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Introduction

Geometric variational evolutions, in particular curvature-based motions, may be
studied using an implicit-time scheme proposed by Almgren, Taylor and Wang [3].
Following the formal consideration that curvature can be seen as the variation of
the perimeter, they defined a time-discrete trajectory E7, where 7 is a time step,
Ej is an initial set and E7 is a minimizer of

min{P(E) + 1/EAET dist(m,aEg,l)d:c}, (1)
Jo—

T
1

where P is the Euclidean perimeter and dist(-, 0F) is the Euclidean distance from
the boundary of F'. We can read (1) as follows: the set EJ “contracts” by minimizing
the perimeter subject to a penalization of its “distance” from E]_;. After defining
E™(t) = B, for all t > 0, a suitable limit as 7 — 0 of these time-discrete
trajectories gives motion by mean curvature (Sections 3.1 and 3.2). Note that this
scheme can be framed in the setting of minimizing movements (Section 2.1), after the
identification of a set F with its characteristic function u = yg and by considering
perimeter type energies (see Chapter 3).
The same scheme can be repeated taking P the crystalline perimeter

P*(E) = a/ vl dH!, a>0 2)
O*E

to obtain motion by crystalline curvature in dimension two, as described by Almgren
and Taylor [2].

In the case of initial datum a coordinate rectangle of side lengths L{ and L9, the
evolution by crystalline curvature is a rectangle with the same centre and sides of
lengths Lq(t), La(t) governed by the system of ordinary differential equations

Li(t) = _Li?t)
) (3)
La(t) = _Ll((lt)

with L1(0) = LY and Ly(0) = L (see Section 3.3). This means that each side of the
rectangle moves inwards with velocity equal to twice its crystalline curvature (i.e.,
the inverse of its length), so that the other side contracts with twice this velocity.
In a recent paper, Braides, Gelli and Novaga [14] (see Chapter 4 for a detailed
presentation of this paper) used the Almgren, Taylor and Wang scheme coupled
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with a homogenization procedure, by introducing a further parameter ¢, interpreted
. . TE s sl T,E e e .
as a space-scale, and considering E” initial data, F},~ as a minimizer of

1
iny PX(E f/ d: (x,0E]F)dx ¢, 4
min{ PEE) + 2 [ e doo(e, 0B ) do) 4)
with the constraint E}°, E € D., D. being the class of finite unions of e-squares.
The P& are discrete “ferromagnetic-type” energies, defined on subsets F C £7Z?
by
PX(E) = ac#{(i,j) € Z* x L* :ci € E,ej € B, |i — j| = 1}, (5)

which T'-converge to the crystalline perimeter P® (see e.g., Alicandro, Braides and
Cicalese [1]). The terminology used for these discrete energies is motivated as follows.
We consider the simplest lattice energy, that is, depending on a discrete variable
u = {u;} indexed by the nodes i of the standard lattice eZ?2, given by

Prw)=go 3 el — ), (6)

li—jl=e

where wu; takes only the two values +1 and —1 (spin systems). Note that its density
only differs by constants from the usual ferromagnetic energy density —u;u;. After
identifying a function u with the set E obtained as the union of all closed unit
squares with centers ¢ such that u; = 1, the energy P® can be rewritten (with a
slight abuse of notation) as a perimeter functional

P2(u) = PX(E) = oW (OE), (7)

and hence can be interpreted as an interfacial energy.
The discrete distance d5, in (4) is defined, for £ € D,, as

& (x,0E) = doo(i,0F) + =, if z € Q.(i) =i+ e[—1/2,1/2)?, (8)

| ™

where doo (2, A) = min{||z —yllec : y € A}

The scheme (4) is applied at fixed 7 with € = &(7), so that the discrete trajectories
E,:’E depend on the interaction between the two scales, and hence also their limits.
This problem can be cast in the general framework of minimizing movements along
a T'-converging sequence (Chapter 2, Section 2.3). If e << 7, then the limit motion is
the crystalline flow (3), while if 7<< ¢, then E;° = E;° and the motion is “pinned”
(i.e., it coincides identically with the initial limit set). This observation highlights the
existence of a critical e-7 regime (namely, 7 ~ €) which captures the most interesting
features of the motion connected to these energies. Hence, we assume 7 = e for
v > 0 and denote Ef = E;*.

Let E)° be a coordinate rectangle in D.. If Ef , is a coordinate rectangle, then
also Ef, defined by minimization of energy (4) is a coordinate rectangle contained
in F;_, and containing the center of Ef ;. The main steps of the proof are the
following;:

 cach connected component of £} is a coordinate rectangle contained in Ej_,
by considering the smallest rectangle containing its intersection with Ej_;
(‘rectangularization’);
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e actually, there is only one connected component, since each connected compo-
nent can be translated in direction of the center of Ej,_; without increasing
its energy;

o [Ej contains the center of Ej_;, otherwise we can construct a competitor which
contradicts the connectedness of Ef.

The resulting limit evolution is still a rectangle. In case of a unique evolution,
the side lengths Lj(t), L2(t) of this rectangle are governed by a system of ‘degenerate’
ordinary differential equations

== | 5,0)

L= |5

for almost every ¢, with initial conditions L;(0) = L} and Ly(0) = L9.

Note some new features with respect to the crystalline motion (3), as follows.
(a) Degenerate equations. The motion is described by a system of degenerate ordinary
differential equations (9), whose right-hand sides are discontinuous. In fact, the
discrete motion is obtained by overcoming some energy barriers in a ‘quantized’
manner. Moreover, we may read in the equations the effect of the I'-limit energy
(through the crystalline form of the evolution and the coefficient «) and of the
interplay between the time and space scales (through the scaling ).
(b) A pinning threshold. If both the initial side-lengths are above the pinning
threshold L = 2ary, then the right-hand sides of equations (9) are zero and the
motion is pinned. This threshold is obtained by computing the values for which a
side of length L may not move inwards of ¢ by decreasing the energy in (4). The
corresponding variation of the energy is given by

1
—2ae + —Le, (10)
Y

which is positive if and only if L > L = 2a.
(¢) Inhomogeneity of the motion. The limit motion (9) cannot be obtained following
the Almgren-Taylor-Wang approach for any perimeter functional. It can be regarded
as a non-homogeneous crystalline motion, with a velocity depending on a function of
the curvature: if the curvature k of a side is identified with the inverse of its length,
then the law for the velocity v of that side is

v = f(K)s,

where f(k) = %LQQV&J 1. Note that f is always less or equal than 2, the coefficient
in the continuous case, which shows how an additional discreteness effect is to slow
down the crystalline motion.

Scope of the first part of this thesis is to show that the I'-limit of the discrete
energies P& is not sufficient to completely describe at the critical regime the effective
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limit motion, which is also affected by microscopic geometric properties not detected
in the limit. The main result is described in Chapter 5 (which forms the content
of a joint work with A. Braides [19]). We introduce a further inhomogeneity in the
perimeters P by considering, for any subset E C €72,

1
PP (E) = 3¢ > {eij: (i,j) €Z* x Z*,ci € E,ej ¢ E, i — j| =1},
(we use the notation Y {z4 : a € A} = Y ,c4 %), where the coefficients ¢;; equal

a > 0 except for some well-separated periodic square inclusions of size Nz where
cij = B > o (high-contrast medium). The periodicity cell is pictured in Fig. 1. These

[l (it Ui Tl Rl |
' '
' ' ' ' '
' ' ' ' ' '
' ' ' ' '
[l (it Cnatieielie Sl Bttt |
' ' ' ' '
' '
' ' ' ' ' '
'
I e |
'
'

Figure 1. Periodicity cell. Continuous lines represent S-bonds, dashed lines a-bonds.

inclusions are not energetically favorable and can be neglected in the computation
of the I'-limit, which is still the crystalline perimeter P% as in (2), with the same
coefficient o (Remark 5.2.1). For this, we note that P®% > P2 (from which we
deduce the lower bound I'- lilén_}glf PSO"B > P%) and that recovery sequences for the

I'-limit of Pf"ﬁ can be constructed at a scale Noge, Nog := N, + Ng, thus ‘avoiding’
the [-connections.

We restrict our analysis to the case of initial data coordinate rectangles at the
critical regime 7 = e (which also in this case is the most interesting), and we apply
the Almgren, Taylor and Wang approach as in (4) to the energies

1
Fe(B,F) = PEA(E) + - /E (@, 0F ) do. (11)

More precisely, given an initial set £ € D, which is a coordinate rectangle, we
define recursively a sequence E;’" in D, by requiring the following:

(i) B = E5;
(if) Ep7, is a minimizer of the functional fg’f(-, E;T).
The discrete flat flow associated to functionals fg;ﬁ is thus defined by

s _ e, T
E*T(t) = EWTJ, t > 0. (12)
Assuming that the initial data Ej tend, in the Hausdorff sense (see Section 1.2), to
a coordinate rectangle Fy, we are interested in identifying the motion described by
any converging subsequence of E*7(t) as €, 7 — 0.
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The presence of the inclusions is felt in the minimization procedure since they
may influence the choice of E;. In fact, we show that the evolution of a coordinate
rectangle by minimization of the energy is an a-type coordinate rectangle, that is, a
rectangle whose sides intersect only a-bonds, thus avoiding the inclusions. Contrary
to the case treated in Chapter 4, it is not simple to show that the minimizers
are actually rectangles: this is a technical point contained in Proposition 5.3.5.
In particular, rectangularization and translation of a connected component may
increase the perimeter term Pe""ﬁ in the energy, so that they cannot be performed in
a periodic environment.

Here we just give a brief overview of the proof. The evolution F' is connected
(Step 1) and, if not a-type, it is an a-type rectangle R® with some protrusions
intersecting S-bonds, as in Fig. 2 (Step 2). The optimal profile of a protrusion (Step 3)
on a single -square, if non-empty, is horizontal; we can substitute protrusions on
consecutive f-squares with a single horizontal protrusion, and also join different
protrusions by translations toward one of the corner [-squares, if energetically
convenient. At this point, we are in one of the two situations pictured in Fig. 3. We
can remove all the S-connections inside the border S-squares (Step 4), so that the
evolution is the union of an a-type rectangle R an possibly one to four rectangles R;
intersecting the corner S-squares of side length at most N,ge (Fig. 4). These small
rectangles are actually not there (Step 5), so that, finally, F' is an a-type rectangle.

Figure 2. a-rectangularization.

Figure 3. Profiles of the upper side of candidate minimal F'.
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Figure 4. The set obtained in Step 4.

As shown by Braides, Gelli and Novaga (see Section 4.4), the motion of each
side of F§ = EZ’T can be studied separately, since the constraint of being an a-type
rectangle does not influence the argument therein, which consists in remarking
that the bulk term due to the small corner rectangles in Fig. 5 is negligible. As a
consequence, we can describe the motion in terms of the length of the sides of Ef.

asymptotically negligible sets

Figure 5. Picture of E,, inside Ef.

..................................

S S S S S S

Figure 6. Motion is possible if the side can move at least by (Ng + 1)e.

We first compute the new pinning threshold (Section 5.3.1). By the condition
that E} be an a-type rectangle, we have to impose that it is not energetically
favorable for a side to move inwards by (Ng + 1)e (see Fig. 6). We then write the
variation of the energy functional ]-"Eof’f from configuration A to configuration B in
Fig. 6, regarding a side of length L. If we impose it to be positive, we obtain the
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Figure 7. Reduction to a one-dimensional problem.

pinning threshold
L=
N B + 2

(13)

Note that this threshold depends on Ng and not on the value § > o and that, if
Ng =0 (or, otherwise, o = /3), we recover the previous threshold L= 2ary.

As remarked above, up to an error vanishing as ¢ — 0, the motion of each side is
independent of the other ones. As a consequence, its description can be reduced to
a one-dimensional problem, where the unknown represents, e.g., the location of the
left hand vertical side of Ej. Let x;, represents the projection of this side of £}, on
the horizontal axis, as in Fig. 7. The location of 11 depends on a minimization
argument involving xj;, and the length Lj of the corresponding side of Ej. However,
this latter dependence is locally constant, except for a discrete set of values of 7/ Ly.
This singular set depends on Ng (not on ) and it is given by

S, (20 (1 +2)) "

(see Section 5.3.2, Definition 5.3.6).
We examine the iterated minimizing scheme for v/Ly = /L € (0,400) \ S,
fixed, which reads

:E£+1 :$£+Nk, k>0
v 0 (15)
:CO =T
with 2% € {0,1,... ,Nog — 1} and N}, € N the minimizer of
1N(N+1
min{—QaN—F;%L:NEN, [mﬁ—i—N]NaB GZNQ}, (16)
ZN, = A{[0]Nyss - - s [Na—1] N,z }, which is unique by the requirement that /L & Sn,.

Note that the function to be minimized on the integers in (16) represents the variation
of the energy .Fg;ﬁ corresponding to the removal of IV e-stripes, and the constraint
is due to the fact that, as showed before, the side may stay only on a-connections.

After at most N, steps, {zf}r>0 is periodic modulo Nag (Proposition 5.3.7),
that is, there exist integers k < No,M < N, and n > 1 such that

$£+M =k + n Nog for all k > k. (17)
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Moreover, the quotient n/M depends only on «/L; in particular, it does not depend
on the starting point z°.
We can define the velocity of a side as a mean velocity averaging on a period;
that is,
_ nlNage (18)
M
In (18) the velocity is the ratio between the minimal (periodic) displacement of
the side and the product of the time-scale 7 and the number of steps necessary to
describe the minimal period, each of which considered as a 1-time step.
Correspondingly, we define the effective velocity function f : (0,+00) \ Sy, —
[0,400) by setting

_ nlNug

with M and n in (17) defined by L and « such that Y = /L. By Proposition 5.3.7,
this is a good definition. The function f is non-decreasing and piecewise-constant,
independent of 8 but depends on Nz and f(Y) = 0 if Y < v/L, L the pinning
threshold (see Remark 5.3.10 for the proof of these and other properties of f).

It may be not easily described for generic N, and Ng. We compute it, by means
of algebraic formulas, in the simpler cases N3 = 1 and Ng = 2, with varying N,
(Section 5.4). These are prototypes for the cases Ng odd and Ny even, respectively.
In particular, if N, = Ng = 1, then the velocity function is given by

(19)

- ay 1
L)y=2|— 4+ — 20
fa/m =2 +5. (20)
77
1 | — | — | — | — | —
| | Y
131 37192 53513 71154 9195 12
2 4 2 4 2 4 2 4 2 4 2 4
71 | — | — | — | — | — | —

Figure 8. Difference between inhomogeneous-homogeneous velocity function (a =y = 1).
while if N, =1 and Ng = 2, then it is given by

2y 1

foim =337 +3. e

In Fig. 8 and Fig. 9 we compare (20) and (21), respectively, with the velocity
function of the homogeneous case f(v/L) = |2ay/L|, showing that the inhomo-
geneities in the lattice may accelerate or decelerate the motion.

The limit motion (Theorem 5.3.13) can still be represented through a system of
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Figure 9. Difference between inhomogeneous-homogeneous velocity function (a =~y = 1).

degenerate ordinary differential equations of the form

L =21 ()

b0 =21 (5m)

for almost every ¢, with initial conditions L;(0) = LY and Ly(0) = L9, where f is
given by (19).

We also extend these results to more general initial sets (see Remark 5.3.14), in
particular polyrectangles (Section 4.5).

In Chapter 6 (which forms the content of the paper by myself [45]), we give
another example of the fact that the microstructure can affect the limit evolution
without changing the I'-limit. To this end, we perform a multi-scale analysis by
introducing a contrast parameter 6. and considering a low-contrast medium, that is
a periodic mixture of two homogeneous materials whose propagating properties are
close to each other. One of them can be considered as a fixed background medium
(described by a-connections) and the other as a small (vanishing) perturbation from
that one, that is with 8 = . = f(¢) and . — a = . — 0 as ¢ — 0. With the same
notation as in Chapter 5, we restrict ourselves to the case N, = Ng = 1; despite of
its simplicity, the choice of this particular geometry will suffice to show new features
of the motion. The main result is the existence of a threshold value of the contrast
parameter below which we have a new homogenized effective velocity, which takes
into account the propagation velocities in both the connections a and §; above this
threshold, instead, it is independent of the value of 5 and the motion is obtained by
considering only the a-connections.

A heuristic computation suggests that the correct scaling for d. is

(22)

Be —a =0. = d¢

for some constant § > 0.

As before, we assume that 7 = e and restrict the description of the motion to
the case of initial data coordinate rectangles. The evolution of a coordinate rectangle
by minimization of the energy is again a coordinate rectangle (Proposition 6.3.1).
We show that there exists a threshold § = % such that if § < 0 (subcritical
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regime) then the evolution are rectangles that may have some (3-type side (that is,
a side intersecting only [-connections), while if § > ] (supercritical regime) the
[-connections are avoided as in the case § > a (Proposition 6.3.4). Note that this
result gives information also for more general choices of the vanishing rate of .: if
0. <<e, we reduce to the subcritical case, while if 0. >> &, we are in the supercritical
case.

The limit motion can still be described through a system of degenerate ordinary
differential equations as in (22) with a new effective velocity function f5 depending
on ¢, given by

Csy+1

ifYy
0 i < 9

f5(V) = 9% Y e (2]{—057772k‘+1+057,y>’

20 20

k>0,

% + 1 % 42 —
2% + 1 ifYG( + 1+ Coy 2t CM),

200 2c

where Cs5, = min{dvy,1/2}. Note that we recover the velocity function of the
homogeneous case f computing fs for 6 = 0 (see Section 6.3.3). If we choose
§ = 1/2v (actually, for any & > 1/27), we recover the velocity function f (20) which
corresponds to the high-contrast case.

Contrary to the high-contrast case (14), the singular set (Definition 6.3.2) now
depends also on g through § and it is given by

S5 = i (2Z + 1+ 6v) U (2Z — 67)] . (23)

We have a new effective pinning threshold (Section 6.3.2) given by

I { 20y 4 }
= Imax — .
g oy +1 3%

(see Fig. 10).
The same problem as before is treated also in the case of non-uniform inclusions
distributed into periodic uniform layers (Section 6.4).

In the second part of the thesis (Chapter 7), which contains the results of joint
works with A. Braides [20, 21], we consider the opposite problem of (1): defining
a motion when starting from the same discrete schemes for sets which “expand”
by maximizing the perimeter subject to a penalization of their distance from the
previous set. Formally, this involves considering problems of the form

1

min{—P(E) + = dist(z, OE]_,) da }, (24)

T JEAE]

which can be seen as a “backward” version of the previous ones (see Section 2.6)
if the index k is considered as parameterizing negative time. Unfortunately, this
problem is ill-posed, giving the trivial infimum —oo at the first step (Remark 7.1.1).
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Figure 10. Effective pinning threshold (represented by the continuous line).

Following a suggestion by J.W. Cahn, we consider a discrete approximation of P
in the crystalline case, and use it to define a backward crystalline-curvature motion
with prescribed extinction point (or, equivalently, nucleation of the motion defined
for positive times). To this end, we introduce a suitable scaling of the energies which
can be interpreted as a time-scaling of the discrete trajectories (Section 2.5).

In Section 7.2 we treat a simple example. We introduce a new parameter A > 0,

2
consider initial data ES’E’/\ =Q.=eQQ =¢ [—%, %] (which, in the discrete setting,

all correspond to the singleton {0}), and define iteratively E,Z’a’)‘ € D, as a minimizer

of
1

min{—%PE(E) - /E e &5 (2, OB da}, (25)
where P.(E) = H'(OF) (i.e., the discrete energy (5) computed for o = 1), and d<,
is defined by (8).

Contrary to the forward case, in which crystalline motion has been described
only in dimension two, due to its simpler form the limit can be described in all
dimensions d > 2 (the definitions of P. and d5, are modified accordingly).

We first determine the correct scaling for A and 7 in terms of € in order to have
a non-trivial limit. To this end, we note that the minimal variation of the energy
in (25) from the set E,Zf’l’\ corresponds to the addition of an e-cube with no side in
common with ng’f‘ The variation is

_2d g

1
3 + ;st“ (26)

with 0 #£ K € N. This quantity may be negative if and only if

2dr
1< —. 27
— )\e? (27)
The relative scaling of €, 7 and A must be such that this condition be satisfied. We
treat the case

T/e =7 € (0,4+00), Ae = a € (0,400), (28)
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. >

[ I N
T\E,A TVE,A T,E\A

Figure 11. Some steps of the discrete evolution in dimension two.

so that (27) corresponds to

I v

< L 29

2d T « (29)
First note that if (29) is not satisfied, then every competing set E in the definition

of EI’E’)‘ gives a strictly larger value than the set F ’5’)‘; hence, each discrete trajectory

is trivial, and so is their limit: F(t) = {0}.

Suppose now that (29) is satisfied. We then prove that E,:’E”\ is a (even)
checkerboard structure containing £@Q (see Fig. 11); i.e., it is the union of cubes
e(i+Q) with i € Z% and ||i||y = |i1] + -+ |ig| even (for short, we say that 7 is even).
Moreover,

2d
{ien cie B} = {i e 2% even ,|lilno < L%Jk} (30)
The statement above can be proved inductively by showing that
. d. .- TN _ - d d o1 T,E,A < 2d’7
{iez: cic B**} = {i € 2% even m(z,gEH)_[TJ}. (31)

If we define E7(t) = Eg:j, then, for all fixed ¢, the Kuratowski limit of the

family E7(t) as 7 — 0 is a cube of centre 0 and side length 2 {%J t. Moreover,

if % ¢ N, then the motion is given by a family of expanding cubes whose sides
QdVJ. If % € N, then we obtain that the sets E are

(03
contained in the cubes moving with velocity %, and contain the cubes moving with
velocity % — 1, but need not be cubes themselves. This is due to the non-uniqueness
of the minimal sets in (25).
The problem can be set for different distances dy, (induced by a norm ¢) in place
of the oco-distance we used before (Section 7.4), under the same assumptions (28) on
7, A and in dimension d = 2. In this case, the nucleation threshold (Section 7.4.1)

depends on the norm ¢ and can be estimated as

move with constant velocity |

1 . . .
g > 1 mln{@—l,la ©1,1,2min{p1,0, vo,1} + min{eo.1, ¥1,0, 1,1, 9071,1}} (32)

where ¢, := ¢(x,y). Note that, if ¢ = | - ||« and d = 2, we recover (29).

In this general framework, hovewer, it is not trivial to show that the minimizers
are checkerboard (actually, we assume this fact as a technical hypothesis). Moreover,
we might not have that the minimal sets Ef = E;’E”\ correspond to the same
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checkerboard structure (even or odd); in particular, we might have that they ‘oscillate’

between even or odd checkerboards. This may happen only for a finite number of
indices k; eventually, they stabilize and after some k correspond to the same parity
(Proposition 7.4.4).

In order to define a non-trivial limit motion, we consider a suitable ‘convexification
of the minimal sets. More precisely, if Zj, . C €Z? is the set of the centers of the
e-squares contained in Ef, we define Ff = conv(Z.), conv(Z) being the smallest
convex polygon containing Z. We then have two cases (Theorem 7.4.7):

(¢) if the nucleus Ef (Definition 7.4.2) corresponds to the even checkerboard (see
Fig. 12 for an example), then F} and F} are homothetic with center 0, for all & > 1
(Remark 7.4.6). In this case, if we define F.(t) = Ffy/7pt = 0, then for all fixed ¢

the Kuratowsky limit of the family F.(¢) as € — 0 is a polygon F(t) given by

i

P(t) = itFl, (33)

where Fy = 1Ff and v = 7/e.

Figure 12. An example of nucleus Ej.

(é4) if EX corresponds to the odd checkerboard, then Ej oscillates between odd and
even checkerboards, and after k = k(a, 7) steps it stabilizes on the same checkerboard.
If we define G.(t) = G1y/7)» Where G, = conv(Z.) (here we change notation to
make a comparison with the case (7)), then for all fixed ¢ the Kuratowsky limit of
the family G.(t) as € — 0 is a polygon G(t) satisfying the inclusion

G(t) € F(b), (34)

where F'(t) is given by (33). Hence, the limit motion in (i7) is slower than (7).

In Section 7.5.2, we give an example where the limit set is of dimension d — 1;
more precisely, in dimension two, a linearly growing segment. For this, we consider
the (sufficiently) asymmetric norm

. 33 ,. . 31, . )
(i) = \/8(1% +1i3) — IS eZ2. (35)
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We assume also that

V2 oy 1 [33
— < = <oy = 36
8 " a 8V 2 (36)
In this case,
E§ EY Es
Figure 13. Some steps of the evolution.
. 2. 5 . 2 . 4’7
Iype ={i €€Z” :i € E}} :{z € eZ* even, p(i) < —sk}
@ (37)

:{i € e7? even, |i1] = |ia| = 0,...,k}

and, for all fixed ¢, the Kuratowsky limit of the family F.(t) = For = conv(Z|;/7) )
as € — 0 is a segment F'(t) such that F'(0) = {0} and whose length L(¢) satisfies

1
L(t) = ~2V2t (38)
Y
for almost every t > 0.

In view of the possible definition of variational motion in a random media (that
is, with randomly distributed inclusions) motivated by finding at least an estimate
for the pinning threshold, the Appendix A contains the results of the paper [46] by
myself about the homogenization of the energies associated to a spin system with
randomly distributed unbounded coefficients. The model problem that we have in
mind is that of a crystalline two-dimensional solid subject to fracture. We suppose
that the relevant scale is that of the surface fracture energy, so we may neglect the
elastic energy of the lattice (this can be taken separately into account as in the
paper by Braides and Piatnitski [16]). In this case, depending on the applied forces
or boundary displacement of the sample, a fracture may appear, separating two
regions where the displacement is constant. In the Griffith theory of Fracture (see
Griffith [32]), the energy necessary for the creation of a crack is proportional to its
area; in a discrete setting this is translated in the number of atomic bonds that
are broken. In our model, at the atomistic level, there is a random distribution of
‘strong’ unbreakable bonds and ‘weak’ (ferromagnetic) breakable bonds. This model
translates into a rigid spin problem, where the two values of the spin parametrize the
two regions of constant displacement of the crystal. We note that in this problem the
random distribution of rigid or weak bonds is considered as fixed and as characteristic
of the crystalline material, so that we are interested in almost sure properties of the
overall energies when the measure of the sample is large with respect to the atomic
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distance. The way we will describe the overall behavior of this system is by scaling
the domain lattice by a small parameter € and introducing the corresponding scaled
energies, and then compute the variational limit (I-limit) of such energies, which is
defined on the continuum and it can be considered as an effective energy.

