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Abstract

Motivated by the study of linear quadratic optimal control problems, we consider a dynamical
system with a constant, quadratic Hamiltonian, and we characterize the number of conjugate times
in terms of the spectrum of the Hamiltonian vector field ~H. We prove the following dichotomy: the
number of conjugate times is identically zero or grows to infinity. The latter case occurs if and only
if ~H has at least one Jordan block of odd dimension corresponding to a purely imaginary eigenvalue.
As a byproduct, we obtain bounds from below on the number of conjugate times contained in an
interval in terms of the spectrum of ~H.
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1 Introduction

Linear Quadratic optimal control problems (LQ in the following) are a standard topic in control theory
and dynamical systems, and are very popular in applications. They consist in a linear control system
with quadratic Lagrangian. We briefly recall the general features of a LQ problem, and we refer to
[5, Chapter 16] and [12, Chapter 7] for further details. We are interested in admissible trajectories,
namely curves x : [0, t1]→ Rn such that there exists a control u ∈ L2([0, t1],Rk) such that

ẋ = Ax+Bu, x(0) = x0, x(t1) = x1, x0, x1, t1 fixed,

that minimize a quadratic functional φt1 : L2([0, t1],Rk)→ R of the form

φt1(u) =
1

2

∫ t1

0
(u∗Ru+ x∗Pu+ x∗Qx) dt.

The condition R ≥ 0 is necessary for existence of optimal control. We also assume R > 0 (for the
singular case we refer to [12, Chapter 9]). Without loss of generality we may reduce to the case
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φt1(u) =
1

2

∫ t1

0
(u∗u− x∗Qx) dt.

Here A,B,Q are constant matrices of the appropriate dimension. The vector Ax represents the drift
field, while the columns of B represent the controllable directions. The meaning of the potential term
Q will be clear later, when we will introduce the Hamiltonian associated with the LQ problem.

We assume that the system is controllable, namely there exists m > 0 such that

rank(B,AB, . . . , Am−1B) = n.

This hypothesis implies that, for any choice of t1, x0, x1, the set of controls u such that the associated
trajectory xu : [0, t1]→ Rn connects x0 with x1 in time t1 is non-empty.

It is well known that the optimal trajectories of the LQ system are projections (p, x) 7→ x of the
solutions of the Hamiltonian system

ṗ = −∂xH(p, x), ẋ = ∂pH(p, x), (p, x) ∈ T ∗Rn = R2n,

where the Hamiltonian function H : R2n → R is defined by

H(p, x) =
1

2
(p, x)∗H

(
p
x

)
, H =

(
BB∗ A
A∗ Q

)
.

We denote by Pt : R2n → R2n the flow of the Hamiltonian system, which is defined for all t ∈ R. To
exploit the natural symplectic setting on T ∗Rn = R2n, we employ canonical coordinates (p, x) such

that the symplectic form ω =
∑n

i=1 dpi ∧ dxi is represented by the matrix Ω =
(

0 In
−In 0

)
. The flow

lines of Pt are precisely the integral lines of the Hamiltonian vector field ~H ∈ Vec(R2n), defined by
dH(·) = ω( · , ~H). More explicitly

~H(p,x) =

(
−A∗ −Q
BB∗ A

)(
p
x

)
= −ΩH

(
p
x

)
.

By the term Hamiltonian vector field, we denote both the linear field ~H and the associated matrix
−ΩH. The Hamiltonian flow can be explicitly written in terms of the latter as

Pt = e−tΩH,

where the r.h.s. is the standard matrix exponential.

Conjugate times

We stress that not all the integral lines of the Hamiltonian flow lead to minimizing solutions of the
LQ problem, since they only satisfy first order conditions for optimality. For this reason, they are
usually called extremals. Sufficiently short segments, however, are optimal, but they lose optimality
at some time t > 0, called the first conjugate time. In the following, we give a geometrical definition
of conjugate time, in terms of curves in the Grassmannian of Lagrangian subspaces of R2n.

We say that a subspace Λ ⊂ R2n is Lagrangian if ω|Λ ≡ 0, and dim Λ = n. A notable example of
Lagrangian subspace is the vertical subspace, that is V := {(p, 0)| p ∈ Rn}.

Definition 1.1. The Jacobi curve J(·) is the following family of Lagrangian subspaces of R2n

J(t) := etΩHV, V := {(p, 0)| p ∈ Rn}.

From the geometrical viewpoint, J(·) is a smooth curve in the submanifold of the Grassmannian of
the n-dimensional subspaces of R2n defined by the Lagrangian subspaces.

Definition 1.2. We say that t is a conjugate time if J(t) ∩ V 6= 0. The multiplicity of the conjugate
time t is the dimension of the intersection.
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In the language introduced by V. Arnold, these are times of verticality of the Jacobi curve. It
is not hard to show that t is a conjugate time if and only if there exist solutions of the Hamilton
equations such that x(0) = x(t) = 0.

We briefly recall the connection between conjugate times and second order conditions for optimality.
The solutions of the LQ problems can be seen as constrained minima of the quadratic functional φt1
on U(x0, x1) ⊂ L2([0, t1],Rk) given by all the controls u such that xu(0) = x0 and xu(t1) = x1. It is
easy to check that U(x0, x1) = u∗ + U(0, 0) for any u∗ ∈ U(x0, x1), that is U(x0, x1) is an affine space
over the vector space U(0, 0). For this reason, the behaviour of φt1 , restricted to U(0, 0) provides all
the informations about optimality. It is a well known fact that the number of conjugate times in the
interval (0, t1), counted with their multiplicity, is equal to the negative inertia index of the quadratic
form φt1 : U(0, 0)→ R (this can be proved directly with the techniques in [5, Propositions 16.2, 16.3],
see also [1, Theorem I.2] for a more general setting). The occurrence of conjugate times implies that
an extremal cannot be a minimizer, since one can find a small variation of u∗ that decreases the value
of φt1 . The first conjugate time determines existence and uniqueness of minimizing solutions of the
LQ problem, as specified by the following proposition.

