AND LORENZO MAZZIERI

Abstract. In this paper we prove that every asymptotically cylindrical gradient shrinking
Ricci soliton is a cylinder.

1. Introduction and statement of the result

A gradient shrinking Ricci soliton is a complete Riemannian manifold (Mn, g) satisfying

Ric +∇2f = λ g ,

for some λ > 0 and some smooth function f defined on Mn. In the following, we will adopt
the normalization λ = 1

2 . Hence, throughout this paper the fundamental equation will be
given by

Ric +∇2f =
1

2
g . (1.1)

Shrinking gradient Ricci solitons turn out to be Type I finite time singularities of the
Ricci flow. Therefore their classification is important to understand finite time singularities
of the Ricci flow in the large. Since the seminal work of Perelman on the classification of
3-dimensional shrinking gradient Ricci solitons, there has been a vast amount of litterature
on the subject (see [6] for a survey).

In order to state our main result, we introduce the following definition of asymptotically
cylindrical gradient shrinking Ricci soliton.

Definition 1.1. A complete noncompact gradient shrinking Ricci soliton (Mn, g, f) is said
to be asymptotically cylindrical if for every sequence of marked points (xk)k∈N which tends to
infinity, the sequence of pointed Riemannian manifolds (Mn, g, xk) converges in the smooth
Cheeger-Gromov sense to the cylinder (R × Sn−1, dt2 + h), where h is the metric of positive
constant curvature normalized by Rich = h/2.

We are now in the position to state our main result.

Theorem 1.2. Let (Mn, g,∇f) be a complete noncompact gradient shrinking Ricci soliton,
which is asymptotically cylindrical. Then, (Mn, g,∇f) is isometric to the cylinder (R ×
Sn−1, dt2 +h), where h is the metric of positive constant curvature normalized by Rich = h/2.

In case of positive curvature operator, we have the following :

Corollary 1.3. Let (Mn, g,∇f) be a complete shrinking gradient Ricci soliton with bounded

positive curvature operator. Either it is compact either lim sup+∞
VolB(p,r)

r = +∞ for any
p ∈Mn.
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A first remark on Theorem 1.2 is that we do not use any non negativity assumptions on the
curvature tensor. Moreover, according to the classification of locally conformally flat shrinking
gradient Ricci solitons due to [13], we are reduced to prove that such an asymptotically
cylindrical soliton is rotationally symmetric.

The core of the proof of Theorem 1.2 is essentially based on the proof of the Perelman
conjecture on the Bryant soliton by Brendle [4]. Following the notations of [4], we define
X := ∇f . Even if we mimic Brendle’s proof, our proof substantially differs in the interpo-
lation of almost-Killing vector fields (section 4) and the analysis of Lichnerowicz equation
(section 5) since we do not assume the metric to be non negatively curved.

Now, we give the main steps of the proof of Theorem 1.2 :

• It suffices to build n(n−1)/2 independent Killing vector fields orthogonal to X. Gen-
erally speaking, a Killing field U satisfies ∆U + Ric(U) = 0. In the case of a shrinking
gradient Ricci soliton, this gives ∆U − ∇UX + U/2 = 0. For technical reasons, it is
easier to estimate the operator Φ(U) = ∆U − ∇XU + U/2. Using the assumption
on the asymptotic behavior, sections 2 and 3 are devoted to build n(n − 1)/2 vec-
tor fields (Ui)i which are almost Killing (proposition 3.3). In particular, it is shown
that the vector fields Ui are bounded and the vector fields Φ(Ui) decay sufficiently fast.

• In Section 4, we prove Theorem 4.2 that establishes the surjectivity of Φ in the fol-
lowing sense : we prove the existence of vector fields Vi decaying sufficiently fast such
that Φ(Vi) = Φ(Ui) for any i. In particular, this ensures that vector fields Ui − Vi are
not trivial. For that purpose, we use the potential function as a barrier to establish a
maximum principle at infinity : see proposition 4.1.

• Section 5 studies the rigidity of Lichnerowicz equation. In fact, the vector fields
Wi := Vi −Ui built previously lie in ker Φ. Now, ker Φ is not reduced to Killing fields
since X ∈ ker Φ. Theorem 5.3 shows that there exist real numbers λi such that the
vector fields Wi − λiX are Killing. Its proof consists in noting that the symmetric
2-tensors LWi(g) =: hi satisfy Lichnerowicz equation (LX(hi))− hi = ∆L(hi) where
∆L is the Lichnerowicz Laplacian. Theorem 5.3 shows that the only solution decaying
polynomially is, up to a homothety, LX(g). As for vector fields, we need to estab-
lish a priori estimates (proposition 5.2) with the help of our favorite barrier function
v := f − n/2 which is a positive eigenvalue of ∆f : ∆fv = −v.

• Section 6 concludes the proof of theorem 1.2 and proves corollary 1.3.

We end this introduction by stating some remarks on related works and some open ques-
tions. Recently, Kotschwar and Wang [10] have proved that two shrinking gradient Ricci soli-
tons whose asymptotic cones are isometric are actually isometric. Their method is completely
different from ours. By using rescaling arguments, can one reprove the result of Kotschwar
and Wang in the particular case where the asymptotic cone is the most symmetric? Actu-
ally, it seems that it is not a straightforward adaptation of the cylindrical case: indeed, the
weighted laplacian we are dealing with, i.e. ∆f := ∆ +∇f , is not invariant under scalings.

The same question can be asked for other kinds of singularity of the Ricci flow called
expanding gradient Ricci solitons (EGS for short). We recall that an EGS is a complete
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Riemannian manifold (Mn, g) satisfying

Ric −∇2f = −1

2
g ,

for some smooth function f defined on Mn. Such singularities naturally arise as blow-up of
non compact non collapsed Type III solutions with non negative curvature operator accord-
ing to the work of Schulze and Simon [14]. As a consequence of their work, studying the
asymptotic geometry of non compact non collapsed Riemannian manifolds with nonnegative
curvature operator reduces to the classification of (the asymptotic cones of) non negatively
curved EGS. Now, Bryant, in unpublished notes, has also built rotational symmetric EGS on
Rn for n ≥ 3 with positive curvature [8, Section 5, Chap. 1]]. This construction gives the whole
classification of non negatively curved rotationally symmetric EGS. Therefore, we ask for the
analogue of the Kotschwar-Wang theorem in this setting. Namely, with the above notations,
is an expanding gradient Ricci soliton asymptotic to the cone (C(Sn−1), dr2 + (cr)2gSn−1)
rotationally symmetric ? Recently, Chodosh [7] answered positively in the case the metric
has nonnegative curvature operator. In that case, the main ingredient is the maximum prin-
ciple for symmetric 2-tensors due to Hamilton which is not available in case of mixed sign
curvatures. Now, one has always a barrier function on an EGS since ∆f (f + n/2) = f + n/2.
Therefore, can one get rid of the sign assumption as well ?
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2. Asymptotic geometry

We start by recalling some basic and well known curvature identities that hold on a shrink-
ing gradient Ricci soliton. A proof of these identities can be found for example in [11].

Lemma 2.1. Let (Mn, g,∇f) be a gradient shrinking Ricci soliton. Then, setting X := ∇f ,
the following identities hold true.

∆f + R =
n

2
, (2.1)

∇R = 2 Ric(X, · ) , (2.2)

|X|2 + R = f, (2.3)

div Rm (Y, Z,W ) = Rm (Y, Z,W,X), (2.4)
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for every vector fields Y , Z, W . Moreover, setting ∆f := ∆−∇X , we have that

Rm = ∆f Rm + Rm ∗Rm, (2.5)

Ric = ∆f Ric + 2 Rm ∗Ric, (2.6)

R = ∆fR + 2|Ric |2, (2.7)

where, if A and B are two tensors, A ∗B denotes some linear combination of contractions of
the tensorial product of A and B.

