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A structure property of “vertical” integral currents,
with an application to the distributional determinant
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Abstract We deal with integral currents in Cartesian products of Euclidean spaces
that satisfy a “verticality” assumption. The main example is the boundary of the
graph of some classes vector-valued and non-smooth Sobolev maps, provided that
the boundary current has finite mass. In fact, the action of such currents is non-
zero only on forms with a high number (depending on the Sobolev regularity)
of differentials in the direction of the vertical space. We prove that such vertical
currents live on a set that projects on the horizontal space into a nice set with
integer dimension. The dimension of the concentration set is related to the level of
verticality that is assumed. Therefore, for boundary of graphs of Sobolev maps, this
dimension decreases as the Sobolev exponent increases. As an application, we then
prove a concentration property concerning the singular part of the distributional
determinant and minors.
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1 Introduction

In this paper we discuss some structure properties concerning “vertical” integral
currents. Roughly speaking, since we consider currents T in the product Rn×RN

of a “horizontal” and “vertical” Euclidean space, the adjective “vertical” refers to
the property that the action of T is null on forms that contain a bounded number
of differentials in the vertical directions.

More precisely, denoting by x and y the variables in Rn and RN , respectively,
for any integers 0 ≤ h ≤ k ≤ n + N , we define by T(h) the restriction of a current

T in Dk(Rn×RN ) to the k-forms in Rn×RN that contain exactly h differentials
dyj in the vertical directions y, compare formula (2.3) below.
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Referring to Sec. 2 for the standard notation of Geometric Measure Theory, we
now simply observe that the component T(h) makes sense only if max{0, k−n} ≤
h ≤ min{k, N}. Therefore, for simplicity we shall possibly denote T(h) := 0 for h

strictly lower than max{0, k − n} or strictly larger than min{k, N}.

A structure property. We first consider “completely vertical” currents T ,
i.e., satisfying

T(h) = 0 for h = 0, . . . , k − 1 . (1.1)

By the previous remark, if T ∈ Dk(Rn×RN ) satisfies (1.1), one automatically has
T = 0 if N ≤ k − 1. Therefore, in the following result we assume N ≥ k.

Theorem 1.1 (Structure property I) Let n ≥ 1 and N ≥ k ≥ 1 integers. Let

T ∈ Rk(Rn ×RN ) be an i.m. rectifiable current satisfying M(T ) + M(∂T ) < ∞ and

the “verticality” property (1.1). Then there exists an at most countable set of points

{ai}i ⊂ Rn and of i.m. rectifiable currents Σi ∈ Rk(RN ) such that

T =
∞X

i=0

δai ×Σi , M(T ) =
∞X

i=0

M(Σi) < ∞ . (1.2)

If in particular T is an integral cycle, i.e., ∂T = 0, then ∂Σi = 0 for each i, and

T = 0 in the case N = k.

A general structure property. We now replace the “verticality” as-
sumption (1.1) with the following more general one:

T(h) = 0 for h = 0, . . . ,q− 1 , (1.3)

where q is any positive integer such that 1 ≤ q ≤ k. As before, if a current
T ∈ Dk(Rn × RN ) satisfies (1.3), in low dimension N < q one automatically has
T = 0, so that we assume N ≥ q. We shall then prove:

Theorem 1.2 (Structure property II) Let n ≥ 1 and N ≥ q integers, with 1 ≤
q ≤ k. Let T ∈ Rk(Rn×RN ) an i.m. rectifiable current satisfying M(T )+M(∂T ) <

∞ and the “verticality” property (1.3). Then there exists a countably Hk−q-rectifiable

subset Sk−q of Rn such that

set(T ) ⊂ Sk−q × RN .

If in particular T is an integral cycle, i.e., ∂T = 0, then T = 0 in the case N = q.

Remark 1.3 In the structure theorems we do not assume that the current T is
compactly supported. We now see that this generality allows us to apply such
results to the boundary of the current carried by the “graph” of Sobolev maps.

Boundary of graphs. In fact, if u : Rn → RN is smooth, the current Gu

carried by the graph of u is well-defined by the integration of compactly supported
smooth n-forms ω in Rn × RN over the naturally oriented n-manifold given by
the graph Gu of u :

Gu(ω) :=

Z
Gu

ω , ω ∈ Dn(Rn × RN ) . (1.4)



A structure property of “vertical” integral currents 3

Moreover, Gu is locally i.m. rectifiable in Rn,loc(Rn × RN ), and denoting by
(IdRn ./ u)(x) := (x, u(x)) the graph map, the area formula yields

Gu(ω) =

Z
Rn

(IdRn ./ u)# ω ∀ω ∈ Dn(Rn × RN ) . (1.5)

Assume now that u is a Sobolev map in W 1,1
loc (Rn,RN ) such that each minor of

the Jacobian matrix ∇u is in L1
loc(Rn). Following the theory by Giaquinta-Modica-

Souček [9], see also [10], the above definition (1.4) holds true in a measure-theoretic
sense, and (1.5) is obtained by means of the approximate gradient ∇u.1

Now, if u is smooth, by Stokes’ theorem the current Gu has null boundary.2

Moreover, by a density argument, the null-boundary condition ∂Gu = 0 extends to
maps in W 1,p

loc (Rn,RN ), where p = min{n, N}. However, in general ∂Gu 6= 0, as the
example 1.5 below taken from [9, Sec. 3.2.2] shows. Arguing as in [9, Sec. 3.2.3] or
[10, Prop. 4.22], it turns out that a summability assumption yields to a verticality
property of the boundary current ∂Gu, namely:3

Proposition 1.4 Let 1 ≤ p < n and q the integer part of p. If in addition u ∈
W 1,p

loc (Rn,RN ), the boundary current T := ∂Gu satisfies the verticality property (1.3).