The microscopic energy under examination can be written as

Z o3 (1 — wiug), (39)

where u; € {£1} is a spin variable indexed on the lattice Z2, the sum runs on
nearest-neighbors (i.e. |i — j| = 1) in a given portion Q N Z? of Z?2, the coefficients
oy; depend on the realization w of an independent and identically distributed (i.i.d.)
random variable and

g, =

w {+oo with probability p
ij

1 with probability 1 — p,

with p € [0, 1] fixed and the convention +o0o -0 = 0.

In order to describe the behavior as the size of §2 diverges we introduce a scaled
problem, in which, on the contrary, €2 is kept fixed, but scaled energies are defined
as follows. A small parameter € > 0 is introduced, the lattice is scaled accordingly
to €Z?, and the energies (39) are scaled (after multiplying by 2) to

EZ(u) = Z eoyi(u; — uj)?. (40)

After this scaling, the sum is taken on nearest neighbors in N eZ2.

The coarse graining of these energies corresponds to a general approach in the
theory of I'-convergence for lattice system where the discrete functions v = {u;} are
identified with their piecewise-constant extensions, and the scaled lattice energies
with energies on the continuum whose asymptotic behavior is described by taking
L'-limits in the u variable and applying a mesoscopic homogenization process to
the energies. A general theory for interfacial energies by Ambrosio and Braides [5]
suggests the identification of limit energies with functionals of the form

[ e,
QN{u=1}

with v the normal to 0{u = 1}.

Our analysis will be carried out by using results from Percolation theory. Perco-
lation is a model for random media (see Grimmett [33] and Kesten [37]). We are
interested in bond percolation on the square lattice Z?: we view Z? as a graph with
edges between neighboring vertices, and all edges are, independently of each other,
chosen to be ‘strong’ with probability p and ‘weak’ with probability 1 — p. A weak
path is a sequence of consecutive weak edges, a weak cluster is a maximal connected
component of the collection of weak edges. Percolation exhibits a phase transition:
there exists a critical value of probability p., the percolation threshold, such that if
p < pe then with probability one there exist a unique infinite weak cluster, while if
p > p then all the weak clusters are finite almost surely. For bond percolation on
72, the percolation threshold is given by p. = %
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Actually, the structure of the I'-limit of the energies (40) depends on probability
through the percolation threshold (Section A.4). Above the percolation threshold,
the I'-limit is +o0o0 on the functions not identically equal to 1 or -1: this means
that the solid almost surely is rigid and there is no fracture. Below the percolation
threshold, instead, the coarse graining leads first to showing that indeed we may
define a limit magnetization u taking values in {£1}. This u is obtained as a L!-limit
on the scaled infinite weak cluster, thus neglecting the values u; on nodes ¢ isolated
from that cluster. The surface tension is obtained by optimizing the almost sure
contribution of the interfaces, and showing that it can be expressed as a first-passage
percolation problem, so that the limit is of the form

/ () dH (41)
QNo{u=1}

In this case, a crack in the crystal may appear following a minimal path on the
infinite weak cluster and the microscopical pattern of the lattice (this fact justifies
the anisotropy of the fracture energy (41)). The value A,(v) (Proposition A.3.7)
is defined through the asymptotic behavior of the chemical distance (that is, the
distance on the infinite weak cluster, Definition A.3.3) between a pair of points
aligned with v. Note that the I'-liminf inequality is obtained by a blow-up argument;
we perform a construction based on the Channel property (Theorem A.3.2) which
allows to modify the test sets in order to get a ‘weak’ boundary, thus avoiding bonds
with infinite energy. This is useful also for the construction of a recovery sequence.

In Section A.5 we show that the homogenization of rigid spin systems is actually
a limit case of the elliptic random homogenization of spin systems (see Braides and
Piatnitski [17]); that is, the behavior of a rigid spin system is approximated by that
of an elliptic spin system with one of the interaction coefficients very large. The
proof of this new “continuity” property of the surface tension (Proposition A.5.5)
essentially relies on a percolation result (Lemma A.5.1).
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Chapter 1

Preliminaries

In this chapter we fix some notation and collect some preliminary results which will
be useful in the sequel.

1.1 TI'-convergence

In this section we recall some basic definitions and properties of I'-convergence. We
refer to Braides [10] and Dal Maso [25] for more details on the computation and the
topological properties of the I'-limits.

Let X be a separable metric space and F., F' functionals defined on X.

Definition 1.1.1. We say that F is the I'-limit of the sequence (F.) if it satisfies
the following conditions:

(i) (lower bound) for all u € X,

F(u) <lim i(r)lf F.(u:)  for all ue — u;
e—

(ii) (upper bound) for all uw € X, there exists u. — u such that
F(u) > lim sup Fs(ua);
e—0

in this case, we write

F(u) = I’—glg(l) F.(u).
Remark 1.1.2 (alternate upper bound inequalities). If F' is a lower bound
then requiring that (ii) holds is equivalent to any of the following:

o (recovery sequence) there exists u. — u such that F'(u) = lin%) F.(us);
E—

o (approximate limsup inequality) for all n > 0 there exists u. — u such that
F(u) +n > limsup Fg(ug).
e—0
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From the definition it follows an important property of I'-convergence, that is
the stability under continuous perturbations.

Proposition 1.1.3 (stability under continuous perturbations). Let F. T'-
converge to F' and G, converge continuously to G (i.e., G-(us) — G(u) if ue — u);
then F. + G, I'-converge to F + G.

It is useful to define the lower and upper I'-limits, so that the existence of a
I'-limit can be viewed as their equality.

Definition 1.1.4 (lower and upper I'-limits). We define

F—ligl}(I]lf F.(u) = inf{ligl_}glf F.(ug) : ue — u} (1.1)
I'-limsup F;(u) = inf{limsup Fy(us) : us — u}. (1.2)
e—0 e—0

Remark 1.1.5. The I'-limit exists at a point u if and only if

I-liminf F; (u) = I-lim sup F;(u).
e—0 e—0

Then (i) of Definition 1.1.1 also reads F(u) < I'-lim iglf F.(u) and (ii) reads
e—
F(u) > I-limsup Fe(u).
e—0
The fundamental property of I'-convergence is expressed by the following theorem.

Theorem 1.1.6 (Fundamental Theorem of I'-convergence). Let (F.) satisfy
the ‘mild coerciveness’ property, i.e., there exists a precompact sequence (ug) with
F.(ue;) = inf F;. 4+ o(1), and I'-converge to F'. Then

(i) F admits minimum, and min F' = hH(l) inf F;
E—

(ii) if (ue,) 7s a minimizing sequence for some subsequence Fy, (i.e., is such that
Fiey(u,) = inf Fz + 0(1) ) which converges to some u, then its limit point is a
minimizer for F.

1.2 Convergence of sets
(i) Kuratowski convergence. For the definition of Kuratowski convergence, we
refer to Kuratowski [38].

Definition 1.2.1 (Kuratowski convergence). A sequence of sets E. is said to
converge in the sense of Kuratowski or K-converge to a set F, written £ = K - liom E.,
E—

if

sLjo E.CFEC Eglo E. (1.3)
where
Li E. = {zreR?:z= lim 7, 2 € E.} (1.4)
is the liminf and
_ 2. . _ 1
8IfOE€—{x€R .:L‘—j&r(r)lozvgj,xej € E.,,e5 \(0}. (1.5)

is the limsup.
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(ii) Hausdorff convergence. The Hausdorff distance between two sets A and B,
denoted by dy (A, B), is defined as

dy (A, B) = max{sup{dist(z, B)|x € A}, sup{dist(z, A)|x € B}}
unless both A and B are empty, in which case dy(A, B) = 0.

Definition 1.2.2 (Hausdorff convergence). A sequence {E.} of closed subsets
of R? is said to Hausdorff converge to a closed set E if liH(l) dy(E., E) =0.
e—

Note that, on the class of closed subsets, the Hausdorff convergence implies the
Kuratowski convergence.

1.3 Functions of bounded variation and sets of finite
perimeter

For the general theory of functions of bounded variation and sets of finite perimeter
we refer to Ambrosio, Fusco and Pallara [6], Braides [9]; we recall some definitions
and results (here in dimension d = 2) necessary in the sequel.

Let © be an open subset of R2. We say that u € L'(Q) is a function of bounded
variation if its distributional first derivatives D;u,i = 1,2 are Radon measures
with finite total variation in . We denote this space by BV () and we write
u € BV (Q;{£1}) when the function u is of bounded variation in €2 and takes only
the values -1 and +1.

Let u : £ — R be a Borel function. We say that z € R is the approzimate limit
of u at x if for every € > 0

lim p2L%({y € By(z) N+ |uly) — 2| > e}) =0,
p—0t

where we denote by £2(E) the 2-dimensional Lebesgue measure of E. We define
the jump set S(u) of function u as the subset of ) where the approximate limit
of u does not exist. It turns out that S(u) is a Borel set and £2(S(u)) = 0. If
u € BV(Q), then S(u) is countably 1-rectifiable; that is, S(u) = N U (U;en Ki),
where H!(N) = 0, H!(N) is the 1-dimensional Hausdorff measure of N and (K;) is
a sequence of compact sets, each contained in a C'' hypersurface I';. A normal unit
vector v, to S(u) exists H!-almost everywhere on S(u), in the sense that, if S(u) is
represented as above, then 1, (z) is normal to I'; for H!-almost everywhere z € K.
Let E be a Borel subset of R2. The essential boundary 0*E of E is defined as

L%(B NE
8*E:{xeR2:hmsupMg”>0,limsup 5
p—0 1Y p—0 P

L2(B,(z)\E

(By(e)\E) _ 0} |
The set E is of finite perimeter in €2 if the characteristic function xg is in BV (Q).
The total variation |Dx g|(Q2) is the perimeter of E in 2, denoted by P(FE;2) (simply
P(E) if Q = R?). For H!-almost every x € 9*E, the limit
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o) — lim LXEBo(@)
7 IDXEI (B, ()

exists and belongs to S! = {|z| = 1}; the vector v is the generalized inner normal
to 0*E. The set of points x € supp(Dxg) N where this property holds is called the
reduced boundary of E. For any x in the reduced boundary of E, the sets (F — x)/p
locally converge in measure as p — 0 to the half-space orthogonal to vg(x) and
containing vg(z). The measure Dy can be represented as

DXE = VEHl |_8*E.

In particular, for every set E of finite perimeter in Q, P(E;Q) = H'(0*EN Q).



Chapter 2

Minimizing movements along a
sequence of functionals

The main results of this thesis rely on the definition and the properties of minimizing
movements along a sequence of functionals. In order to provide the necessary
introductory preparation, we will follow Braides [11], Chapters 7-8 and 10, for
definitions, examples and the proofs of the theorems contained in this chapter.

2.1 Minimizing movements: definition and basic prop-
erties

We introduce a notion of energy-based motion which generalizes an implicit-time
scheme for the approximation of solutions of gradient flows to general (also non
differentiable) energies. We use the terminology of minimizing movements, introduced
by De Giorgi (see [26]) and revisited by Ambrosio [4], even though we will not follow
the precise notation used in the literature.

Definition 2.1.1 (minimizing movements). Let X be a separable Hilbert space
and let F': X — [0, +00] be coercive and lower-semicontinuous. Given ug € X and
7 > 0 we define recursively ug, k > 1, as a minimizer of the problem

min {F(v) + %Hv _ ukl\z} | (2.1)

and the piecewise-constant trajectory u™ : [0, +00) — X given by

u” (t) = Ult/r|- (2.2)

A minimizing movement for F' from ug is any limit of a subsequence u™ uniform on
compact sets of [0, +00).

Note that we are not focusing on the general topological assumptions on function
spaces and convergences. In this definition we have taken F' > 0 and X Hilbert
space for simplicity. More in general, we can take X a metric space and the power
of the distance in place of the squared norm. In addition, the topology on X with
respect to which F' is lower semicontinuous can be weaker than the one of the related
distance (see Ambrosio, Gigli and Savaré [7] for a more general theory).
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Remark 2.1.2. A heuristic explanation of the definition above is given when F' is
smooth. In this case, with the due notation, a minimizer for (2.1) solves the equation

Uk — Ukt _ —VF(uy); (2.3)
T
i.e., u” solves the equation
u(t) —u"(t —7)
T

— _VF@(1)). (2.4)

If we can pass to the limit in this equation, as 4™ — u, then we obtain

ou

— = —VF(u). 2.5

o VF) (25)
This is easily shown to hold if X = R™ and F € C?(R"). In this case, by taking

any ¢ € C§°((0,7); R™) we have

- /OT(VF(uT(t)), o)dt = /OT <“T(t) —ult=7) ¢> dt

T

_ _/OT <UT(t)7 p(t) — ot +T)>dt,

T

from which, passing to the limit

T T
| (TPt = [ ar
0 0
i.e., (2.5) is satisfied in the sense of distributions, and hence in the classical sense.

Definition 2.1.3 (local minimizer). A function ug is said to be a local minimizer
of I if there exists 6 > 0 such that

Flug) € F(u) if lu—muoll < 6.

Remark 2.1.4 (stationary solutions). Let uy be a local minimizer for F', then
the only minimizing movement for F' from wug is the constant function u(t) = uy.

Indeed, if ug is a minimizer for F' on the set of v such that ||v — ug|| < 4, then by
the positiveness of F it is the only minimizer of F(v) + 5=|jv —ug||? for 7 < §2/F (uo)
if F(up) > 0 (for any 7 if F'(ug) = 0). So that ug = ug for all k for these 7.

Proposition 2.1.5 (existence of minimizing movements). For all F' and ug
as in Definition 2.1.1 there exists a minimizing movement u € 01/2([0, +00); X).

Proof. By the coerciveness and lower-semicontinuity of F' we obtain that uj are
well-defined for all k. Moreover, since

1
F(ug) + ;Huk —up_1* < F(up_1),

we have F(ug) < F(;—1) and

g — up—1]|* < 27 (F(ug—1) — F(ug)),
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so that for ¢ > s

[t/7]
() —u () < Y g — upa|
k=|s/T|+1
[t/7]
<\/lt/7] = |s/7] Z llug — ug—1]|?
k=|s/7T|+1
[t/7]
<L/l =Ls/r] j2r D0 (Flup-1) = Flur))
k=|s/T]+1

<\J1t/7) = Ls/7)\/27(F (us)r)) = Flupeye)
< 2P (up)y/7((t/7) = |5/7))
< \/2F(U0)\/t— S+ T.

This shows that the functions u” are almost equicontinuous and equibounded
in C(]0,+00); X). Hence, up to a subsequence, they converge uniformly. Moreover,
passing to the limit as 7 — 0 we obtain

lu(t) = u(s)| < \/2F (uo)/It — 5|
so that u € CV/2([0, +00); X). O

2.2 Minimizing movements along a sequence

As remarked in Section 2.1, the definition of minimizing movement is usually given
for a single functional F'. Now we will introduce a parameter ¢ (often interpreted
as a space-scale) and give a notion of minimizing movement along a sequence of
functionals {F:}.~0, which will depend in general on the interaction between the
time scale 7 and the parameter € in the energies.

Definition 2.2.1 (minimizing movements along a sequence). Let X be a sep-
arable Hilbert space, let F. : X — [0, 4+00] be equicoercive and lower-semicontinuous,
ug — ug with

F (up) < C < 400, (2.6)

and let 7. > 0 converge to 0 as € — 0. With fized € > 0, we define ug, recursively as
a minimizer for the problem

1
min { F.(0) + 5 lv = uf 1 2.1)
2T
and the piecewise-constant trajectory u® : [0,4+00) — X given by

() = ufy - (2.8)

A minimizing movement for F. from ug is any limit of a subsequence u®i uniform
on compact sets of [0, +00).
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After remarking that the Holder continuity estimates in Proposition 2.1.5 only
depend on the bound on F;(uf), with the same proof we can show the following
result.

Proposition 2.2.2 (existence of minimizing movements). For every F. and
ug as above, there exist minimizing movements for F. from ug in CY/%([0, +o00); X).

Remark 2.2.3. The limit minimizing movement may depend on the choice of the
mutual behavior of € and 7. For example, we consider the functions

- ifx<0
F.(z)=<0 it0<z<e

e—x ifx>e¢,

which converge uniformly to F(z) = —z. Let zy be a fixed initial datum.

If 2o > 0, then for ¢ < z¢ we have zf, = 5_, + 7 for all £ > 0.

If g <0, then we have 27 = 27| +7if 27 | < —7. If 0 > 2f_; > —7, then
xf, — 5_, is obtained by minimizing the function

1
gty H0<y<-af,

fly) =S5, + 7_y2 if —a§_  <y<-—a§ ,+¢

whose minimizer is always y = 7 + 25,_, if e — 2;_; > 7. In this case, 27, = 0. If,
otherwise, ¢ — x7_; < 7, the other possible minimizer is y = 7. We then have to
compare the values

1

1
(@i ()=

f(=xp_y) =2} +
We have three cases:

(a) € — 37 > 0. In this case, we have 2§ = 0 (and this holds for all subsequent
steps);

(b) e — 7 < 0. In this case, we either have f(r) < f(z§_,), in which case
xf, = x§_, + 7 (and this then holds for all subsequent steps); otherwise x5, = 0
and 27 = o}, + 7 (and this holds for all subsequent steps);

(c) e—37=0. If z5_, <0 then z§ = 0 (otherwise we already have z_, = 0).

Then, since we have the two solutions y = 0 and y = 7, we have 25 = 0 for k < j < ko
for some kg € NU {+oco} and 25 = 25_; + 7 for j > ko.

We can summarize the possible minimizing movements with initial datum zg < 0
as follows:
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(i) If 7 < 2¢, then the unique minimizing movement is z(¢) = min{xo +¢,0};
(ii) If 7 > 2¢, then the unique minimizing movement is z(t) = xo + ¢;

(iii) If 7 = 2¢, then we have the family of minimizing movements (parametrized by
x1 < xp) x(t) = max{min{zg + ¢,0}, x; + t}.

For zp > 0 we always have the only minimizing movement z(t) = xo + t.

2.3 Commutability along ‘fast-converging’ sequences

We now show that, by suitably choosing the e-7 regimes, the minimizing movement
along the sequence F. from u. converges to a minimizing movement for the limit
F from wug (‘fast-converging ¢’), while for other choices (‘fast-converging 7’) the
minimizing movement converges to a limit of minimizing movements for F; as ¢ — 0.
As an heuristic remark, we can say that minimizing movements for all other regimes
are ‘trapped’ between these two extrema.

Theorem 2.3.1 (“extreme” asymptotic behaviours). Let F. be a equi-coercive
sequence of non-negative lower-semicontinuous functionals on a Hilbert space X
I'-converging to F, let ue — ug. Then

(i) there exists a choice of € = (7) such that every minimizing movement along F,
with time-step T and initial data ue, is a minimizing movement for F from ug on
[0,T] for all T;

(ii) there exists a choice of T = T(g) such that every minimizing movement along
F., with time-step 7 and initial data ue, is the limit of a sequence of minimizing
movements for F. (for € fized) from ue on [0,T] for all T.

Proof. (i) We first note that, if v. — v, then the solutions of

min {Fa(u) + ;THu—vEHQ} (2.9)

converge, as € — 0, to solutions of

min {F(u) + ;THu—vor?} (2.10)

since we have a continuously converging perturbation of a I'-converging sequence
(see Proposition 1.1.3 and Theorem 1.1.6).

Let u. — ug and 7 > 0 be fixed. We consider the sequence {u;’s} defined by
iterated minimization of F. with initial point u., as in (2.9). Since u. — ug, up to
subsequences we have u]® — u]"", which minimizes

min {F(u)—i-;T\u—uo‘Q}. (2.11)

. 0 . e .
The points uy° converge to us . Since they minimize

T, ’

. 1
min {Fs(u) + ;Hu —uy

2} (2.12)



10 2. Minimizing movements along a sequence of functionals

0 e e
and u] — u]", their limit is a minimizer of

1
min {F(u) + |]uu71—’0||2}. (2.13)
2T
This operation can be repeated iteratively, obtaining (upon subsequences) uZ’E — uZ’O
and {u;’o} iteratively minimizes F' with initial point ug. Since, up to subsequences,
the trajectories {u%’o} converge to a minimizing movement for F' with initial datum
ug, the thesis follows by a diagonal argument.

(ii) For fixed e, the piecewise-constant functions u®7(t) = uit;T | converge uni-
formly to a minimizing movement u® for F. with initial datum wu.. By compactness,
these u® converge uniformly to some function v as ¢ — 0. Again, we conclude by a
diagonal argument. O

2.4 Homogenization of minimizing movements

We now examine minimizing movements along oscillating sequences (with many
local minima), treating two model cases in the real line. These examples seem to be
interesting in view of Chapters 4-6 about homogenization of geometric minimizing
movements.

Example 2.4.1 (minimizing movements for piecewise-constant energies).
We apply the minimizing-movement scheme (2.7)-(2.8) to the functions

F.(z)=— KJ e (2.14)
converging to F(z) = —x. This is a prototype of a function with many local

minimizers (actually, in this case all points are local minimizers) converging to a
function with few local minimizers (actually, none).

Note that, with fixed ¢, for any initial datum zg the minimizing movement for
F; is trivial: wu(t) = xo, since all points are local minimizers (see Remark 2.1.4).
Conversely, the corresponding minimizing movement for the limit is u(t) = xo + ¢.

We now fix an initial datum zg, the space-scale ¢ and the time-scale 7, and
examine the successive-minimization scheme from xg. Note that it is not restrictive
to suppose that 0 < zg < 1, up to a translation in €Z.

The first minimization giving x; is

1

min {FE(:U) + E(w — xo)Q} ; (2.15)

note that the function to minimize equals —x + %(ﬂs —x0)? if x € €Z.
Apart some singular cases that we deal separately below, we have two possibilities:

(i) f £ < %, then the motion is trivial. The value 1/2 is the ‘pinning threshold’.
Indeed, after setting o = se with 0 < s < 1, we have two sub-cases:
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(a) the minimizer z; belongs to [0,¢). This occurs exactly if
F(z) + 5= (e — 20)% > 0 ie.,
—1)2
SN GtV (2.16)
2
In this case, the only minimizer is the initial datum xy. This implies that
we have zp, = g for all k.

(b) we have that x1 = ¢. This implies that, up to a translation, we are in the
case xg = 0 with s = 0, and (2.16) holds since 7 < §. Hence, x3, = x; for
all k > 1;

(i) If £ > %, then for £ small the minimum is taken on Z. So that again we may
suppose that xg = 0.

Note that we are leaving out for the time being the case when zp =0 and T = %
In that case we have a double choice for the minimizer; such situations will be
examined separately.

If 9 = 0 then z; is computed by solving

1
min {Fa(m’) + ?xQ tx € eZ} , (2.17)
T
and is characterized by
1 1
T — 58 <7<z + 55. (2.18)
We then have . )
T T
=|—+4+= if —4+-¢&7Z 2.1
. L%_QJE 16+2¢ (2.19)

(note again that we have two solutions for I + % € Z, which also includes the

case T = % already set aside, and we examine those cases separately). The same

computation is repeated at each k giving
Tp — Th1 T 1|e¢
— = -4 = = 2.20
T L + QJ T ( )

We can now choose 7 and ¢ tending to 0 simultaneously and pass to the limit.
The behaviour of the limit minimizing movements is governed by the quantity

w=lim (2.21)

which we may suppose exists, up to subsequences. If w+ % ¢ 7 then the minimizing
movement along F from xg is uniquely defined by

1] 1
u(t) = zo +vt, with v = {w + QJ -, (2.22)
w

so that the whole sequence converges if the limit in (2.21) exists. Note that

+ (pinning) we have v = 0 when I < % for € small. In particular, this holds for
T<< ¢ (i.e., for w = 0);
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 (limit motion for slow times) if ¢ << 7 then the motion coincides with the
gradient flow of the limit, with velocity 1;

o (discontinuous dependence of the velocity) the velocity is a discontinu-
ous function of w at points of % + Z. Note, moreover, that it may be actually
greater than the limit velocity 1;

o (non-uniqueness at w € % + Z) in these exceptional cases we may have
either of the two velocities 1+ ﬁ orl— ﬁ in the cases %+% > wor £+ % <w
for all € small, respectively, but we may also have any u(t) with

1—$§u'(t)§1+i
if we have precisely = + % = w for all € small, since in this case, at every time
step, we may choose any of the two minimizers giving the extremal velocities,
and then obtain any such v’ as a weak limit of piecewise-constant functions
taking only those two values. Note therefore that in this case the limit is not
determined only by w, and in particular it may depend on the subsequence
even if the limit (2.21) exists.

Example 2.4.2 (a heterogeneous case). We now examine a variation of the
previous example obtained by introducing a heterogeneity parameter 1 < A < 2 and

defining
—2{% if2EJ<x<2B€J+)\
FMNz) = (2.23)
—zm if2§J+/\§x<2B€J+1.

Note that if A =1 we are in the previous situation.
We apply the minimizing-movement scheme to the functions

Fi(z) = FNx) = eF> (:) .

Arguing as above, we can reduce to the two cases
(@) xp € 2¢Z, or (b) xx € 2eZ + e (2.24)

Taking into account that xyy; is determined as the point in 2eZ U (2eZ + e))
closer to 7 (as above, we only consider the cases when we have a unique solution
to the minimum problems in the iterated procedure), we can characterize it as follows.

In case (a) we have the two sub cases:
(ay) if we have

A
m<l 2 <comt1
5 2

for some n € N then
Tr+1 = 2 + (2n 4+ Ne.
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In particular, xg11 € 2eZ + e);

(ag) if we have

A
2n—1<z——<2n
€ 2

for some n € N then
Th+1 = Tk + 2ne.

T A
In particular, zj41 € 2¢Z. Note that zj+1; = x (pinning) if — < 5
€

In case (b) we have the two sub cases:
(b1) if we have

A
2n<z+f<2n+1
e 2

for some n € N then
Tk+1 = Tk + 2ne.