Remark 2.2. We observe that the general form of identity (2.3) is |X|2 + R = f + c,
where c ∈ R is a real constant. In the rest of this paper we will systematically make the
normalization assumption c = 0.

We recall the following growth estimate due to Cao-Zhou [5] on the potential function of a
noncompact gradient shrinking soliton.

Lemma 2.3. Let (Mn, g,∇f) be a complete noncompact gradient shrinking Ricci soliton.
Then, the potential function f satisfies the estimates

1

4
(r(x)− c1)2 ≤ f(x) ≤ 1

4
(r(x) + c2)2 ,

where r(x) = d(x0, x) is the distance function from some fixed point x0 ∈ M , c1 and c2 are
positive constants depending only on n and the geometry of g on the unit ball B(x0, 1).

From now on, we assume that our complete noncompact gradient shrinking Ricci soliton
(Mn, g, f) is asymptotically cylindrical in the sense of Definition 1.1 and with bounded cur-
vature. In order to give a more careful estimate of how the soliton metric converges to the
cylindrical one, it is convenient to introduce the following tensor

T := Ric − R

n− 1

(
g − df ⊗ df

|df |2

)
. (2.8)

We observe that the tensor T is well defined whenever ∇f 6= 0. In particular, from the results
in [5], we have that T is well defined outside a compact set.

Lemma 2.4. Let (Mn, g,∇f) be a complete noncompact asymptotically cylindrical gradient
shrinking Ricci soliton and let T be the tensor defined in (2.8) outside a compact set. Then,
we have that |T | = o (1), as f → +∞. This means that for every sequence of points (xk)k∈N
such that f(xk)→ +∞, as k → +∞, one has that |T |(xk)→ 0.

Proof. We start by computing the quantity |T |2.

|T |2 = |Ric |2 − R2

n− 1
+

R

n− 1

2 Ric(∇f,∇f)

|∇f |2

= |Ric |2 − R2

n− 1
+

R

n− 1

〈∇R ,∇f〉
|∇f |2

,

where we used the identity (2.3) in the last equality. By the fact that the soliton is asymptot-
ically cylindrical, it is immediate to deduce that |Ric |2 − R2/(n− 1) = o (1), for f → +∞.
For the same reason, we have that |∇R| = o (1), as f → +∞, whereas, by the results in [5],
one has that |∇f |2 = O (f), as f → +∞. From these facts, we infer that also the third term
in the right hand side tends to zero, as f → +∞. �
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So far, we have shown that |T | = o (1) for f → +∞. In order to improve this estimate we
state the following lemma, in which we prove some basic but useful properties of the tensor
T .

Lemma 2.5. Let (Mn, g,∇f) be a complete noncompact asymptotically cylindrical gradient
shrinking Ricci soliton and let T be the tensor defined in (2.8) outside a compact set. Then,
setting n := X/|X| = ∇f/|∇f |, we have

trT = 0 , |T (n, · ) | = o (f−1/2) and T (n,n) = o (f−1) , (2.9)

as f → +∞.

Proof. The fact that the tensor T is traceless follows immediately from its definition. Using
the identities (2.2) and (2.3) in Lemma 2.1, we get

|T (n, · ) | = |Ric(n, · ) | =
|∇R|
2|X|

= o (f−1/2) ,

where in the last equality we also used the fact that the soliton is asymptotically cylindrical
and thus |∇R| → 0, as f → +∞. From the asymptotic behavior of the soliton it is also
possible to deduce that ∆R → 0, as f → +∞. Moreover, by the Definition 1.1, one has
|Ric−1

2g | → 0 and thus 2|Ric |2 − R → 0, as f → +∞. Combining this with the identities
above and with equation (2.7), we deduce

T (n,n) = Ric(n,n) =
〈∇R, X〉
|X|2

=
(∆R + 2|Ric |2 − R)

|X|2
= o (f−1) .

This completes the proof of the lemma. �

In the next proposition, we derive a partial differential inequality for the quantity |T |2.
This will then be used to improve the estimates of the decay of |T | at infinity.

Proposition 2.6. Let (Mn, g,∇f) be a complete noncompact asymptotically cylindrical gra-
dient shrinking Ricci soliton and let T be the tensor defined in (2.8) outside a compact set.
Then, there exists a positive constant c(n), only depending on the dimension n, such that

∆f |T |2 ≥ c(n) |T |2 + O (f−1) ,

as f →∞. Moreover, we can choose c(n) = 2/(n−2)−η for any positive η sufficiently small.

Proof. Using the same notations as in Lemma 2.5 and taking advantage of the equations (2.6)
and (2.7), we compute the difference ∆fT − T , namely

∆fT − T = ∆f Ric − Ric − 1

n− 1

[
∆f (R(g − n⊗ n)) − R(g − n⊗ n)

]
= − 1

n− 1

[
(∆fR− R)(g − n⊗ n) + 2∇∇R(n⊗ n) − R ∆f (n⊗ n)

]
−2 Rm ∗Ric

=
1

n− 1

[
2|Ric |2(g − n⊗ n) − 2∇∇R(n⊗ n) + R ∆f (n⊗ n)

]
−2 Rm ∗Ric .
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Now, we recall that (Rm ∗Ric)ij := RikljRkl. Therefore, we get

〈Rm ∗Ric , T 〉 = 〈Rm ∗T , T 〉 +
R

n− 1
〈Rm ∗(g − n⊗ n) , T 〉

= 〈Rm ∗T , T 〉 +
R

n− 1
〈Ric−Rm(n, ·, ·,n) , T 〉

= 〈Rm ∗T , T 〉 +
R

n− 1
|T |2 − R2

(n− 1)2
T (n,n) − R

n− 1
〈Rm(n, ·, ·,n) , T 〉 ,

where in the last equality we used the fact that the tensor T is traceless. Since (Mn, g,∇f)
is asymptotically cylindrical, we use the Lemma 2.4 and the fact that the Weyl part of the
Riemmann tensor tends to zero in order to deduce that

Rm =
R

(n− 1)(n− 2)
(g − n⊗ n)� (g − n⊗ n) + o(1) ,

where � represents the Kulkarni Nomizu product. As a consequence, we get

〈Rm ∗T, T 〉 =
R

(n− 1)(n− 2)

[
2 |T (n, ·)|2 − |T |2

]
+ o (|T |2)

= − R

(n− 1)(n− 2)
|T |2 + o (|T |2) + o (f−1) ,

where in the last equality we have used the estimates in Lemma 2.5. Moreover, using equation
(2.4) shows that

〈Rm(n, ·, ·,n) , T 〉 =
1

|X|
div Rm ∗T = o (f−1/2)|T | .

Taking the sum, we obtain

∆f |T |2 − 2|T |2 = 2|∇T |2 − 4(n− 3) R

(n− 1)(n− 2)
|T |2 + o (|T |2) + o (f−1/2)|T |

+
2

(n− 1)

〈
− 2∇∇R(n⊗ n) + R (∆f (n⊗ n) , T

〉
+ o (f−1) . (2.10)

In order to proceed, we are going to analyze the asymptotic behavior of the second raw. We
claim that

〈− 2∇∇R(n⊗ n) + R ∆f (n⊗ n) , T 〉 = O (f−1) ,

as f →∞. We start with the estimate of the term 〈2∇∇R(n⊗ n) , T 〉. First, we notice that

〈∇∇R(n⊗ n) , T 〉 = 〈∇∇R n , T (n, ·)〉 ≤ |∇∇R n| |T (n, ·)| ≤ |∇n| |∇R| |T (n, ·)| .