Assume now that u is smooth outside some compact set K of Rn, and that
M(∂Gu) < ∞. Then by the boundary rectifiability theorem 2.4, the boundary
current T = ∂Gu is i.m. rectifiable in Rn−1(Rn × RN ), with support spt ∂Gu ⊂
K × RN , whereas ∂T = ∂(∂Gu) = 0. Therefore, if in addition u satisfies the
summability hypothesis of Proposition 1.4 we can apply Theorem 1.2, with k =
n− 1, and obtain the existence of a countably Hn−1−q-rectifiable subset Sn−1−q

of K such that
set(∂Gu) ⊂ Sn−1−q × RN . (1.6)

Example 1.5 Let q ≥ 2 integer and u : Rq → Rq given by u(x) := x/|x|, so that
u ∈ W 1,q

loc for each q < q. We have ∂Gu = −δ0×[[ Sq−1 ]], where δ0 is the unit Dirac
mass at the origin and [[ Sq−1 ]] in the (q−1)-current integration on the (positively
oriented) unit (q− 1)-sphere in the target space. Notice that det∇u = 0 a.e., but
u /∈ W 1,q

loc . By adding n−q dumb x-variables to the map in previous example, one

easily infers that (1.6) fails to hold for maps u outside the Sobolev class W 1,q
loc .

Therefore, the Sobolev regularity in Proposition 1.4 is optimal for q ≥ 2,
whereas for q = 1 the optimality follows from [9, Sec. 3.2.3, Prop. 1].

Distributional determinant. As an application, in Sec. 8 below we shall
discuss some new properties concerning the singular part of the distributional de-

terminant Det∇u, first introduced by J.M. Ball [5].
Let n = N and u ∈ Lq

loc ∩W 1,p
loc (Rn, bRn) for some exponents q and p satisfy-

ing n − 1 ≤ p < n and 1/q + (n − 1)/p ≤ 1. Then the distributional determinant

1 The countably Hn-rectifiable set Gu is the subset of Rn×RN given by the points (x, u(x)),
where x is a Lebesgue point of both u and ∇u and u(x) is the Lebesgue value of u. Recall that

for W 1,1
loc -maps the approximate gradient ∇u agrees with the distributional derivative Du.

2 We have ∂Gu(η) := Gu(dη) =
R
Gu

dη =
R

∂Gu
η = 0 for every η ∈ Dn−1(Rn × RN ).

3 In fact, (1.5) yields that for any η ∈ Dn−1(Rn × RN ) the integral representing

∂Gu(η(h)) := Gu(d(η(h))) involves minors of ∇u of order at most h + 1. Choosing a se-

quence {uj} ⊂ C∞(Rn,RN ) converging to u strongly in W 1,q
loc , by dominated convergence

Guj (d(η(h))) → Gu(d(η(h))) if h ≤ q− 1. Since ∂Guj = 0 for each j, one obtains (1.3).
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is well-defined by the formula (8.1) below. De Lellis-Ghiraldin [6] extended a de-
composition property first obtained by S. Müller [16], and conjectured by Ball [5],
showing that if in addition the pointwise determinant det∇u is locally summable,
then Det∇u is a signed Radon measure, the density w.r.t. the Lebesgue measure
Ln being det∇u. With the above assumptions, if u is smooth outside some com-
pact set K ⊂ Rn, and M(∂Gu) < ∞, we have seen that (1.6) holds, where N = n

and q = n − 1, so that S0 in (1.6) is a countable set. By means of Theorem 1.1
we shall then prove, Theorem 8.1, that the singular part of Det∇u is concentrated

on an at most countable set of points, namely on S0.
We also deal with the distributional minors of order m. For m = N < n, they

agree with the components of the distributional Jacobian, first studied by Jerrard-
Soner [12]. An interesting review concerning the distributional Jacobian and sin-
gularities of Sobolev maps into spheres can be found in [1]. In Theorem 8.2, under
suitable (and optimal) summability hypotheses, see (8.9), as a consequence of The-
orem 1.2 we shall prove that the singular part of each distributional minors of order

m is concentrated on a countably rectifiable set of codimension m.