A
In particular, ;1 € 2¢Z + e\. Note that xx1 = z) (pinning) if T 5 which
€
is implied by the pinning condition in (ag);
(be) if we have

A
m—1<-+2 <o
€ 2

for some n € N then
Tkl = Tk + 2ne — e,

In particular, zp41 € 2¢Z.

Eventually, we have the two cases:
(1) when

A
<i

T o
sy

e

- ‘

for some n € N then, after possibly one iteration, we are either in the case (a3) or
(b1). Hence, either xj, € 2¢Z or xj, € 2¢Z + e for all k. The velocity in this case is
then

Thil Tk _ o €
T T
(2) .
-
- — (2 Hi<1l-——
e (n+ )’ 2

for some n € N then we are alternately in case (a1) or (b2). In this case we have an
averaged velocity: the speed of the orbit {zj} oscillates between two values with an
average speed given by

Tpio — T 2ne+ e 2(n+1)e—Ae

€
p— —_— 2 1 .
2T 2T + 2T (n+ )T

This is an additional feature with respect to the previous example.
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Summarizing, if we define w as in (2.21) then (taking into account only the cases
with a unique limit) the minimizing movement along the sequence F. with initial
datum zg is given by z(t) = xo + vt with v = if(w), and f is given by

2n if\w—Qn\gg,nEN
flw) =

A
2n+1 ifjw—(2n+1)<1- §,nEN.
Note that the pinning threshold is now A/2. We can compare this minimizing
movement with the one given in (2.22): for 2n + 1/2 < w < 2n + A/2 the new
minimizing movement is slower, while for 2n +2 — \/2 < w < 2n + 2 — 1/2 it is
faster.

2.5 A scaling of the energies is a time-scaling

In this and the next section, we give some preliminary remarks useful for the
definition of a backward (i.e., reversed time) motion in Chapter 7.

We introduce a new parameter A > 0 and follow the iterative minimizing scheme
from an initial datum ug by considering ug, k > 1 defined recursively as a minimizer

of

. (1 1
min {/\Fa(v) + EHU — uleQ} , (2.25)

and setting u7 (t) = u™(t) = u|y/r)- Equivalently, we may view this as applying the
minimizing-movement scheme to

) A
min {Fs(v) + EHU — uk—1H2} . (2.26)

We may compare this scheme with the one for unscaled energies, where u; are
defined as minimizers of minimizing-movement scheme with time scale n = 7/\.
This other scheme gives a function u” which is a discrete function on a lattice of
lattice step n. Then we have

t
u"(t) = upyyr) = Ulp/ag) =0 (A) :

Hence, the scaling of the energies F. by A corresponds to a scaling of time in the
minimizing-movement scheme.

2.6 Negative scaling and discrete approximation: back-
ward motions

In a finite-dimensional setting, a condition that ensures the possibility of defining a
minimizing movement for a functional F' is that

1
u— Flu) + o—fu = u)? (2.27)
T
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be lower semicontinuous and coercive for all w and for 7 sufficiently small. This is
not in contrast with requiring that also

1
u— —F(u) + 2—\u —al? (2.28)
T

satisfy the same conditions; for example if F' is continuous and of quadratic growth.
This can be seen as a further extension of the time-scaling argument in Section 2.5,
with A = —1. If the iterative scheme (2.27) gives a solution for the gradient flow,

{u’(t) = VF(u(t)) fort>0

a minimizing movement v for the second scheme produces a solution v(t) = u(—t)
to the backward problem

{U’(t) = —VF(v(t)) fort<0
v(0) = uo.

In an infinite-dimensional setting the two requirements of being able to define
both the minimizing movement (2.27) and (2.28) greatly limits the choice of F,
and rules out all interesting cases. A possible approach to the definition of a
backward minimizing movement is then to introduce a finite-dimensional or discrete
approximation F. to F', for which we can define a minimizing movement along —F.
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Chapter 3

Geometric minimizing
movements

In view of the results about the motion of discrete interfaces contained in the next
chapters, we now examine some minimizing movements describing the motion of
sets: the geometric minimizing movements. Such a motion can be framed in the
setting of the previous chapter after identification of a set E with its characteristic
function u = xg. The energies we are going to consider are of perimeter type; i.e.,
with

F(E) = H'(0F) (3.1)

as a prototype in the notation of the previous chapter. Here we follow Braides [11],
Chapter 9.

3.1 Motion by mean curvature

The prototype of a geometric motion is motion by mean curvature; i.e., a family of
sets E(t) whose boundary moves in the normal direction with velocity proportional
to its curvature (inwards in convex regions and outwards in concave regions). In the
simplest case of initial datum a ball in R?, F(0) = Ey = Bg,(0), the motion is given
by concentric balls with radii satisfying

(3.2)
R(0) = Ro;

i.e., R(t) = \/R% — 2ct, valid until the extinction time T = R3/2c, when the radius
vanishes.

A heuristic argument suggests that the variation of the perimeter be linked to
the notion of curvature; hence, we expect to be able to obtain motion by mean
curvature as a minimizing movement for the perimeter functional. We will see that,
in order to obtain geometric motions as minimizing movements, we will have to
modify the procedure described in the previous chapter.
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Example 3.1.1 (pinning for the perimeter motion). We apply the minimizing-
movement procedure to the perimeter functional (3.1) with initial datum Ey = Bg,(0)
in R?. With fixed 7, since

/]1&2 Ixa — XB’QdﬂU = |AAB|,

the minimization to determine F; is
1
min {Hl(aE) + 2|EAE0|} . (3.3)
T

We note that we can restrict our analysis to sets E contained in FEj, since
otherwise taking E' N Ey as test sets in their place would decrease both terms in the
minimization. Once this is observed, we also note that, given E C Ey, if Br(z) C Ey
has the same measure as F then, by the isoperimetric inequality, it decreases the
perimeter part of the energy (strictly, if E itself is not a ball) while keeping the
second term fixed. Hence, we can limit our analysis to balls Br(xz) C Ejy, for which
the energy depends only on R. The incremental problem is then given by

min {%R + %(R% ~RY):0<R< Ro} , (3.4)

whose minimizer is either R = 0 (with value 5= R§) or R = Ry (with value 27 Ry),
since in (3.4) we are minimizing a concave function of R. For 7 small the minimizer
is then Ry. This means that the motion is trivial: E, = Ej for all k, and hence also

the resulting minimizing movement is trivial.

3.2 A variational approach to curvature-driven motion

In order to obtain motion by curvature, Almgren, Taylor and Wang [3] have intro-
duced a variation of the implicit-scheme described above, where the term |EAFEy|
is substituted by an integral term which favours variations which are ‘uniformly
distant’ to the boundary of Ej. The problem defining E}, is then

min {Hl(aE) + L dist(x, 0Ek_1) dx} , (3.5)

T JEAE,_,
where dist(-, A) denotes the euclidean distance from the set A. Note that the integral
term can be interpreted as an L?-distance between the boundaries of the sets.
We will check the convergence of this scheme to the mean-curvature motion for
Ey = Bg, in R%
In this case, we note that if F;_q is a ball centered in 0 then we have

e F) is contained in Ej_71. To check this, note that, given a test set F, considering
E N Ej;_; as a test set in its place decreases the energy in (3.5), strictly if

E\Ej_1 # 0

e FE} is convex with baricenter in 0. For this, note first that each connected
component of Fj is convex. Otherwise, considering the convex envelopes
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decreases the energy (strictly, if one of the connected components is not
convex). Then note that if 0 is not the baricenter of a connected component
of Ej, then a small translation towards 0 strictly decreases the energy (this
follows by computing the derivative of the volume term along the translation).
In particular, we only have one (convex) connected component.

From these properties we can conclude that E} is indeed a ball centered in 0.
Were it not so, there would be a line through 0 such that the boundary of Ej does
not intersect perpendicularly this line. By a reflection argument we then obtain
a non-convex set Ej, with total energy not greater than the one of Ej, (note that
the line considered subdivides Ej into two subsets with equal total energy). Its
convexification would then strictly decrease the energy. This shows that each Ej is
of the form

Ey = Bg, = Bg,(0).

We can now compute the equation satisfied by Ry, by minimizing (after passing
to polar coordinates)

2 Ry—1
min {QWR + 7/ (Rk—1—p)p d,o} , (3.6)
R

which gives

Ry — Ri_1 1
—_— = —— 3.7
T Ry, (3.7)

Passing to the limit gives the desired mean curvature equation (3.2).

3.3 Motion by crystalline curvature

We now consider the functional
FE)= [ vl an, (338)
O*E

defined on all sets of finite perimeter (v denotes the normal to 0*E), which is called
crystalline perimeter. A minimizing movement for F' is called a flat flow.

The incremental problems for the minimizing-movement scheme for F' in (3.8)
are of the form

1
min {F(E) + = disteo(z, 0Fk_1) dl‘} , (3.9)
T JEAE,_1

where, for technical reasons, we consider the co-distance

distoo (2, B) = inf {||z — 9|« : ¥ € B}.

We only consider the case when the initial datum FEj is a rectangle, and we show
that the flat flow is the motion by crystalline curvature (see Almgren and Taylor
[2], Taylor [48]). We can prove that if Ej_; is a rectangle, then we can limit the
computation in (3.9) to
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Figure 3.1. Incremental crystalline minimization.

e F contained in Fj_1, otherwise N Fj_1 strictly decreases the energy;

e F with each connected component a rectangle, otherwise taking the least
rectangle containing a given component would decrease the energy, strictly if
FE is not a rectangle;

e F connected and with the same center as Ej, since translating the center
towards 0 decreases the energy.

Hence, we may suppose that

E:[_ﬁ ﬂ]x[_@ @]
k 2 7 2 2 7 2

for all k. In order to iteratively determine Lj ;, we have to minimize the energy

1
min {Q(Lk’l + ALl) -+ 2(Lk,2 + ALQ) + — diStoo(JS, BEk_l) dl‘} . (310)
T JEAE,

For 7 small, the integral term in (3.10) can be substituted by
L L
o [EEL AL, ¢ ﬁ(ALl)Q] .
4 4
This argument amounts to noticing that the contribution of the small rectangles at

the corners highlighted in Fig. 3.1 is negligible as 7 — 0. The optimal decrements
ALj are then determined by the conditions

L
1+ 2R2AL =0
4T
(3.11)
L
14+ 2BAL, = 0.
4T
Hence, we have the difference equations
AL 4 AL 4
L= 2 = _ (3.12)

T Lk72 ’ T Lk 1 ’

)
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which finally gives the system of differential equations for the limit rectangles, with
edges of length L;(t) and Ls(t), respectively, solving

. 4

Ll(t) = _Lg(t)

| ) (3.13)
LO="7

From a geometrical point of view, this means that each edge of the rectangle
moves inwards with velocity inversely proportional to its length; more precisely,
equal to twice the inverse of its length (so that the other edge contracts with twice
this velocity). Hence, the inverse of the length of an edge plays the role of the
curvature in this context, the crystalline curvature.

dL
Note that by (3.13) all rectangles are homothetic, since %L—l = 0, and with area
2
satisfying
d
—IL1Ly = -8
dt 142 )

so that L1(t)La(t) = Lo,1Lo,2 — 8t, which gives the extinction time ¢ = Lo Lo 2/8.
In the case of an initial datum a square of side length Lg, the sets are squares whose
side length at time ¢ is given by L(t) = /L% — 8t, in analogy with the evolution of
balls by mean curvature flow (Section 3.1).
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Chapter 4

Motion of discrete interfaces in
homogeneous media

In this chapter we present the results contained in the paper by Braides, Gelli and
Novaga [14], where the Almgren-Taylor-Wang approach of Section 3.2 has been used
coupled to a homogenization procedure to study the variational motion of discrete
interfaces driven by ferromagnetic interactions.

4.1 Lattice energies as interfacial energies

We consider the simplest lattice energy, that is, depending on a discrete variable
u = {u;} indexed by the nodes i of the standard lattice Z2, given by

Pl =7 Y (n—u) (4.1)

li—jl=1

where u; takes only the two values +1 and —1 (spin systems). Note that its density
only differs by constants from the usual ferromagnetic energy density —u;u;. After
identifying a function u with the set E obtained as the union of all closed unit
squares with centers ¢ such that u; = 1, the energy P can be rewritten as a perimeter
functional

P(E) = H'(0F), (4.2)

and hence can be interpreted as an interfacial energy.

We are interested in energy-driven motions deriving from this type of functional,
but since no motion by gradient flow is directly possible in the discrete environment
(as all u are isolated points), we perform an analysis in a discrete-to-continuous
framework, where we scale the lattice and the energy P by introducing a small
parameter €.

As a result, we have the scaled energies
P(w)=7 3 elus— ) (4.3)

li—jl=e
where u : €Z? — {41}. This functional may again be identified with the perimeter

P.(E) = H'(OE), (4.4)
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with the constraint that £ be the union of squares of side length e.

In the associated Almgren, Taylor and Wang scheme, the perimeters and the
distances depend on a small parameter €, and consequently, after introducing a time
scale 7, the time-discrete motions are the Eg’e, k > 1 defined iteratively by

1
E;° is a minimizer of min {PE(E) + =D.(E, EZ’El)} , (4.5)
T

D, being a suitable distance between sets (see Section 4.3). The time-continuous
limit E(t) of {E;} then may depend how mutually ¢ and 7 tend to 0, and this
problem can be cast in the general framework of minimizing movements along a
[-converging sequence (see Chapter 2, Section 2.2). In particular, the limit motion
will be pinned if 7 << ¢ suitably fast (in a sense, we can pass to the limit in 7 first
and then apply the Almgren-Taylor-Wang approach). On the contrary, if e << 7
fast enough then the limit £ will be the evolution related to the limit P, which is
the crystalline perimeter (4.10) (again, in a sense, in this case we can pass to the
limit in e first). Hence, the critical regime 7 ~ ¢ is more interesting and captures
the main features of the motion. The relevant case for the description of the motion
is that of initial data coordinate rectangles, since the motion of more general sets
can be reduced to the study of this one.

Overview of the chapter. In Section 4.2 we define the discrete ‘ferromagnetic-
type’ energies that we will consider. In Section 4.3 we define the discrete distance
term in the energy and formulate the minimization scheme, showing that the limit
motion depends on the e-7 regime chosen. Section 4.4 contains the description of
the convergence of the discrete scheme, at the critical regime, in the case of initial
data coordinate rectangles. The evolution of a coordinate rectangle by minimization
of the energy is a coordinate rectangle, and the velocity of each side is quantized and
uniquely determined, up to a discrete set of side-lengths (Theorem 4.4.1). In case of
uniqueness, the limit motion (Theorem 4.4.2) is described by a system of degenerate
differential equations, whose right hand sides are discontinuous functions of the
curvature. A comparison with the crystalline motion is contained in Remark 4.4.3,
showing new features due to discreteness of the problem. In Section 4.5 we recall the
extension of the previous results to the case of initial data coordinate polyrectangles,
which is the first step to treat the case of more general initial sets.

4.2 Homogeneous ferromagnetic energies on discrete
sets

We recall in details the definition of the energies (4.3), given in a more general
framework with respect to Braides, Gelli and Novaga [14].

Let @« > 0 (o = 1 in [14]). With fixed space mesh ¢ > 0, for a set of indices
T C €Z? we consider the energy

PYT) = ac#{(i,j) € eZ? x eZ? i € T,j ¢ T,|i — j| = €}. (4.6)

In order to study the continuous limit as € — 0 of these energies, it will be convenient
to identify each subset of eZ? with a measurable subset of R? (namely, unions of -
squares), in such a way that equi-boundedness of the energies implies pre-compactness
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of such sets in the sense of sets of finite perimeter. This identification is as follows:
we denote by Q = [—1/2,1/2]? the closed coordinate unit square of center 0; if ¢ > 0
and i € €Z2, we denote by Q.(i) = i + £Q the closed coordinate square with side
length ¢ and centered in i. To a set of indices 7 C 72, we associate the set

Er = Q:(9). (4.7)
i€l
The space of admissible sets related to indices in the two-dimensional square lattice
is then defined by
D, := {E CR?: E = Ez for some Z C €Z2}. (4.8)

We note that the value of the energy P2 (Z) is the same as the perimeter (up to
multiply it by «) of the corresponding set E7 € D., so that it can be thought as a
discrete perimeter of .

We denote, with a slight abuse of notation,

P%(Er) = P(Z) = aH'(8E7). (4.9)

The latter equality shows that sequences of sets E. with sup, P¢(E:) < 400 are
pre-compact with respect to the local L'-convergence in R? of their characteristic
functions, and their limits are sets of finite perimeter in R?. The continuum limit of
these energies is the crystalline perimeter (see Alicandro, Braides and Cicalese [1])

PUE) = [ vl di, (4.10)
oF

where v is the normal to OF and ||v||1 = ||(v1,v2)|1 = |v1| + |v2l.

4.3 A discrete-in-time minimization scheme

Now we define explicitly the distance term D, in (4.5).
For 7 C €Z?, we define the discrete (>°-distance from 07 as

inf{[|i — jlloo : j € T} ifi ¢ T

de (i,0T) =
(1, 07) {inf{Hz’—j\OO:anZQ\I} ifi € Z,

where ||z]|co = max{|z1],|22|}. Note that we have

&_(i,0T) = doo(i, 0E1) + g

where dy, denotes the usual ¢*°-distance. This distance can be extended to all
R2\OFE7 by setting

& (2,0T) = d5(i,0T) if x € Q.(i).

In the following we will directly work with £ € D, so that the distance can be
equivalently defined by
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&_(2,0E) = do(i, OE) + g if € Q.(3).

Note that this is well defined as a measurable function, since its definition is unique
outside the union of the boundaries of the squares Q. (that are a negligible set).

We now fix a time step 7 > 0 and introduce a discrete motion with underlying
time step 7 obtained by successive minimization. At each time step we will minimize
an energy F<' : D: x D: — R defined as

1
FE(E, F)=PE)+ - ds (z,0F) dx. (4.11)
’ T JEAF
Note that the integral can be indeed rewritten as a sum on the set of indices
eZ? N (EAF). More precisely, if Z = ENeZ?, J = F NeZ?, then

FOLT) =PAD)+ L Y 2, i.07)

T ieIng
1

=PI+~ | D (i, T)+ > e2doo(i,cZP\JT)
T \ienvs i€INT

Given an initial set E?, we define recursively a sequence EQT in D, by requiring
the following:

(i) Eg,‘r = E&
(i) EXf'is a minimizer of the functional 72 (-, EF ).

The discrete flat flow associated to functionals F2' is thus defined by

E..(t)=EY, t>o0. (4.12)

Assuming that the initial data E? tend, in the Hausdorff sense (see Section 1.2), to
a sufficiently regular set Ey, we are interested in identifying the motion described by
any converging subsequence of E. -(t) as e,7 — 0.

As remarked in Section 4.1, the interaction between the two discretization
parameters, in time and space, plays a relevant role in such a limiting process. More
precisely, the limit motion depends strongly on their relative decrease rate to 0.

We have the following ‘extreme’ asymptotic behaviors:

(a)(crystalline motion) if ¢ << 7, then we may first let ¢ — 0, so that P¢(E) can be
directly replaced by the limit anisotropic perimeter P*(E) and 1 [ dS (2, OF) dx
by % Jeap doo(x,0F) dz. As a consequence, the approximated flat motions tend to
the solution of the continuous ones studied by Almgren and Taylor [2], that is, the
crystalline motion;
(b)(pinning) if ¢ >> 7, then there is no motion (i.e., ‘pinning’) and EQT = ..
Indeed, for any F # E? and for 7 small enough we have
1 € € a0
f/ & (v,0F) dx > = > P(EY).
EOAF T

T
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In this case, the limit motion is the constant state Ej.

An heuristic computation suggests that the meaningful regime is the intermediate
case T ~ €. We will describe the study of this case, the behaviour in the other
regimes being immediately deduced (by scaling) from this analysis.

4.4 Motion of a rectangle

We treat the case of initial data E? that are coordinate rectangles; that is, rectangles
with sides parallel to the coordinate directions, of lengths L(l),s, Lg,e, respectively.
We assume that
T =~e for some 7y € (0, 400),

(note that 7 here plays the role of a in [14]) and, correspondingly, we omit the
dependence on 7 in the notation of

B — B (< B

€,ve

We note that the results remain true also in the more general case

T
lim — =+.
e—0t €

The following characterization of any limit motion holds.

Theorem 4.4.1 (quantization of the limit velocity). For alle > 0, let E? € D,
be a coordinate rectangle with sides Si¢,...,S1c. Assume also that

lim dy(EY, Ep) = 0

for some fized coordinate rectangle Ey. Then, up to a subsequence, the piecewise-
constant motion E.(t) defined by (4.12) converges as € — 0 locally in time to E(t),
where E(t) is a coordinate rectangle with sides S;(t), and such that E(0) = Ey. Any
S; moves inward with velocity v;(t) solving the following differential inclusions

1 { 2ary J 2«
= — if ZN
v LLi(t) Li(t)
v; (¢) (4.13)
1 ( 2ary > 1 2aw} . 20y
eEl-l—=-1),——= if eN
{V Li(t) v Li(t) Li(t)
where L;(t) := |S;(t)| denotes the length of the side S;(t), until the extinction time
when L;(t) = 0.

Proof. For the complete proof, see Theorem 1 in [14]. Here we just give a sketch
of it, highlighting the main steps; this will be useful in the sequel for a comparison
with the inhomogeneous case (see Proposition 5.3.5). The first remark is that, for
€ fixed, coordinate rectangles evolve into sets of the same type. This is checked
recursively, by showing that if E¥ is a coordinate rectangle and F is a minimizer for
the minimum problem for 72 (-, E¥), then F is a coordinate rectangle. In order to
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prove the assertion, let F'= F; U Fo U ---U F,,,,m > 1 be the decomposition of F
into its connected components. Then the main steps of this geometric part of the
proof are the following:

Step 1: Rectangularization. Each F; is a coordinate rectangle contained
in Ef; in fact, if we replace each F; with the rectangularization of F; N Ef, ie.,
the minimum coordinate rectangle containing F; N E¥, its energy decreases since
its perimeter is not greater than that of F; and the symmetric difference with Ef
decreases as well.

Step 2: Connectedness of F. Actually, there is only one connected component;
in fact, each connected component F; can be translated in direction of the center of
Ef without increasing its energy.

Step 3: F' contains the center of Eé‘ We can argue by contradiction, and by
assuming that F does not contain the center of E¥, we can construct a competitor
which contradicts the connectedness of F'.

The second part of the proof deals with the explicit computation of the minimizer
E! (and then of E¥, by iterating this procedure). We set L; . := |S; .| and let eN;
be the distance of the side S;. from S;. We can write the functional FZ', (F, E*) in
terms of the integer distances Ny, ..., Ny from the relative sides, and we get that
Nig,..., Ny, are minimizers of the function

1 4 N, 5
€ €
f(Ny, ..., Ny) = —2ae E NZ—|—§ E E kLi,E_?eg
i=1

\ =h=l ) (4.14)
1N;(N; +1
= 52 (‘204Ni + MLi7€> _ E—ea,
— Y 2 v
where 0 < e. < Cmax(Ny, ..., Ng)3. In the computation above we have subdivided

the rectangle between S; . and \S; in IV; stripes indexed by k, for each of which the
discrete distance is ke; the last term is due to the contribution of the bulk term close
to the corners of the rectangle F', where two neighboring rectangles between .S; . and

S; intersect, and is negligible as ¢ — 0 (see Fig. 4.1). The minimizer Ny.,..., Ny,
k-th column

T
LN , .
e e ’ .

sifiiis
el
¥
S
LR
8. b 8

N1 columns asymptotically negligible sets

Figure 4.1. Computation of the time-step minimization (original picture from [14]).

are identified by the inequalities
flo o Nig,oo.) < f(...,Nie £1,...).
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A direct computation shows that N; . is equal to [2ay/L; ¢ |, except for the singular
case in which 2a7y/L; . lies in a small neighborhood of the integers, infinitesimal
as € — 0. In this case, there exists a threshold, varying with ¢, for which both an
integer NV and the subsequent are minimizers.
Therefore, the side S; . moves inward of a distance N; ., with the value N; . estimated
in terms of the quantity 2ay/L; . as above.

O

The following theorem characterizes the limit evolutions in case of uniqueness.

Theorem 4.4.2 (unique limit motions). Let E., Ey be as in the statement of
Theorem 4.4.1. Assume in addition that the lengths LY, LY of the sides of the initial
set Ey satisfy one of the three following conditions (we assume that LY < L9):

(a) LY, LY > 2ay (total pinning);
(b) LY < 2ay and LY < 2ary (vanishing in finite time);
(c) LY < 20y and 2ay/LY ¢ N, and LY > 2ay (partial pinning);

then E.(t) converges locally in time to E(t) as € — 0, where E(t) is the unique
rectangle with sides of lengths L1(t) and Lo(t) which solve the following system of
ordinary differential equations

-2 |22

o LLa()

(4.15)
. _ 2] 209
)= > | 7175

or almost every t, with initial conditions L1(0) = LY and Ly(0) = LY.
1 2

Proof. See Theorem 2 in [14]. Note that in (a) ‘total pinning’ means E(t) = Ej,
that is, L1 = Ly = 0. Under the assumption (c), we have ‘partial pinning’, that is
the side whose initial length is L > 2a-y stays pinned until it reaches the critical
length Ly = 2ay, due to the motion of the other one. O

Remark 4.4.3 (new features with respect to the crystalline motion). Here
we highlight the main differences between the limit motion described by Theorem 4.4.2
and the crystalline motion, whose equations are given by (3.13) in Section 3.3.

(i) ‘Degenerate equations’ The motion defined in Theorem 4.4.2 is described
by a system of degenerate ordinary differential equations (4.15), whose right-hand
sides are discontinuous. In fact, the discrete motion is obtained by overcoming some
energy barriers in a ‘quantized’” manner. Moreover, we may read in the equations
the effect of the I'-limit energy (through the crystalline form of the evolution and
the coefficient «) and of the interplay between the time and space scales (through
the scaling 7).