On the other hand, we have that

|∇n| =

∣∣∣∣ ∇∇f|∇f |
− ∇∇f(n , · )⊗ n

|∇f |

∣∣∣∣ ≤ 2
|∇∇f |
|∇f |

= O (f−1/2) .

Combining this with Lemma 2.5, we obtain that 〈∇∇R(n ⊗ n) , T 〉 = o (f−1). We pass now
to estimate the term 〈R ∆f (n ⊗ n) , T 〉 = 〈R ∆(n ⊗ n) , T 〉 − 〈R∇X(n ⊗ n) , T 〉. We start
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with the second term of the right hand side.

〈∇X(n⊗ n) , T 〉 = 2 〈∇Xn , T (n, ·)〉

≤ 2

∣∣∣∣ 〈∇∇f(X, · ) , T (n, ·)〉
|∇f |

− ∇∇f(n , X)T (n,n)

|∇f |

∣∣∣∣
≤ 2

∣∣∣∣ 〈Ric(X, · ) , T (n, ·)〉
|∇f |

∣∣∣∣ + |T (n,n)| +

∣∣∣∣∇∇f(n , X)T (n,n)

|∇f |

∣∣∣∣
≤ |∇R|

|∇f |
|T (n, ·)| + 2 |T (n,n)| = o (f−1) ,

where we used the identity (2.2) and the estimates in Lemma 2.5. To estimate the term
〈R ∆(n⊗ n) , T 〉, we recall that

∆(n⊗ n) = (∆n)⊗ n + n⊗ (∆n) + 2∇n ∗ ∇n

and we immediately notice that 〈∇n ∗ ∇n , T 〉 = ∇kni∇knj Tij = O (f−1). Moreover, a
direct computation shows that

∆n = |X|∆
(

1

|X|

)
n + 2∇k

(
1

|X|

)
· ∇kX +

1

|X|
∆X .

Using the identities in Lemma 2.5, it is easy to obtain ∆X = ∆∇f = ∇∆f + Ric(∇f, · ) =
−∇R + Ric(X , · ) = −1

2∇R, and thus

|∆X|
|X|

= o (f−1/2) .

Similarly, |∇(1/|X|)| = O (f−1) and |X|∆(1/|X|) = O (f−1). Recasting all these estimates,
it is straightforward to check that the claim is proven. Combining the claim with the esti-
mate (2.10), we obtain

∆f |T |2 = 2 |∇T |2 +
2

(n− 2)
|T |2 + o (|T |2) + O (f−1) .

The statement of the proposition follows at once. �

In order to analyze the partial differential inequality obtained in Proposition 2.6, we proof
the following algebraic lemma about the evolution of the curvature tensor of a gradient Ricci
soliton. A parabolic proof of this result can be found for example in [1], where the time
derivative plays the role of the covariant derive along ∇f .

Lemma 2.7. Let (Mn, g,∇f) be a gradient Ricci soliton. Then, for every vector fields U , V ,
W and Y ,

∇∇f Rm(U, V,W, Y ) = −∇U (div Rm)(W,Y, V ) + ∇V (div Rm)(W,Y,U)

+ Rm(V,∇2f(U, · ),W, Y ) − Rm(U,∇2f(V, · ),W, Y ).

Proof. By the second Bianchi identity, we have

∇∇f Rm(U, V,W, Y ) = −∇U Rm(V,∇f,W, Y ) − ∇V Rm(∇f, U,W, Y ) .
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On the other hand, one has

∇U Rm(V,∇f,W, Y ) = U
(

Rm(V,∇f,W, Y )
)
− Rm(∇UV,∇f,W, Y )

− Rm(V,∇2f(U, · ),W, Y ) − Rm(V,∇f,∇UW,Y )

− Rm(V,∇f,W,∇UY )

= ∇U (div Rm)(W,Y, V ) − Rm(V,∇2f(U, · ),W, Y ) ,

where, in the last equality we used the identity (2.4) in Lemma 2.1. This concludes the proof
of the lemma. �

As a corollary of this general lemma, we obtain estimates for the covariant derivatives of
the Ricci tensor along ∇f .

Corollary 2.8. Let (Mn, g,∇f) be a complete noncompact asymptotically cylindrical gradient
shrinking Ricci soliton. Then, we have that |∇∇f Ric | and |∇∇f∇∇f Ric | are bounded.

Proof. First of all we notice that, in local coordinates, the statement of the previous lemma
reads

∇pf ∇pRijkl = −∇i(div Rm)klj + ∇j(div Rm)kli + ∇i∇pf Rjpkl − ∇j∇pf Ripkl

= −∇i(∇kRlj −∇lRkj) + ∇j(∇kRli −∇lRki)

−Rip Rjpkl + Rjp Ripkl − Rijkl ,

where, in the last equality, we used the contracted second Bianchi identity and the soliton
equation (1.1). By the fact that the soliton is asymptotically cylindrical, we obtain that
|∇∇f Rm | is bounded. In particular, we have that also |∇∇f Ric | is bounded. Taking the
trace of the identity above, we get

∇pf ∇pRjk = −∇i∇kRij + ∆Rkj +
1

2
∇j∇kR − Rip Rjpki + Rjp Rpk − Rjk .(2.11)

We are now in the position to estimate |∇∇f∇∇f Ric |. In fact, taking the derivative of the
previous expression, we obtain

∇qf ∇pf
(
∇q∇pRjk

)
= ∇qf ∇q

(
∇pf ∇pRjk

)
− ∇qf (∇q∇pf) (∇pRjk)

= ∇qf ∇q
(
− ∇i∇kRij + ∆Rkj +

1

2
∇j∇kR

)
+∇qf ∇q

(
− Rip Rjpki + Rjp Rpk − Rjk

)
+

1

2
∇pR (∇pRjk) −

1

2
∇pf (∇pRjk) .

From the estimates obtained in the first part of the proof, we infer that the second and the
third raw of the right hand side are bounded. To estimate the first raw, we first notice that,
by the contracted second Bianchi identity, we have that

1

2
∇j∇kR − ∇i∇kRij = RikjlRil − RikRij .

Hence, reasoning as before, it is easy to deduce that the term ∇qf ∇q
(

1
2 ∇j∇kR − ∇i∇kRij

)
is bounded. To complete the proof, we thus need to estimate the term ∇qf (∇q∆Rkj). By
the usual formulae for the exchange of the derivatives, we get

∇q∆Rkj = ∆∇qRkj − (div Rm)qklRlj − (div Rm)qjlRlk (2.12)

+ Rql(∇lRkj) + Rqpkl(∇pRlj) + Rqpjl(∇pRkl) . (2.13)
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Using the identites (2.2) and (2.4), it is immediate to check that the last raw contracted with
∇qf gives rise to bounded terms. On the other hand we have that

∇qf (div Rm)qkl = ∇qf
(
∇qRkl −∇kRql

)
= ∇qf (∇qRkl) − ∇k(∇qf Rql) + ∇k∇qf Rql

= ∇qf (∇qRkl) −
1

2
∇k∇lR− RkqRql +

1

2
Rkl ,

and thus, by the previous discussion, it is evident that the second and the third terms in the
first raw of (2.12) contracted with ∇qf are bounded. Finally, we have

(∆∇qRkj)∇qf = ∆
(
∇qRkj ∇qf

)
−∇qRkj(∆∇qf)− 2∇p∇qRkj ∇p∇qf

= ∆
(
∇qRkj ∇qf

)
−∇qRkj(∇q∆f)− 1

2
∇qRkj ∇qR + 2∇p∇qRkj Rpq −∆Rkj

= ∆
(
∇qRkj ∇qf

)
+

1

2
∇qRkj∇qR + 2∇p∇qRkj Rpq −∆Rkj .