Proposition 1.3. Let t̄ be the first conjugate time, namely t̄ := inf{t > 0| J(t) ∩ V 6= 0}.

• For t1 < t̄, for any x0, x1 there exists a unique minimizer connecting x0 with x1 in time t1.

• For t1 > t̄, for any x0, x1 there exists no minimizer connecting x0 with x1 in time t1.

• For t1 = t̄, existence of minimizers depends on the initial data.

In this paper we completely characterise the occurrence of conjugate times for a controllable LQ
problem. In particular, we prove the following result.

Theorem A. The conjugate times of a controllable linear quadratic optimal control problem obey the
following dichotomy:

• If the Hamiltonian field ~H has at least one odd-dimensional Jordan block corresponding to a pure
imaginary eigenvalue, the number of conjugate times in the interval [0, T ] grows to infinity for
T → ±∞.

• If the Hamiltonian field ~H has no odd-dimensional Jordan blocks corresponding to a pure imag-
inary eigenvalue, there are no conjugate times.

In Sec. 3, we also provide estimates for the first conjugate time, in terms of the (signed) eigenvalues
of ~H (see Corollaries 3.11 and 3.13).

Before passing to a more detailed description of curves of Lagrangian subspaces, we stress that
the concept of Jacobi curves is not limited to LQ optimal control problems and can be defined for
way more general geometrical structures, such as control systems with Tonelli Lagrangian including,
among the others Riemannian, sub-Riemannian, Finsler and sub-Finsler manifolds. In these more
general settings, however, we cannot exploit the natural linear structure of Rn, and the Jacobi curve is
a curve of subspaces of the tangent space to the cotangent bundle, associated with a fixed “geodesic”
(i.e. locally minimizing curve) of the underlying structure. We refer the interested reader to [2, 6, 4].

The plan of the paper is as follows. In Sec. 2 we recall some basic facts about geometry of curves
in Lagrange Grassmannian, and the main technical tool: the Maslov index. Then, in Sec. 3 we prove
the main result.

2 Curves in the Lagrange Grassmannian

Let (Σ, ω) be a 2n-dimensional symplectic vector space. Recall that subspace Λ ⊂ Σ is called La-
grangian if it has dimension n and ω|Λ ≡ 0. The Lagrange Grassmannian L(Σ) is the set of all
n-dimensional Lagrangian subspaces of Σ.

Proposition 2.1. L(Σ) is a compact n(n + 1)/2-dimensional submanifold of the Grassmannian of
n-planes in Σ.
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Proof. Let ∆ ∈ L(Σ), and consider the set ∆t := {Λ ∈ L(Σ) |Λ∩∆ = 0} of all Lagrangian subspaces
transversal to ∆. Clearly, the collection of these sets for all ∆ ∈ L(Σ) is an open cover of L(Σ). Then
it is sufficient to find submanifold coordinates on each ∆t.

Let us fix any Lagrangian complement Π of ∆ (which always exists, though it is not unique).
Every n-dimensional subspace Λ ⊂ Σ that is transversal to ∆ is the graph of a linear map from Π to
∆. Choose an adapted Darboux basis on Σ, namely a basis {ei, fi}ni=1 such that

∆ = span{f1, . . . , fn}, Π = span{e1, . . . , en},
ω(ei, fj)− δij = ω(fi, fj) = ω(ei, ej) = 0, i, j = 1, . . . , n.

In these coordinates, the linear map is represented by a matrix SΛ such that

Λ ∩∆ = 0⇔ Λ = {(p, SΛp)| p ∈ Π ' Rn}.

Moreover it is easy to see that Λ ∈ L(Σ) if and only if SΛ = S∗Λ. Hence, the open set ∆t of
all Lagrangian subspaces transversal to ∆ is parametrized by the set of symmetric matrices, and
this gives smooth submanifold coordinates on ∆t. This also proves that the dimension of L(Σ) is
n(n+ 1)/2. Finally, as a closed subset of a compact manifold, L(Σ) is compact.

Fix now Λ ∈ L(Σ). The tangent space TΛL(Σ) to the Lagrange Grassmannian at the point Λ can
be canonically identified with the set of quadratic forms on the space Λ itself, namely

TΛL(Σ) ' Q(Λ).

Indeed, consider a smooth curve Λ(·) in L(Σ) such that Λ(0) = Λ, and denote by Λ̇ ∈ TΛL(Σ) its
tangent vector. For any point z ∈ Λ and any smooth extension z(t) ∈ Λ(t), we define the quadratic
form

Λ̇ := z 7→ ω(z, ż),

where ż = ż(0). A simple check shows that the definition does not depend on the extension z(t).
Finally, if in local coordinates Λ(t) = {(p, S(t)p)| p ∈ Rn}, the quadratic form Λ̇ is represented by the
matrix Ṡ(0). In other words, if z ∈ Λ has coordinates p ∈ Rn, then Λ̇[z] = p∗Ṡ(0)p.

2.1 Transversality properties

In this section we introduce some important properties of curves in the Lagrange Grassmannian. Then
we discuss the specific case of a Jacobi curve. Let J(·) ∈ L(Σ) be a smooth curve in the Lagrange
Grassmannian. For i ∈ N, consider

J (i)(t) = span

{
dj

dtj
`(t)

∣∣∣∣ `(t) ∈ J(t), `(t) smooth, 0 ≤ j ≤ i
}
⊂ Σ, i ≥ 0.

The subspace J (i)(t) is the i-th extension of the curve J(·) at t. The flag

J(t) = J (0)(t) ⊂ J (1)(t) ⊂ J (2)(t) ⊂ . . . ⊂ Σ,

is the associated flag of the curve at the point t. The curve J(·) is called:

(i) equiregular at t if dim J (i)(·) is locally constant at t, for all i ∈ N,

(ii) ample at t if there exists N ∈ N such that J (N)(t) = Σ,

(iii) monotone increasing (resp. decreasing) at t if J̇(t) is non-negative definite (resp. non-positive
definite) as a quadratic form.