Remark 1.6 Condition M(∂Gu) < ∞ is necessary to the validity of Theorems 8.1
and 8.2. In fact, S. Müller [17] showed that for n = N = 2 the singular part of
the distributional determinant may in general concentrate on a set of Hausdorff
dimension α, for any prescribed 0 < α < 1. More precisely, there exist bounded
Hölder continuous Sobolev functions u in W 1,p(Ω,R2) for every p < 2, where
Ω = (0, 1)2 ⊂ R2, such that det∇u = 0 and |∇u1| |∇u2| = 0 a.e. in Ω, but
Det∇u = V ′ ⊗ V ′, where V is the Cantor-Vitali function. Therefore, the distri-
butional determinant has a “Cantor-type” part and the role played by V ′ in the
Cantor set C is here played by Det∇u in C × C.

The “graph” of u is very similar to the graph of the Cantor-Vitali function V

and, actually, has infinitely many holes. In fact, in [9, Sec. 4.2.5] it is shown that
in such an example one has M(∂Gu) = ∞.

Plan of the paper. Sec. 2 contains some notation and preliminary results.
In Sec. 3, we extend the isoperimetric inequality from [15, Prop. 2.1]. In Sec. 4,
we consider a projection argument that allows to recover the action of a current in
terms of the projected currents onto suitable coordinate subspaces. These results
are used in Sec. 5 to prove Theorem 1.1 in the case of integral currents, i.e., when
∂T = 0. Sec. 6 contains the proof of Theorem 1.2, whereas in Sec. 7 we deal
with the more general case of normal currents, i.e., when M(∂T ) < ∞. Finally,
in Sec. 8 we shall prove the already mentioned concentration property concerning
the singular part of the distributional determinant and minors.

2 Notation and preliminary results

In this section we collect some notation and preliminary results. We refer to [2,7,9,
13,18] for general facts about Geometric Measure Theory, whereas further details
concerning currents carried by graphs can be found in [9] or [10].

Rectifiable sets. Let U an open set in RD and Hk the k-dimensional
Hausdorff measure on RD. For 1 ≤ k ≤ D integer, a set M ⊂ U is said to be
countably Hk-rectifiable if it is Hk-measurable and Hk-almost all of M is contained
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in the union of the images of countably many Lipschitz functions from Rk to U ,
compare [7, 3.2.14]. The set M is said to be k-rectifiable if in addition Hk(M) < ∞.

Remark 2.1 The rectifiability criterium by Besicovitch-Marstrand-Mattila, see [7]
or [4, Thm. 2.63], states that if A ⊂ RD is a Borel set satisfying Hk(A) < ∞, then
A is k-rectifiable if and only if the k-dimensional density Θk(Hk, A, x) is equal to
one for Hk-a.e. x ∈ A. This yields that k-rectifiable sets can be “fractured”.

General area-coarea formula. The following theorem by Federer [7,
3.2.2] subsumes both the area and coarea formulas, compare [13, 3.13].

Theorem 2.2 Let M⊂ RD1 a k-rectifiable set and N a µ-rectifiable subset of RD2 ,

where D1 ≥ D2 ≥ 1 and k ≥ µ. Let f : RD1 → RD2 a Lipschitz function such that

f(M) = N . Then, for any Hk M-integrable function ψ : M→ R we haveZ
M

JMf (w)ψ(w) dHk(w) =

Z
N

�Z
M∩f−1({z})

ψ dHk−µ
�

dHµ(z) .

In this formula, JMf denotes the k-dimensional tangential Jacobian of f|M :

M→ RD2 , compare e.g. [9, Sec. 2.1.5].4

Rectifiable currents. We shall denote by Ek(U), Ek
b (U), and Dk(U) the

spaces of smooth, bounded smooth, and compactly supported smooth k-forms
in U , respectively. The (strong) dual space to Dk(U) is the class of k-currents
Dk(U).5 For each open set V ⊂ U the mass of a current T ∈ Dk(U) in V is6

MV (T ) := sup{T (ω) | ω ∈ Dk(U) , ‖ω‖ ≤ 1 , sptω ⊂ V } ,

and M(T ) := MU (T ) denotes the mass of T . If a current T ∈ Dk(U) has locally
finite mass, i.e., MV (T ) < ∞ for each open set V ⊂⊂ U , then

T (ω) =

Z
M
〈ω(z),

−→
ξ (z)〉 θ(z) dHk(z) ∀ω ∈ Dk(U)

where M ⊂ U is a countably Hk-rectifiable set, the multiplicity θ : M→]0,+∞]

is Hk-measurable and locally (Hk M)-summable, and
−→
ξ : M → ΛkRm is Hk-

measurable with |−→ξ | = 1 (Hk M)-a.e.. In this case, one writes T = τ(M, θ,
−→
ξ ).