Again, from equation (2.11) and the previous observations, we have that all the terms of the
right hand side are bounded and this completes the proof of the corollary. �

We are now in the position to prove the following quantitative decay estimates of |T | and
|∇kT | as f →∞.

Proposition 2.9. Let (Mn, g,∇f) be a complete noncompact asymptotically cylindrical gra-
dient shrinking Ricci soliton and let T be the tensor defined in (2.8) outside a compact set.
Then, there exists a positive constant a(n) such that

|T |2 = O (f−a(n)) and |∇kT |2 = O (f−a(n)+ε) ,

for every k > 0 and every ε > 0. Moreover, we can choose a(n) := min{1, 2/(n− 2)− η}, for
any positive η sufficiently small.

Proof. We have already observed that, for f ≥ f0 large enough, |∇f | > 0 and thus {f ≥ f0}
is diffeomorphic to [f0,+∞)× {f = f0}. Hence, the metric g can be written as

g =
df ⊗ df
|∇f |2

+ hαβ(f, θ) dθα ⊗ dθβ ,

where θ = (θ1, . . . , θn−1) are local coordinates on the regular level set {f = f0} and h(f, ·)|p
is the metric induced on the regular level set {f = f(p)}. Let u be a smooth function on M .
Then, it is well known that the Laplacian of u can be written as

∆u = ∇2u (n,n) + H 〈∇u,n〉+ ∆hu , (2.14)

where H(p) is the mean curvature of the level set {f = f(p)}. We notice that ∇2|T |2 (n,n) =
O (f−1) and that

H =
∆f −∇2f(n,n)

|∇f |
=

n− 1− R + Ric(n,n)

2|∇f |
= O (f−1/2) .

To proceed, we notice that from Corollary 2.8 one has 〈∇|T |2,∇f〉 ≤ C1, for some C1 >
0. In particular, from identity (2.2), ∂f |T |2 ≤ C2f

−1 for some C2 > 0. Morever, from
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Proposition 2.6, we have

f ∂f |T |2 = 〈∇|T |2,∇f〉+R∂f |T |2

≤ ∆|T |2 − c(n)|T |2 + C3f
−1

≤ ∆h|T |2 − c(n)|T |2 + C4f
−1 ,

for some C3, C4 > 0. Setting s := log f , s0 = log f0 and v(s, θ) := |T |2(es, θ), we have

∂sv ≤ ∆hv − c(n) v + C4 e
−s . (2.15)

Since {f = f0} is compact, it is well defined v0 := maxθ v(s0, θ). By the parabolic maximum
principle one has that 0 ≤ v(s, θ) ≤ V (s), where V (s) is the unique solution of the ODE
associated to (2.15) with initial condition V (0) = v0, namely

V (s) :=
C4

c(n)− 1
e−s +

(
v0 e

c(n) s0 − C4

c(n)− 1
e(c(n)−1)s0

)
e−c(n)s .

Recalling that c(n) = 2/(n− 2)− η, we set a(n) := min{1, 2/(n− 2)− η} > 0 and we obtain

0 ≤ v(s, θ) = O (e−a(n)s) as s → ∞. Rephrasing this in terms of |T | and f , we have proved

that |T |2 = O (f−a(n)). Combining the standard interpolation inequalities as in [9, Corollary
12.6] with Sobolev estimates and using the fact that the metric is asymptotically cylindrical
it is possible to prove the Ck-estimate. For instance, if k = 1, we consider compact domains
of the form Ωr,s = {p ∈ Mn|dist(p, {f = r}) ≤ s} and a cutoff functions χ ∈ C∞c (Ωr,2) with
χ ≡ 1 on Ωr,1. By interpolation inequalities, we have

||∇2(χT )||Lp(Ωr,2) ≤ C(n, p) ||χT ||1−2/p
L∞(Ωr,2) ||∇

p(χT )||2/p
L2(Ωr,2)

≤ C ′(n, p)||T ||1−2/p
L∞(Ωr,2) ,

where in the last inequality we have used the fact that the soliton is asymptotically cylindrical
and hence the derivatives of the curvature are bounded. For p large enough, Sobolev inequality
implies that there exist a constant CS(Ωr,2) such that

||∇(χT )||L∞(Ωr,2) ≤ CS(Ωr,2) ||∇2(χT )||Lp(Ωr,2) .

Again, it is not hard to see that CS := supr>0CS(Ωr,2) < +∞, since the soliton is asymptot-
ically cylindrical. In particular, this shows that

||∇(χT )||L∞(Ωr,2) ≤ CS C ′(n, p)||T ||
1−2/p
L∞(Ωr,2) ≤ C

′′r−a(n)(1−2/p) ,

for some positive constant C ′′. This concludes the proof of the proposition.
�

In dimension greater than three, one can estimate the scalar curvature from T .

Corollary 2.10. Let (Mn, g,∇f), n ≥ 4, be a complete noncompact asymptotically cylindrical
gradient shrinking Ricci soliton. Then, we have that

|∇kR| = O(f−a(n)/2+ε) and |∇k Ric | = O(f−a(n)/2+ε)

for every k > 0 and every ε > 0.

Proof. Reasoning as the previous proposition, it is not hard to see that

∇iTij =
n− 3

2(n− 1)
∇jR +

1

n− 1
∇i
(
R ni nj

)
=

n− 3

2(n− 1)
∇jR + O(f−1/2) .

By Proposition 2.9, there exists a positive constant a(n) such that

|div T | ≤ |∇T | = O(f−a(n)/2+ε),
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for all ε > 0. And this proves the first estimate. To obtain the estimate for |∇Ric | it is
sufficient to compute |∇T | and use both the estimate for |∇R| and Proposition 2.9. This proves
the case k = 1. For k > 1 it is sufficient to repeat the same argument, based on interpolation
inequalities and uniform Sobolev estimates, as in the proof of Proposition 2.9. �

We are now in the position to improve the decay estimate of the scalar curvature at infinity.

Proposition 2.11. Let (Mn, g,∇f), n ≥ 3, be a complete noncompact asymptotically cylin-
drical gradient shrinking Ricci soliton. Then, we have that

R =
n− 1

2
+ O(f−a(n)/2+ε).

Proof. Recall that ∆R + 2|Ric |2 = 〈∇f,∇R〉+ R. Therefore, if U := (n− 1)/2− R, then U
satisfies

〈∇f,∇U〉 = −∆R + R− 2

(
|T |2 +

R2

n− 1
− 2R

n− 1
T (n,n)

)
=

2R

n− 1
U + O(f−a(n)/2+ε),

where we have used Proposition 2.5, 2.9 and Corollary 2.10. Integrating this equality along
the flow generated by ∇f/|∇f |2 and using the fact that U tends to zero at infinity gives the
result. �

Proposition 2.12. Let (Mn, g,∇f), n ≥ 3, be a complete noncompact asymptotically cylin-
drical gradient shrinking Ricci soliton. Then, we have that

Rm =
1

2(n− 2)
(g − n⊗ n)� (g − n⊗ n) + O(f−a(n)/2+ε).

Proof. In the case of a shrinking soliton, Lemma 2.7 tells us

∇∇f Rm = ∇2 Ric−Rm + Rm ∗Ric .

Now, by the very definition of T , we get

∇∇f Rm = ∇2 Ric +
( 2R

n− 1
− 1
)

Rm + Rm ∗T.

Therefore, by Proposition 2.5, 2.9 and Corollary 2.10, one has

∇∇f Rm = O(f−a(n)/2+ε).

As
∇∇f [(g − n⊗ n)� (g − n⊗ n)] = O(Ric(n, ·)) = O(f−1/2) ,

one has

∇∇f (Rm− 1

2(n− 2)
(g − n⊗ n)� (g − n⊗ n)) = O(f−a(n)/2+ε).