In coordinates, J(t) = {(p, S(t)p)| p ∈ Rn} for some smooth family of symmetric matrices S(t).
The curve is ample at t if and only if there exists N ∈ N such that

rank{Ṡ(t), S̈(t), . . . , S(N)(t)} = n.

We say that the curve is equiregular, ample or monotone (increasing or decreasing) if it is equiregular,
ample or monotone for all t in the domain of the curve.

A crucial property of ample, monotone curves is described in the following lemma.
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Lemma 2.2. Let J(·) ∈ L(Σ) a monotone, ample curve at t0. Then, for any fixed Lagrangian subspace
Λ, there exists ε > 0 such that J(t) ∩ Λ = 0 for 0 < |t− t0| < ε.

In other words, ample, monotone curves can intersect any fixed Lagrangian subspace Λ only at a
discrete set of times.

Proof. Without loss of generality, assume t0 = 0. Choose a Lagrangian splitting Σ = Λ ⊕ Π, such
that, for |t| < ε, the curve is contained in the chart defined by such a splitting. In coordinates,
J(t) = {(p, S(t)p)| p ∈ Rn}, with S(t) symmetric. The curve is monotone, then Ṡ(t) is a semidefinite
symmetric matrix. Without loss of generality, we assume Ṡ(t) ≥ 0. Assume that J(0) ∩ Λ 6= 0.
In coordinate, this means that S(0) has some vanishing eigenvalues. We now show that the whole
spectrum of S(t) is strictly increasing in t, hence it moves away from zero for t sufficiently small.

Notice that S(t)− S(0) =
∫ t

0 Ṡ(τ)dτ ≥ 0, by the monotonicity assumption. Then, for any z ∈ Rn,
consider the smooth function t 7→ fz(t) := z∗[S(t) − S(0)]z, which is non-decreasing and vanishes at
t = 0. Moreover, fz(t) cannot be constantly zero on any interval of the form [0, δ), otherwise z would
be in the kernel of S(t) − S(0) for all t ∈ [0, δ) and, a fortiori, in the kernel of all the derivatives
S(N)(0), which is absurd by the ampleness hypothesis. Therefore, fz(t) > 0 for 0 < t < ε. Since z is
arbitrary

S(t) > S(0), 0 < t < ε. (1)

Now, denote by λ1(t) ≥ . . . ≥ λn(t) the eigenvalues of S(t) at each fixed t. Then, by the Courant
min-max principle, we have the following variational characterisation

λk(t) = max{min{x∗S(t)x|x ∈ U ⊂ Rn, |x| = 1}| dimU = k}, k = 1, . . . , n.

Thus, by Eq. (1), each eigenvalue is strictly increasing for 0 < t < ε. So, even if S(0) has a non-trivial
kernel, it becomes non-degenerate for sufficiently small small t > 0. The same argument shows that
this is true also for t < 0.

Observe that, if Λ = J(0), then S(0) = 0 in any chart given by the splitting Σ = J(0) ⊕ Π.
Therefore, the proof of Lemma 2.2 implies that all the eigenvalues of S(t) are strictly non-zero for all
|t| < ε, t 6= 0. If the curve is also monotone and ample, the only restriction on ε comes from the fact
that J(t) must belong to the given coordinate chart. In particular, the eigenvalues of S(t) are strictly
positive for all t > 0 (and strictly negative for t < 0) at least until the first intersection of J(·) with
Π occurs. This means that J(·) cannot have further intersections with J(0) until it crosses Π. Thus,
we obtain the following.

Corollary 2.3. Let J(·) ∈ L(Σ) a monotone, ample curve, such that J(·)∩Π = 0, for some Lagrangian
subspace Π. Then J(·) has no self-intersections, namely J(t1) ∩ J(t2) = 0 for all t1 6= t2.

2.2 Reduction

Let (Σ, ω) be a symplectic vector space, and let Γ ⊂ Σ be an isotropic subspace, namely ω|Γ ≡ 0. For
any subspace V ⊂ Σ, we denote by the symbol V ∠ the corresponding ω-orthogonal subspace.

Definition 2.4. The reduction of (Σ, ω) with respect to an isotropic subspace Γ is the symplectic
space (ΣΓ, ω), where

ΣΓ := Γ∠/Γ.

The definition is well posed, since ω descends to a well-defined symplectic form on the quotient.
Moreover, if dim Σ = 2n and dim Γ = k, then ΣΓ is a 2(n− k)-dimensional symplectic space.

The projection πΓ : L(Σ) → L(ΣΓ), defined by Λ 7→ Λ ∩ Γ∠/Γ, is not even continuous in general.
Nevertheless, the following lemma holds true.

Lemma 2.5. The restriction of πΓ to Γt := {Λ ∈ L(Σ)|Λ ∩ Γ = 0} is smooth.

Proof. Let Λ ∈ Γt. We can always find a Lagrangian space Π which contains Γ and such that Π∩Λ = 0.
The proof is now trivial in charts given by a Darboux basis on the splitting Π ⊕ Λ. Indeed, in these
charts, the projection corresponds to take a n− k × n− k block of the representative matrix.
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The next lemma provides condition under which a monotone, ample Jacobi curve remains monotone
and ample upon projection.

Lemma 2.6. Let J(·) ∈ L(Σ) a monotone, ample (at t0) curve such that J(·) ∈ Γt. Then the
projection JΓ(·) := πΓ(J(·)) is a monotone, ample (at t0) curve in L(ΣΓ).