A current T is said to be an integer multiplicity (i.m) rectifiable current, T ∈
Rk(U), if in addition T has finite mass, the density θ takes integer values, and

for Hk-a.e. z ∈M the unit k-vector
−→
ξ (z) ∈ ΛkRm provides an orientation to the

approximate tangent space to M at z. Moreover, set(T ) denotes the set of positive

multiplicity θ in M, so that Hk(set(T )) ≤ M(T ) < ∞ for every T ∈ Rk(U), and
M(T ) =

R
M θ dHk. Notice that for such currents the support of T agrees with the

closure of set(T ), and in general Hk(sptT ) ≤ ∞.
If T ∈ Dk(U) has finite mass, by dominated convergence the action of T

extends to forms ω ∈ Ek
b (U), or even to k-forms with bounded Borel coefficients

in U . In particular, the restriction T B is well-defined for each Borel set B ∈
B(U). Since we shall work with currents with no compact support,7 we shall use the

4 For k = µ one has JMf (w) := (det[(dMfw)∗(dMfw)])1/2 for Hk-a.e. w ∈M.
5 Therefore, D0(U) is the usual space of distributions in U .
6 Here we have denoted by ‖ω‖ the comass norm of ω. Using the standard Euclidean norm

of ω, one obtains an equivalent notion of mass that agrees with the previous one for i.m.
rectifiable currents.

7 The support of T is defined exactly as for distributions.
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symbol “,c” when referring to subclasses of currents with compact support. Also,
Rk,loc(U) denotes the class of currents T with locally finite mass and such that
T K ∈ Rk,loc(U) for each compact set K ⊂ U . Moreover, a current T ∈ Rk(U)
is a normal current if in addition M((∂T ) U) < ∞,8 and T is an integral cycle

if (∂T ) U = 0. Finally, the subclass Pk(U) of integral polyhedral chains is the
abelian group (with integer coefficients) generated by oriented k-simplices in U .

Main properties. The fundamental theorem by Federer-Fleming [8] makes
i.m. rectifiable currents very natural and important, especially in connection with
the calculus of variations:9

Theorem 2.3 (Closure-compactness) Let {Tj} ⊂ Rk(U) a sequence of i.m. rec-

tifiable currents satisfying supj [M(Tj V ) + M((∂Tj) V ) ] < ∞ for each open set

V ⊂⊂ U . If Tj weakly converges to some current T ∈ Dk(U), then T ∈ Rk(U).
Otherwise, there exists a subsequence {Tj′} of {Tj} and an i.m. rectifiable current

T ∈ Rk(U) such that Tj′ ⇀ T .

Since the Deformation theorem holds true for normal currents T ∈ Dk(U), not
necessarily with compact support, compare [2, 1.16], one obtains:

Theorem 2.4 (Boundary rectifiability) Let T ∈ Rk(U) satisfy M((∂T ) U) <

∞. Then the boundary of T is i.m. rectifiable too, i.e., (∂T ) U ∈ Rk−1(U).

As a consequence, compare [2, 2.11], arguing as in [7, 4.2.20] one also proves:

Theorem 2.5 (Strong polyhedral approximation) Let T ∈ Rk(U) such that

M((∂T ) U) < ∞. Then for each j ∈ N+ we can find an integral polyhedral chain

Pj ∈ Pk(U) and a C1-diffeomorphism gj of U onto itself such that Lip(gj) ≤ 1+1/j,

Lip(g−1
j ) ≤ 1 + 1/j, and M(gj#T − Pj) + M(∂(gj#T − Pj) U) ≤ 1/j.

Integral cycles. We shall need the following

Lemma 2.6 Let T ∈ Rk(U) satisfy (∂T ) U = 0. Then we have T (dη) = 0 for

every (k − 1)-form η with Lipschitz coefficients and support contained in U .

Proof For R > 0, we choose a cut-off function χR ∈ C∞c ([0,+∞)) such that
χR(t) = 1 for 0 ≤ t ≤ R, χR(t) = 0 for t ≥ R + 1, 0 ≤ χR ≤ 1 and |χ′R| ≤ 2.
Since χR(|z|) η is compactly supported in U , condition (∂T ) U = 0 yields that
T (d[χR(|y|) η]) = 0, whence

T (dη) = T
�
d[(1− χR(|y|)) η]

�
. (2.1)

Set UR := {z ∈ U : |z| ≥ R} and Wj := Uj \ Uj+1, for j ∈ N. Since T has finite
mass, one has

lim
R→∞

M(T UR) = 0 , lim inf
j→∞

j ·M(T Wj) = 0 . (2.2)

8 If k ≥ 1 the boundary current ∂T ∈ Dk−1(U) is defined by duality for any T ∈ Dk(U)
through the formula ∂T (η) := T (dη) for every η ∈ Dk−1(U) .

9 The weak convergence Tj ⇀ T in Dk(U) is defined in the dual sense by requiring that

Tj(ω) → T (ω) for every test form ω ∈ Dk(U), so that the mass is sequentially weakly lower
semicontinuous. Therefore if a sequence {Tj} ⊂ Dk(U) satisfies supj M(Tj) < ∞, there exists
a subsequence {Tj′} of {Tj} and a current T ∈ Dk(U) with finite mass such that Tj′ ⇀ T .
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Moreover,

d[(1− χR(|z|)) η] = −χ′R(|z|) d|z| ∧ η + (1− χR(|z|) dη .

Therefore, taking R = j, by (2.1) we estimate for each j

|T (dη)| ≤ c ‖η‖∞,Wj
M(T Wj) + ‖dη‖∞M(T Uj) .