Integrating this estimate along the flow generated by ∇f/|∇f |2 we conclude the proof of the
proposition. �

Let Mt be a connected component of the level set {f = t} and let g(t) be the metric induced
by g on Mt. We notice that the second fundamental form of Mt satisfies

h
(t)
ij =

∇i∇jf
|∇f |

= O(t−1/2) .
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Thus, combining the last proposition with Gauss equations, we obtain

R
(t)
ijkl = Rijkl − h

(t)
jkh

(t)
il + h

(t)
ik h

(t)
jl =

1

2(n− 2)
(g(t) � g(t))ijkl + O(t−a(n)/2+ε)

=
R(t)

(n− 1)(n− 2)
(g(t) � g(t))ijkl + O(t−a(n)/2+ε) ,

where we have used Proposition 2.11 in the last equality. As a consequence of the Riemann-
Cartan uniformization theorem, for t large enough, there exists a family of diffeomorphisms
φt : Mt → Sn−1 such that

||2(n− 2)g(t) − φ∗t gS
n−1 ||Ck(Mt,g(t))

= O(t−a(n)/2+ε) ,

for every k ≥ 0 and every ε > 0.

3. Almost Killing fields at infinity

It well known that on the (n−1)-dimensional sphere there are n(n−1)/2 linearly indepen-

dent Killing vector fields, hence, by construction the same is true on (Mt, φ
∗
t g

Sn−1
), for t large

enough. The aim of the following sections is to show that for some t0, the (n−1)-dimensional

manifold (Mt0 , g
(t0)) admits n(n− 1)/2 Killing vector fields as well. By classical results, this

will imply that (Mt, g
(t)) must be homothetic to the round sphere Sn−1.

We consider now the sequence tm = 2m and the corresponding sequence of Riemannian
manifolds (Mt2m/4

, g̃m), where we set

g̃m := 1
2(n−2)φ

∗
t2m/4

gS
n−1

.

We then let {Umi }i=1,...,n(n−1)/2 be a collection of linearly independent Killing vector fields for
g̃m. By the results of the previous section, these vector fields can be regarded as approximate

Killing vector fields on Mt2m/4
for the matrix gt

2
m/4. In particular, it is possible to prove that

• ||Umi ||Ck(M
t2m/4

, g(t
2
m/4) )

= O (1), for every k ≥ 0.

• LUmi
g(t2m/4) = O (t

−a(n)+ε
m ) .

•
∫
M
t2m/4
〈Umi , Umj 〉 dµ̃m = Vol(Mt2m/4

, g̃m) δij .

In the next proposition, we are going to extend these estimates to an annulus bounded by
the level sets Mt2m/4

. To do that, we define Ωm := {t2m/4 ≤ f ≤ t2m}, so that ∂Ωm = Mt2m/4
∪

Mt2m
and we extend the vector fields {Umi } on Ωm by imposing the condition [Umi , X] = 0.

With a small abuse of notation, we still denote by {Umi } the extended vector fields.

Proposition 3.1. Let (Mn, g,∇f), n ≥ 3, be a complete noncompact asymptotically cylin-
drical gradient shrinking Ricci soliton. Then, with the notation introduced above, we have that
for every m ∈ N and every i ∈ {1, . . . , n(n− 1)/2} the following estimates hold

(i) ||Umi ||Ck(Ωm , g ) = O (1) , for every k ≥ 0,

(ii) supΩm |LUmi
g | = O (t−a(n)+ε

m ),

(iii) supΩm |〈U
m
i ,n〉| = O (t−1−a(n)+ε

m ),

(iv) ∆fU
m
i + Umi /2 = O (t−a(n)+ε

m ),

(v)

∫
Mt

〈Umi , Umj 〉dµt = Vol(Mt, g
(t)) δij + O (t−a(n)/2+ε), for every t ∈ [t2m/4, t

2
m] .
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Remark 3.2. We notice that in general, a Killing field U on a Riemannian manifold satisfies
∆U + Ric(U, · ) = 0. Using the shrinking solitons equation and recalling that, by construction
we have [Umi , X] = 0, one can deduce that ∆Umi + Ric(Umi , · ) = ∆fU

m
i + Umi /2. Therefore,

part (iv) of the statement can be thought as an estimate of how far the vector fields Umi are
from being Killing.

Proof. (i) This statement is a consequence of the the equations [Umi , X] = 0, which we have
used to extend our vector fields.

(ii) Let us check this estimate on Mt2m/4
first. Indeed, if V is orthogonal to X,(

LUmi
g
)

(X,V ) = 〈∇XUmi , V 〉+ 〈∇V Umi , X〉
= 〈∇Umi X,V 〉 − 〈U

m
i ,∇VX〉 = 0.

To proceed, we compute(
LUmi

g
)

(X,X) = 2〈∇XUmi , X〉 = 2∇2f(Umi , X) = −2 Ric(Umi , X).

Therefore,
(
LUmi

g
)

(n,n) = O(t
−2−a(n)+ε
m ) on Mt2m/4

. Now, as [Umi , X] = 0,

LX(LUmi
g) = LUmi

(LX g) = LUmi
(g − 2 Ric).

Moreover, (LX S) = ∇XS +S−Ric ◦S−S ◦Ric, for any symmetric 2-tensor S. Therefore,
for S := LUmi

g, we get

∇X(LUmi
g) = −2(LUmi

Ric) + Ric ◦(LUmi
g) + (LUmi

g) ◦ Ric .

Consequently, as (LUmi
Ric) is bounded, one has by Kato inquality,

∇X/|X|2
∣∣(LUmi

g
)∣∣ ≤ ∣∣∇X/|X|2 (LUmi

g
)∣∣ ≤ 2|Ric |

|X|2
∣∣(LUmi

g)
∣∣+ O(f−1).

Hence, we obtain the result by integrating over Ωm.

(iii) As before, we compute,

∇X〈Umi , X〉 = 〈∇XUmi , X〉+ 〈Umi ,∇XX〉
= 2〈∇Umi X,X〉 = 〈Umi , X〉 − 2 Ric(X,Umi )

= 〈Umi , X〉+ O(f−a(n)/2+ε).

Now, by construction, we have that 〈Umi , X〉 = 0 on Mt2m/4
. Hence, integrating the previous

estimate on Ωm, we obtain 〈Umi , X〉 = O(t
−a(n)+ε
m ) on Ωm and the result follows at once.

(iv) As we noticed in Remark 3.2, one has that ∆Umi + Ric(Umi , ·) = ∆fU
m
i + Umi /2. On

the other hand, it holds the identity

div(LUmi
g) − 1

2
∇(tr(LUmi

g)) = ∆Umi + Ric(Umi , ·) .

To estimate the left hand side, we notice that (ii) gives supΩm |LUmi
g | = O (t

−a(n)+ε
m ). More-

over, it is possible to deduce form (i) that supΩm |∇
k LUmi

(g)| = O (1), for every k ≥ 0. By

the interpolation inequalities, we know that supΩm |∇LUmi
(g)| = O(t

−a(n)+ε
m ). This implies

the desired estimates.