Proof. By Lemma 2.5, the projection JΓ(·) is still smooth. We prove the Lemma by analysing the
coordinate presentation of the curve. Without loss of generality, we choose t0 = 0. We find Π ∈ L(Σ)
such that Γ ⊂ Π, and Σ = J(0)⊕ Π. Therefore, we introduce Darboux coordinates (p, x) ∈ R2n such
that, for small t

Π = {(0, x)|x ∈ Rn}, J(t) = {(p, S(t)p)| p ∈ Rn}, S(0) = 0.

Moreover, if dim Γ = k, we split Rn = Rk ⊕ Rn−k, and we write x = (x1, x2) and p = (p1, p2). Thus

Γ = {((0, 0), (x1, 0))|x1 ∈ Rk}, Γ∠ = {((0, p2), (x1, x2))| p2, x2 ∈ Rn−k, x1 ∈ Rk}.

Accordingly, the matrix S(t) splits as
(
S11(t) S12(t)
S∗12(t) S22(t)

)
. In terms of these coordinates, and analogous

coordinates on ΣΓ = Γ∠/Γ, we obtain that the matrix representing the reduced curve is SΓ(t) := S22(t)
(which is a n− k × n− k symmetric matrix). More precisely

JΓ(t) = {(p2, S22(t)p2)| p2 ∈ Rn−k}.

The original curve is monotone (say non-decreasing), then Ṡ(t) ≥ 0. Therefore, also Ṡ22(t) ≥ 0, and
JΓ(·) is monotone too.

We now prove that the reduced curve is still ample at 0 if the original curve was. We assume S(t)
to be real-analytic, otherwise, it is sufficient to replace S(t) with its Taylor polynomial of sufficiently
high order. From the proof of Lemma 2.2, S(t) > S(0) = 0 for t > 0 sufficiently small. Thus, for all
y ∈ Rn−k, the function t 7→ y∗S22(t)y is zero at t = 0, and strictly positive for t > 0. But an analytic
function with these properties has at least a non-vanishing (strictly positive) derivative. Hence, for

some i > 0, y∗S
(i)
22 (0)y > 0. Since this construction holds for any y ∈ Rn−k, this implies

rank{Ṡ22(0), . . . , S
(N)
22 (0)} = n− k,

for some sufficiently large N > 0.

2.3 Maslov index and conjugate times

In this section we review a very useful homotopy invariant of curves in the Lagrange Grassmannian:
the Maslov index, that is the intersection number of a curve with a certain pseudo-manifold in L(Σ).
There are many things called Maslov index in different contexts, for a modern review we suggest [8].
Here we follow mainly the approach in [1] and [3].

Let Π ∈ L(Σ), consider the following subset of L(Σ),

MΠ = L(Σ) \Πt = {Λ ∈ L(Σ)|Λ ∩Π 6= 0},

which is called the train of the Lagrangian subspace Π due to V. Arnold. To see howMΠ looks locally,
let ∆ ∈ L(Σ), ∆ ∩Π = 0. In coordinates induced by the splitting Σ = Π⊕∆,

∆t = {(p, Sp)| p ∈ Π ' Rn, S ∈ Q(Rn)}.

Therefore, in coordinates,
∆t \Πt ' {S ∈ Q(Rn)| kerS 6= 0}.

Hence the intersection of MΠ with the coordinate neighbourhood ∆t coincides with the set of all
degenerate quadratic forms on Rn. Notice that to a subspace Λ, which has k-dimensional intersection
with Π there corresponds a form with k-dimensional kernel. The set of degenerate forms constitute
an algebraic hypersurface in the space of all quadratic forms Q(Rn).
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We want to define the intersection number of a curve in L(Σ) with the train MΠ. To do this, we
need a “co-orientation” on MΠ, so first we start describing its singular locus. We see that a point
Λ ∈MΠ is singular if its associated quadratic form has at least two-dimensional kernel, so MΠ is an
algebraic hypersurface in L(Σ) and its singular locus is an algebraic subset of codimension three in
MΠ. Thus MΠ is a pseudo-manifold.

Now, let us define a canonical co-orientation of the hypersurface MΠ at a non-singular point Λ,
i.e. we indicate the “positive and negative sides” ofMΠ in L(Σ). It is not difficult to see that vectors
from TΛL(Σ) corresponding to positive definite and negative definite quadratic forms on Λ are not
tangent to MΠ, then we have the following.

Definition 2.7. Let Λ be a non-singular point of MΠ. We consider as positive (negative) that side
of MΠ towards which the positive (negative) definite elements of TΛL(Σ) are directed.

We say that a curve J(·) in L(Σ) is in general position (with respect to MΠ) if J(·) intersects
the non-singular locus ofMΠ smoothly and transversally. The above co-orientation permits to define
correctly the intersection number (or Maslov index) of a continuous curve in general position, with
endpoints outside MΠ, with the hypersurface MΠ.

Definition 2.8. Let J(t), t0 ≤ t ≤ t1 be a continuous curve in general position in L(Σ) with respect
to the trainMΠ such that J(t0), J(t1) /∈MΠ. The Maslov index J[t0,t1] ·MΠ is the number of points
where J(·) intersects MΠ in the positive direction minus the number of points where this curves
intersects MΠ in the negative direction.

A crucial property of the Maslov index is that it is a homotopy invariant of the curve, indeed
a homotopy between curves in general position that leaves fixed the endpoints does not change the
Maslov index. The proof of this fact is the same as for usual intersection number of a curve with a closed
oriented hypersurface (see e.g. [14]). Notice that, since the singular locus of MΠ has codimension
three, the generic homotopy moves the curve in general position. Thus, the Maslov index of any curve
with endpoints not in MΠ is defined by putting the curve in general position.

Definition 2.9. Let J(t), t0 ≤ t ≤ t1 be a continuous curve (not necessarily in general position) in
L(Σ) such that J(t0), J(t1) /∈ MΠ. The Maslov index J[t0,t1] · MΠ is defined as J ′[t0,t1] · MΠ, where

J ′(t), t0 ≤ t ≤ t1 is any curve in general position homotopic to J[t0,t1], with the same endpoints.