Since η has Lipschitz coefficients and support contained in U , we get

‖η‖∞,Wj
≤ c1(1 + ‖z‖∞,Wj

) ≤ c2(1 + j) , ‖dη‖ ≤ c3

for some absolute constants ci > 0. Hence for each j

|T (dη)| ≤ c2(1 + j)M(T Wj) + c3 M(T Uj)

and the claim follows by taking a subsequence according to (2.2). 2

Notation for multi-indices. Recall that x and y denote the variables in
the horizontal and vertical spaces Rn and RN , respectively. If α = (α1, . . . , αp),
where 1 ≤ α1 < · · · < αp ≤ n, is a multi-index of length |α| = p ≤ n, we set
xα := (xα1 , . . . , xαp) and dxα := dxα1 ∧· · ·∧dxαp , where x = (x1, . . . , xn). We also
say that the positive integer i belongs to α if it is one of the indices α1, . . . , αp. If
i ∈ α we denote by α−i the multi-index of length p−1 obtained by removing i from
α. Also, α is the complement of α in (1, . . . , n), we set 0 := (1, . . . , n), and σ(α, α)
is the sign of the permutation which reorders α and α, e.g., σ(α, α) = (−1)i−1 if

α = i. For α = i we finally set bxi := xα and ddxi := dxα. A similar notation holds
for β and dyβ , with n replaced by N . Moreover, we shall denote by (e1, . . . , en)
and (ε1, . . . , εN ) the canonical bases in Rn and RN , respectively, so that e.g.
eα := eα1 ∧ · · · ∧ eαp .

Splitting of currents. Assume now U = Rn × RN . Every k-form η ∈
Dk(Rn × RN ) splits as a sum ω =

P
h ω(h), where the ω(h)’s are the components

that contain exactly h differentials in the vertical y-variables.10 Therefore, the
above summation is restricted to max{0, n− k} ≤ h ≤ min{k, N}.

Every current T ∈ Dk(Rn × RN ) then splits as

T =

min{k,N}X
h=max{0,n−k}

T(h) , where T(h)(ω) := T (ω(h)) . (2.3)

Homotopy formula. Let f, g : U → V be two smooth maps defined between
open sets U ⊂ RD and V ⊂ Rµ, and let h : U × [0, 1] → V denote the affine
homotopy map

h(z, t) := t f(z) + (1− t) g(z) , z ∈ U , t ∈ [0, 1] .

10 We thus have for some ωα,β ∈ C∞c (Rn × RN )

ω(h) :=
X

|α|+|β|=k
|β|=h

ωα,β dxα ∧ dyβ if ω =
X

|α|+|β|=k

ωα,β dxα ∧ dyβ .
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If a current T ∈ Dk(U) has finite mass, by dominated convergence the action
of T is well-defined on smooth forms ω ∈ Ek

b (U) with bounded coefficients, e.g.
for ω = f#η for any η ∈ Dk(V ) and for f as above. Hence the image current
f#T ∈ Dk(V ) is well-defined by f#T (η) := T (f#η), for η ∈ Dk(V ). Moreover,
if T is a normal current, i.e., M(T ) + M((∂T ) U) < ∞, the image currents
h#(T × [[ 0, 1 ]]) and h#(∂T × [[ 0, 1 ]]) are both well defined provided that f and
g are bounded or the restriction of h to the support of T × [[ 0, 1 ]] is proper. In
particular, if T has compact support, the homotopy formula [18, 26.22] yields

∂h#(T × [[ 0, 1 ]]) = h#(∂T × [[ 0, 1 ]]) + (−1)k(f#T − g#T ) . (2.4)

To our purposes, assume now U = V = Rn × RN . Dealing with currents that
are not compactly supported, in general (2.4) fails to hold. However, for suitable
choices of f and g (the identity and a projection map, respectively) we overcome
this problem by restricting the range of t to intervals of the type [ε, 1].

Proposition 2.7 Let ε ∈]0, 1[ and hε : (Rn × RN ) × [ε, 1] → Rn × RN denote the

affine homotopy map

hε(x, y, t) := t (x, y) + (1− t)(x, 0) , (x, y) ∈ Rn × RN , t ∈ [ε, 1] . (2.5)

If T ∈ Dk(Rn × RN ) has finite mass, the image current hε#(T × [[ ε, 1 ]]) is well-

defined in Dk+1(Rn × RN ) and it has locally finite mass, i.e., for every compact set

K ⊂ Rn × RN

M((hε#(T × [[ ε, 1 ]])) K) < ∞ .