14 GIOVANNI CATINO, ALIX DERUELLE, AND LORENZO MAZZIERI

(v) To see the last estimate, we denote by H(t) the mean curvature of Mt and we compute

d

dt

∫
Mt

〈Umi , Umj 〉 dµt =

∫
Mt

〈Umi , Umj 〉
H(t)

|X|
dµt +

∫
Mt

〈∇XUmi , Umj 〉+ 〈Umi ,∇XUmj 〉
|X|2

dµt

=

∫
Mt

〈Umi , Umj 〉
(n− 1)/2− R + Ric(n,n)

|X|2
dµt +

∫
Mt

2 〈∇Umi X,U
m
j 〉

|X|2
dµt

= O (t−1−a(n)/2+ε) +

∫
Mt

〈Umi , Umj 〉 − 2 Ric(Umi , U
m
j )

|X|2
dµt

= O (t−1−a(n)/2+ε) +

∫
Mt

〈Umi ,n〉〈Umj ,n〉 − 2T (Umi , U
m
j )

|X|2
dµt

= O (t−1−a(n)/2+ε),

where we used the estimates obtained in the previous section. The result follows now by a
simple integration. �

For future convenience, we simplify the notations and summarize the results of this section
in the following proposition.

Proposition 3.3. Let (Mn, g,∇f), n ≥ 3, be a complete noncompact asymptotically cylin-
drical gradient shrinking Ricci soliton. Then, there exists a collection of n(n − 1)/2 vector
fields {Ui}i=1,...,n(n−1)/2 defined on (Mn, g) such that, for every i ∈ {1, . . . , n(n − 1)/2}, the
following estimates hold

(i) |∇kUi | = O (1), for every k ≥ 0,

(ii) |LUi g | = O (f−a(n)/2+ε),

(iii) ∆fUi + Ui/2 = O (f−a(n)/2+ε),

(iv)

∫
Mt

〈Ui, Uj〉 dµt = Vol(Mt, g
(t)) δij + O (t−a(n)/2+ε).

4. Interpolating almost Killing vector fields

In this section, we will provide an a priori estimate as well as an existence result for solutions
to the following equation

∆fV + V/2 = Q, (4.1)

provided the vector field Q has a suitable asymptotic behavior at infinity. As we have already
seen, the almost Killing vector fields constructed in the previous section satisfy an equation
of this type. We start with the a priori estimate.

Proposition 4.1. Let (Mn, g,∇f), n ≥ 3, be a complete noncompact asymptotically cylin-
drical gradient shrinking Ricci soliton and let V be a vector field satisfying

∆fV + V/2 = Q,

where Q is vector field such that Q = O(f−a(n)/2+ε). Then, there exists positive constants A
and t0 such that, for t0 < t1 < t2, one has the following estimate

max
t1≤f≤t2

|V |+Af−a(n)/2+ε

f − n/2
= max

{
max
f=t1

|V |+Af−a(n)/2+ε

f − n/2
; max
f=t2

|V |+Af−a(n)/2+ε

f − n/2

}
.
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Proof. First of all,

∆f |V |2 = −|V |2 + 2|∇V |2 + 2〈Q,V 〉.
Therefore,

2|V |∆f |V | ≥ −|V |2 + 2|∇V |2 − 2|∇|V ||2 − 2|Q||V |.
Hence, by the Kato inequality,

∆f |V | ≥ −
|V |
2
− |Q|,

as soon as V does not vanish.

∆f (|V |+Af−α) +
|V |+Af−α

2
≥ A∆ff

−α +
A

2
f−α − |Q|

≥ Aαf−α−1(f − n/2)

+Aα(α+ 1)f−α−2|X|2 +
A

2
f−α − |Q|

≥ f−α
(
A

(
α+ 1/2− αn

2f

)
− fα|Q|

)
> 0,

outside a compact set where α := a(n)/2 − ε. Finally, consider the function v := f − n/2,

which satisfies ∆fv = −v, and define u := |V |+Af−a(n)/2+ε. For v > 0, a direct computation
gives

∆f

(u
v

)
=

(
∆fu

u
−

∆fv

v

)
u

v
+ 2〈∇v−1,∇u〉

> (−1/2 + 1)
u

v
+ 2〈∇v−1,∇u〉

>

(
1/2− 2

|X|2

f2

)
u

v
− 2〈∇ ln v,∇

(u
v

)
〉

> −2〈∇ ln v,∇
(u
v

)
〉,

outside a compact set. The result is now a consequence of the maximum principle. �

We are in the position to provide an existence result for the equation (4.1).

Theorem 4.2. Let (Mn, g,∇f), n ≥ 3, be a complete noncompact asymptotically cylindrical

gradient shrinking Ricci soliton and let Q be a vector field such that Q = O(f−a(n)/2+ε). Then
there exists a vector field V such that,

∆fV + V/2 = Q on Mn, and V = O (f−a(n)/2+ε).

Proof. Let (tm)m∈N be a sequence tending to +∞ and, for every m ∈ N, let V m be a solution
of the Dirichlet problem

∆fV
m + V m/2 = Q in { f ≤ t2m/4 }, with V m = 0 on { f = t2m/4 }.

To study the growth of V m, we are going to prove the following claim.

Claim. Given τ and α in (0, 1), there exists a positive constant ρ0 such that, for every
t ∈ [ρ0, tm], it holds the estimate

α−1τa(n)−2ε
Ā
m(τt) ≤ Ā

m(t) + t−a(n)+2ε,



16 GIOVANNI CATINO, ALIX DERUELLE, AND LORENZO MAZZIERI

where we set Ām(s) := sup{ f = s2/4 } |V m|.

Assume by contradiction that there is a sequence (rm)m∈N going to +∞ such that

α−1τa(n)−2ε
Ā
m(τrm) ≥ Ā

m(rm) + r−a(n)+2ε
m (4.2)

an define

V̄ m :=
V m

max{Ām(τrm) + (τrm)−a(n)+2ε, τ2(Ām(rm) + r
−a(n)+2ε
m )}

,

fm :=
f−a(n)/2+ε

max{Ām(τrm) + (τrm)−a(n)+2ε, τ2(Ām(rm) + r
−a(n)+2ε
m )}

.

By Proposition 4.1, we get,

1 ≤ sup
(τtm)2/4≤f≤t2m/4

|V̄ m|+Afm ≤ τ−2. (4.3)

Moreover, V̄ m satisfies

∆f V̄
m +

V̄ m

2
= Q̄m, (4.4)

Q̄m :=
Q

max{Ām(τrm) + (τrm)−a(n)+2ε, τ2(Ām(rm) + r
−a(n)+2ε
m )}

. (4.5)

By assumption on the growth of Q, the sequence Q̄m is uniformly bounded. To blow-up this
equation in order to reach a contradiction, we need first to control the covariant derivatives
of V̄ m.
Let (φt)t∈(−∞,1) be the flow generated by ∇f/(1− t). Then, define V̄ m(t) := φ∗t V̄

m, Q̄m(t) :=

φ∗t Q̄
m/(1 − t) and the associated Ricci flow g(t) := (1 − t)φ∗t g. Then, V̄ m(·) satisfies the

following heat equation:

∂tV̄
m(t) = ∆g(t)V̄

m(t) + Ricg(t)(V̄
m(t))− Q̄m(t). (4.6)

Applying the classical interior parabolic estimates to the heat equation (4.6), we deduce that
there exists a constant C1 such that,

sup{
(τtm)2

4
≤f≤ t

2
m
4

} |∇g(0)V̄ m(0)|g(0) ≤ C1 sup{
((3τ/4)tm)2

4
≤f≤ (3tm/2)2

4

}
×[s,0]

(
|V̄ m(t)|g(t) + |Q̄m(t)|g(t)

)
.

It is worth pointing out that, by the fact that the soliton is asymptotically cylindrical, the
constant C1, which a priori depends on the ellipticity constants of ∆g(t), the bounds on the
coefficients of the zero order term in (4.6) as well as on the diameter of the domain, can be
chosen uniformly. We claim that the right hand side can be further estimated to obtain

sup
(τtm)2/4≤f≤t2m/4

|∇V̄ m| ≤ C2 sup
((τ/2)tm)2/4≤f≤(2tm)2/4

(
|V̄ m|+ |Q̄m|

)
≤ C3

τ2
. (4.7)

In fact, the last inequality follows by (4.3). To prove the first inequality we first need some
remarks about how the flow (φt)t∈(−∞,1) acts on the sublevels of f . As the scalar curvature
is nonnegative and bounded by some constant C4, one has, by the soliton identities,
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∂t(f ◦ φt) =
|∇f |2 ◦ φt

(1− t)
≤ (f ◦ φt)

1− t
,

∂t(f ◦ φt) ≥
(f ◦ φt)− C4

1− t
.