(ii) A pinning threshold. In the hypothesis (a) of Theorem 4.4.2 we have pinning
for large rectangles: if both the initial side-lengths are above the pinning threshold
L = 2ary, then the right-hand sides of equations (4.15) are zero and the motion is
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pinned. This threshold is obtained by computing the values for which a side of length
L may not move inwards of € by decreasing the energy F2',. The corresponding
variation of the energy is given by

1
— 2ae + —Le, (4.16)
Y

which is positive if and only if
L>L=2ay. (4.17)

(iii) Inhomogeneity of the motion. The limit motion (4.15) cannot be obtained
following the Almgren-Taylor-Wang approach for any perimeter functional. It can
be regarded as a non-homogeneous crystalline motion, with a velocity depending on
a function of the curvature: if the curvature & of a side is identified with the inverse
of its length, then the law for the velocity v of that side is

v = f(K)s,
1

where f(k) = 3 [2ayk] 1. Note that f is always less or equal than 2, the coefficient
in the continuous case, which shows how an additional discreteness effect is to slow

down the crystalline motion.

4.5 Motion of a polyrectangle

In this section we recall the extension of the results, obtained previously for coordinate
rectangles, to the case in which the limit initial set is a polyrectangle ([14], Section 3.2).

Figure 4.2. Sides of a polyrectangle with different curvature signs.

We first give the definition of polyrectangle and we assign a curvature sign on
each side.

Definition 4.5.1. A set E is a coordinate polyrectangle if OF is locally a Lipschitz
graph, and consists of a finite union of segments (sides), which are parallel to one of
the coordinate azxes. For any polyrectangle E we assign to each side S; an integer
number §; (the sign of the curvature of S;) as follows (see Fig. 4.2): 6; =1 (resp.
§; = —1) if there exists v > 0 such that E N (S; + B,) (resp. (R2\E)N (S; + B,.)) is
a convez set, we set §; = 0 if none of the two conditions holds.
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Hence, locally convex sides move inwards, locally concave sides move outwards
while the other ones stay pinned. The characterization of any limit motion is the
following.

Theorem 4.5.2 (Motion of polyrectangles). Let Ey be a connected polyrectangle
with sides S1,S9,...,5N. For all e > 0, let EQ € D, be connected polyrectangles
with sides S1¢,%.,...,SNe, such that

lim dy(E2, Eo) = 0.

Then there exists T > 0 such that, up to a subsequence, E.(t) converges as € — 0,
in the Hausdorff topology and locally uniformly on [0,T), to a polyrectangle E(t)
with E(0) = Ey. Moreover, the sides S; of E(t), 1 <i < N, move with velocity v;(t)
solving the following differential inclusions

-3 e ok
nto 0i [ 2« di 2y 200y s
S @m-)3ne e

where L;(t) := |S;(t)|. As a consequence, if we further assume that 2ay/L? ¢ N for
all 1 <i < N, the lengths L;(t) solve the following system of differential equations

E@:_(ilhﬁﬂﬂ+%}hfxﬂ> (4.19)

Proof. See Theorem 3 in [14]. O

The time 7" > 0 can be chosen as the first time for which thrrr} L;(t) = 0, for some
—
ie{l,...,N}.

As a final remark, we note that in [14] more effects due to discreteness are
described (partial pinning, non-uniqueness, pinning after initial motion, etc.) which
are related to the evolution of more general initial data (e.g., a rhombus, crystalline
convex sets, etc.).
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Chapter 5

Motion of discrete interfaces in
‘high-contrast’ periodic media

In this chapter we present the results contained in a joint work with A. Braides [19]
about the motion of discrete interfaces in high-contrast periodic media; that is,
media with periodic inclusions which are not energetically favourable, and hence are
avoided by the interface.

5.1 Motivation and survey of the main results

In the spirit of the previous chapter (in particular, Remark 4.4.3), our aim is to
show that a periodic microstructure can affect the limit evolution, without changing
the I'-limit. Hence, the I'-limit is not sufficient to completely characterize the
limit evolution at the critical regime. To this end, we will introduce a further
inhomogeneity in the perimeters P2 by considering, for any subset E C eZ2,

1
PA(E) = 3¢ > {cij: (i,j) €Z* x Z*,ci € E,ej € E, |i — j| =1},

(we use the notation > {z, : a € A} = Y ,c4x,) where the coefficients ¢;; equal
a > 0 except for some well-separated periodic square inclusions where ¢;; = 8 > «
(high-contrast medium). These inclusions are not energetically favorable and they
can be neglected in the computation of the I'-limit, which is still the perimeter P“
(4.10), with the same coefficient « (see Remark 5.2.1). They can be considered as
“obstacles” that can be bypassed when computing minimizers of P?”B ; however their
presence is felt in the minimizing-movement procedure (4.5) since they may influence
the choice of E;° through the interplay between the distance and perimeter terms.
As a result, the motion can be either decelerated or accelerated with respect to the
homogeneous case (Chapter 4).

As already remarked in the previous chapter, the relevant case for the description
of the motion is that of initial data coordinate rectangles, since all other cases can
be reduced to the study of this one. We will then restrict our analysis to that case,
in the critical regime 7 = ~e. This (apparently) simple situation already contains all
the relevant features of the evolution and highlights the differences with respect to
the motion in a homogeneous medium. We will show that the limit motion can still
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be described through a system of degenerate ordinary differential equations of the
form

b0 =21 (1)

with f a locally constant function on compact subsets of (0, +00) which depends on
a, the period and size Ng of the inclusions but not on v (neither on the value f3).
The effective velocity f is obtained by a homogenization formula which optimizes
the motion of the sides of the rectangle; it results in an oscillation around a linear
motion with velocity % f(v/L) (which is locally constant, as noted above). Note
that, in the case of no inclusions, the system is of the same form with f(Y) = [2aY]
(equation (4.15)). The dependence on the inclusions gives a new pinning threshold

dva

L=
2+N5

depending on the size of the inclusion Ng. The reason for this new pinning threshold
is that, in order that a side may move, it need to be able to overcome a barrier of
Ng inclusions. Note that, if the initial data have side lengths L<L< f/, L the
pinning threshold (4.17), then we may have a microscopic motion which stops after
a finite number of time steps, and is not eventually detected in the limit. It should
be remarked that the presence of the inclusions may indeed accelerate the motion,
so that f(Y) > |2aY | for some Y.

Overview of the chapter. In Section 5.2 we define all the energies we will consider.
Section 5.3 contains the proof of the convergence of the discrete scheme in the case of
a rectangular initial set. Contrary to the proof of Theorem 4.4.1, it is not trivial to
show that the minimizers of this scheme are actually rectangles. This is a technical
result contained in Proposition 5.3.5. Section 5.3.1 contains the computation of the
new pinning threshold, showing that it depends on the percentage Ng of defects
in the lattice. Section 5.3.2 deals with the new definition of the effective velocity
of a side by means of a homogenization formula resulting from a one-dimensional
‘oscillation-optimization’ problem. This velocity can be expressed uniquely (up
possibly to a discrete set of values) as a function the ratio of v and the side length
(Definition 5.3.8). The description of the homogenized limit motion is contained in
Section 5.3.3. In the last two sections we compute explicitly the velocity function by
means of algebraic formulas in some simple cases, showing a nontrivial comparison
with the case with no inclusions.

5.2 Inhomogeneous ferromagnetic energies on discrete

sets

The energies we consider are interfacial energies defined in an inhomogeneous
environment as follows: let 0 < a < < +00, Ny, Ng > 1 and set Nog = N + Npg.



5.2 Inhomogeneous ferromagnetic energies on discrete sets 35

We consider the N,g-periodic coefficients ¢;; indexed on nearest-neighbours of 7?2
(i.e., i,j € Z? with |i — j| = 1) defined for i, j such that

0< 1+]1’ 2+ 72

N,
=9 g < Nas

2 2 = (5.1)

3 if0§21+‘71,12+‘]2<N5
Cij =
« otherwise.

These coefficients label the bonds between points in Z2, so that they describe a
matrix of a-bonds with N,g-periodic inclusions of $-bonds grouped in squares of
side-length Ng. The periodicity cell is pictured in Fig. 5.1.
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Figure 5.1. Periodicity cell. Continuous lines represent 5-bonds, dashed lines a-bonds.

Correspondingly, to these coefficients we associate the energy defined on subsets
T of 72 by

PoA(T) =Y {ey: li—jl=1i€T,j 2\ 1}, (5.2)

Here we use the notation > {zq : a € A} =3 ,c 4 %4. In order to examine the overall
properties of P®“? we introduce the family of scaled energies defined on subsets Z of
eZ? by

PeAT) =S {e cijeje i li—jl =i €T,j € 2\ T}; (5.3)

ie., PY(T) = EPQ’B(%I). To study the continuous limit as ¢ — 0 of these energies,
it will be convenient to identify each subset Z of ¢Z? with a measurable subset Er
of R? as in Section 4.2, that is, Er = J;cz (i + Q). The class of finite unions of
e-squares still will be denoted by D..

As an easy remark, we note that

PeA(Br) > ea#t{(i,j) : li— j|l = e,i € T,j € eZ*\T} = oM (0Fr),  (5:4)

which shows that sequences of sets E. with sup, P?’B (E:) < 400 are pre-compact
with respect to the local L'-convergence in R? of their characteristic function and
their limits are sets of finite perimeter in R%. Hence, this defines a meaningful
convergence with respect to which compute the I'-limit of P?’B ase — 0.

In our case the presence of the p-inclusions does not influence the form of the
[-limit, which is still the crystalline perimeter P (4.10), as in the following remark.
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Remark 5.2.1 (I'-convergence of inhomogeneous perimeter energies). The
energies P?’ﬂ defined by (5.3) I'-converge, as ¢ — 0, to the anisotropic cristalline
perimeter functional

Pe(E) :04/ )y dH.
oO*E

This limit is independent of N, Ng, and equals the one obtained when § = a.

The lower bound for the I'-limit is immediately obtained from the case o = 3 in
[1] after remarking that P?”B > P& = PZ. In order to verify the upper bound, it
suffices to note that recovery sequences for the I'-limit of P%* can be constructed at
a scale Nyge, thus ‘avoiding’ the S-connections. To this end, define

QY = J{Q:(i) : i €2 0 < illoo < eNag}.

This is a square of side length N,3e whose boundary intersects only a-bonds. We
consider Pév"ﬁ the restriction of P?’B to the class

Dévaﬁ = {E CR?: FE is a finite union of £Z>-translations of Qévaﬁ} .

Note that we have P&?(E) = P¥%(E) for F € Dév"‘ﬁ, and that sets in D2 differ
from sets in Den,, by a fixed translation of order ¢. Hence, we have (see Chapter 1
for details on the properties of I'-upper limits)

I-lim sup P&#(E) < I'-lim sup PéVD‘B(E) =TI-lim P%ﬂ (E),

e—0 e—0 e=0 ab

and the latter is again equal to P*(E). This inequality just states that we can take
sets in Dév *? which are small translations of a recovery sequence for P?Vf 5 .(F), as a

recovery sequence for P&#(E).

5.3 Motion of a rectangle

We consider the same discrete-in-time scheme as in Section 4.3, and at each time
step we will minimize an energy f;’f’f : D x D. — R defined as

FOB(E,F) =PYP(E) + = & (z, OF) d. (5.5)
’ T JEAF

As before, the relevant case is when € and 7 are of the same order and the initial
data are coordinate rectangles E?, which will be the content of this section. We

assume that 7 = v¢ and use the same notation for E¥ as before.
Due to the lack of uniqueness of minimizers in the discrete minimization scheme
described in Section 4.3, a standard comparison principle cannot hold. We recall a
weak comparison principle for our motion in the discrete case (see Proposition 1 in

Braides, Gelli and Novaga [14] for the proof).

Proposition 5.3.1 (Discrete weak comparison principle). Let ¢ > 0 and let
R., K. € D, be such that R. C K. and R. is a coordinate rectangle. Let Kf be
a motion from K. constructed by successive minimizations. Then ng C Kf for
all k > 1, where RF is a motion from R. constructed by successively choosing a
minimizer of F& (-, RE=1) having smallest measure.
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Remark 5.3.2. The set R?\ K f is the k-step evolution of the complementary R?\ K. f
of K.. As a consequence, if we have R. C R?\K*, from Proposition 5.3.1 it follows
that

RFCRAN\KF, forall k > 1.

Definition 5.3.3 (a-type rectangle). A coordinate rectangle whose sides intersect
only a-bonds will be called an a-type rectangle.

Remark 5.3.4. As a trivial remark, we note that the minimizers of F2;*, charac-

terized in the proof of Theorem 4.4.1, are coordinate a-type rectangles.

The first result is that coordinate rectangles evolve into a-type rectangles, hence
avoiding 8-bonds. Note that we cannot perform the same proof as in Theorem 4.4.1,
because rectangularization and translation towards the origin of a connected compo-
nent may increase the perimeter term of the energy in a inhomogeneous environment.
However, the proof of the connectedness is the same as in the case of a polyrectangle
(see Theorem 3 in [14]), this argument being independent of the microstructure.

Proposition 5.3.5. If E? € D. is a coordinate rectangle and F is a minimizer for
the minimum problem for fg;ﬁ(-,Ef), k>0, then for all 6 > 0 F is a coordinate
a-type rectangle as long as the sides of E? are larger than 0 and € is small enough.

Proof. Step 1: connectedness of F'. We want to prove that each E¥ is connected.
It will suffice to show this for F' = E!. We first need an estimate on the area of the
“small components” of E!; this estimate will be obtained by using the comparison
principle in Proposition 5.3.1.

Let £ > 0 be the maximum number such that for each point x € E? there exists
y € R? such that = € (y + Q) C E?, where Q, = [~£/2,£/2] x [~£/2,£/2], and the
same property holds for z ¢ E?. If E? = [~L1/2,L1/2] x [~La/2,L2/2], we can
choose ¢ = min{L;, Lo}. By applying Proposition 5.3.1 and Remark 5.3.2 to the
union of squares contained in E?, and to those outside E?, respectively, and taking

into account that a side of length ¢ shrinks by PO‘TVJ ¢ in absence of defects (see

(4.13)), it follows that
2
dy(OE2, 0E?) < (2‘7 + 1) e

In this way, it is not possible to have a configuration as in Fig. 5.2, with two large
components for E!.

Assume by contradiction that E! is not connected. In this case we should have
only one large component as in Fig. 5.3. We consider the decomposition

N
1 1 1
Ee = EO,e U U Ei,e?
i=1

with Eéyg the component containing all the points of E! having distance more than
C'e from OF? for a suitable constant C’ < 2ay/¢ + 1.
Therefore for a suitable constant C” we have

d5(z,0E2) < C"s  forallz € B}, and i > 1.
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Figure 5.2. Test set with E! with two large components.

EY

— e

1 i
EO,s

Figure 5.3. Small components of E’.

By using the isoperimetric inequality, for € small enough we infer
1
- | @ 0B de < (C/)IEL| < Cuon/IEL] < PE2(EL) < P2A(EL),

with Cigo being the constant of the isoperimetric inequality. Thus, we get a contradic-
tion since we can decrease strictly the energy by eliminating the small components
of E! and considering the set E' = E&E as a competitor.

Step 2: a-rectangularization. Consider the maximal a-type rectangle R®
with each side intersecting F'. We call the set F/ = F U R* the a-rectangularization
of F. This set is either an a-type rectangle (and in this case we conclude) or it has
some protrusions intersecting S-bonds (Fig. 5.4). In both cases P& (F') < P&F(F),

EO

E3

Figure 5.4. a-rectangularization.

and the symmetric difference with E? decreases. To justify this, note that the a-
rectangularization reduces (or leaves unchanged) P2*® and it reduces the symmetric
difference.
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As a consequence of this observation, we also deduce an a priori estimate on
the maximal distance between OE? and E!. By the argument above, F' contains
an a-type rectangle R® and is strictly contained in an a-type rectangle R® whose
sides have a distance from the corresponding sides of R of not more than (Ng+ 1)e.
We only check the a priori estimate in the simplifying hypothesis that EY is of
a-type and that EY and R® are both concentric squares, so that we can express this
estimate in terms of the length L of the sides of E? and the distance between E?
and OR®, which can be expressed as e/N. Note that we have

1

oM (OF?) > FEP(EL BY) > oM (OR®) + — | d(w, 0) du,
' EQ\R®

which translates into
4oL > 4oL — 2eN) + 7€(N — Ng)* + 0(e),
and gives (for ¢ sufficiently small)
C1
N < T + caNg =: ¢(L). (5.6)

The same type of estimate holds in the general case taking L the minimal length of
sides of EY.

Step 3: profile of protrusions on S-squares. Now we want to describe the
form of the optimal profiles of the boundary of F' intersecting (-squares.

As noted above, F' contains an a-type rectangle RY = [emy,e M| X [emg, e Ms]
and is contained in the a-type rectangle

R* = [e(m1 — Np),e(Mi + Np)] x [e(mz — Ng),e(Ma + Np)]

whose side exceed the ones of R* by at most 2e Ng. We will describe separately
the possible profile of F' close to each side of R%; e.g., in the rectangle [e(m; —
Ng),e(My+ Ng)] x [eMa, e(Mz+ Ng)] (i.e., close to the upper horizontal side of R%).
We first consider the possible behavior of the boundary of F' at a single S-square Q.

Figure 5.5. Envelope of OF when intersecting opposite sides.

We suppose that such @ is not one of the two extremal squares, for which a slightly
different analysis holds. First, if a portion I' of OF intersects ) in exactly two points
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on opposite vertical sides, then we may consider in place of F' the union of F' and
all the e-squares with centers (z,y) in Q NeZ? and

y <max{zy:z €T}

The new set, pictured in Fig. 5.5, has both lower perimeter and less symmetric
difference with E. If a portion I intersects @ in exactly two points on the same

Figure 5.6. Removal of F when intersecting one side.

side (horizontal or vertical) or adjacent sides, then we may remove all the e-squares
with centers in the portion of @ N F' with boundary I'. The two cases are pictured
in Fig. 5.6 and Fig. 5.7, respectively. This operation decreases the perimeter of at

Figure 5.7. Removal of OF when intersecting two adjacent sides.

least €( — «) while at most increases the bulk term by 12N EC(L) (¢(L) given by
(5.6)). The total change in the energy is thus

—e(B-a)+ is2N§c(L) , (5.7)

which is negative if € is small enough. As a consequence, then either F N Q = 0 or
OF N @ is a horizontal segment.

The same type of analysis applies to the extremal squares, for which we deduce
instead that F'N @ is a rectangle with one vertex coinciding with a vertex of Re.

We now consider the interaction of consecutive S-squares. Let Q1,...,Qk be
a maximal array of consecutive S-squares with F N Qp # () for k = 1,..., K and
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such that @); is not a corner square. If we substitute F' with F'U R, where R is
the maximal rectangle of e-squares containing all F'N @y and not intersecting other
[B-squares, then the corresponding energy has a not larger perimeter part, and a bulk
part which is strictly lower if F U R # F. This substitution is pictured in Fig. 5.8.
If the subsequent (-squares Qg1 ...,Q x4k are a maximal array which do not

|

AN =

Figure 5.8. Envelope of OF in consecutive squares.

intersect F' then we may further substitute F'U R with (F'\ R) U (R+eN.3K'(1,0)),
where we translate R until it meets another portion of F' (if any). This translation
is pictured in Fig. 5.9. Note that if it does meet another portion of F', then the

Figure 5.9. Translation argument to join protrusions.

change in energy is at most
1 5
— 2ea + ;5 NgNyc(L), (5.8)

which is negative if € is small enough. In this case, at this point we may iterate this
analysis since we now have a larger array of consecutive -squares intersecting F'.
Note, moreover, that the same argument can be repeated shifting the rectangle R to
the left instead than to the right, if energetically convenient. As a conclusion, we
obtain that F' may only either intersect one array of consecutive S-squares, or two
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such arrays if they contain the two corner -squares; i.e., we have one of the two
situations pictured in Fig. 5.10.

Figure 5.10. Profiles of candidate minimal F'.

Step 4: all f-connections can be removed except those at the four
corners. At this point, we are in the situations pictured in Fig. 5.10. If we are as
in the upper figure, then by removing all e-squares external to R* the variation of
the energy is less or equal than

(N + 1)NaﬁNb’52

—(B8—a)(Ng+1)Ne+¢(L) y

where N is the number of modified S-squares. For € small this variation is negative,
showing that F' does not contain any protrusion.

If we are as in the lower figure, then we may remove all S-connections inside the
border B-squares, except those in the two periodicity squares at the corners as in
Fig. 5.11; in this case, the variation of the energy functional is less or equal than

Figure 5.11. Removing -connections except in the two S-squares at the corners.

NNaﬂNB€2

—(B—a)(Ng+1)Ne +¢(L) S

where N is the number of modified cells. For ¢ small this variation is negative,
showing that the profile in Fig. 5.11 is energetically convenient. We can repeat this
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procedure for each side, and finally we obtain that F' is the union of a coordinate
a-type rectangle R and possibly one to four rectangles Ei, i=1,...,4 of side lengths
at most N,ge such that the intersection of R; with each corner [B-square is a rectangle
(see Fig. 5.12)

Figure 5.12. The set obtained in Step 4.

Step 5: conclusion. It remains to prove that the rectangles Ez in the previous
step are actually not there. This is immediately checked by comparing such an F
with RY: if R; # () then by removing it the energy changes at most by

1
—2/85 + ;C(L)EQNgﬁ,

which is negative for small €.

We finally note that all the estimates above can be iterated and hold uniformly
as long as the sides of E¥ are larger than 4, since they depend only on ¢(6). O

The proposition above shows that we may restrict our analysis to a-type rect-
angles; indeed, for fixed e this assumption is not restrictive until the sides of the
rectangles are larger than a constant, which vanishes as ¢ — 0. As a consequence,
once we suppose the convergence of the initial data, up to subsequences, the discrete
motions E; -(t) converge, as ¢ — 0, to a limit E(¢) such that E is a rectangle for
all ¢, up to its extinction time. Note, moreover, that it is not restrictive to suppose
that also the initial data are a-type rectangles, up to substituting E? with E..

As shown in Section 4.4, the motion of each side of EF can be studied separately,
since the constraint of being an a-type rectangle does not influence the argument
therein, which consists in remarking that the bulk term due to the small corner
rectangles in Fig. 5.13 is negligible. As a consequence, we can describe the motion
in terms of the length of the sides of Ef This will be done in the following sections.
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asymptotically negligible sets

Figure 5.13. Picture of Ef! inside E*.

5.3.1 A new pinning threshold

We first examine the case when the limit motion is trivial; i.e., all B = EF are the
same after a finite number of steps. This will be done by computing the pinning
threshold; i.e., the critical value of the side length L above which it is energetically
not favorable for a side to move. We recall that, in the case a = 3, this threshold is
(see (4.16))
L= 2ary.

In our case, by the condition that Ej be an a-type rectangle, we have to impose
that it is not energetically favorable for a side to move inwards by (Ng + 1)
(see Fig. 5.14). We then write the variation of the energy functional fgf’f from

e g g g g

..................................

S S T P S S ST S SO

Figure 5.14. Motion is possible if the side can move at least by (Ng + 1)e.

configuration A to configuration B in Fig. 5.14, regarding a side of length L. If we
impose it to be positive, we have

Nﬁ—l-l
L
—2(Ng + 1)ag + - > (ke)Le = (Ng + 1)e [ -2+ Z(NB +2)| >0
k=1
and we obtain the pinning threshold
— Iy
N, e (5.9)

Note that this threshold depends on Ng and not on the value 8 > a. Moreover,
L < L and if N3 =0 (or, otherwise, a = 3), we recover the previous threshold L.
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5.3.2 Definition of the effective velocity

As remarked above, up to an error vanishing as ¢ — 0, the motion of each side is
independent of the other ones. As a consequence, its description can be reduced to
a one-dimensional problem, where the unknown represents, e.g., the location of the
left-hand vertical side of Ej. Let xp represents the projection of this side of Fj on

Figure 5.15. Reduction to a one-dimensional problem.

the horizontal axis, as in Fig. 5.15. The location of x4, depends on a minimization
argument involving zp and the length L of the corresponding side of Fi. However,
we will see that this latter dependence is locally constant, except for a discrete set of
values of Lg. Indeed, for all Y > 0 (which in our case will be of the form Y = ~/Ly)
consider the minimum problems

N(N+1
min{—2aN+%:NeN, [x—i—N]NaﬂeZNa}, (5.10)
for x € {0,..., Nog}, where [z]n,, denotes the congruence class of z modulo Nyp

and
Zve = {[00Nosr- o [Na = gy | -

Then the set of Y > 0 for which (5.10) does not have a unique solution is discrete.
To check this it suffices to remark that the function to minimize

—4aXY + X(X +1)

is a parabola with vertex in

1
X =2aY — -
at 73

The minimizers N are points with [z + N]y,,; € Zy,, of minimal distance from the
vertex X. These are not unique in some cases: first if the vertex X is equidistant
from two consecutive points in Zy,; i.e., if

1 1
20 —— € -+ Z
o 262+,

or, equivalently,

Y e —7Z. A1
€2a (5.11)
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The second case is when we have two points in Zy, of minimal distance from X
which are not consecutive. In this case the distance between these points is Ng + 1,
so that we have

1 1
20 — - € N —+7Z
o 5 g+2+ ,

or, equivalenly,
1 (Nj
Ye —|—F—+2Z).
2 ( 2 * )
If Ng is even then this condition is equivalent to (5.11), while if N3 is odd then we

have . 1
Ye—+ —7Z. 5.12
< 4o + 2a ( )

Definition 5.3.6 (singular set). We define the (possibly) singular set Sy, for

problems (5.10) as
1 1
=— (7 —+7Z]|).
S = 50 (20 (3+2))

We will examine the iterated minimizing scheme for v/ Ly = /L € (0, +00)\ Sn,
fixed, which reads

vf o =xf+ N, k>0
e (5.13)
xo =T
with 2% € {0,1,..., Nog — 1} and N € N the minimizer of
1N(N+1
min{—2aN—|-(2+)L:NeN, [z} + Nln,, eZNa}, (5.14)
gl

which is unique by the requirement that /L & Sn,,.

After at most N, steps, {xﬁ}kzo is periodic modulo N,g, as expressed by the
following proposition.

Proposition 5.3.7. There exist integers k < No, M < N, and n > 1 such that
$£+M =21 +n Nag for all k > k. (5.15)
Moreover, the quotient n/M depends only on ~y/L.
Proof. First remark that, if z£ is defined recursively by (5.13), we have
[2§]Nos € Zn, for all k& > 1.