Similarly, if M(∂T ) < ∞ the image current hε#(∂T × [[ ε, 1 ]]) is well defined in

Dk(Rn × RN ) and it has locally finite mass. Finally, setting fε(x, y) := (x, εy), if

M(T ) + M(∂T ) < ∞, the following homotopy formula holds:

∂hε#(T × [[ ε, 1 ]]) = hε#(∂T × [[ ε, 1 ]]) + (−1)k(T − fε#T ) . (2.6)

Proof Since T has finite mass, we deduce that hε#(T × [[ ε, 1 ]]) is well-defined

provided that ‖h#
ε ω‖ < ∞ for every ω ∈ Dk+1(Rn ×RN ). To prove this property,

by a density argument we may and do assume that ω is a linear combinations
of forms of the type ϕ(x)ψ(y) dxα ∧ dyβ , where ϕ ∈ C∞c (Rn), ψ ∈ C∞c (RN ), and
|α|+ |β| = k + 1. If |β| > 0, we have

h#
ε (ϕ(x)ψ(y)dxα ∧ dyβ) = ϕ(x) dxα ∧ ψ(ehε(y, t))eh#

ε dyβ ,

where ehε : RN × [ε, 1] → RN is given by ehε(y, t) = ty, and we computeeh#
ε dyβ = dyβ−(−1)|β| eωβ∧dt , where eωβ :=

X
j∈β

σ(j, β−j) yj dyβ−j ∈ E |β|−1(RN ) .

Since moreover ψ ∈ C∞c (RN ), there exists R > 0 such that ψ(y) = 0 if |y| > R,
hence ψ(ehε(y, t)) = 0 for every (y, t) ∈ RN × [ε, 1] provided that |y| > R/ε. Using
that |eωβ(y)| ≤ |y|, this yields

‖h#
ε (ϕ(x)ψ(y)dxα ∧ dyβ)‖ ≤ c · ‖ϕ‖∞‖ψ‖∞R

ε
< ∞ on Rn × RN × [ε, 1] .

If |β| = 0, we have ‖h#
ε (ϕ(x)ψ(y) dxα)‖ = ‖ϕ(x)ψ(ehε(y, t)) dxα‖ ≤ ‖ϕ‖∞‖ψ‖∞.
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In particular, denoting by eBR the closed ball in RN centered at the origin
and with radius R, we deduce that for each R > 1

M((hε#(T × [[ ε, 1 ]])) Rn × eBR) ≤ c · R

ε
M(T ) < ∞ ,

and hence that hε#(T × [[ ε, 1 ]]) has locally finite mass. The second assertion is
proved in a similar way. As a consequence, if M(T ) + M(∂T ) < ∞, property (2.6)
follows from the standard homotopy formula (2.4), with 0 replaced by ε, using the
dominated convergence theorem. 2

Remark 2.8 In general the image currents hε#(T × [[ ε, 1 ]]) and hε#(∂T × [[ ε, 1 ]])
from Proposition 2.7 do not have finite mass, if T does not have compact support.

Orthogonal projections. We shall denote by π : Rn × RN → Rn and bπ :
Rn×RN → RN the orthogonal projections onto the x and y coordinates, respectively.
Let T ∈ Dk(Rn × RN ) a current with finite mass, M(T ) < ∞. Let h denote an
integer with max{0, k−n} ≤ h ≤ min{k, N}. For any ω ∈ Dh(RN ), we shall denote
by π#(T bπ#ω) the current in Dk−h(Rn) such that

〈π#(T bπ#ω), ϕ〉 := T (bπ#ω ∧ π#ϕ) = T (ω ∧ ϕ) , 11 ϕ ∈ Dk−h(Rn) .

Similarly, for ϕ ∈ Dk−h(Rn), we shall denote by bπ#(T π#ϕ) the current in
Dh(RN ) such that

〈bπ#(T π#ϕ), ω〉 := T (π#ϕ ∧ bπ#ω) = T (ϕ ∧ ω) , ω ∈ Dh(RN ) .

3 An isoperimetric inequality

In this section we extend the isoperimetric inequality from [15, Prop. 2.1]. It will
be used in the case k = N − 1 of the proof of Theorem 1.1. The main difficulty is
due to the fact that we do not require the current T in Proposition 3.1 below to
have compact support.

Any form ω ∈ DN−1(RN ) is identified by a compactly supported smooth vector
field g ∈ C∞c (RN ,RN ) via the formula

ωg(y) :=
NX

j=1

(−1)j−1gj(y)ddyj , g = (g1, . . . , gN ) , (3.1)

where ddyj := dy1 ∧ · · · ∧ dyj−1 ∧ dyj+1 ∧ · · · ∧ dyN , so that dωg = div g dy, where
dy := dy1 ∧ · · · ∧ dyN . If T ∈ RN−1(Rn × RN ), we let µg correspondingly denote
the signed measure given on Borel sets B ∈ B(Rn) by

〈µg, B〉 := (−1)N−1〈π#(T bπ#ωg), B〉 ,
so that for functions ϕ ∈ C∞c (Rn)

(−1)N−1〈µg, ϕ〉 = (T bπ#ωg)(π#ϕ) = T (ϕ ∧ ωg) .

We shall denote by Br(x0) the open ball in Rn of radius r and centered at x0 ∈ Rn.

11 We shall often omit to write the action of the pull-back by π and bπ.
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Proposition 3.1 Let N ≥ 2 and T ∈ RN−1(Rn × RN ) an i.m. rectifiable current

satisfying the property T(N−2) = 0 and the null-boundary condition ∂T = 0. Then

for every x0 ∈ Rn and a.e. r > 0 we have

|〈µg, Br(x0)〉| ≤ cN ‖div g‖∞M(T Br(x0)× RN )N/(N−1) (3.2)

for all g ∈ C∞c (RN ,RN ), where cN > 0 is an absolute constant, not depending on g.