A weak point of the definition of Maslov index is the necessity of putting the curve in general
position. This does not look like a very efficient way to compute the intersection number since putting
the curve in general position could imply the modification of maybe a nice object, but the fact that
the Maslov index is homotopy invariant leads to a very simple and effective way to compute it.

Lemma 2.10. Assume that the piece of curve J[t0,t1] belongs to the chart ∆t, ∆ ∩ Π = J(t0) ∩ Π =
J(t1) ∩Π = 0. Let S(ti) be the symmetric matrix representing the subspace J(ti) in coordinates given
by the splitting Σ = ∆⊕Π, that is J(ti) = {(p, S(ti)p)|p ∈ Π ' Rn}. Thus

J[t0,t1] · MΠ = indS(t0)− indS(t1),

where indS is the index of the quadratic form z 7→ z∗Sz, z ∈ Rn.

In general the whole curve is not contained in a chart, but we can split it into segments J[τi,τi+1],

i = 0, . . . , `, in such a way that J(τ) ∈ ∆t
i ∀τ ∈ [τi, τi+1], where ∆i ∩Π = 0, i = 0, . . . , `. Hence

J(·) · MΠ =
∑̀
i=0

J[τi,τi+1] · MΠ.

Remark 1. In particular, if J(·) is a Jacobi curve (which is monotone and ample) then the absolute
value of the Maslov index J[t0,t1] ·MV is the number of conjugate times of J(·) counted with multiplicity
in the interval [t0, t1].
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We finish this section with the two main propositions about the Maslov index we need in the
following. The first one provides an estimate of the difference of the Maslov index of a curve with
respect to two different trains.

Proposition 2.11. Let J(t), t0 ≤ t ≤ t1, be a continuous curve in L(Σ) and suppose that Π,Π′ ∈ L(Σ)
satisfy Π ∩ J(ti) = Π′ ∩ J(ti) = 0, i = 0, 1. Then

|J[t0,t1] · MΠ − J[t0,t1] · MΠ′ | ≤ n.

In the second one we consider a continuous curve Pt in Sp(Σ), i.e. a one-parameter subgroup of the
group Sp(Σ) of symplectic transformations of Σ and we estimate the difference of the indices between
two curves generated by Pt with respect to the same train.

Proposition 2.12. Let Pt ∈ Sp(Σ), t0 ≤ t ≤ t1 be a continuous curve in Sp(Σ), Pt0 = I, and suppose
Λ,Λ′ ∈ L(Σ). Set J(t) = PtΛ and J ′(t) = PtΛ

′. Then, for all Π ∈ L(Σ) such that Π ∩ J(ti) =
Π ∩ J ′(ti) = 0, i = 0, 1, the following inequality holds

|J[t0,t1] · MΠ − J ′[t0,t1] · MΠ| ≤ n.

The proofs of Propositions 2.11 and 2.12 can be found in [3, Propositions 5, 6].

3 Main results

We start this section by defining, more precisely, the class of dynamical systems under investigation.
Let (Σ, σ) be a symplectic vector space.

Definition 3.1. A LQ optimal control problem is a pair (H,V), where H : Σ → R is a quadratic
form (the Hamiltonian) and V ⊂ Σ is a Lagrangian subspace, such that H|V ≥ 0.

By choosing appropriate Darboux coordinates, Σ = R2n, ω = Ω, V = {(p, 0)| p ∈ Rn} and the
Hamiltonian is

H(p, x) =
1

2
(p, x)∗H

(
p
x

)
, H =

(
BB∗ A
A∗ Q

)
. (2)

Thus, Definition 3.1 is a coordinate-free characterization of the systems introduced in Sec. 1. With
the pair (H,V) we associate the Jacobi curve J(t) = etΩHV, which is a smooth curve in the Lagrange
Grassmannian L(Σ). The assumption H|V ≥ 0 is equivalent to the monotonicity of J(·).

Lemma 3.2. The Jacobi curve of the system (H,V) is monotone and equiregular.

Proof. Let z ∈ J(t), then there exists z0 ∈ V such that z = etΩHz0. The last formula also provides a
smooth extension of z belonging to the Jacobi curve for times close to t. Then, by definition of the
quadratic form J̇(t), we obtain

J̇(t)[z] = ω(z, ż) = ω
(
etΩHz0, e

tΩHΩHz0

)
= ω(z0,ΩHz0) = −z∗0BB∗z0 ≤ 0,

where we have used the fact that the Hamiltonian flow is a one-parameter group of symplectomor-
phisms. This proves that J̇(t) ≤ 0 as a quadratic form and the curve is monotone.

Now observe that J(t+ ε) = etΩHJ(ε). This imples, by definition of i-th extension, that

J (i)(t) = etΩHJ (i)(0), i ≥ 0,

hence the i-th extensions have the same dimension for all t, and the curve is equiregular.

Lemma 3.3. The system (H,V) is controllable if and only if the Jacobi curve J(·) is ample.
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Proof. By definition, the system (H,V), which can be written as in Eq. (2), is controllable if

rank(B,AB, . . . , Am−1B) = n.

It is sufficient to prove that this is equivalent to ampleness at t = 0, since ampleness at all t follows
from the equiregularity of the curve. Indeed, for small t, J(t) = {(p, S(t)p)| p ∈ Rn}. We explicitly
compute S(t) as follows. Observe that

J(t) = etΩH

(
p
0

)
=

(
φ11(t) φ12(t)
φ21(t) φ22(t)

)(
p
0

)
, p ∈ Rn.

It is clear that S(t) = φ21(t)φ11(t)−1. Then we can compute iteratively the derivatives of S(t) at t = 0,
and we obtain, for any m > 0

rank{Ṡ(0), S̈(0), . . . , Sm−1(0)} = rank{B,AB, . . . , Am−1B}.

Therefore controllability is equivalent to ampleness of the curve at t = 0.