Hence, by integrating the previous differential inequalities between a negative time s and 0,

(1− s)f(x) ≤ f(φs(x)) ≤ C5 + (1− s)(f(x)− C6), (4.8)

for x ∈M . Thus, observing that |V̄ m(t)|g(t) = (1− t)1/2|V̄ m|g(0) ◦ φt, one has

sup{
((3τ/4)tm)2

4
≤f≤ (3tm/2)2

4

}
×[s,0]

|V̄ m(t)|g(t) ≤ (1− s)1/2 sup
t∈[s,0]

sup{
((3τ/4)tm)2

4
≤f(φt(x))≤ (3tm/2)2

4

} |V̄ m|

≤ (1− s)1/2 sup
t∈[s,0]

sup{
((3τ/4)tm)2

4(1−t) − C5
1−t+C6≤f(x)≤ (3tm/2)2

4(1−t)

} |V̄ m|

≤ (1− s)1/2 sup{
((3τ/4)tm)2

4
− C5

1−s+C6≤f(x)≤ (3tm/2)2

4

} |V̄ m|

Therefore, up to choose s such that for every m large enough,

((3τ/4)tm)2

4
− C5

1− s
+ C6 ≥

((τ/2)tm)2

4
,

the claim is proved. To sum it up, we have obtained the uniform estimate

sup
(τtm)2/4≤f≤t2m/4

|∇V̄ m| ≤ C7

τ2
.

In particular, it means that the family of vector fields (V m)m restricted to (τtm)2/4 ≤ f ≤
t2m/4 is equi-Lipschitz.

Therefore, going back to the static equation (4.4) as (Mn, g) is asymptotically cylindrical,
by blowing-up this equation we obtain that (V̄ m)m∈N converges to a vector field V̄∞ which
is radially constant, i.e. ∇∂r V̄∞ = 0. Observe also that, if f∞ := limm→+∞ fm,

∇∂rf∞ = lim
m→+∞

∇∇2
√
ffm = 0.

Consequently, the supremum of |V̄∞| on each slice of the cylinder is a nonnegative constant
c∞ independent of the slice, the same holds for f∞. Now, inequality (4.2) reads, as m tends
to +∞,

α−1τa(n)−2εc∞ ≥ c∞ +Af∞ > 0.

In particular, c∞ > 0, i.e. V̄∞ does not vanish identically and

α−1τa(n)−2ε ≥ 1,

which is a contradiction if α and τ are chosen properly. This proves the claim.

The claim ensures that supm supt∈[ρ0,tm] sup{ f = t2/4 } f
a(n)/2−ε |V m| < +∞. Therefore, if

the sequence (V m)m∈N is not uniformly bounded on M , this can only happen on a fixed
compact set. Assume on the contrary that supm supMn |V m| = +∞.
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Define Wm := V m/ supMn |V m|. Since Q is bounded on Mn, this implies that (Wm)m∈N
uniformly converges on compact sets to a non vanishing vector field W∞ with compact support
satisfying ∆fW

∞ + W∞/2 = 0. Now, by the work of Bando [2], ∆f is an elliptic operator
with analytic coefficients, therefore, W∞ must be analytic too. Since it has compact support,
it must vanishes everywhere which is a contradiction. �

5. Rigidity of the Lichnerowicz equation

We start this section with the following proposition, which provides an elliptic equation for
the Lie derivative of the metric along a vector field which satisfy equation (4.1) with Q = 0.

Proposition 5.1. Let (Mn, g,∇f), n ≥ 3, be a gradient shrinking Ricci soliton. Assume a
vector field V satisfies

∆fV + V/2 = 0. (5.1)

Then the Lie derivative h := (LV g) satisfies the Lichnerowicz equation

(LX h)− h = ∆Lh, (5.2)

where ∆Lh denotes the Lichnerowicz laplacian.

Proof. Consider the flow {φt}t generated by the vector field V and the family of metrics
g(t) := φ∗t g. By equation (2.31) in [1, Chapter 2] we obtain the variation of the Ricci curvature
at the initial time.

∂

∂t

∣∣∣
t=0

(−2 Ricg(t)) = ∆Lh+ Hess tr(h)−Ldiv(h)(g)

= ∆Lh−Ldiv(h)− 1
2
∇ tr(h)(g),

where we set h := ∂
∂tg(t)|t=0. Since h = (LV g), we have that

div(h)− 1

2
∇ tr(h) = ∆V + Ric(V ). (5.3)

Using both the equation (5.1) satisfied by the vector field V and the soliton equation, we
deduce

div(h)− 1

2
∇ tr(h) = ∆V −∇VX + V/2 = [X,V ].

We can conclude that

−2(LV Ric) = ∆L(LV g)− (L[X,V ] g).

Recalling that 2 Ric = −(LX g) + g, one has −LV (−(LX g) + g) = ∆L(LV g) − (L[X,V ] g)
an thus

−(LV g) + LX(LV (g)) = ∆L(LV (g)),

which is the desired equation. �

We conclude this section with the analysis of the Lichnerowicz equation (5.2), providing
an a priori estimate and a Liouville-type theorem.
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Proposition 5.2. Let (Mn, g,∇f), n ≥ 3, be a complete noncompact asymptotically cylin-
drical gradient shrinking Ricci soliton and let h be a symmetric 2-tensor satisfying the static
Lichnerowicz equation

LX(h)− h = ∆Lh.

Then there exists α > 0 large enough such that for t0 ≤ t1 < t2,

max
t1≤f≤t2

|h|2

vα
= max

{
max
f=t1

|h|2

vα
; max
f=t2

|h|2

vα

}
.

Proof. We start by observing that on a shrinking soliton, the Lichnerowicz equation can be
rewritten as

∆fh+ 2 Rm ∗h = 0.

Define as before v := f − n/2. Then, we have the following estimate

∆f

(
|h|2

vα

)
= v−α〈2∆fh− α

∆fv

v
h, h〉+ 2v−α|∇h|2 + 2〈∇v−α,∇|h|2〉

≥ v−α〈αh− 2 Rm ∗h, h〉 − 2α〈∇ ln v,∇
(
|h|2

vα

)
〉 − 2|∇ ln v|2 |h|

2

vα

≥ (α− c(|Rm |∞)− 2|∇ ln v|2)
|h|2

vα
− 2α〈∇ ln v,∇

(
|h|2

vα

)
〉

≥ −2α〈∇ ln v,∇
(
|h|2

vα

)
〉,

outside a compact set for α large enough. The result, follows then by the maximum principle.
�

Building on the previous a priori estimates, we are now in the position to present a Liouville-
type theorem for solutions to the Lichnerowicz equation with a suitable decay at infinity.

Theorem 5.3. Let (Mn, g,∇f), n ≥ 3, be a complete noncompact asymptotically cylindri-
cal gradient shrinking Ricci soliton and let h be a symmetric 2-tensor satisfying the static
Lichnerowicz equation i.e.

LX(h)− h = ∆Lh, (5.4)

such that h = O(f−α0), with α0 > 0. Then h = 0.