Proof Fix ε ∈]0, 1[ , define hε : Rn×RN × [ε, 1] → Rn×RN as in (2.5) and denote

Hε
T := hε#(T × [[ ε, 1 ]]) ∈ DN (Rn × RN ) . (3.3)

By Proposition 2.7, we may and do introduce for k = 0, . . . ,min{n, N} and η ∈
Dk(Rn) the (N − k)-current

Hε
T η := bπ#(Hε

T π#η) ∈ DN−k(RN ) .

Setting ehε(y, t) := ty for (y, t) ∈ RN × [ε, 1], we thus equivalently have:

Hε
T η(ω) := (T × [[ ε, 1 ]])(η ∧ eh#

ε ω) , ω ∈ DN−k(RN ) , (3.4)

where we have omitted to write the pull-back of the orthogonal projection maps.
Even if in general the current Hε

T from (3.3) does not have finite mass, see Re-
mark 2.8, by Proposition 2.7 we deduce that for every η ∈ Dk(Rn), the current
Hε

T η in DN−k(RN ) has locally finite mass. Choosing k = 1, we shall make use
of the following extension of [15, Lemma 2.3], the proof of which is postponed.

Lemma 3.2 Let T ∈ RN−1(Rn × RN ) be such that T(N−2) = 0. Then Hε
T η = 0

for every η ∈ D1(Rn).

Setting now fε(x, y) := (x, εy), we let µε
g denote for every g ∈ C∞c (RN ,RN )

the signed measure given on Borel sets B ∈ B(Rn) by

〈µε
g, B〉 := (−1)N−1〈π#(fε#T bπ#ωg), B〉 ,

so that for functions ϕ ∈ C∞c (Rn)

(−1)N−1〈µε
g, ϕ〉 = fε#T (ϕ ∧ ωg) .

Property ∂T = 0 implies that hε#(∂T × [[ ε, 1 ]]) = 0. Therefore, using the above
definitions, the general homotopy formula (2.6) gives

〈µg − µε
g, ϕ〉 = Hε

T dϕ(ωg) + Hε
T ϕ(dωg)

for every ϕ ∈ C∞c (Rn) and g ∈ C∞c (RN ,RN ), whereas Lemma 3.2 yields that
Hε

T dϕ(ωg) = 0, so that

〈µg − µε
g, ϕ〉 = Hε

T ϕ(dωg) = Hε
T ϕ(div g(y) dy) .

Therefore, taking a sequence {ϕj} ⊂ C∞c (Rn) converging in L1 to the char-
acteristic function χ of the closed ball Br(x0), and setting Br := Br(x0) for
simplicity, we deduce that

〈µg − µε
g, Br〉 = Hε

T χBr
(div g(y) dy) . (3.5)
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Also, setting efε(y) = εy and Kϕ = sptϕ, since ‖ωg‖ = ‖g‖∞ we estimate

|fε#T (ϕ ∧ ωg)| = |T (ϕ ∧ ef#
ε ωg)| ≤ ‖ϕ‖∞ ‖g‖∞ εN−1 M(T Kϕ × RN ) ,

so that the measures µg and µε
g have finite total variation, as

|µg|(Br) ≤ ‖g‖∞M(T Br × RN ) < ∞ ,

|µε
g|(Br) ≤ ε ‖g‖∞M(T Br × RN ) < ∞ .

(3.6)

On the other hand, for each ω ∈ DN (RN ), by (3.3) and (3.4) we have

Hε
T χBr

(ω) = (T × [[ ε, 1 ]])(χBr
∧ eh#

ε ω) = ((T Br × RN )× [[ ε, 1 ]])(eh#
ε ω) .

Therefore, since by Proposition 2.7 the current Hε
T ϕ in DN (RN ) has locally

finite mass, and T is i.m. rectifiable in RN−1(Rn × RN ), we deduce that the
current Hε

T χBr
is locally i.m. rectifiable in RN,loc(RN ). We then proceed in a

way similar to the second part of the proof of [14, Prop. 3.1].
More precisely, by using the degree theory from [9, Sec. 4.3.2], for a.e. r > 0 small

there exists an integer valued and locally summable function ∆ε
r ∈ L1

loc(RN ,Z) such
that

Hε
T χBr

(ψ(y) dy) =

Z
RN

∆ε
r(y)ψ(y) dy ∀ψ ∈ C∞c (RN ) .

By (3.5), this yields that for every g ∈ C∞c (RN ,RN )

〈µg − µε
g, Br〉 =

Z
RN

∆ε
r(y) div g(y) dy . (3.7)

Moreover, by (3.6) the measure µg − µε
g has finite total variation, and

|〈µg − µε
g, Br〉| ≤ ‖g‖∞ (1 + ε)M(T Br × RN ) < ∞ .