We employ the symbolH to denote the set of controllable dynamical systems (H,V) or, with no risk
of confusion, the associated Hamiltonian vector fields ~H. Since the associated Jacobi curve is mono-
tone, ample and equiregular, Lemma 2.2 and Corollary 2.3 apply. This has important consequences
on conjugate times.

Definition 3.4. We say that Γ ⊂ Σ is an ~H-invariant subspace if Pt(Γ) = Γ for all t ∈ R.

Proposition 3.5. Let ~H ∈ H. Suppose there exists an ~H-invariant Lagrangian subspace Γ ⊂ Σ, then
the Jacobi curve J(·) has no conjugate times.

Proof. Indeed, by Lemma 2.2, the Jacobi curve remains transversal to Γ for all times. Then, by
Corollary 2.3, the only intersection with V = J(0) can occur at t = 0.

Notice that the Lagrangian hypothesis is crucial. Indeed, Proposition 3.5 is false if the ~H-invariant
subspace is simply isotropic.

3.1 Proof of the main result

Now we are ready to prove Theorem A. By “eigenvalues of the Hamiltonian” we will mean the eigen-
values of ΩH, that is the matrix representing the Hamiltonian vector field ~H. The proof is based on
the following steps:

(i) Assuming ~H diagonalizable, with pure imaginary spectrum, there are infinitely many conjugate
times (Proposition 3.8);

(ii) Assuming ~H diagonalizable, with at least one pure imaginary eigenvalue, there are infinitely
many conjugate times (Proposition 3.12).

(iii) For a general ~H, with at least one Jordan block of odd order corresponding to a pure imaginary
eigenvalue, there are infinitely many conjugate times (Proposition 3.15).

(iv) For a general ~H, if all Jordan blocks corresponding to pure imaginary eigenvalues are of even
order, there are no conjugate times (Proposition 3.16).

We directly prove (i). Then, with the techniques of Sec. 2.2, we reduce (ii) and (iii) to the “extremal”
case (i).

We start by recalling an important property of the spectrum of Hamiltonian matrices as ~H. If λ
is an eigenvalue, then also ±λ,±λ̄ are eigenvalues with the same multiplicity, where the bar denotes
complex conjugation. Then, eigenvalues always appear in pairs (if λ = β or λ = iβ for β ∈ R) or in
quadruples otherwise.
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We denote by Eλ ⊆ R2n the real invariant subspace corresponding to the eigenvalues λ, λ̄ of ~H.
This is the real vector space generated by the generalized eigenvectors ξ, ξ̄ corresponding to the
eigenvalues λ and λ̄, respectively. More precisely

Eλ := span{u, v ∈ R2n|u+ iv ∈ ker( ~H − λI)k, k ≥ 0}.

It is clear that Eλ = Eλ̄.

Lemma 3.6. Let λ and λ′ be eigenvalues of ~H (not necessarily distinct). If λ+λ′ 6= 0 and λ̄+λ′ 6= 0
then EλΩEλ′ = 0.

Proof. For simplicity, we prove the theorem assuming ~H to be diagonalizable. Recall that ~H = −ΩH
and Ω2 = −I. Let ξ and ξ′ be eigenvectors corresponding to λ and λ′ respectively. Since Ω2 = −I, we
have ξ′Hξ = λξ′Ωξ and ξHξ′ = λ′ξΩξ′ so (λ+λ′)ξΩξ′ = 0. Analogously, we obtain ξ′Hξ̄ = λ̄ξ′Ωξ̄ and
ξ̄Hξ′ = λ′ξ̄Ωξ′. Then (λ̄+ λ′)ξ̄Ωξ′ = 0. Since λ+ λ′ 6= 0 and λ̄+ λ′ 6= 0 it follows that EλΩEλ′ = 0.
The above result still holds if ~H is not diagonalizable (see [13, Lemma D.1, Chapter II]).

Remark 2. In particular if λ = α+ iβ, with α 6= 0 then Ω|Eλ ≡ 0, i.e. Eα+iβ is isotropic if α 6= 0.

It follows that the invariant subspaces associated with purely imaginary eigenvalues, non-purely
imaginary eigenvalues, and E0 are pairwise Ω-orthogonal. This, together with the non-degeneracy of
Ω, implies the following decomposition in Ω-orthogonal symplectic subspaces

R2n = E0 ⊕

⊕
α 6=0

Eα+iβ


︸ ︷︷ ︸

non pure imaginary

⊕

⊕
β 6=0

Eiβ


︸ ︷︷ ︸
pure imaginary

.

In the following, with the term “pure imaginary eigenvalue” we understand all the eigenvalues λ = iβ,
with β 6= 0.

Lemma 3.7. There exists an ~H-invariant, Lagrangian subspace Γ+ of the symplectic space
⊕

λ non pure
imaginary

Eλ.

Proof. If zero is not an eigenvalue of ~H, we take Γ+ =
⊕
α>0

Eα+iβ, which is ~H-invariant by definition.

If zero is an eigenvalue of ~H, let us consider the corresponding invariant subspace E0, with dimE0 =
2m. Choose an isotropic m-dimensional subspace Γ0 ⊂ E0 (which is indeed ~H-invariant). Hence

Γ+ = Γ0 ⊕
⊕
α>0

Eα+iβ satisfies the required properties.

3.1.1 Diagonalizable case

In this section, we assume ~H to be diagonalizable.

Proposition 3.8. Let ~H ∈ H. Suppose that ~H is diagonalizable and has a pure imaginary spectrum.
Then the Jacobi curve J(·) has infinitely many conjugate times.

Proof. If ~H has only pure imaginary eigenvalues, it is well known (see e.g. [7, Appendix 6]) that there
exists a symplectic change of coordinates such that the Hamiltonian can be written as

H(p, x) =
1

2

n∑
j=1

ωj(p
2
j + x2

j ), ω1 ≥ ω2 ≥ · · · ≥ ωn. (3)

Notice that the eigenvalues of ~H are ±iωj , j = 1, . . . , n. The signs of the ωj are precisely the signs of
H on the real eigenspaces Eiωj . The following two lemmas are crucial.