Proof. If there is a sequence (tm)m tending to +∞ such that supM
t2m/4
|h| = 0 for any m, then

h = 0 on f−1([t1,+∞)) by the a priori C0 estimate given by proposition 5.2.
Assume by contradiction that A(t) := supMt2/4

|h|2 is positive for any large t. By the

growth assumption on h, given β ∈ (0, 1) and τ ∈ (0, 1), there is a sequence (tm)m diverging
to +∞ such that

β−1τ2α0 A(τtm) ≥ A(tm). (5.5)

Now, define

hm := max

{
max

f=((τ/2)tm)2/4
|h|; τα max

f=(2tm)2/4
|h|
}
.
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By proposition 5.2, if hm := h/hm, there exist universal positive constants C1 and C2 such
that

C1 ≤ max
((τ/2)tm)2/4≤f≤(2tm)2/4

|hm|2 ≤ C2

τ2α
. (5.6)

Moreover, hm still satisfies the Lichnerowicz equation.
Let (φt)t∈(−∞,1) be the flow generated by ∇f/(1 − t). Then, define hm(t) := (1 − t)φ∗thm

and the associated Ricci flow g(t) := (1− t)φ∗t g. Then, hm(·) satisfies the Lichnerowicz heat
equation:

∂th
m(t) = ∆L,g(t)h

m(t) = ∆g(t)h
m(t) + 2 Rmg(t) ∗hm(t)− 2 Ricg(t) ∗hm(t) . (5.7)

Applying the classical interior parabolic estimates to the heat equation (5.7), we deduce that
there exists a constant C3 such that,

sup{
(τtm)2

4
≤f≤ t

2
m
4

} |∇g(0)hm(0)|g(0) ≤ C3 sup{
((3τ/4)tm)2

4
≤f≤ (3tm/2)2

4

}
×[s,0]

|hm(t)|g(t) .

It is worth pointing out that, by the fact that the soliton is asymptotically cylindrical, the
constant C3, which a priori depends on the ellipticity constants of ∆g(t), the bounds on the
coefficients of the zero order term in (5.7) as well as on the diameter of the domain, can be
chosen uniformly. We claim that the right hand side can be further estimated to obtain

sup
(τtm)2/4≤f≤t2m/4

|∇hm| ≤ C4 sup
((τ/2)tm)2/4≤f≤(2tm)2/4

|hm| ≤ C5

τ2α
. (5.8)

In fact, the last inequality follows by (5.6). To prove the first inequality we first need some
remarks about how the flow (φt)t∈(−∞,1) acts on the sublevels of f . As the scalar curvature
is nonnegative and bounded by some constant C6, one has, by the soliton identities,

∂t(f ◦ φt) =
|∇f |2 ◦ φt

(1− t)
≤ (f ◦ φt)

1− t
,

∂t(f ◦ φt) ≥
(f ◦ φt)− C6

1− t
.

Hence, by integrating the previous differential inequalities between a negative time s and 0,

(1− s)f(x) ≤ f(φs(x)) ≤ C7 + (1− s)(f(x)− C8), (5.9)

for x ∈M . Thus, observing that |hm(t)|g(t) = |hm| ◦ φt, one has

sup{
((3τ/4)tm)2

4
≤f≤ (3tm/2)2

4

}
×[s,0]

|hm(t)|g(t) ≤ sup
t∈[s,0]

sup{
((3τ/4)tm)2

4
≤f(φt(x))≤ (3tm/2)2

4

} |hm|
≤ sup

t∈[s,0]
sup{

((3τ/4)tm)2

4(1−t) − C7
1−t+C8≤f(x)≤ (3tm/2)2

4(1−t)

} |hm|
≤ sup{

((3τ/4)tm)2

4
− C7

1−s+C8≤f(x)≤ (3tm/2)2

4

} |hm|
Therefore, up to choose s such that for every m large enough,

((3τ/4)tm)2

4
− C7

1− s
+ C8 ≥

((τ/2)tm)2

4
,
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the claim is proved. In synthesis, we have obtained the uniform estimate

sup
(τtm)2/4≤f≤t2m/4

|∇hm| ≤ C

τ2α
.

In particular, it means that the family of symmetric 2-tensors (hm)m restricted to (τtm)2/4 ≤
f ≤ t2m/4 is equi-Lipschitz. Going back to the static equation (5.4) and by rescaling this
equation with tm, as (Mn, g) is asymptotically cylindrical, (hm)m converges to a symmetric
2-tensor h∞ which is radially constant, i.e. ∇∂rh∞ = 0. In particular, the maximum of the
norm of h∞ restricted to each slice of the cylinder is a positive constant denoted by c∞. Now,
as tm goes to +∞, inequality (5.5) reads :

β−1τ2α0c∞ ≥ c∞,

which is a contradiction if we choose β and τ such that β−1τ2α0 < 1. Therefore, h vanishes
outside a compact set and satisfies an elliptic equation with analytic coefficients, therefore, h
vanishes everywhere. �

6. Conclusion

6.1. Proof of the Theorem 1.2. With the notations and the results of Proposition 3.3,
one can apply Theorem 4.2 to each vector field Ui to ensure the existence of vector fields Vi
satisfying

∆fVi +
Vi
2

= ∆fUi +
Ui
2

on M,

Vi = O(f−a(n)/2+ε).

Therefore, Wi := Ui − Vi satisfies ∆fWi + Wi/2 = 0. Moreover, the maximum principle

applied to Vi gives ∇Vi = O(f−a(n)/2+ε). Since, by construction, LUi(g) = O(f−a(n)/2+ε), we

get that hi := LWi(g) = O(f−a(n)/2+ε). Consequently, Theorem 5.3 ensures that hi = 0 on
M . Consequently, we have built n(n − 1)/2 independent non trivial Killing vector fields on
M . Now, it remains to show that they are orthogonal to X. Indeed,

[Wi, X] = ∇WiX −∇XWi =
Wi

2
− Ric(Wi)−∇XWi

=
Wi

2
+ ∆Wi −∇XWi = 0.

Now,

2∇2〈Wi, X〉 = 2∇2 LWi(f) = 2 LWi(∇2f)

= LWi(LX(g)) = LX(LWi(g)) = 0.

We conclude by using the Bochner formula :

0 = ∆

(
|〈Wi, X〉|2

2

)
= |∇2〈Wi, X〉|2 + Ric(∇〈Wi, X〉,∇〈Wi, X〉)

+〈∇∆〈Wi, X〉,∇〈Wi, X〉〉
= Ric(∇〈Wi, X〉,∇〈Wi, X〉) > 0,

unless ∇〈Wi, X〉 = 0. Therefore, 〈Wi, X〉 are constants. Now, X vanishes somewhere, there-
fore, 〈Wi, X〉 = 0 for any i. This completes the proof of Theorem 1.2.
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6.2. Proof of corollary 1.3. Let (Mn, g,∇f) be a shrinking gradient Ricci soliton with
bounded positive curvature operator. Assume Mn is not compact. Then, by Naber [Corollary
4.1, [12]], we know that, for any sequence of points (xk)k tending to infinity, (Mn, g, xk)k
subconverges to (R × N, dt2 + h, x∞) where (N,h) is a non flat shrinking gradient Ricci
soliton with nonnegative curvature operator. If (Mn, g) has linear volume growth, N is
compact and it is diffeomorphic to the levels of the potential function f−1(t) for large t. Now,
since Mn has positive curvature operator, Mn is diffeomorphic to Rn by the Gromoll-Meyer
theorem. In particular, f−1(t) is homeomorphic to a (n− 1)-sphere. By the classification of
compact manifolds with nonnegative curvature operator [3], we claim that N is diffeomorphic
to the standard (n− 1)-sphere and h is the metric of positive constant curvature normalized
by Rich = h/2 and therefore, by theorem 1.2, (Mn, g) is cylindrical, in particular, it is not
positively curved. Contradiction.
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