Since #Zp, = N,, there exist integers 0 < j < N, and [ > j, with [ — j < N,,
such that

[«TJL]NQB = [JZIL]NQB. (516)

SUL L

_ — T

Let | be the minimal such [. Define k =35, M =1 —j and n = “L__"J ¢6 obtain
of

(5.15).
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It remains to show the last statement of the theorem. It suffices to show that the
quotient n/M is independent of xy. We start by proving a monotonicity property of
the orbits defined in (5.13) with respect to the initial datum: if {z}} and {z}} are
orbits obtained as above, we have

if 2o < x(, then zp < ), forallk > 1. (5.17)

This can be seen iteratively from (5.10), since the problems with = = z;_; and
x = xj,_, consist in a constrained minimization of a parabola and its translation
by x}_, — xk_1, and, as previously remarked, the minimizer in (5.10) is the closest
point to the vertex of the parabola with [z + N]y,_, € Zn,-

Consider the orbits with initial data zo, z(, and zo + Nug, and let n(x) and M (x)
denote the indices above with initial datum z € {xo, 2, zo + Nog}. Since the orbit
with initial datum xo 4 Nyp is the translation by N,z of the one with initial datum
xo, we have n(xg + Nog) = n(xo) and M (xo + Nag) = M(xo). Taking into account
the ordering of the initial conditions

o < 1'6 SZCO‘{'N(X,B’

by (5.15) for ko sufficiently large and taking k = ko + T'M (xo) M (z() with T' € N,
from z < x), < @1, + Nop we get

Tgy + Tn(xo) M (2) NapNag 2y, + Tn(ag) M (x0) Nog

<
< gy + Tn(zo) M (2() Nag + Nag.

In order that this inequality hold for all T" > 1 we must have
n(wo) M (z5) = n(zq) M (z0),

which is the desired equality. O

Definition 5.3.8 (effective velocity function). We define the effective velocity
function f:(0,4+00) \ Sy, — [0, +00) by setting

nNag

M )
with M and n in (5.15) defined by L and 7 such that Y = ~/L. By Proposition 5.3.7,
this is a good definition.

fY) = (5.18)

Remark 5.3.9. The terminology for formula (5.18) is motivated by the fact that
we can define the velocity of a side as a mean velocity averaging on a period; that is,

B nNqge

== (5.19)

In (5.19) the velocity is the ratio between the minimal (periodic) displacement of
the side and the product of the time-scale 7 and the number of steps necessary to
describe the minimal period, each of which considered as a 1-time step.

Remark 5.3.10 (properties of the velocity function f). The velocity function
f has the following properties:
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(a) f is constant on each interval contained in its domain;

(b) F(Y)=0if

—  Ng+2
Y <Y := B+ ;
4o

.1 Y
lim ~f(X) =o0.
tim 25 () =0

Note that (0,Y) N Sn, # 0;

in particular

(c) f(Y) is a rational value;
(d) f is non decreasing;

(e) we have
1 vy 2a
im ~f(21)=22.
’Y—1>I-&r-loo ’yf (L) L
(f) f(Y) is independent of 3 but depends on Ng.

(a) holds since on each component of (0, +00)\ Sy, the minimum problems (5.10) have
a unique solution independent of Y, so that the values n and M in Proposition 5.3.7
are independent of Y. Note, however, that f(Y) may be equal on neighboring
components since the corresponding n and M may be equal even without uniqueness
in (5.15);

(b) holds since we have Y = ~/L, where L is the pinning threshold (5.9), and the
computation of the pinning threshold is equivalent to the requirement that the orbit
be constant after a finite number of steps;

(c) is immediate from the formula for f(Y);

(d) is again a consequence of the fact that (5.10) are minimum problems related to
a parabola with vertex in 2aY — % and the latter is an increasing function of Y;
(e) using the same argument as in (d) above, we deduce in particular that

‘m —2aY + %\ < Nj,

which for Y = v/L implies that

2a 1 1 ¥ 2a 1
X oaNg+ — <= (L) <22 faN, 4 —
L 5+2’7_'yf<L)_L+ B+2'y’
and the desired equality letting v — +o0;

(f) is an immediate consequence of the definition of f(Y).

Remark 5.3.11 (singular cases). Let 7/L € Sy,, and let {z}} be defined by
(5.13) with Ny chosen to be a minimizer of (5.14), which may be not unique. Then
arguing by monotonicity as in (d) above, we have ac,%+ < x,% < xﬁ_, where LT are
any two values with L~ < L < LT and ~/L* belonging to the two intervals of
(0, +00) \ Sy, with one endpoint equal to L, and {ajﬁi} have the same initial data.
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5.3.3 Description of the homogenized limit motion.

The following characterization of any limit motion holds.

Theorem 5.3.12. For all € > 0, let E? € D, be a coordinate rectangle with sides
S9 P ,Sff’s. Assume also that

i dy(F2, Fo) = 0
for some fized coordinate rectangle Ey. Let v > 0 be fized and let E.(t) = E. ,(t)
be the piecewise-constant motion with initial datum E° defined as in (4.12). Then,
up to a subsequence, E.(t) converges as € — 0 to E(t), where E(t) is a coordinate
rectangle with sides S;(t),i = 1,...,4 and such that E(0) = Ey. Each S; moves
inward with velocity v;(t) satisfying

uilf) € l}yf (2w) ' (& 7t)ﬂ (5:20)

where f is given by Definition 5.18, L;(t) :== H'(S;(t)) denotes the length of the side
Si(t), until the extinction time when L;(t) =0, and f(Y)~, f(Y)T are the lower and
upper limits of the effective-velocity function at'Y € (0,4+00).

Proof. We will apply the results of the previous sections with 7 = ~ye. Let Sc;(t) be
the sides of F.(t), and let Lﬁs = HY(S:i(kT)); ie. Lfs is the length of the i-th side

of E¥ in the notation of the previous sections. If ASQZ = dy(S:i(vek), Se,i(ve(k+1))
denotes the distance from corresponding sides of E¥, then note that

Li'c,;rl - Li’ie = (Askz 1+ AS& H—l)
(where the indices ¢ rotate cyclically). By (5.6) we have

ASk
— < 7—#-62

T ’LE

This implies that if we define L; .(t) as the affine interpolation in [kT, (k + 1)7] of
the values L,’fa, then L; - (t) is a decreasing continuous function of ¢ and the sequence
is uniformly Lipschitz continuous on all intervals [0, 7] such that L; .(T") > ¢ > 0.
Hence, it converges (up to a subsequence), as € — 0, to a function L;(t), which is
also decreasing. It follows that E.(t) converges as ¢ — 0, up to a subsequence and
in the Hausdorff sense, to a limit rectangle E(t), for all ¢ > 0.

It remains to justify formula (5.20) for the velocity v; of the side S;(t). Let

[t~,t*] and L;" be such that v/L; € (0, +00) \ Sy, and
L7 < Li(t) < L} for t- <t <th.

Then the corresponding L; - (t) satisfy the same inequalities for € small enough. By
Remarks 5.3.11 and 5.3.9 we then have

i,f(;r) vi(t) < f( )fort <t<tt

By optimizing in L*, and recalling that f is not decreasing, we obtain (5.20). [
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Theorem 5.3.13 (unique limit motions). Let E., E be as in the statement of
Theorem 5.3.12. Assume in addition that the lengths LY, LY of the sides of the initial
set Eqy satisfy one of the following conditions (we assume that L) < L9):

dary
Ng +2

(a) LY,LY > (total pinning);

4 4
(b) LY < I 02/2 and LY < i 032 (vanishing in finite time);
g g

then E-(t) converges locally in time to E(t) as ¢ — 0, where E(t) is the unique
rectangle with sides of lengths L1(t) and La(t) which solve the following system of
ordinary differential equations

(5.21)

L0 == (7)

or almost every t, with tnitial conditions Ly = and Lo = Ls, where [ 1is
for al y t, with initial conditions L1(0) = LY and Lo(0) = LY, where f i
given by Definition 5.18.

Proof. In case (a) the statement follows by Theorem 5.3.12 noticing that we have
v1(t) = vo(t) = 0 for all t > 0, which is equivalent to Ly = Ly = 0.

In case (b) the lengths of L; are strictly decreasing until the extinction time.
This implies that the set of ¢ such that f(v/L;(t))™ # f(v/Li(t))" is negligible, and
(5.21) follows since Li = —2v;41. O

Remark 5.3.14 (general evolutions). More general initial data can be consid-
ered. Since their treatment follow from Theorem 5.3.12 as in Braides, Gelli and
Novaga [14], we do not include the details. We only recall that:

e all velocities v; satisfying (5.20) can be obtained, with a proper choice of the
initial data EY;

e if we take initial data Ej coordinate polyrectangles (see Section 4.5) then the
motion can be characterized with the same velocities, with the convention that
convex sides move inwards, concave sides move outwards, other sides remain pinned
(according to Definition 4.5.1 and subsequent remark);

e more general initial data Ey can be dealt with once we remark that, at level
g, the assumption that EY is a polyrectangle is always satisfied.

5.4 Computation of the velocity function

The velocity function in Definition 5.18 may be not easily described for generic N,
and Ng. In this section we compute it, by means of algebraic formulas, in the simpler
cases Ng = 1 and Ng = 2, with varying N,. These are prototypes for the cases Ng
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odd and Njg even, respectively. We also give two easy examples for N, fixed and
equal to 1, and we compare the new velocity function with the homogeneous case
showing that the inhomogeneities in the lattice may accelerate or decelerate the
motion. We can assume, without loss of generality, that v = 1.

5.4.1 The case Ng = 1.

Let Y >Y = %. We assume also that Y is not in the singular set; i.e.,

kE+j(Ny+1)
2

N, 27+ 1)(Ny+1) .
,k:l,...,Na—l,jZO}U{ (24 DN+ ),yzo}.

Y

# { 4o

As shown by Proposition 5.3.7, the minimal period is independent of the starting
point of the orbits, so there is no restriction to assume that z° = 0 in (5.13)-(5.14).
We divide the analysis in three cases (a), (b) and (c) below.

(@) IFY e (k+j(Na+1),k+1+j(Na+1)
2a 2c

we denote the minimizer of problem (5.14) in the homogeneous case Ng = 0 by

N =k + j(N4 + 1). The velocity function f(Y') will be characterized by algebraic

relations between N and N,. We have two sub-cases:

k=1,2... Ny,—1,7 > 0, then

(a1) N and N, + 1 are coprime. In this case, by iterating the scheme (5.13),
after at most IV, steps the side encounters a defect, that is

[MN]N.+1 = [Na]Na+1

for some 1 <n < N,. In this case, we denote by 7 > 0 the minimal solution of the
congruence equation

nN =N, mod (Ny+1),n>1, (5.22)
and k > 0 is given by
P nN — N,
- N, +1°
E+7J(No+1) 2k+2j(No+1)+1

IfY € ( , ), then the location of the side at step
2c 4o

nis at Ny — 1+ k(N, + 1) (which is equal to —2 modulo N, + 1).

This computation shows that we can limit our analysis to periodic orbits modulo
N, + 1 with initial datum equal to —2 (or, equivalently, N, — 1). The period of such
orbits is obtained as follows. We solve the congruence equation

nN =1 mod N, + 1, (5.23)

for n > 1 and denote by nymin the minimal positive solution of equation (5.23); that
is, the minimal positive integer in the class

N(,D(Nopkl)fl )
mod Ngo + 1
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The function ¢(n) is the Euler’s totient function and it counts the integers m such
that 1 < m < n and m has no common divisors with n. If we define

[ NminN — 1
min — Na + 1 )
then we have that

. kmin(Na + 1) . kmin(Na =+ 1)
ﬂm_hmwwﬂwﬁ_<mmm+n+meq
[2aY ]

(5.24)

1
—[——— ) 1207
1 + krrlill(Na+1)

Note that f(Y) < [2aY |, so that the velocity of the side reduces (deceleration) with
respect to the homogeneous case.

2k +2j(Na+1)+1 kE+1+7(Na+1)

4oy ’ 20
location of the side at step n is N, + 1 4 k(N, 4 1), which is equal to 0 modulo
N, + 1. We have that

[ (E+1D(Na+1) v ) )
ﬂYW‘(@+¢XNy+U_1>D YJ—(I_“+MkﬁD)L2Y] (5.25)

Suppose now that Y € ( >, then the

Note that f(Y) > [2aY |, so the velocity of the side increases (acceleration) with
respect to the homogeneous case.

(a2) N and N, + 1 are not coprime. In this case the side does not meet any
B-bond and the velocity function has the same value as in the homogeneous case, i.e.

f(Y) = 207 ).
No+j§(Na+1) Noy+ (25 +1)(No+1)
2c¢ ’ 4o

Yot (i D0 +D LHGHIOR D) o,
4o ’ 2a ’

f(Y) :Na+1+j(Na+1)'

b IfY e ( ), then we argue as in (a1).

(@HYG(

Note that f(Y) > [2aY] if Y € A@4‘@jZiﬂﬁh+ﬂ)ﬁj+1§2@4_n>’Wmm
f@UZL%ﬂﬂﬁW’e<U+1§§@+U71+U+;§Na+n>'

Example 5.4.1 (the case N, = Ng = 1). In this case the velocity function is

given by
3
0 if Y<—
' S I

2k if Ye(4k_1 4k+3), k> 1;

4o ' 4o
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Figure 5.16. Difference between inhomogeneous-homogeneous velocity function (= 1).

- FY) =2 {aY + U .

We compare it with the homogeneous case in Fig. 5.16; here it is pictured the

difference between f(Y) and f(Y) = [2aY |, with a = 1.

5.4.2 The case Ng =2

- 1
We now study the case Ng = 2. Let Y > Y = — and we assume also that Y is not
@

in the singular set, i.e.,

k+j(No+2)
2

No+1+j(No+2) .
,k_l,...,Na—l,jZO}U{ 1+ +),320}.

Y¢{ 2

IfY €
(a) 2a ’ 2
N =k + j(N4 4+ 2) and we have two sub-cases:

(a1) N and N, + 2 are coprime. We compute k& = min(ky,ks) > 0, where ki
is the minimal positive solution of the congruence equation

kN =N, mod N, + 2,
and ko is the minimal positive solution of the congruence equation

kN = N,+1 mod N, + 2;

Na+2)—1] and

that is k1 is the minimal positive integer in the class {NQN o
mod Ng + 2
ks is the minimal positive integer in the class [(Na + 1)N“"(Na+2)_1} :
mod Ng + 2

If k = kq, then

FY) = (W) 207 ] = (H;ﬂll) 27, (5.26)

(Na+2)
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and f(Y) < [2aY].

If k = ko, then

FY) = (M) 120V = (1_kll) 2aY ], (5.27)

Q(Na+2)

and f(Y) > [2aY].

(a2) N and N, + 2 are not coprime. In this case
fY) = [2aY]
as in the homogeneous case.
No+14+jNa+2) G+D{Na+2)+1
20 ’ 20

FY) = (j+1)(No +2).

(b) 1er< )JZO,then

Ny +1 Ny +2 1
Note that, in this case, ifYG( * +2i( + ),('7+ )2( )> then f(Y) >
| + 1)(Ng + 2 i+ 1)(No + 2)
L2aYJ,whileifY€<(]+ )2( +2) U+ DMVt )thnf = |2aY].
(6%
No — 1+ j(Noa+2) Na-l-l—I—](Na—i-Q)

(c)IfY€<

as in the case (a).

) ) ,J = 0, then we could reason
2 20

77

1,, —— — — —

|
|
Nl

Figure 5.17. Difference between inhomogeneous-homogeneous velocity function (a = 1).

Example 5.4.2 (the case N, = 1, Ng = 2). The velocity function is given by

0 if V<2
_ (0%
fY)= B} .
3k if YE(B —13 +2), >l
2a 2

ie.,

= 1
F(v)=3 { oY + 3J
The comparison with the homogeneous case is pictured in Fig. 5.17.
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Chapter 6

Motion of discrete interfaces in
‘low-contrast’ periodic media

In this chapter, we present the results contained in the paper by myself [45] about
motion in “low-contrast” periodic media, that is described by « connections with
periodic inclusions 8 such that 5 —a — 0 as ¢ — 0.

6.1 Motivation and results

Here we give another example of the fact that the microstructure can affect the limit
evolution without changing the I'-limit, along the lines of Chapter 5. To this end, we
perform a multi-scale analysis by introducing a contrast parameter . and considering
a low-contrast medium, that is a periodic mixture of two homogeneous materials
whose propagating properties are close to each other (see e.g. [40]). One of them can
be considered as a fixed background medium (described by a-connections) and the
other as a small (vanishing) perturbation from that one, that is with g = . = §(¢)
and B —a = 6. — 0 as ¢ — 0. With the same notation as in Chapter 5, we
restrict ourselves to the case N, = Ng = 1; despite of its simplicity, the choice
of this particular geometry will suffice to show new features of the motion. The
main result is the existence of a threshold value of the contrast parameter below
which we have a new homogenized effective velocity, which takes into account the
propagation velocities in both the connections « and (; above this threshold, instead,
it is independent of the value of 5 and the motion is obtained by considering only
the a-connections. The dependence of the effective properties on microstructure
in low-contrast periodic media has been recently investigated for various physical
problems (see e.g. [24]).

First of all, we determine the correct scaling for d. to have that a straight interface
may stay on [-connections. To this end, we consider a coordinate a-type rectangle
(Definition 5.3.3), we write the variation of the energy .7-"3;55 (given by (5.5) with
B = [.) associated to the displacement by e of the upper horizontal side of length L
(see Fig. 6.1) and we impose it to be zero. We have that

L L
—2ae + (B — )L + = 9ae +0.L + Lo 0,
Y Y
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r--+f---pb——+------ - _———

1 I ! I ! ! I
1 | ! I ! ! I
1 I I I I I I
1 I ! I ! ! I
1 | ! I ! ! I
1 I I J I I J

Figure 6.1. Displacement of a side from a-connections to S-connections.

where ¢ = ¢(L) is a constant depending on L (see (5.6)), from which we deduce that
2
e = <La—c>a:O(s) as € — 0.

This heuristic computation suggests that the correct scaling is
Be — = 0d. = ¢

for some constant § > 0.

As in Section 5.3, we will assume that 7 = e and we will restrict the description
of the motion to the case of initial data coordinate rectangles. The evolution of a
coordinate rectangle by minimization of the energy is again a coordinate rectangle.
We will show that there exists a threshold & = » such that if § < 5 (subcritical
regime) then the evolution is a rectangle that may have some [-type side (that
is, a side intersecting only S-connections), while if § > 5 (supercritical regime)
the [-connections are avoided as in the case 8 > a. Note that this result gives
information also for more general choices of the vanishing rate of d.: if J. << ¢,
we reduce to the subcritical case, while if 6. >>¢, we are in the supercritical case.
The limit motion can still be described through a system of degenerate ordinary
differential equations as in (5.21) with a new effective velocity function f depending
on . We also have a new effective pinning threshold given by

f ma { 20[7 40( }
= X — .
0 oy+1'3

Overview of the chapter. In Section 6.2 we define the new energies that we will
consider. Section 6.3 contains the description of the convergence of the discrete
scheme in the case of a rectangular initial set. We show that the minimizers of
this scheme are rectangles also in the low-contrast framework. Section 6.3.1 deals
with the definition of the effective velocity of a side by means of a homogenization
formula, as in Section 5.3.2. This velocity can be expressed uniquely (up possibly to
a discrete set of values) as a function of the ratio of v and the side length, and of ¢
(Definition 6.3.6). Section 6.3.2 contains the computation of the effective pinning
threshold, showing that it is affected by microstructure because it also depends on
the parameter ¢ (for § ‘small’). In Section 6.3.3 we compute explicitly the velocity
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function, showing a comparison with the homogeneous case a = 3 (Chapter 4) and
the high-contrast case 5 > « (Chapter 5). The description of the homogenized limit
motion is contained in Section 6.3.4. Section 6.4 deals with the case of non-uniform
inclusions distributed into periodic uniform layers.

6.2 Inhomogeneous ‘low-contrast’ ferromagnetic ener-
gies

The energies we consider are interfacial energies defined in an inhomogeneous low-

contrast environment as follows. Let «,0 > 0 and we fix ¢ > 0. We consider

2e-periodic coeflicients ¢f; indexed on nearest-neighbors of eZ? (i.e., i,j € eZ* with
li — j| =€) defined for 7, j such that

i1+ 71 2+ Jo

0< <2
=T T2 c
by
) i1+ 71 i2+ jo
= 1) fo< =<
ij _ fe = a+ de, DI 5 ' 9 >¢€ (6.1)
« otherwise.

These coefficients label the bonds between points in €Z?, so that they describe a
matrix of a-bonds with 2e-periodic inclusions of S-bonds grouped in squares of side
length €. The periodicity cell is pictured in Fig. 6.2. As before, the continuous lines
represent -bonds while the dashed lines the « ones.

= e e = = = =g

De «
Figure 6.2. The periodicity cell.

Correspondingly, to coefficients (6.1) we associate the energy defined on subsets
T of eZ? by

Pe(T) =Y {ecf;: li—jl =i €T,j € ZNT}, (6.2)

with the same notation as in Section 5.2. We perform the same identification on
unions of e-squares (i.e., the class D, defined in Section 4.2) and we remark that
energies P?’ﬂg I'-converge, as € — 0, to the anisotropic cristalline perimeter functional
P< (4.10). This can be shown with an analogous computation as in Remark 5.2.1.
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6.3 Motion of a rectangle

We apply the same discrete-in-time minimization scheme as in Section 4.3 to energies
F2Pe defined as in (5.5) with P25 in place of P*? with 7 = ve and E? € D, a
coordinate rectangle.

The result is that coordinate rectangles evolve into coordinate rectangles. This

will be more precise in the following. In fact, we will show that if § < % then the

evolution is a rectangle that may have some [-type side, while if 6 > % it has only
a-type sides.

Proposition 6.3.1. If E € D, is a coordinate rectangle and F is a minimizer for
the minimum problem for fg’ff(-, Ef), k >0, then for allm > 0 F is a coordinate
rectangle as long as the sides of E¥ are larger than n and € is small enough.

Proof. Tt will suffice to show it for F = E!. We subdivide the proof into steps.

Step 1: connectedness of F' and a-rectangularization. Some steps of the
proof easily follow from Proposition 5.3.5. In particular, the fact that F is a connected
set and that it is energetically convenient to replace F' by its a-rectangularization, i.e.
F' = FUR%, R* being the maximal a-type rectangle with each side intersecting F'.
This set is either an a-type rectangle (and in this case we conclude) or it has some
protrusions intersecting S-bonds. Moreover, we have that dy(0EL, 0E?) < ¢(L)e,
where ¢(L) is a constant depending on the length L of the smaller side of E? (as
remarked in (5.6)).

Step 2: optimal profiles of protrusions on S-squares. Now we describe
the form of the optimal profiles of the boundary of F' intersecting S-squares. As
noted in the proof of Proposition 5.3.5, F' contains an a-type rectangle R® =
[emy, eMi] X [ema,eMs] and is contained in the a-type rectangle

R = [e(my — 1),e(M;y + 1)] x [e(mg — 1), e(My + 1)],

whose sides exceed the ones of R* by at most 2. We will analyze separately the
possible profiles of F' close to each side of R%; e.g., in the rectangle [e(m1 —1),e(M; +
1)] x [eMa,e(M2+1)] (i.e., close to the upper horizontal side of R*). We first consider

Figure 6.3. Removal of an e-square for § ‘large’.

the possible behavior of the boundary of F' at a single S-square @, assuming that Q
is not one of the two extremal squares. We claim that either FNQ =0 or 0F N Q
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is a horizontal segment. In fact, if a portion I' of OF intersects two adjacent sides of
Q@ as in Fig. 6.3, then we may remove the e-square whose center is in Q N F.
In this case, the variation of energy is

1 1
—2(B. —a)e + ;c(L)52 = (—25 + 7c(L)) 2, (6.3)

which is negative, for € small, if and only if § > ¢(L)/27.

Figure 6.4. Addition of an e-square for ¢ ‘small’.

If we add an e-square as in Fig. 6.4, instead, the variation of the energy is simply
— —c(L)e?, (6.4)

which is negative. We note that the variation in (6.3) is less than the one in (6.4) if
and only if 0 > ¢(L)/~.

The same analysis applies to the extremal squares, for which we deduce that

F N Q, if non-empty, is a rectangle with one vertex coinciding with a vertex of R®.

We now consider the interaction of consecutive p-squares. Let Q1,...,Qx a

Figure 6.5. Interaction of consecutive -squares.

maximal array of consecutive 3-squares with FN Qg # 0 for k =1,..., K and such
that @ is not a corner square. If the subsequent S-squares Qx+1,..., QKx+x’ are a
maximal array which do not intersect F', and Qg g/+1,. .., QKx+K/+ K~ are another

maximal array with F N Qy # () for k = K + K’,...,K + K’ + 1 and such that
QK+ K+ K is not a corner square (see Fig. 6.5), then we may replace F' by FUR
(see Fig. 6.6), where R is the rectangle given by the union of the e-squares centered
at the vertices of the S-squares Qr11,...,Qrx+K’-
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___________________________________________________________________________________________

—h--
=y
R

Figure 6.6. The new profile after replacing F' by F' U R.

This operation leaves unchanged the P2% and reduces the symmetric difference.
We can repeat this procedure for any tern of such arrays. At this point, if we replace
F by FU[emy,eMy] x [eMa, e(My+1)], this strictly reduces P%% and the symmetric
difference (see Fig. 6.7).

_________________________

Figure 6.7. The new profile after replacing F' by F' U [emq,eM;] X [eMa, e(Ms + 1)].

Note that, if the intersection of F' and the left (resp., right) corner square is not
empty, then we can consider as a competitor F'U [e(m; —1),eM;] X [eMa,e(Ma +1)]
(resp., FU[emy,e(My +1)] x [eMa,e(My+1)]); if F' has non empty intersection with
both the corner squares, then we consider FU[e(m1—1),e(M;+1)] x [eMa, e(My+1)].
If there exists only one maximal array 1, ...,Qx and the intersection of F' and

___________________________________________________________________________________________

Figure 6.8. The case of a single maximal array of intersecting S-squares.

both the corner squares is empty (see Fig. 6.8), then we may remove all the e-squares
centered at vertices of Q1,...,Qx and the variation of energy is

1 1
— 20 4 2K (3. — a)e + =2¢(L)Ke? = —20e — 2K0e* + ~2¢(L)Ke?, (6.5)
Y Y

which is negative for e < m if 0 <c(L)/v, any € if 6 > ¢(L) /7.