Lemma 3.9 (Givental’ [11]). There exists a Lagrangian subspace Λ ⊂ R2n such that H|Λ > 0 if and
only if ωj + ωn−j+1 > 0, j = 1, . . . , n.
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Lemma 3.10 (Făıbusovich [10]). Under the controllability assumption (or, equivalently, the ampleness
of the Jacobi curve), there exists a Lagrangian subspace Λ ⊂ R2n such that H|Λ > 0.

Lemmas 3.10 and 3.9 imply the following inequality:

n∑
j=1

ωj > 0. (4)

Now, let us define a new curve L(t) := Pt(L0) in L(R2n), where L0 := {(p, 0) : p ∈ Rn} ⊂ R2n,
L0 ∈ L(R2n).

Remark 3. Notice that, in order to bring the Hamiltonian to the normal form of Eq. (3), we have done
a symplectic change of basis. Thus, in general, L0 6= V.

If we reorder coordinates in such a way that (p, x) 7→ (p1, x1, . . . , pn, xn), we can write

L(t) =

r(tω1)
. . .

r(tωn)

L0,

where r(tωj) is a rotation of angle tωj in the 2-dimensional subspace (pj , xj). Observe that, given
t > 0 we can choose ε > 0 sufficiently small such that L(ε) ∩ L0 = L(t + ε) ∩ L0 = 0. Therefore
the Maslov index L[ε,t+ε] ·ML0 is well defined, since the endpoints of the curve are transversal to the
train. We employ the shorthand L(0,t) ·ML0 = L[ε,t+ε] ·ML0 , for any ε sufficiently small, and similar
notation is understood every time a small variation of the end-times is required.

We now prove that the index L(0,+∞) · ML0 is infinite. Intersections with the train occur at each
half-rotation in each 2-dimensional subspace (pj , xj), with a sign given by the sign of ωj . Therefore,
by a direct computation, we have

L(0,T ) · ML0 =
n∑
j=1

bTωj
π
c >

n∑
j=1

Tωj
π
− n.

Inequality (4) implies that there are no compensations in the sum of the signs in the computation of

the Maslov index. Indeed, let N > 0 fixed. Since
∑n

j=1 ωj > 0 we can take T ≥ (N+n)π∑n
j=1 ωj

so that

L(0,T ) · ML0 > N.

This implies that the Maslov index of the curve L(t) = Pt(L0) with the trainML0 grows to infinity for
T →∞. On the other hand, the number of conjugate times (counted with multiplicity) is the Maslov
index of the Jacobi curve J(t) = Pt(V) with the train MV . Thus, by combining Proposition 2.11
and 2.12, we obtain

|J(0,T ) · MV − L(0,T ) · ML0 | ≤ 2n.

Therefore

J(0,T ) · MV >
∑n

j=1 ωj

π
T − 3n.

Thus J(·) has infinitely many conjugate times.

As a corollary of the proof of Proposition 3.8, we can give an estimate for the first conjugate time
of a LQ optimal control problem.

Corollary 3.11. Suppose the Hamiltonian can be written as H(p, x) = 1
2

∑n
j=1 ωj(p

2
j + x2

j ). Then, if

T ≥ (N+3n−1)π∑n
j=1 ωj

there are at least N conjugate times (counted with multiplicity) in the interval (0, T ].

In particular, the first conjugate time t̄ satisfies t̄ ≤ 3nπ∑n
j=1 ωj

.

Now we are ready to discuss the case in which both pure and non pure imaginary eigenvalues occur
in the spectrum of ~H.
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Proposition 3.12. Let ~H ∈ H. Assume that ~H is diagonalizable and has at least one pure imaginary
eigenvalue. Then the associated Jacobi curve J(·) has infinitely many conjugate times.

Proof. We reduce the problem to the extremal case of Proposition 3.8. Consider Γ+ as in Lemma 3.7,
and let dim Γ = k (we drop the index + from now on). Recall that Γ is an ~H-invariant isotropic
subspace of Σ = R2n. We will consider the Lagrange Grassmannian of the reduced space ΣΓ =
Γ∠/Γ. Notice that, by Lemma 2.2, the Jacobi curve remains transversal to Γ for all times. Thus,
by Lemma 2.6, the reduced Jacobi curve JΓ(·) is a smooth, ample, monotone curve in L(ΣΓ). By
construction, we have

Γ∠ = Γ⊕
⊕
λ pure

imaginary

Eλ, ΣΓ =
⊕
λ pure

imaginary

Eλ.

Therefore we reduced the problem to the case of purely imaginary spectrum, and we can apply
Proposition 3.8 to conclude that JΓ(·) has infinitely many conjugate times. Notice that conjugate
times for JΓ(·) are intersections with VΓ := π(V) = (Γ∠ ∩ V)/Γ. This means that the original
curve has infinitely many intersections with VΓ ⊕ Γ. More precisely, as we obtained in the proof of
Proposition 3.8, and recalling that dim ΣΓ = 2(n− k) we have

J(0,T ) · MVΓ⊕Γ >

∑n−k
j=1 ωj

π
T − 3(n− k).

By applying again Proposition 2.11, we obtain

|J(0,T ) · MV − J(0,T ) · MVΓ⊕Γ| ≤ n.

Therefore

J(0,T ) · MV >
∑n−k

j=1 ωj

π
T − 4n+ 3k.

Then J(·) has infinitely many conjugate times as well.

Again, we give an estimate for the number of conjugate times as a separate corollary.

Corollary 3.13. Suppose the Hamiltonian, restricted to
⊕
λ pure

imaginary

Eλ, can be written as H(p, x) =

1
2

∑n−k
j=1 ωj(p

2
j + x2

j ). Then if T ≥ (N+4n−3k−1)π∑n−k
j=1 ωj

, there are at least N conjugate times (counted with

multiplicity) in the interval (0, T ]. In particular, the first conjugate time t̄ satisfies t̄ ≤ (4n−3k)π∑n−k
j=1 ωj

.