Another possibility is that F has a (§-type side, that is the portion of OF
intersecting the f-squares is a horizontal segment, as in Fig. 6.10.

Step 3: conclusion. We can repeat this procedure for each side, and finally,
by a-rectangularization, we obtain that either F' is an a-type rectangle or it has
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___________________________________________________________________________________________

_________________________

Figure 6.10. F has a f-side.

some fB-type side. In both cases, F' is a coordinate rectangle. We note that all the
estimates above can be iterated at each step and hold uniformly as long as the sides
of EF are larger than n (just to avoid that the length of any side vanishes), since
they depend only on ¢(n). O

6.3.1 A velocity function depending on ¢

As remarked in Section 5.3.2, up to an error vanishing as ¢ — 0, the motion of
each side is independent of the other ones. As a consequence, its description can be
reduced to a one-dimensional problem.

Let xj, represents the projection on the horizontal axis of the left-hand vertical
side of B = Ef , whose length is Lj. For all Y > 0 consider the minimum problems

min {g(N) : N € N} (6.6)
where
Coan 4 YV AD N even
leY 5y , even,
g(N) = (6.7)
dy N(N+1)
—20éN + ? + T, N Odd

Then, also in this case, the set of Y > 0 for which (6.6) does not have a unique
solution is discrete. To check this it suffices to remark that the function to minimize
is represented (up to multiplying by 2Y’) by two parabolas

—4oY X+ X(X+1) and —4aYX+X(X+1)+ 25y
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with minimum at

1
X =2aY — -
at 7y

The minimizers in (6.6) are not unique in the case that

gIN=1)=g(N) or g(N)=g(N+1), (6.8)
that is for Y = N+ oy orY = N%_&Y if N is odd, while for ¥ = N2_ i or
a a
Y = w if IV is even.
2c
Definition 6.3.2 (singular set). We define the singular set Ss for problems (6.6)
as
1
Ss = % [(2Z + 14 6v) U (2Z — o7)]. (6.9)

Remark 6.3.3. Note that, contrary to the high-contrast case 8 > «, the singular
set now depends on the particular value of 8 through ¢.

The main result is the following.

Proposition 6.3.4. Let Y € (0,400)\Ss be fized and N be the solution of the
corresponding minimum problem (6.6). Then there exists a threshold value of the

contrast parameter
~ 1

0:=—
2y
such that if § > § then N is even, while if o < § then N is any integer.

(6.10)

Proof. Let N be odd. N is the solution in (6.6), so that it satisfies

—_

~ 1 1 -
N_i 2 - - -
2< aY 2<N—i— s

[\

g(N) < g(N - 1) (6.11)

g(N) < g(N +1)

that is,

N N +1
— <Y < —
2 200

N + 6~

Y >
2

N+1-9§
Sl

Y
2a
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We note that it is

N+dy N+1-—6y
< )
2 2

so that the system (6.11) has solutions, if and only if § < 4.
O

We will examine the iterated minimizing scheme for /Ly = v/L € (0,400)\Ss
fixed, which reads
{xéﬂzxﬁ—i—N, k>0 (6.12)
L _ .0 .
Ty =z
with 2° € {0,1} and N € N the minimizer of

1N
a2 LNV D)
¥ 2

min (6.13)
1 N(N +1)

—2alN + 0L + —
ol 2

L, N even,

L, N odd,

which is unique up to the requirement that v/L & S;.

Remark 6.3.5. As a trivial remark, after at most two steps {:n,%}kzo is periodic
modulo 2, that is, there exist integers k, M < 2 and n > 1 such that

Th oy = TE +2n for all k > k. (6.14)

For this, we note that {x£ }e>0 is an arithmetic sequence and the conclusion depends
whether N is odd or even. Moreover, the quotient n/M depends only on /L and
0. In particular, if 6 > 1/27 then k = M = 1. By Proposition 6.3.4, this is a
straightforward consequence of Proposition 5.3.7 with N, = Ng = 1.

Definition 6.3.6 (effective velocity function). We define the effective velocity
function f5:(0,400) \ Ss — [0, +00) by setting

2n

fs(Y) =1 (6.15)

with M and n in (6.14) defined by L and v such that Y = +/L. By Remark 6.3.5,
this is a good definition.

We recall some properties of the velocity function (for the proof we refer to
Remark 5.3.10).

Remark 6.3.7 (properties of the velocity function f5). The velocity function
fs has the following properties:

(a) fs is constant on each interval contained in its domain;
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(b) f5(Y)=0if

— 3 9 1
Y<Y5::min{, vt },
da’ 2«

where Y5 = v/Ls and Ls is the pinning threshold (see Section 6.3.2); in
particular . .
'yli%l* §f‘5 <L> =0
(c) f5(Y) is an integer value;
(d) fs is non decreasing;

(e) we have
. 1 7\ 2«
WEI-&I-IOO ;fé (L) N L’
6.3.2 The effective pinning threshold

Ifo<o< 5~, to compute the pinning threshold we have to impose that it is not
energetically favorable to move inward a side by . We then write the variation of
the energy functional fg;ﬂf from configuration A to configuration B in Fig. 6.11,
regarding a side of length L.

Ity

Figure 6.11. If § < g, the motion is possible if the side can move at least by .

If we impose it to be positive, we have
1. 5 1
—20e+ LB —a)+ —Le* =¢|2a+L(d+—|| >0
T Y
and we obtain the pinning threshold

~ 20y
Ls:= .
o oy +1

(6.16)

Note that if § =0 (i.e., B = a), then we recover the threshold
EO = 2.

If § > g, instead, by the condition that Ej; be an a-type rectangle, we have
to impose that it is not energetically favorable to move inward a side by 2e (see
Fig. 6.12). As shown in Section 5.3.1, in this way we obtain the pinning threshold
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Figure 6.12. If § > § the motion is possible if the side can move at least by 2¢.

~ 4
Ly = 397

Hence, the effective pinning threshold (see Fig. 6.13) is given by

_ 20y 4
Ls = oy b 6.17
s = max {720 S0 (617)
Ls
2ary 4
4
Zoy F\
3TN
! 5
1
2y

Figure 6.13. Effective pinning threshold (represented by the continuous line).

6.3.3 Computation of the velocity function

In this section we compute explicitly the velocity function assuming, without loss of
generality, that v = 1. We restrict ourselves to the case § < 1/2, because if § > 1/2
the velocity function is given by (see Section 5.4.1)

f@ﬁ:2pY+i] (6.18)

We denote by N the minimum of the problem (6.13) and subdivide the computation
into different cases:
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2k+1496 2k+2-9
200 20

N =2k+1and 2,41 = 2,+N is odd. The next point is 2,42 = T, 41+ N = 2, +2N,

which is even, so that the sequence {x,,} oscillates between even and odd numbers

(that is, the side is alternatively a-type and f.-type). In this case,

(a) x, is even and Y € ( ) for some k > 0; in this case

— 2N
foY) = T = S — 2k 41 = [2aY;

2k+1+6 2k+2—-6
o 27 2a
Tptl = Tp + N is even and x40 = z, + 2N, is 0odd, so that as before

(b) x, is odd and Y € ( ) for some k > 0; in this case

f5(Y) =2k +1=[2aY;

2k —6 2k+1+46

200 2c
and 2,41 = z, + N is even. Therefore the sequence {zm} consists of only even
numbers (that is, at each step the side is a-type) and in this case the velocity
function is given by

(c) zp is even and Y € ( ) for some k > 0; in this case N = 2k

f5(Y) =211 — 1 = N = 2k;

2k—9 2k+149
2 20

xn + N is also odd. Therefore the sequence {x,,} consists of only odd numbers (that

is, at each step the side is f-type) and in this case the velocity function is given

again by

(d) z,, is odd and Y € < ) for some k > 0; in this case x,11 =

fg(Y) =Tp+1 — Tp = N = 2k.

Note that, collecting all the cases, we can write the velocity function as

0+1

0 ifY <
! 200’

k>0 (6.19)

2% —6 2%k+1+0
F5(Y) = { 2k ier( i )

200’ 2a

k11 ifY e (2]{—1—1—1—(5 2k+2—5>.

2a ’ 2a

It can be rewritten equivalently as
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)

(5o
120 | ler(% %“)
ve(

[22Y | +1 ifY €

[\

o’ 2«

[2aY ] —1

2k +1 2k+1+5>
2c¢ ’

[2aY |

Y e (2k+1+5’2k—|—2—5)'
200 200

Therefore we notice accelerating and decelerating effects (due to the microstructure
through 0) with respect to the velocity function f obtained in the homogeneous case,
that is

1
0 ify < —
! <2a

k k+1
2aY ifY — — ).k >1.
[20¥] i e(204’ 20z>7 =

fY) =

Moreover, we recover f computing fs for 6 = 0. If we choose § = 1/2, we recover
the velocity function f (6.18) which corresponds to the high-contrast case.

We conclude this section by writing the general formula of the velocity function
fs, valid for any § and ~:

Csy+1

0 ifY <
! 200’

2k — Cyy 2k +1
£5(Y) = 4 2k ifYG( Coy 25+ +C‘5”),

200 2a

k> 0.

2k + 1 2k +2 —
2%k + 1 ifye< 1t Coy 2t CM),
2a 2a

where Cs, = min{dvy, 1/2}.

6.3.4 Description of the homogenized limit motion
The following characterization of any limit motion holds (see Theorem 5.3.12).

Theorem 6.3.8. For all € > 0, let EX € D. be a coordinate rectangle with sides
SYor..., S8, Assume also that

lim dy(E2, Eg) =0

e—0t
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for some fized coordinate rectangle Ey. Let v > 0 be fized and let E.(t) = E. ,(t)
be the piecewise-constant motion with initial datum E° defined as in (4.12). Then,
up to a subsequence, E.(t) converges as € — 0 to E(t), where E(t) is a coordinate
rectangle with sides S;(t) and such that E(0) = Ey. Each S; moves inward with
velocity vi(t) satisfying

ne lif‘s (zm) 5% <L7<t))+] | (020

where fs is given by Definition 6.3.6, Li(t) :== H(S;(t)) denotes the length of the
side S;(t), until the extinction time when L;(t) = 0, and fs(Y)~, fs(Y)" are the
lower and upper limits of the effective-velocity function at'Y € (0, +00).

In case of a unique evolution, the limit motion is described as follows (see
Theorem 5.3.13).

Theorem 6.3.9 (unique limit motions). Let E., E be as in the statement of
Theorem 6.3.8. Assume in addition that the lengths LY, LY of the sides of the initial
set Ey satisfy one of the following conditions (we assume that LY < LY):

(a) LY, LY > Ls, Ls given by (6.17) (total pinning);

(b) LY < Ls and LY < Ls (vanishing in finite time);
then E-(t) converges locally in time to E(t) as ¢ — 0, where E(t) is the unique

rectangle with sides of lengths L1(t) and La(t) which solve the following system of
ordinary differential equations

Lai(t) = —if‘S <L27(t)> (6.21)
Lo(t) = —,2yf5 (L?(t))

6.4 The periodic case with K contrast parameters

In this section we study the same problem as before in a more general situation.
We consider a medium with inclusions distributed into periodic uniform layers as
follows.

Let € > 0 be fixed and 61,02,...,0x, K € N be positive. We consider 2Ke-
periodic coeflicients ¢f; indexed on nearest-neighbors of €Z? defined for i,j such
that

i1+ J1 i2+ Jo
2 7 2

0< < 2Ke
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2Ke

Figure 6.14. The periodicity cell for K = 2.

. . . 1
a—+ o€, ifm,wz <27‘—)6,T:1,...,K

2 2 2
= (6.22)

a, otherwise.

In Fig. 6.14 the periodicity cell is pictured in the case K = 2. Here the red lines
represent the bonds with parameter 61, the blue ones the bonds with parameter do
and the dashed lines the a-bonds.

Correspondingly, to these coefficients we associate the energy P?’ﬂf (Z) defined
on subsets Z of ¢Z? as in (6.2). We consider the same discrete-in-time minimization
scheme for the energy fg’ff with 7 = e as in Section 4.3 and we restrict our analysis
to rectangular evolutions as in Section 6.3. We will see that the minimization problem
and the velocity function depend on the choice of §,.,7 = 1,..., K, in particular on
their relative position with respect to 0 defined by equation (6.10).

We will treat only the cases

6 <4, forsomere{l,... K} (6.23)

and

0<4, <6, Vr=1,...,K, (6.24)

because if & < 6, for all r then we are in the high-contrast case already described in
Chapter 5.

6.4.1 The pinning threshold

For the computation of the pinning threshold we refer to Section 6.3.2.
If assumption (6.23) holds, then after a finite number of steps the side is pinned
if it cannot move inward by 2. In this case, the pinning threshold is given by
- 4

Lz = 397
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If (6.24) holds, instead, after a finite number of steps the side is pinned if it
cannot move inward by €. In particular, the pinning threshold now depends on

0F = 1glgnK{6r} and it is given by

~ 2
Ly = —1
o7y +1

Hence, collecting the two cases we obtain the pinning threshold
Lsy..5 = max{Ls,, Lz}. (6.25)

6.4.2 The effective velocity function

We use the same notation as in Section 6.3.1. For all Y > 0 we consider the minimum

problems
min {g(N) : N € N} (6.26)
where
N(N +1
—2aN + (2}/), [N]QK = [27“ — 2]2[(,
g(N) = (6.27)
O N(N +1
—2aN + Y’Y—F%, [N]QK:[2T—1]2K,T:1,...,K.

Then the set of Y > 0 for which (6.26) does not have a unique solution is discrete.
For this we remark that the function to minimize is represented by K + 1 parabolas

—4aYX+X(X+1) and —4aYX+X(X+1)+20y r=1,...,K

with minimum at 1
X =2aY — —.
2

As a consequence of (6.9) we have that the minimizers in (6.26) are not unique in
the case that Y € S5.,r =1,..., K where

1
S5, = 5 [(22r = DKZ+ C5,) U ((2(2r = DKZ+1 - Cj,)] (6.28)
and Cs,, = min{d,v,1/2},r=1,... K.

Definition 6.4.1. We define the singular set S5, s, for problems (6.26) as

K
o1, = | Ss. (6.29)
r=1

where Ss, is defined by (6.28).

We now examine the iterated minimizing scheme for v/L € (0,400)\Ss,... s,
fixed, which reads
{x£+1:x£+N, k>0 (6.30)
L_ .0 :
Ty =T
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with 20 € {0,1,2,...,2K — 1} and N € N the minimizer of

I1N(N+1
—2aN + V(Q)L’ [N]og = [2r — 2]ak,
min (6.31)
I1N(N+1
—204N+5TL+ (2HL, [N]QK = [27’ - 1]2[{,7’ = 1,...,K,
Y

which is unique up to the requirement that v/L & Ss, . s5,. With an analogous
argument as in Remark 6.3.5 we can prove that, after at most 2K steps, {xﬁ}kzg is
periodic modulo 2K. Hence, we can define the effective velocity function f = f5, 5.
as in Definition 6.3.6.

6.4.3 Computation of the velocity function

In this section we give the expression of the velocity function without proof, because
it follows by analogous computations as in Section 6.3.3.
For any v, d1,...,0k, the velocity function f = f5, s, is given by

0, if Y </Lsy, o1

9Kk, Y e <2Kk‘—05K—y’2Kk‘+1+ng>’

2 20

90Kk + 1 0Kk +2 —
OKE +1, ifYE( i +C‘5”, + 0‘5”),

2c0 20
f51,~~,51< (Y) =

20Kk +2 — 2Kk
9Kk + 2, ier( +2=Coy +3+C5”),

2c 2c

2Kk +2K — 14 Cs,y 2K(k+1) — Csp

2Kk +2K — 1, ifYE(
200 20

with k& > 0.
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Chapter 7

Nucleation and backward
motion of discrete interfaces

In this chapter we present the results contained in joint works with A. Braides [20, 21].
We consider a variation on the minimizing-movement scheme (4.5) motivated by some
time-scaling argument. We use a discrete approximation of the motion by crystalline
curvature to define an evolution of sets from a single point (nucleation) following a
criterion of “maximization” of the perimeter, formally giving a backward version of
the motion by crystalline curvature. This evolution depends on the approximation
chosen.

7.1 The crystalline case: motivation

We consider the problem of defining a motion for sets which “expand” by mazimizing
the perimeter subject to a penalization of their distance from the previous set.
Formally, this involves considering problems of the form

min{—P(E) + 1/EAET dist(x,0E}]_;) dm}, (7.1)

T
k—1

which can be seen as a “backward” version of the previous ones (as remarked in
Section 2.6) if the index k is considered as parameterizing negative time. Unfortu-
nately, this problem is ill-posed, giving the trivial infimum —oo at the first step (see
Remark 7.1.1). Following a suggestion by J.W. Cahn, we then consider a discrete
approximation of P in the crystalline case, and use it to define a backward crystalline-
curvature motion with prescribed extinction point (or, equivalently, nucleation of

the motion defined for positive times).
d
We consider A > 0 and initial data ES’E’)‘ =Q.=¢2¢Q =¢ {—%, %} (which,

in the discrete setting, all correspond to the singleton {0}), and define iteratively
E** € D, (D. as in (4.8)) as a minimizer of

. 1 1 T
mm{—ng(E) + 7 JEAETEN de (2, 8Ekfi>\) dx}, (72)
k—1

where P.(E) = H?1(OE) and d, is a discrete distance (see Section 7.3).
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Remark 7.1.1. Note that taking in (7.2) the crystalline perimeter (4.10) in place
of P. and d. = d, in dimension two would immediately give the value —oo in the
minimum problem; e.g., by considering sets of the form

E; ={(p,0) : p < 3¢ +sin(j0)},

which contain Eg’e’A, are contained in By.(0) and have a perimeter larger than 4je
(see Fig. 7.1).

Figure 7.1. The set E; for € =1 and j = 500.

Note also the new parameter A in (7.2), which does not change the nature of
the problems and whose introduction can be interpreted as a time-scaling of the
trajectories with A = 1 (see Section 2.5). We will study this problem for different
choices of d. and in dimension d = 2 (the case d > 2 is in progress).

Overview of the chapter. In Section 7.2 we give a first simple example, treating
the problem in the case of the ¢*°-distance d5 . We show that each evolution by
minimization of the energy is a even checkerboard structure containing the initial
set €. The proof relies heavily on the structure of the ¢°°-distance, for which all
sublevel sets are cubes. The limit motion is a family of expanding cubes with constant
velocity (see Theorem 7.2.1). In Section 7.3 we describe the necessary mathematical
setting to treat the problem for a general distance d,, induced by a norm ¢. This
will be done in Section 7.4 and we will assume, as a technical hypothesis, that the
minimal sets are checkerboard (this is not trivial as before, and it is a conjecture for
the moment). In this case, we might not have that the minimal sets correspond to
the same checkerboard structure (even or odd); in particular, we might have that
they oscillate between even or odd checkerboard. However, this may happen only for
a finite number of steps; eventually, they stabilize and correspond to the same parity
(Proposition 7.4.4). Section 7.5 contains some examples of nucleation; in particular,
in Section 7.5.2, we show an example where, for a sufficiently asymmetric distance,
the limit set is a linearly growing segment.

7.2 A simple example: the /*°-distance

The results of this section form the content of the joint work with A. Braides [21].
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We consider the case that d. be the oo-distance dZ_ already defined in Section 4.3,
adapted in any dimension d > 2, so that the integral term [ d5, (2, OF) dx in the
energy (7.2) for any E, F € D, is given by

1 1
d+1 < rpd ~ d+1 s opd T
Yo« doo(z,Z mgF)Jr Yoo« doo(z,Z \EF),
i€ZiNiE i€ZiNL(F\E)
doo(i,Z) = min{||i — 7'||o0 : i' € T}, T C Z.
We first determine the correct scaling for A and 7 in terms of ¢ in order to have

a non-trivial limit. To this end, we note that the minimal variation of the energy in
(7.2) from the set E,Zf’l)‘ corresponds to the addition of an e-square with no side in

common with E;_E’f‘ (see Fig. 7.2). The variation is

A

Y

Figure 7.2. Example of configuration giving the minimal variation of the energy (d = 2).

2d 1
Y G (7.3)
A T
with 0 # K € N. This quantity may be negative if and only if
2dr
1< —. 4
— Ae? (7.4)

The relative scaling of €, 7 and A must be such that this condition be satisfied. We
treat the case

T/e =7 € (0,4+00), e = a € (0,400), (7.5)
so that (7.4) corresponds to
L _
— < =, 7.6
2d T « (7.6)
We can now describe the behaviour of the minimizing-movement scheme in (7.2).

Theorem 7.2.1 (nucleation). Let 7,¢ and A satisfy condition (7.5); correspond-
ingly, let E7(t) = E@’;’:j, with E,?E’)‘ gien by (7.2) with initial data Eg’a’/\ = @,
and let
Mo N (7.7)
@
be satisfied. Then, for all fized t, the Kuratowsky limit of the family E™(t) as 7 — 0
is a cube of centre 0 and side length QL%Jt. In particular:
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[ % | |

7—787>‘ 7—757>\ ’7',&7)\

Figure 7.3. Some steps of the discrete evolution in dimension two.

(a) (pinning threshold) if (7.6) is not satisfied, then the motion is trivial:

E(t) = {0};

(b) (linear expansion) if (7.6) and (7.7) are satisfied, then the motion is given
by a family of expanding cubes whose sides move with constant velocity L%J

Remark 7.2.2 (singular cases). If 2?177 € N, then we obtain that the sets E are

contained in the cubes moving with velocity %, and contain the cubes moving with
velocity % —1, but need not be cubes themselves. This is due to the non-uniqueness

of the minimal sets in (7.2).

Proof. First note that if (7.6) is not satisfied, then every competing set F in the
definition of EIT’E’/\ gives a strictly larger value than the set ES’E’)‘; hence, each
discrete trajectory is trivial, and so is their limit.

Suppose now that (7.6) is satisfied. We then prove that E;’E’)‘ is a (even)
checkerboard structure containing £@Q); i.e., it is the union of cubes (i + Q) with

i € Z% and ||i||; = |i1| + - - - + |ig| even (for short, we say that i is even). Moreover,
{ieZ cic B} = {ZGZ even , |[i|oo < {—Jk} (7.8)
«
The statement above can be proved inductively by showing that

: d. _.: T,EA . d B Y 2dry
. s&s — — i < | — . .
{ieZ:eic 77} {ZEZ even,doo(z,gEk_l)_{aJ} (7.9)
To this end, it suffices to note that the contribution of the energy of a competitor
E corresponding to points ¢ with du (4, E,:f’l)‘) = j for 1 < j < 2dvy/a is minimal
when no two such points have a nearest-neighbour in FE, while if j > 2dvy/« it is
minimal if £ contains no such point. This shows that E,Z’E’)‘ \ E,z’af\ corresponds

to a checkerboard structure. Since the contribution of even and odd checkerboard

structure outside E,zf’f‘ is equal, and the even checkerboard structure allows to leave

E,:f’l’\ unchanged, we get the thesis. O
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7.3 Setting of the problem

Here we give the necessary preliminaries to formulate the problem for a generic
distance d,,, induced by a norm ¢, in dimension d = 2 (see e.g. Rockafellar [43] and
Schneider [44]).

We consider the partition of the standard lattice Z? into sub-lattices given by

7? =72072, (7.10)

where Z2 = {i € Z? :  |i1| + |ia] is even} and Z2 = {i € Z*:  |i1| + |i2| is odd}.

We give some definitions for lattice sets, i.e., finite subsets of Z2, which will be
useful in the sequel.

Definition 7.3.1 (convex hull). Given a lattice set T C 72, the convex hull of 7
is the smallest convex polygon P containing T. We write

P = conv(Z).
Definition 7.3.2. Let T C Z2. We say that
(a) Z is checkerboard convex if either (a1) T = conv(Z)NZ2 or (ag) T = conv(Z)N Z2;
(b) Z is origin symmetric if for any i € Z, also —i € L.

7T is admissible if it is nonempty, checkerboard convexr and origin symmetric.

Definition 7.3.3 (discrete Minkowski sum). Let Z,J C Z?. The Minkowski
sum of Z and J is defined as

I+J={i+j: ieT,je} (7.11)
where (i 4+ 7)1 =41+ j1, (i + j)2 = i2 + jo.
Note that, by Def. 7.3.3, it follows that Z+ {0} =Z and Z + @ = @.
Definition 7.3.4 (m-dilation). Let Z C Z? and m > 0. The set

mZ = {mi = (miy,miz) : €L} (7.12)

is called the m-dilation (or m-dilate) of Z.

Definition 7.3.5. If 7 is a non-empty lattice set and m > 1, we define by induction
from Def. 7.3.3 the set
I+T+--+I

m—times

Z[m)] : (7.13)

We now recall a property of commutability of Minkowski sum and the operation
of taking the convex hull.
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Proposition 7.3.6. IfZ,J C 72, then

conv(Z + J) = conv(Z) + conv(T). (7.14)

Lemma 7.3.7. Let Z,J be admissible subsets of Z*. Then also T + J, defined by
(7.11), is admissible.

Proof. Trivially, Z + J is origin symmetric. We have three cases.
(i) Z,J C Z2. In this case, Z + J C Z? and

T+ J = (conv(Z) N Z2) + (conv(J) N Z2) = (conv(Z) + conv(T)) N Z>
= (conv(Z + J)) N Z2
(7.15)
(ii) Z,J C Z2. Also in this case T+ J C Z2 and

T+ J = (conv(ZT +J))NZ2 (7.16)

(iii) T C Z2,J C Z2. In this case Z + J C Z2 and arguing as before we have

T+ J = (conv(Z + J)) NZ2. (7.17)

O]

Let € > 0 be fixed and we consider subsets Z C €Z2. With a slight abuse of
notation, we say that Z is admissible if éI is admissible in the sense of Def. 7.3.2.
To each T we associate a subset E7 of R? defined (see Section 4.2) as the union of
all e-squares centered at ¢ € Z. We say that 7 is the set of centers of Fz.

We define the classes

A = {E € D.: FE = Ez for some admissible Z C 523} , (7.18)

and analogously the class AS by requiring that 7 C 72,
For any distance d, on R? (induced by a norm ¢) and Z C £Z?, we define the
discrete distance from OZ as

inf{d,(i,5): j € T} ifigT

. T N (7.19)
inf{d,(i,7) : j € eZ*\I} ifieT.

de (i, 0T) = {

After the identification of Z with E7 as before, we define
de,(i,0Ez) = dg,(i,01).
The distance can be extended to all R?\OFE7 by setting

d5(2,0T) = d,(i,0I) if x € Q:(4).
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We note that if E7 = Q-(0), then

do(2,01) = ¢°(x) = (i) if x € Qc(9),

where
) p(1 ifi1#£0
Fo-{2 (7.20)
inf{p(j) : j € eZ\{0}} ifi=0.
7.4 The general case
For any e, 7, A > 0 we consider the energy F. ; » : D: X D — R defined as
1 1
Fern(E,F)=——P.(F)+ 7/ d(z,0F) dz, (7.21)
o A T JEAF ¥

where P.(E) = H'(OE), which coincides with the energy P (4.6) computed for
a = 1. As before, we choose 7 = ve and Ae = a, so that (7.21) can be rewritten as

(67

FernalE, F)=—P.(FE) + d(z,0F) dz. (7.22)

ve2 Jenr
Given the initial set E§ = )., we define recursively a sequence EZ’%O‘ in D, by

requiring the following:

(i) B = E;

(if) Ep" is a minimizer of the functional F, o (-, 7).

The discrete flat flow associated to functionals F. , » is thus defined by

E=7(t) = EW’;JV, t>0. (7.23)

To simplify the notation, we omit the dependence on v, « in EZ’%O‘

be denoted simply by Ej.

, which will

We assume, as a technical hypothesis, the conjecture that each step of the discrete
motion Ej is a checkerboard convex and origin symmetric union of e-squares.

Fundamental assumption. Let Ef = Q.. If F' is a minimizer for the minimum
problem for Fe o(-, Ef_q),k > 1, then either F € AS or F € A.

7.4.1 The nucleation threshold

We first determine conditions on «,~ in order to have a non-trivial motion. The
nucleation threshold is defined as the minimum value of I above which it is ener-
getically convenient to nucleate; that is, to have that Ef # Ej. To compute it, we
write the variations of the energy (7.22) to obtain, starting from E§, each of the four
minimal configurations pictured in Fig. 7.4 and Fig. 7.5, and impose them to be
negative. In order to simplify the notation, we put ¢f , := ¢ (z,y). Configuration A
and Configuration B are the minimal (not Ef) subsets in \AZ, i.e., the union of Ef
and the two e-squares centered at i € eZ? and whose discrete distances from OE§ are
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Y

Configuration A Configuration B

Figure 7.4. Minimal configurations in A.

A A

Configuration C Configuration D

..

Figure 7.5. Minimal configurations in A4S.

minimal, that is ¢ _ . and ¢f ., respectively. Configuration C and Configuration D,
instead, are the minimal subsets in A¢, i.e., the union of the two e-squares centered
at i € eZ?2 whose discrete distances from OEj are ¥ and ¢ o, respectively.

The variation of the energy to obtain Configuration A is given by

o
—8+2—¢° ., (7.24)
,y 9

which is negative if and only if 2 > %. An analogous computation shows that the
variation of the energy to obtain Configuration B is negative if and only if 1 > %.

In the case of Configuration C, instead, the variation of the energy is

« .

—4e + ;(2S06,6 + mln{(pg,a? 90;,07 90;,67 (pie,a})a (7‘25)

which is negative if and only if 2 > §[2¢§ ; + min{e§ 1,7 o, 71, %11 }]; the same
computation for Configuration D gives 1 > %[29030 + min{®f 1, 910, P11, P11}
Hence, the nucleation threshold depends on the norm ¢® and can be estimated as

5 1 . . .
o > 1 min {9051,17 ‘Pila 2m1n{90i07 806,1} + mm{@ala 90307 Sﬁip 8031,1}} . (7.26)

Remark 7.4.1. Note that if di, = d, then (7.26) reduces to (7.6) computed for
d=2.
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7.4.2 Discrete nucleation

In this section, we study the discrete nucleation from the point 0 € €Z? (the set Q.),
with fixed €. By Fundamental assumption, it follows that in order to determine the
first step of the evolution Ef, we have to compare the minimizers of 7. , o (-, Ef)
among AS and A%, that is the subsets of A% and A%, respectively, given by the union
of all the e-squares Q. (i) whose centers satisfy ¢°(i) < %5.

More precisely, if we consider

4
Tie= {z €eZ?: (i) < 078} , (7.27)

then ]:57%01(E11,57ES) = Enél}lle J:E,’\/,Oz(Ey ES), while if

~ 4
Tie= {’L €eZl: (i) < 078} , (7.28)

1,e

then Feyo(Ez , Ef) = Enéi}llg FeralE, Ep).
Definition 7.4.2 (nucleus). We define the nucleus Ef as follows:
(i) E% = EIl,s if ‘F&"/@(Efl,stS) < ‘F&%Oé(Efl 67E8);

(i) B = By if FeralBy, F5) < Fena(Fr,, ).

Figure 7.6. An example of nucleus Ef.

Remark 7.4.3. If F., .(Fz, ., Ef) = .7-"57%04(E§1 ,E5), then we have a double
choice for Ef. To simplify the problem, we discard this case and assume from now

on that EY is unique.

Proposition 7.4.4 (discrete nucleation). Assume that (7.26) holds, let € > 0 be
fizred and E§ = Q.. Then the discrete evolution by minimization of the energy (7.22)
is the set B = ELM, k> 2, where I}, . C eZ? is defined as follows:

i) if ES = Eg, _, then Iy . = 11 . |k], and I . is given by (7.27);
1 1l,e ) ) )
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(i) if ES = Bz, then there exists k= k(y/a) >0 such that Iy, . = Ti - [k] for all
0 <k <k, where fl,s is given by (7.28), while Ty = T _ + L1 e[k — k] for all
k >k, with T, . again given by (7.27).

Remark 7.4.5. In case (i), £} € A;,Vk > 1 and Ef_; C E}. In case (ii), instead,
an analogous property holds only definitely, because Ej oscillates between A$ and
AC for all 1 < k <k, while for k > k it stabilizes on the same class AZ or AZ.

Proof. (i) The set E}, k > 2 is the union of Ej_; and all the e-squares whose centers
i € eZ? are such that

. 4y
d(i,0E;_1) < gt (7.29)
Equivalently, if we define iteratively
Zk,a = Ik—l,s +Il,57 k> 2; (730)

with Z; . given by (7.27), then
Ep=Eg,.. (7.31)

In fact,
e . cry L 4y
sup{d;,(i,5) 11 € Tpe,j € Tp—1,} <sup{p®(i) 1i € Iy} < = E

By Lemma 7.3.7 it follows that 7. is admissible and satisfies (a1) of Defini-
tion 7.3.2; this implies that E} € AZ. Note also that, by definition (7.30) and
since 0 € Z,_1 ¢, Vk > 1, we have that Z;,_; . C Z;, . so that By, C E},,Vk > 1.

(ii) If & is odd, the set Ef, k > 2 is the union of all e-squares whose centers i € 72
are such that d5, (i, 0E}_;) < %5, while if k is even, E; has the same properties as
before with i € eZ?2. Equivalently, we can define

Ik@ = Ik_1,5 + i—lﬁ, (732)
with Z; . = fl,g given by (7.28). As before, we have
Ejp = FEz, .. (7.33)
We note that E;_, Z E} and, if k is even, E;_; € A, Ef € AS, while if k is odd,
Ei_ € A Ef € A,
However, the procedure defined by (7.32) can be iterated only for a finite number

of steps, depending on 2. In fact, the variation of the energy F. . o to pass from
E;_, to Ef is bounded from below by

« .
A Thel = v + = [minfef o, 0000000 Tkl + [ Te)] - (739)

which is strictly positive for k sufficiently large, being Tp_1 . € T e, [Zk—1¢| < [T el
and o/ fixed.
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Let k be the smallest such k. For any k > k, E7 is the union of E_; and all the
e-squares whose centers i € £Z2 if k is odd, i € €Z2 if k is even and

e (: ope 4y
dw(z,aEk_]_) < E&. (735)
As before, this is equivalent to define
The =Tp-1e+T1e, YVk>E, (7.36)

where 7; . now is given by (7.27), and Ej = FE7, .. Note that E},_; C E},Vk > k
and Ef € AS if k is odd, Ef € AS if k is even.
O

Remark 7.4.6 (homothety of convex hulls). Let Py . be the convex hull of Zj, .
defined iteratively at (i) of Proposition 7.4.4. Then, for all kK > 1, Py . and P; . are
homothetic with center 0.
For this, it will suffice to prove that Py, . is the k-dilate of Py ., that is

Pre=kPie, forallk>1. (7.37)

Clearly, (7.37) is true for k = 1. Let k > 2 and assume that
Pr1e= (k= 1)P1e. (7.38)

By Definition (7.30) and Proposition 7.3.6 it follows that

Pre = conv(Ly ) = conv(Zy—1. + Z1c) = conv(Zy_1 ) + conv(Zi )

(7.39)
= Pk—l,e + Pl,a
Therefore, by (7.38) and again by Proposition 7.3.6 we finally obtain that
Pk,s = (k - 1)73175 + ,Pl,s = kPl,g- (740)

In case (ii) of Proposition 7.4.4, instead, if Qj . = conv(Z} ), where Z, . is defined
by (7.36), we have

Qpe =95+ (k— k)P, forall k> k. (7.41)

However, by boundedness of Qr _, there exists k > & such that Q7. C %77175, from
which we deduce that

Ore C (k+k—F)Pr., forallk>FE. (7.42)

7.4.3 The limit motion

The following characterization of the limit motion holds.
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Theorem 7.4.7 (limit motion). Let o,y be as in (7.5) and such that (7.26) be
satisfied. Then we have two cases:

(a) let B = Eg,. be as in (i) of Proposition 7.4.4 and Fy; = Py, = conv(Zy.),
F.(t) = Pl¢/r|,e,t 2 0. Then, for all fired t, the Kuratowsky limit of the family Fe(t)
as € — 0 is a polygon F(t) given by

F(t) = itFl (7.43)

where Fy = %conV(ILg), T, defined by (7.27).
(b) let E}, = Eg,. be as in (ii) of Proposition 7.4.4 and G}, = Qg = conv(Zy ),
G:(t) = Q|/7|est = 0. Then, for all fized t, the Kuratowsky limit of the family

Ge(t) as e = 0 is a polygon G(t) satisfying the inclusion
G(t) C F(t), (7.44)

where F(t) is the motion defined by (7.43).

Proof. (a) By Remark 7.4.6, we have

Ff = keFy. (7.45)
We define
RO = Fiyny = | 2] <P, (7.46)
which converges in the Kuratowski sense, as ¢ — 0, to F(t) = %tFl.
(b) Again by Remark 7.4.6, we have
Ge(t) =G5,y © (UEJ +k— k:) eFy, (7.47)

from which passing to the limit as € — 0 in the Kuratowski sense we deduce that
G(t) C F(t). (7.48)

O

Remark 7.4.8. As a trivial remark, we note that the motion in case (b) of Proposi-
tion 7.4.7 is slower than the motion obtained in case (a).

7.5 Some examples of nucleation
In this section we give some examples of nucleation for particular choices of the

discrete distance dg,. More precisely, we characterize explicitly the discrete and the
limit motion showing their dependence on the chosen metric.
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7.5.1 The ('-distance
We consider d5,(z,y) = di(z,y) defined as in (7.19) with dy(z,y) = [l -yl

Remark 7.5.1 (pinning threshold). The minimal configuration is pictured in
Fig. 7.8. The corresponding variation of the energy with respect to the initial set
Q. is given by
—12¢ + 5%,
gl

which is negative if and only if

5 _ 9
<L A4
12 7 « (7.49)

We assume that (7.49) is verified and that % ¢ N, otherwise we do not have
uniqueness in the choice of the minimizers. To simplify the notation, we put
Noy = {%J We then have two cases.

(a) if Nq is even, then Ef € AS. In this case, 7; . is given by
Tie={icez?: |ilh < Nane}, (7.50)

and for k > 1,
Toe=Ticlk] = {i€cz2: |lilh < Naqke}. (7.51)

Eq

Figure 7.7. The set Ef for 1 <1 < 3,

(b) if Ny~ is odd, then Ef € AS. The set of its centers is given by
Tio={icez2: |ilh < Nane}. (7.52)
A direct computation shows that

{ieez?: i1 < Naqke} if kis even

7.53
{ieeZ2: ||y < Na~ke} if kis odd. (7.53)

Ik,e = Il,a[k] = {

Now we compute explicitly the variation of the energy to pass from Ef to Ef_ |, k
odd.
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Y

b

Figure 7.8. The set Ef for 5 <2 < 1.

Note that
Tiel => {4j:j=1,...,Nayk,j odd} = N2_k* + 2Nak + 1, (7.54)
while

Tit1el = {45 :5=2,...,Noy(k+1),j even} = NZ_(k+1)> + 2No (k + 1).
(7.55)
The variation of the perimeter term is then

—A(|Tpsrel = [Tnel) = =42k + 1)NZ , + 2Ny — 1], (7.56)

while the variation of the bulk term is

« 2. 4
; (‘Ik76‘ + N02‘7_‘{k2 + (Ngv'y + 2N§77 + Naﬂ/) k - gNgv'Y + 2N§7’Y - gNa”y + 2) ’
(7.57)
that is,
2 4
% (2]\72,7/@2 + (N2, + 2N2 |+ 3Noy ) b + SN 2N+ oo+ 3) . (7.58)

The total balance, given by adding (7.56) and (7.58), is then positive for k large.
The limit motion is characterized as follows (see Theorem 7.4.7).

Theorem 7.5.2. Let F.(t) be defined as in (a) of Theorem 7.4.7. Then, for all fized
t, the Kuratowsky limit of the family F.(t) as € — 0 is a thombus F(t) of centre 0
and side length %\@L%Jt

7.5.2 An example of asymmetric distance

We now give an example where the limit set is of dimension d — 1; more precisely,
a linearly growing segment. For this, we assume that d = 2 and consider the
(sufficiently) asymmetric norm

. 33 ,. . 31, . )
O (1) = \/8(1% +1i3) — PRI eZ2. (7.59)
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We note that ¢°(g,¢) = f < \/Be = ¢°(e,0) = ¢°(0,¢) and we assume that
V2

2 vy 1 /33

A ATy .

8 T« < 8V 2 (7.60)
In this case,

. 2 c/- 4’7
Tie=qi€el™: ¢°(1) < —ep ={(~¢,-€).(0,0), (5, €)}
and
Tye =Tkl ={(je, je) : j = 0,%1,..., £k}, k>1. (7.61)

We define F.(t) = conv(Z|;/yc| ), where Ef = E7, _. In Fig. 7.9 some steps of
the discrete evolution are represented.

E5 By 2]

Figure 7.9. Some steps of the evolution.

The following limit evolution holds.

Proposition 7.5.3 (limit motion). Let a,y > 0 be such that (7.60) is satisfied.
Then, for all fized t, the Kuratowsky limit of the family F.(t) as € — 0 is a segment
F(t) such that F(0) = {0} and whose length L(t) satisfies

L(t) = iQ\/it (7.62)

for almost every t > 0.

Proof. We define L; = H!(conv(Zj,.)). We have that
L5, = Li +2V2e, (7.63)

with initial condition L§ = 0. If we define L.(¢) as the linear interpolation in
[k, (k+ 1)7] of the values Lf, that is

Left) = P TR (k4 1)) 4 Ly = VS (k4 7) + L, (764)

then L. (t) is an increasing continuos function of ¢ and the sequence is uniformly
Lipschitz on all intervals [T, 400) such that L.(T") > ¢ > 0. Hence, it converges,
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up to a subsequence, as € — 0 to an increasing function L(t). It follows that F.(¢)
converges, as ¢ — 0, in the Kuratowski sense to a limit segment F'(t).

To justify (7.62), we define L.(t) = LELt Jnel> which converges locally uniformly to
L(t) as ¢ — 0. We have that

t
Ls(t) = Tt/’ye] = \‘%J 2\/§5a

from which we obtain (7.62) passing to the limit as ¢ — 0. O
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Appendix A

Variational problems with
percolation: rigid spin systems

In view of the possible definition of variational motion in random media (i.e., with
randomly distributed inclusions) motivated by finding at least an estimate for the
pinning threshold, we describe the results contained in the paper by myself [46]
about random homogenization of energies associated to spin systems with unbounded
interaction coefficients, by using percolation techniques.

A.1 The model problem and the percolation approach

In the context of Variational theories in Materials Science it is often necessary to
model media with fine microstructure and to describe their properties via averaged
effective energies. This is the main goal of Homogenization theory (see e.g. Braides
and Defranceschi [13], Chechkin, Piatnitski and Shamaev [23]). In some cases periodic
microstructure is not sufficient, so that random media have to be considered.

The model problem that we have in mind is that of a crystalline two-dimensional
solid subject to fracture. We suppose that the relevant scale is that of the surface
(fracture) energy so we may neglect the elastic energy of the lattice (this can be taken
separately into account as in the paper by Braides and Piatnitski [16]). In this case,
depending on the applied forces or boundary displacement of the sample, a fracture
may appear, separating two regions where the displacement is constant. In the
Griffith theory of Fracture (see Griffith [32]), the energy necessary for the creation
of a crack is proportional to its area; in a discrete setting this is translated in the
number of atomic bonds that are broken. In our model, at the atomistic level, there
is a random distribution of ‘strong’ unbreakable bonds and ‘weak’ (ferromagnetic)
breakable bonds. This model translates into a rigid spin problem, where the two
values of the spin parametrize the two regions of constant displacement of the crystal.
We note that in this problem the random distribution of rigid or weak bonds is
considered as fixed and as characteristic of the crystalline material, so that we are
interested in almost sure properties of the overall energies when the measure of the
sample is large with respect to the atomic distance.

The way we will describe the overall behavior of this system is by scaling the
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domain lattice by a small parameter £ and introducing the corresponding scaled
energies, and then compute the variational limit (I-limit) of such energies, which is
defined on the continuum and it can be considered as an effective energy.

The microscopic energy under examination can be written as

Zagjj(l —uiuj), (Al)
]

where u; € {£1} is a spin variable indexed on the lattice Z2, the sum runs on
nearest-neighbors (i.e. |i — j| = 1) in a given portion Q N Z? of Z?2, the coefficients
oy; depend on the realization w of an independent and identically distributed (i.i.d.)
random variable and
oo {+oo with probability p

1 with probability 1 — p,

with p € [0,1] fixed and the convention +oo -0 = 0. In place of (A.1) we could
consider the energies

- ZJ%Uin, <A2)
tj

but in this case, just to avoid ambiguities in the sum, o3; = +o0 forces u; = u; and
this gives a constraint for the problem.

In recent papers, Braides and Piatnitski [17, 18] treated the cases of elliptic
random spin energies, that is with equi-bounded strictly positive random coefficients,
and of dilute spin energies, with random coefficients given by

5% _ {1 W%th probab%l?ty P
0 with probability 1 —p.

In order to describe the behavior as the size of Q diverges we introduce a scaled
problem, as is customary in the passage from lattice systems to continuous variational
problems, in which, on the contrary, ) is kept fixed, but scaled energies are defined
as follows. A small parameter £ > 0 is introduced, the lattice is scaled accordingly
to €Z?, and the energies (A.1) are scaled (after multiplying by 2) to

E?(u) := Zaa;-"j(ui — uj)?. (A.3)
ij

Note that uniform states (which are pointwise minimizers of the “integrand”) have
zero energy; moreover, the “surface scaling” ¢ is driven by the knowledge that for
p =0 (i.e., for ferromagnetic interactions) the I-limit with that scaling is not trivial
(as shown e.g. by Alicandro, Braides and Cicalese [1]). After this scaling, the sum is
taken on nearest neighbors in Q N eZ?, and the normalization allows also to consider
Q) = R? (in this case the domain of the energy is composed of all u which are constant
outside a bounded set).

The coarse graining of these energies corresponds to a general approach in the
theory of I'-convergence for lattice system where the discrete functions v = {u;} are
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identified with their piecewise-constant extensions, and the scaled lattice energies
with energies on the continuum whose asymptotic behavior is described by taking
L'-limits in the v variable and applying a mesoscopic homogenization process to
the energies. A general theory for interfacial energies by Ambrosio and Braides [5]

suggests the identification of limit energies with functionals of the form

| et
QNo{u=1}

with v the normal to 0{u = 1}.

Our analysis will be carried out by using results from Percolation theory. Perco-
lation is a model for random media (see Grimmett [33] and Kesten [37]). We are
interested in bond percolation on the square lattice Z2: we view Z2 as a graph with
edges between neighboring vertices, and all edges are, independently of each other,
chosen to be ‘strong’ with probability p and ‘weak’ with probability 1 — p. A weak
path is a sequence of consecutive weak edges, a weak cluster is a maximal connected
component of the collection of weak edges. Percolation exhibits a phase transition:
there exists a critical value of probability p., the percolation threshold, such that if
p < pe then with probability one there exists a unique infinite weak cluster, while if
p > pe then all the weak clusters are finite almost surely. For bond percolation on
72, the percolation threshold is given by p. = %

Actually, the structure of the I'-limit of the energies (A.3) depends on probability
through the percolation threshold. Above the percolation threshold the I'-limit is
400 on the functions not identically equal to 1 or -1. Below the percolation threshold,
instead, the coarse graining leads first to showing that indeed we may define a limit
magnetization u taking values in {£1}. This u is obtained as a L!-limit on the scaled
infinite weak cluster, thus neglecting the values u; on nodes i isolated from that
cluster. The surface tension is obtained by optimizing the almost sure contribution
of the interfaces, and showing that it can be expressed as a first-passage percolation
problem, so that the limit is of the form

/ () dH. (A.4)
QNo{u=1}

The I'-lim inf inequality is obtained by a blow-up argument. We perform a construc-
tion based on the Channel property (Theorem A.3.2) which allows to modify the
test sets in order to get a ‘weak’ boundary, avoiding bonds with infinite energy. This
is useful also for the construction of a recovery sequence.

This type of variational percolation results can be linked to the paper by Braides
and Piatnitski [16] where discrete fracture of a membrane is studied and linked
to large deviations for the chemical distance in supercritical Bernoulli percolation.
The value A,(v) is defined through the asymptotic behavior of the chemical dis-
tance (that is, the distance on the infinite weak cluster) between a pair of points
aligned with v. The general framework for first-passage percolation and chemical
distance can be found in Grimmett and Kesten [34], Kesten [35]. The result of
this paper is that in the subcritical case, a crack in the crystal may appear fol-
lowing a minimal path on the infinite weak cluster and the microscopical pattern
of the lattice (this fact justifies the anisotropy of the fracture energy (A.4)). In
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the supercritical case, instead, the solid almost surely is rigid and there is no fracture.

Overview of the chapter. In Section A.2 we fix notation and present the setting
of the problem, describing the energies that we will consider. Section A.3 contains
some results from percolation theory necessary for the computations. Section A.4
contains the proof of the main result: in the subcritical regime (that is, for p < p.),
the energies I'-converge to a deterministic anisotropic perimeter whose density is
obtained by means of an asymptotic first-passage percolation formula related to the
chemical distance on the lattice; in the supercritical regime (that is, for p > p.),
the I'-limit is identically +o0o on the functions u not identically equal to 1 or -1. In
Section A.5 we show that the homogenization of rigid spin systems is actually a limit
case of the elliptic random homogenization of spin systems; that is, the behavior of
a rigid spin system is approximated by that of an elliptic spin system with one of
the interaction coefficients very large. The proof of this new “continuity” property
of the surface tension (Proposition A.5.5) essentially relies on a percolation result
(Lemma A.5.1).

A.2 Notation and setting of the problem

If A is a measurable subset of R?, we denote its 2-dimensional Lebesgue measure
indifferently by £2(A) or |A|. H* denotes the k-dimensional Hausdorff measure.
B,(x) is the open ball of center z and radius p and S' is the boundary of By(0). If
ve st Q}(z) is the square centered at x, of side length p and one side orthogonal
to v, that is

Q@) ={y eR*: [{y — 2, 0)| < p/2, [{y — 2,v")| < p/2},

where v = (—us, 1) denotes the clockwise rotation by 7/2 of v.

We use the notation for bond-percolation problems as in Braides and Piatnit-
ski [16], Section 2.4. In this percolation model, we assign the label “strong” or “weak”
to a bond with probability p and 1 — p, respectively, the choice being independent
on distinct bonds.

Denote by 72 the dual grid of Z?, that is the set of the middle points of the
segments [i, j], i,7 € Z%, |i — j| = 1, of the standard integer grid Z2. The notation
i(2),4(2) is used for the endpoints of the segment containing 2. We may identify
each point 2 € Z2 with the corresponding closed segment [i(2),7(2)], so that points
in 7?2 are identified with bonds in Z2.

Let (X, F,P) be a probability space, and let {£;, 2 € ZQ} be a family of indepen-
dent identically distributed random variables such that

€ = 1 (“strong”) with probability p
- 0 (“weak”) with probability 1 — p,

and p € [0,1] is fixed. Let w € ¥ be a realization of this i.i.d. random variable in Z>
and introduce the coefficients
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0z =

o {+oo if &(w)=1

1 otherwise.

We write 0% = o}, after identifying each Z with a pair of nearest-neighbors in 72,
For each w we consider the energies

EZ(u) = < Z eoyi(u; — u;j)?,  (with the convention oo - 0 = 0) (A.5)
,J€Qe

defined on u : Q. — {£1}, where we use the notation Q. = 1Q N Z? and Q is an
open subset of R? with Lipschitz boundary. The factor 8 is a normalization factor
due to the fact that each bond is accounted twice and (u; — u;)? € {0,4}.

Each function w : Q. — {%1} is identified with the piecewise-constant function
(which, with a slight abuse of notation, we also denote by u) such that u(x) = u; on
each coordinate square of center €i and side length e contained in {2 and 1 otherwise,
no matter what this value is. In this way all u can be considered as functions in
LY(2), and more precisely in BV (Q; {£1}).