3.1.2 General case

Now, let us consider an arbitrary ~H. We approach the problem with the same basic techniques devised
for the diagonalizable case. Let λ = iβ, β 6= 0 a pure imaginary eigenvalue of ~H. Recall that, by
Lemma 3.6, Eiβ is Ω-orthogonal to all the others Eλ′ , with λ′ 6= ±iβ. Therefore Eiβ is symplectic. It
is well known that there exists a symplectic change of coordinates on Eiβ such that the Hamiltonian
H|Eiβ has one of the following normal forms (see [9, 15] and [7, Appendix 6]).

(a) If ±iβ correspond to a pair of Jordan blocks of even order 2k:

H(p, x) = ±1

2

 k∑
j=1

(
1

β2
x2j−1x2k−2j+1 + x2jx2k−2j+2

)
− β2

k∑
j=1

p2j−1x2j +

k∑
j=1

p2jx2j−1−

−
k−1∑
j=1

(
β2p2j+1p2k−2j+1 + p2j+2p2k−2j+2

) . (5)
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1

2k

1
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Figure 1: Block structure of the normal form of ~H|Eλ for a pair of Jordan blocks of even order (case a)
and odd order (case b). In case (a), dimEλ = 4k, and each box denotes the presence of a non-vanishing
2× 2 block. In case (b), dimEλ = 4k+ 2, and each box denotes the presence of a non-vanishing 1× 1
block. All other entries are zero.

(b) If ±λ correspond to a pair of Jordan blocks of odd order 2k + 1:

H(p, x) = ±1

2

 k∑
j=1

(
β2p2jp2k−2j+2 + x2jx2k−2j+2

)
−

2k∑
j=1

pjxj+1−

−
k+1∑
j=1

(
β2p2j−1p2k−2j+3 + x2j−1x2k−2j+3

) . (6)

Notice that the dimension of Eλ is 4k or 4k + 2, respectively.

Lemma 3.14. Let λ = iβ a pure imaginary eigenvalue of ~H. Thus

(a) If the Jordan block corresponding to λ has even order 2k then there exists a Lagrangian ~H-
invariant subspace Γ ⊂ Eλ (of dimension 2k).

(b) If the Jordan block corresponding to λ has odd order 2k + 1 then there exists an isotropic ~H-
invariant subspace Γ ⊂ Eλ of dimension 2k.

Proof. Let us consider the first case. As we recall above, H|Eλ can be written as in Eq. (5). Then, a

careful inspection shows that ~H|Eλ = −ΩH|Eλ has the structure, in coordinates (p, x) ∈ R4k, displayed
in Fig. 1(a). Notice that, for what follows, we do not need to know the explicit form of each box. If
k is even, we choose Γ = {(p, x) ∈ R4k| pk+1 = . . . = p2k = x1 = . . . = xk = 0} and if k is odd we set
Γ = {(p, x) ∈ R4k| pk+2 = . . . = p2k = x1 = . . . = xk+1 = 0}. It is a simple check that, in both cases,
Γ is a 2k-dimensional ~H-invariant space, which is also isotropic by construction, and thus Lagrangian
(since dimEλ = 4k).

Now, suppose that the Jordan block corresponding to λ has odd order 2k + 1. Thus H|Eλ can be

written as in Eq. (6) and ~H|Eλ = −ΩH|Eλ has the structure, in coordinates (p, x) ∈ R4k+2, displayed
in Fig. 1(b). Once again, we stress that we do not need the explicit form of each box. By choosing
Γ = {(p, x) ∈ R2n| p1 = . . . = pk+1 = xk+1 = . . . = x2k+1 = 0}, we get the required subspace.

Proposition 3.15. Let ~H ∈ H. Suppose there exists at least one Jordan block of odd order corre-
sponding to a pure imaginary eigenvalue of ~H. Thus the Jacobi curve has infinitely many conjugate
times.

Proof. We will reduce the problem to the diagonalizable case by studying the curve in a reduced space
ΣΓ = Γ∠/Γ. Let ±λ1, . . . ,±λm be the pure imaginary eigenvalues of ~H and let us consider, for each i,
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the quotient spaces EΓi
λi

:= Eλi ∩ Γ∠
i /Γi, where the subspaces Γi ⊂ Eλi are as in Lemma 3.14. Notice

that dimEΓi
λi

= 0 or 2 depending on whether the Jordan block corresponding to λi is even or odd,

respectively. Now set Γ = Γ1⊕· · ·⊕Γm⊕Γ+, where Γ+ as in Lemma 3.7. Hence ΣΓ = EΓ1
λ1
⊕· · ·⊕EΓm

λm
,

so if there is at least one λi for which the corresponding Jordan block has odd order then ~H|ΣΓ has
nonempty pure imaginary spectrum and it is diagonalizable. Moreover, since the original Jacobi curve
is ample and monotone, the reduced Jacobi curve JΓ(·) is ample and monotone too by Lemma 2.6.
Thus the result follows from Proposition 3.8.

Proposition 3.16. Let ~H ∈ H. If all Jordan blocks of ~H corresponding to pure imaginary eigenvalues
are of even order, the Jacobi curve has no conjugate times.

Remark 4. This proposition applies, in particular, when there are no pure imaginary eigenvalues.

Proof. By Lemma 3.5 it is enough to find an ~H-invariant Lagrangian subspace Γ ⊂ Σ. Let±λ1, . . . ,±λm
be the pure imaginary eigenvalues of ~H. By Lemma 3.14 there exists a Lagrangian ~H-invariant sub-
space Γi ⊂ Eλi for each i. Set Γ = Γ1 ⊕ · · · ⊕ Γm ⊕ Γ+, where Γ+ is as in Lemma 3.7.
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