The case p = 0 corresponds to a ferromagnetic spin system, which can be
described approximately as € — 0 by the anisotropic perimeter energy (see [1])

Fy(u) = / |y !
O {u=1}NQ

defined on u € BV (€Q;{£1}), where 0*{u = 1} denotes the measure-theoretical
reduced boundary of the set of finite perimeter {u = 1}, v, its inner normal (see
Section 1.3) and || - ||1 the /-norm defined by ||z||1 = |z1| + |z2|,z = (21, 22).

In this passage from discrete to continuous we identify each function u : Q. —
{1} with the set A =J{ei+e@Q : i € Q¢ : u; = 1} or the function u € BV (Q; {£1})
given by u = 2y 4 —1, where () = [—%, %) X {—%, %) denotes the coordinate semi-open
unit square in R? centered at 0.

A.3 Some results from percolation theory

We recall some results from percolation theory (see e.g., Braides and Piatnitski [16],
and Grimmett [33], Kesten [37] for general references on percolation theory).

We introduce a terminology for weak points, that is those points 2 € 72 such
that £ = 0. Keeping in mind the identification of 2 with [i(2), j(2)] stated in the
previous section, we denote the corresponding bond also by Z, and we refer to Z as a
weak bond or point, indifferently. We say that two weak points 2 and 2" are adjacent
if the corresponding two segments have an endpoint in common. A sequence of weak
bonds v = {21, ..., 2} is said to be a weak path if any two consecutive points of this
sequence are adjacent. In what follows we identify a weak path with the subset of
R? composed of the union of the corresponding segments; the length of the weak
path ~ is the number of its connections, and we denote it by |y|. A subset A of
72 of weak points is said to be connected if for every two points 2,2 of A there
exists a weak path as above such that Vj € {1,2,...,k},2, € A, 51 =2, 2, =2" A
maximum connected component of adjacent weak points is called a weak cluster.
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A first result deals with the existence of infinite weak clusters and it shows that
there is a critical probability (p. = % in two dimensions for the square lattice) which
separates two different behaviors of the bond-percolation system.

Theorem A.3.1 (percolation threshold). For any p > p. = 1/2 (supercriti-
cal regime) all the weak clusters are almost surely finite, while for any p < 1/2

(subcritical regime) with probability one there is exactly one infinite weak cluster
) 2%

From now on we will refer to W simply as the weak cluster. Let v = (v1,15) € S*
and 0 < § < 1. We denote by T° the rectangle

T,f ={z ¢ R? : |(z,v)] <§/2,0 < <£L',1/J'> <1}

A path joining the smaller sides of the rectangle will be called a channel (or left-right
crossing). A weak path with this property will be called a weak channel. The
following result gives a lower bound on the number of weak channels almost surely
crossing sufficiently large rectangles (or squares) in the subcritical regime.

Theorem A.3.2 (Channel property). Let p < 1/2, w denote a realization and
M > 0. Then there exist constants c(p) > 0 and c1(p) > 0 such that almost surely
for any 6, 0 < § <1 there is a number Ng = Ny(w,d) such that for all N > Ny and
for any TS and |xo| < M the rectangle N(TS + o) contains at least c(p) N6 disjoint
weak channels which connect the smaller sides of the rectangle. Moreover, the length
of each such a channel does not exceed c1(p)N.

A realization w € ¥ is said to be typical if the statement of the Theorem A.3.2
holds for such an w. Now we introduce some terminology also for strong bonds,
that is those points 2 € 72 such that & = 1. We consider the shifted lattice
Zy =77 + (%, %) and notice that the set of middle points of its bonds coincides
with Z2. Thus, to each point 2 € 72 we can associate the corresponding bond in
Zy. If Z is identified with the corresponding segment with endpoints in Zj, then we
may define the notion of adjacent points as for weak bonds. The notions of strong
channel and strong cluster are modified accordingly. For p > 1/2 there is almost
surely a unique infinite strong cluster and the channel property stated above holds
for the strong channels as well.

To simplify the notation, from now on we will denote by x (in place of %) a
generic point in 72,1t p < 1/2 and two points x,y € 72 belong to the weak cluster,
then by definition of cluster there is at least a path « in the cluster joining z and
y. To describe the metric properties of the weak cluster we introduce a random
distance.

Definition A.3.3 (chemical distance). Let x,y € 72 and w be a realization of the
random variable. The chemical distance D¥(x,y) between x and y in the realization
w 1s defined as

D¥(z,y) = min ], (A.6)

where |y| is the length of the path v and the minimum is taken on the set of paths
joining © and y and that are weak in the realization w.
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Remark A.3.4. The chemical distance is defined only if z and y are in the same
cluster; otherwise, by convention, D¥(z,y) = +o0.

When it is finite, the random distance D¥(z,y) is thus the minimal number of
weak bonds needed to link = and y in the realization w (also x and y are taken into
account), and is thus not smaller than ||z — y|j;. When p < 3, D*(0,z) on the weak
cluster can be seen as a travel time between 0 and x in a first-passage percolation
model (see Garet and Marchand [30], Kesten [36]), where the passage times of
the edges are independent identically distributed random variables with common
distribution pd;~ + (1 — p)d;. The following Lemma deals with the existence of an
asymptotic time constant in a given direction.

Lemma A.3.5. Assume that 0 € W*. For any T € R? the following limit exists
almost surely and does not depend on w

: 1
M) =l LD, mr)), (A7)
0<+—|m7]|

where |mt| = (|m7]1, |m7]2), |m7]x = |mm] is the integer part of the k-th
component of mt and 0 <— |m7]| means that 0 and |m7| are linked by a path in
the weak cluster. Moreover, A, defines a norm on R2.

Proof. See Garet and Marchand [29], Corollary 3.3. O

The same asymptotic result holds for sequences of points in the weak cluster
asymptotically aligned’ with 7, that is z,, y,, such that y,, — z,, = m7 + o(m) as
m — 0o0. The proof of this fact relies essentially on the following large deviation
result for the chemical distance (see Garet and Marchand [30]):

3

Theorem A.3.6. Let p < 1/2 and A\, be the norm on R? given by Lemma A.S3.5.
Then

ves 0. limsup 08P = Im7), D0, [m7])/Ay(r) ¢ (1=, 1 +2)

m——+00 m

< 0.
(A.8)

Proposition A.3.7. Let (z), (Ym) be two sequences of points in 72 contained in
the weak cluster such that

sup{‘xm‘+‘ym’}§0<+oo and  Ym — Tm = mT + o(m), (A.9)
m m m

where 7 € R?, C is a positive constant and o(m)/m — 0 as m — +oo. Then the
following limit exists almost surely and does not depend on w

M) = Tim D, ). (A.10)

m——+oco m
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Proof. We denote by A,(7) the right hand side of equation (A.10). We prove (A.10)
in the case that y,, = |max + m7]| and x,, = [mz], x # 0. The stationarity of the
i.i.d. Bernoulli process ensures that the probability law of D“(|mx|, |mx + mt])
is the same of D“(0, |[m7]).

Therefore, by (A.8) we have that

log P “ma:J — [mx +mt|, Dw(tm?z’kgﬁmﬂ) ¢(1—e 1+ 8)]

Ve >0, limsup < 0.

m—-+00 m

By Borel-Cantelli Lemma we obtain that Ve > 0,

lim sup %Dw({m% [ma +m7]) € [(1 = e)Ap(7), (L +2)Ap(7)]
|mz | +— | mz+mT ]|

P-almost surely, that is,

. 1,

dim (], [+ ) = A (7)
|mz |+— | mz+mT|

P-almost surely. By a compactness argument, we have that \,(7) < \,(7). Indeed,

if Ty, ym are as in (A.9), then there exist a subsequence m; — +oco0 and z,y such

T, )
that —2 — 7, yﬂ — g, with y = T 4+ 7. Therefore, in the computation of the limit

in (A.10) we can (jzhoose Ty = |mZ] and ym, = [MT + m7|.

Now, if we consider two points z,, ym, on the weak cluster satisfying (A.9), we
can find x such that z,, and |mx|, y,, and |mx + m7| almost surely are linked by
weak paths whose length is at most o(m). Hence,

D¥(mz], | mx +m7]) < D*(xm, Ym) + o(m)

and from this it follows that \,(7) < A\y(7). O

Remark A.3.8. If v € R? is a unit vector and 7 = v, then by symmetry \,(v) =
Ap(T).

A.4 The rigid percolation theorem

We first remark that the energies E¥ defined by (A.5) are equi-coercive with respect
to the strong L!-convergence. The proof is immediate as in the elliptic case, while
for dilute spin energies this result requires a more difficult argument (see Braides
and Piatnitski [18], Section 3.1).

Lemma A.4.1 (equi-coerciveness of E¥). Let Q be a bounded Lipschitz open
set. For any w in a set ¥ C X with P(X) = 1, if (ue,) is a sequence such that
supy, B¢ (ue,) < +00, then there exists a function u € BV (2;{%1}) and a subse-
quence, still denoted by (u., ), such that ue, — u in L*(Q).
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Proof. Equi-boundedness of the energies forces the coefficients o3} to be equal to 1
almost surely if (uc, )i # (ue,);, so that the equi-coerciveness follows from that of
ferromagnetic energies (see e.g. Braides and Piatnitski [17], Section 2). O

The main result is the following.

Theorem A.4.2 (Rigid percolation theorem). Let Q be a bounded Lipschitz
open set and EY be the energies defined by (A.5). Then we have two regimes:

(a) If p < 1/2 (subcritical regime), then P-almost surely there exists the I'-limit of
E¥ with respect to the L' (Q)-convergence on BV (Q; {£1}), it is deterministic,
and is given by

Fo(u) = / () dH, (A.11)
QNo*{u=1}

foruwe BV (Q;{£1}). In (A.11) A, is defined by (A.7), (A.10) and v is the
unit normal vector at 0*{u = 1}.

(b) If p > 1/2 (supercritical regime), then P-almost surely there exists the I'-limit
of E¥ and it coincides with F(u) = +oo on the whole L*(Q) except for u
constant identically £1.

Proof. (a) We begin with the proof of the lower bound (liminf inequality), and fix
a typical realization w and a family u. — u in L'(Q) with u € BV (Q; {#1}) such
that lilsn_}(?f EZ (us) < 0o. We can assume, up to a subsequence, that such a liminf is
actually a limit.

For all ¢ we consider the set in the dual lattice 22 of £Z?2 defined by

S — {5k k= 1%7” € O li— jl = Lue(ei) = 1,u(ej) = —1}

and the measure

Le = Z £0yOck-
ekeSe

Note that E¥(u:) = (), so that the family of measures {y.} is equi-bounded.
Hence, up to further subsequences, we can assume that u. —* p, where p is a finite
measure.

Let A = {u = 1} and A, = {u. = 1}. With fixed h € N, we consider the
collection Qy, of squares QZ(JT) such that the following conditions are satisfied:

(i) z € 0*A and v = v(x);
(i) ’(QZ(@') N A)AH”(x)’ < 3+p?, where I1"(z) = {y € R?: (y — 2, v) > 0};

1
h7

<

o | H(Qp(2)) dp
(‘“)‘ ; ~ LA™
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1

(iv) p

?

> =

Lo M) a @) - M) <
Q¥ (x)nd* A

(v) w(@p(x)) = (@ (x))-
For fixed x € 0*A and for p small enough (ii) is satisfied by definition of reduced
boundary (see Section 1.3), (iii) follows from the Besicovitch Derivation Theorem
provided that
dp

dH!L0*A
(iv) holds by the same reason (z is a Lebesgue point of A,), and (v) is satisfied for
almost all p > 0 since y is a finite measure (and so p(9Q} (z)) = 0).

We deduce that Qy, is a fine covering of the set

(z) < +o0;

fa o dp
aA“_{meaA'dHll_ﬁ*A(x)<+oo}’

so that (by Morse’s lemma, see Morse [41]) there exists a countable family of disjoint
closed squares {Qp (z;)} still covering 0*A4,,. Note that

HI(5*A\O*A,) =0

because of the existence of the derivative of the measure p with respect to H!'L 9* A.
We now fix one of such squares Q}(z). We would like to use the sets %AE as
test sets to estimate from below the part of © concentrated on 0* A. Since these sets
could not have correct boundary data, we modify them on the boundary. As in the
case of spin energies with bounded coefficients (see Braides and Piatnitski [17, 18]),
we could truncate the sets with the hyperplane 011" = {(y — z,v) = 0}, but it may
have infinite energy (possibly containing some strong bond), so we approximate it
with a weak path ~,,.
We subdivide the construction of test sets into steps.
Step 1: Construction of the weak path ~,. Let 0 < § < 1. We cover the set
Oll”(z) N Q} () by considering the points

1
xj:x—i—jp&zﬁ, \j\zO,l,...,b(SJ—l—l, (A.12)

and the rectangles R; centered at x;, with side-lengths pd and 2pd and the small sides
parallel to v. The rectangles R; and R;;1 have in common a square of side-length
pd and we denote it by Qf)(S' From the channel property (Theorem A.3.2) for e
small enough we can find a weak channel 77 (the highest) in R; and a weak channel
79T1 (the lowest) in R;j11 whose length is at most 2¢1(p)pd/e. Applying the same
property to Qf) s We can find a weak channel 47+ connecting the two opposite sides of
an; orthogonal to v, whose length is at most ca(p)pd/e. The union 7/ U~ U473+

contains a weak path 377! connecting the smaller sides of the rectangle R; U R4
(see Fig. A.1). '
We can repeat this construction for R; 1, Rj;2 and le choosing v/ *!, the highest

weak channel v/ in RI™2 and 4714 in Q%l to define the weak path 4/ T17+2_ If
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Figure A.1. Construction of 377+1,

we repeat iteratively this procedure for any couple of rectangles R;, Rj;1, j as in
(A.12), the desired ~,, will be obtained by gluing all the paths 771,
Step 2: Estimates. Note that -, disconnects @} (r) and we denote by Q7 the
connected component of Q}(z) containing Q) (x) N {(y — =,v) > pd/2}. We have
that

Q@) NI (2) Q%) | < p?. (A.13)

By (ii) and (A.13), choosing € small enough and using the fact that |A.AA| — 0,
we obtain

(@) N A)AQE] < |(@p(2) N A ()] +|Qy(2) N (A-24)| +

5 (2 (A.14)
+|(@@) N (@) 805 < p (h + 5) -
For simplicity of notation we can assume that z = 0 and v = es. With fixed n < 1/2,
from (A.14) it follows that

A= ’((QZ(%) N AE)AQi) N {y : pg < dist(y,0Q,(z)) < pn}’ < p? (2 + 5) :

(A.15)

Step 3: Construction of an optimal weak circuit. We subdivide the annulus
between the two concentric squares (with side-lengths p(1 —n) and p(1 — 2n) respec-
tively) in four rectangles R;(i = 1,...,4) with side-lengths p(1 —n) and pn/2 (they
have in common, two by two, a little square of side-length pn/2). From the channel
property (Theorem A.3.2), for ¢ small enough in each of these rectangles we can
find at least ¢(p)pn/2¢e disjoint weak channels K; connecting the smaller sides of the
rectangle, and with length at most c1(p)p(1 —n)/e. Since A > 3" (|K;| N .A), from

the mean value theorem in each rectangle R; there exists a weak channel IA(:Z such

that y (o) 5
e P (2/h + pE (2 )
KinAl < < = —+45).
| | #(K) — 4dc(p)pn/2e 2c(p)n \h
4
Therefore, considering the weak circuit K contained in U IN(i, we have that
i=1
2p0e (2
1 v + “
H (@) naaQ) nK) < - (2rs). (A.16)
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!
! i P

Figure A.2. Construction of a test set.

Step 4: Definition of the test sets. Now we define the subset Al C Qp(z) as
(see Fig. A.2)

A; _ A., in the s‘et containing 0 and whose boundary is K (A7)
Q}, otherwise.
Note that
2pe (2 -
1 1 v
0A\OA) N < — 4+ d/2¢. A.18
M (04104 N Qy) < O (2 4+6) +apa2e (A8)

We can find points x.,y. € 72 such that ez, eye € OAL and |ex. + Leq| < 2e, |eye —
fe1| < 2e, and a weak path K° in %(8/@ NQy(x)) N 72 connecting z. at y.. By the
estimate (A.18) we have

2
e @) 2 2| K] - (% (G +8)+ e<p>p5/2)

2
> eD¥ (3., y.) — (02(% (% + 5) + 5(p)p5/2> .

Since |(ye — x=) — Ze1| < 4, choosing m = p/e in the definition of A\, (equation
(A.10)) and for fixed n,d and h we obtain

lim inf e (@ () = pAp(er) — E(p)pd/2 = pAp(e2) — &(p)pd/2 = pAp(v) — &(p)pd /2.
By the (iv) above we then have

2
lim inf e (Qp(2)) 2 / Ap(v(y)) dH' (y) — (% + 5(p)p—6>

Q4 (x)no* A 2
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and finally

hrgrijélf 1e(Q2) = zj: lirgrijélf /Je(QZ; (z;) N 9" A)

z;/w

Pj

Mp(v(y)) dH! (y) — C (Z + 5(1)))
(z;)NO*A

1 p PO .
= Joprge g V@) A (y) = C <h +C(p)2>7

the lim inf inequality then follows by the arbitrariness of p,d and h.

The construction of a recovery sequence giving the upper bound (limsup inequal-
ity) can be performed just for polyhedral sets, since they are dense in energy in the
class of sets of finite perimeter. We only give the construction when the set is of the
form II”(x) N Q since it is easily generalized to each face of a polyhedral boundary.
We can localize the construction to the faces of a polyhedral set because the limit
energy does not concentrate at its corners: this follows by the chosen scaling.

It is no restriction to suppose that IT”(x) = I1”(0) =: I1”, that v is a rational direction
(that is, there exists a positive real number S such that Sv € Z?), and that

HL(OQ NI =0, (A.19)

since also with these restrictions we obtain a dense class of sets. We will compute
the I'-limsup for v = 2xv — 1.

Let M > 0 be large enough so that Q cC QY%,(0), we set 7 = v+ and we fix
n > 0 such that n < M/2. There exists a path 7. in the weak cluster of the dual
lattice Z2 contained in the stripe {z : |(z,v)| < n/e} and with the two endpoints
lying at distance at most 2¢ from the two sides {x : [(x, 7)| = £M/2}. The existence
of 7. can be proved with the same construction performed for v, in the proof of the
I-lim inf inequality. After identifying 7. with a curve in R?, for € small enough it
disconnects éQ We can therefore consider ', the maximal connected component
10\, containing QU {(z,v) > n/e}, and define

1 ifieZ?nQf
—1 otherwise.

ul(ei) = {

Note that
E2 (ul) < elvz| < Ap(m)H' (811" N Q) + O(n).

By a diagonal argument, for any fixed n > 0 we can construct a subsequence (still
denoted by u?) converging in L*(Q) as ¢ — 0 to u”, where u” is a function such that
|[u” — ull 1) — 0asn— 0. We have

limsup B2 (ul) < A\ (T)H(O11Y N Q) + O(n), Vn >0,
e—0t
and letting n — 0 we obtain
- limsup E< (u) < A\, (1)H (911 N Q) = X\, (v)H (911 N Q).

e—0t
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Eventually, we obtain the desired inequality recalling that H!(0IIVNQ) = H (OT1VNQ)
by (A.19).

(b) It will suffice to show that E'(u) := I'- ligélf EZ(u) =4occifu#—-loru#1l
identically. We reason by contradiction and assume that there exists a non-constant
function v € BV (Q;{+1}) such that E'(u) < + oo. Fixed a point z € S(u) and
a square QZ(aﬁ) of side-length p > 0 sufficiently large, by channel property (see
Theorem A.3.2 and subsequent remarks) almost surely there exists (at least) a strong
channel connecting two opposite sides of the square. Therefore, if u. is a sequence
converging to u, there must be at least one pair ¢,j of nearest neighbors in the
strong cluster such that (uc); # (uc); so that E¥(u.) = +oo. This implies that
E'(u) = 4o00.

O

A.5 A continuity result

The number \,(v) defined by equation (A.10) describes the average distance on the
weak cluster in the direction v (and, by Remark A.3.8, also in the orthogonal direc-
tion). Its value cannot be decreased by using ‘small portions’ of strong connections,
as expressed by the following result.

Lemma A.5.1. Letn > 0 be fized. Then there are § € (0,1) and p > 0 such that
almost surely there exists Ny such that for all N > Ng and all channels of length
L connecting the two shorter sides of NTS and with L < (A\y(v) —n)N we have
#(strong links) > p(n)N.

The proof of this technical Lemma is contained in Braides and Piatnitski [16]
and it is used to prove that, in the subcritical case, the overall behavior of a discrete
membrane with randomly distributed defects is characterized by a fracture type
energy, and the surface interaction is described by the asymptotical chemical distance
Ap-

We would like to exploit Lemma A.5.1 to prove that an elliptic random spin
system with coefficients 1 and § > 0, in the limit as 5 goes to +oo (i.e. for g very
large), has the same behavior of a rigid system (that is, with § = +00). More
precisely, if ¢, (3, v) is the surface tension coming from the elliptic problem, then

Jm_gy(8,7) = M(v) = pyl00,v).

The expression \,(v) = ¢,(400,v) means that A, is the surface tension computed
for § = 400. Such a continuity result seems to be interesting, because in general it
does not hold outside this random setting, as shown by the following simple example.

Example A.5.2. Consider the energies
P (u) = 3 ec(ui — uj)?, (A.20)
ij

where
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(A.21)

Cij = .
1 otherwise.

3 _{5 ifip =71=0

It is well known from the theory of homogenization of elliptic spin systems that
there exists the I'-limit

D-lim P (u) = F7(u) = /

o5 (v) dH! :/ vl dHY:  (A.22)
Qno*{u=1}

Qno*{u=1}
note that the sequences {cfg} and {ps} (and consequently {F"}) are (trivially)
increasing in § and we can put ¢;7 = sup cfj, ¢ = sup ¢g and

B8>0 £>0

Flu) = sup FP(u) = [ o)t = | vl dn.
B8>0 Qno*{u=1} QNo*{u=1}

Now if we consider the energies

F>(u) = Z ecqy (Ui — ui)?, (A.23)
ij
where
i 0
o= e Hh=a (A.24)
1 otherwise.
(with the usual convention +o0o -0 = 0) then we have that
F(u) = T- lim F2°(u) = / Il dH1+/ vl dH.
=0 QNo* {u=1}N{z1>0} QNo* {u=1}N{z1<0}

Therefore, F(u) # F>(u).

We recall the main results about homogenization of random spin systems (see
Braides and Piatnitski [17]). Given a probability space (X, F,P), we consider an
ergodic stationary discrete random process 0%, 2 € 72.

We are going to compute the I'-limit of the energies

E?(u) := Zaa@-"j(ui — uj)2
ij

W

& =o0%). For any z,y € 7Z? and w € ¥ we define

(with the usual identification o

K
ww(x,y):min{ZJZﬂn_l:ig:x,iK:y,KEN}, (A.25)
n=1

where the minimum is taken over all paths joining = and y. The following statement
holds (we can compare it with Lemma A.3.5).
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Proposition A.5.3. For any 7 € R? the following limit exists P-almost surely and
does not depend on w

Yo(r) = lim (0, |mr)), (4.20)

where |m7 |, = |m7g| is the integer part of the k-th component of mt.
For any x € R? and 7 € R? the limit relation

i %w( (ma), [ma + mr]) = vo(r) (A.27)

holds P-almost surely.
At this point we can recall the main convergence theorem.

Theorem A.5.4 (elliptic random homogenization). Let oy satisfy the hypoth-
esis of ellipticity 0 < a < 035 < 8 < +o00 for all i,j. Then the F—lil’% E? exists
e—

P-almost surely, is deterministic and is given by
F“(u) :/ ©p(v) dH . (A.28)
Qno*{u=1}

where
op(v) = to(vh). (A.29)

A particular case of the preceding random problem is obtained by considering
the i.i.d. Bernoulli bond-percolation model with coefficients

W __
z

(A.30)

£ >0 with probability p

1 with probability 1 — p.
With this choice of coefficients we find that the function ¢, of Theorem A.5.4 now
depends also on 3, ¢, = ¢, 3. We will prove that the case of rigid spin is the limit

as 8 — +oo of the problem defined by coefficients (A.30), in the sense expressed by
the following theorem.

Theorem A.5.5 (continuity). Let ¢, g be defined by Theorem A.5. when the
coefficients 0% are given by (A.30), and X\, be defined by Proposition A.3.7. Then,
for all v € R?, we have two cases:

(i) If p < 1/2, then 611}11100 p (V) = Xp(V);
(ii) Ifp > 1/2, then ,BEI-EOO 0ps(V) = +00.

Proof. (i) Let p < 1/2. First remark that, with fixed v € R? and for all 8 > 0, we
have

ep.s(1V) < Ap(v),
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because the minimum in the definition of A, (see equation (A.3.5)) is taken in a
smaller set of paths.
Therefore, A\, being independent of 3,

BEIEOO Pp,a(v) < Ap(v).

Now suppose that there exists 7 > 0 such that ﬁhrf 0p.3(V) < Ap(v) — n; we would
—+00

like to show that this assumption leads to a contradiction.
First of all, ¢, g being increasing in 3, we have that

epp(V) < Ap(v) —n, VB> 0. (A.31)
With fixed 3, by (A.27) there exists n € N almost surely such that, for all n > n
VY (Inz], [nz +nt]) < (Ap(v) = n')n, (A.32)

where 7 = v+, 1/ is a constant and x € R%. Suppose that ¢ (|nz|, |[nz + nt|) =
K

Z Gy i, with ig = [nx],ix = |nz + n7| and let v be the corresponding path.
m=1

By means of Lemma A.5.1, we can find § € (0,1), a constant C = C() > 0 such
that if n/ > n is such that the channel v connects the shorter sides of n/T?, then
from the fact that

K
< D0 G < () =), (A.33)
m=1
it follows that
#(strong links in v) > Cn’. (A.34)
Now
K
BCn <Y G5, < () =0, (A.35)
m=0

and letting 8 — +o0o we obtain a contradiction.

(ii) If p > 1/2, we can reason as in Theorem A.4.2(b), because the percentage of 5
is fixed by channel property. In particular, for large m, the paths linking |mz| and
|max + m7] in equations (A.25), (A.26) and (A.27) contain at least a f-bond. [
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