Therefore, ∆ε
r is a function of bounded variation in RN , with

|D∆ε
r|(RN ) := sup

‖g‖∞≤1

Z
RN

∆ε
r(y) div g(y) dy

≤ sup
‖g‖∞≤1

|〈µg − µε
g, Br〉| ≤ (1 + ε)M(T Br × RN ) < ∞ .

(3.8)

By Sobolev embedding theorem, and by density of smooth maps in BVloc(RN ),
compare [4, Thm. 3.47], we can find a real constant mε

r ∈ R such that

‖∆ε
r −mε

r‖LN/(N−1)(RN ) ≤ cN |D∆ε
r|(RN ) .

Since ∆ε
r is integer-valued, the constant mε

r ∈ Z and hence we can estimate the
L1-norm of the integer-valued function y 7→ (∆ε

r(y)−mε
r) byZ

RN

|∆ε
r(y)−mε

r| dy ≤
Z
RN

|∆ε
r(y)−mε

r|N/(N−1) dy = ‖∆ε
r −mε

r‖N/(N−1)

LN/(N−1)(RN )
.

Using that
R
RN div g(y) dy = 0, by (3.7) we thus obtain

|〈µg − µε
g, Br〉| ≤

Z
RN

|(∆ε
r(y)−mε

r) div g(y)| dy ≤ ‖div g‖∞
Z
RN

|∆ε
r(y)−mε

r| dy

≤ ‖div g‖∞ cN (|D∆ε
r|(RN ))N/(N−1)
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and definitively, by (3.8),

|〈µg − µε
g, Br〉| ≤ ‖div g‖∞ cN (1 + ε)N/(N−1)M(T Br × RN )N/(N−1) . (3.9)

Finally, since |〈µgBr〉| ≤ |〈µg − µε
g, Br〉| + |〈µε

g, Br〉|, using the second line in
(3.6), the isoperimetric inequality (3.2) follows by letting ε → 0 in the above
formula (3.9). 2

Proof of Lemma 3.2 We have (3.4) with k = 1. Using (3.1), write ω ∈ DN−1(RN )
as ω = ωg for some g ∈ C∞c (RN ,RN ). By linearity, without loss of generality
we may and do assume that gj = 0 for j > 1, and let g1(y) = f(y), so that

ωg = ω := f(y)ddy1, where f ∈ C∞c (RN ). We computeeh#
ε ω = f(ty)[tN−1ddy1 + (−1)N ω1 ∧ tN−2dt] ,

where ω1 :=
NX

l=2

(−1)l yl dy(1,l) ∈ EN−2(RN ). Since the form η∧f(ty) tN−1ddy1 does

not contain the differential dt, by definition of Cartesian product of currents and

the dominated convergence theorem we get (T × [[ ε, 1 ]])(η ∧ f(ty) tN−1ddy1) = 0
and hence

Hε
T η(ω) = (−1)N (T × [[ ε, 1 ]])(η(x) ∧ f(ty)ω1 ∧ tN−2dt])

= (−1)NT (η(x) ∧ ω1(y)Fε(y)) ,

where Fε(y) :=

Z 1

ε
f(ty) tN−2 dt. Arguing as in the proof of Proposition 2.7, using

that ω1 ∈ EN−2(RN ) satisfies |ω1(y)| ≤ |y|, we deduce that

‖η(x) ∧ ω1(y)Fε(y)‖ ≤ c ‖η‖ ‖f‖∞ R

ε
< ∞ on Rn × RN ,

where R > 0 is chosen so that f(y) = 0 if |y| > R. Since M(T ) < ∞, property
T(N−2) = 0 and the dominated convergence yield that T (η(x) ∧ ω1(y)Fε(y)) = 0,
as required. 2

4 A projection argument

In this section we discuss a projection argument that will be used in the proof of
Theorem 1.1 in the case N > k + 1, see Step 2 in Sec. 5. We first introduce some
notation.

Let β an ordered multi-index in {1, . . . , N} of length |β| = k + 1, and define
the corresponding projection maps

Πβ : RN → Rk+1
β ' Rk+1 , Πβ(y) = yβ := (yβ1 , . . . , yβk+1) ,

Ψβ : Rn × RN → Rn × Rk+1
β , Ψβ(x, y) := (IdRn ./ Πβ)(x, y) = (x, Πβ(y)) .

(4.1)

For T ∈ Rk(Rn × RN ), we let Tβ := Ψβ#T ∈ Dk(Rn × Rk+1
β ) denote the corre-

sponding image current, see Lemma 4.1 below.
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If T satisfies the hypotheses of Theorem 1.1, as in the case k = N − 1, see
Step 1 in Sec. 5, we deduce that set(Tβ) ⊂ Sβ

0 × Rk+1
β for an at most countable

set of points Sβ
0 ⊂ Rn. Making use of the general area-coarea formula, we thus

aim at recovering the action of T in terms of the action of the currents Tβ on
suitably related forms, see Proposition 4.4 below. This would allow to conclude
that set(T ) ⊂ S0 × RN for an at most countable set of points S0 ⊂ Rn.

Unfortunately, this strategy may fail in general, due to the possible occurrence
of cancellations when projecting T to Tβ . However, denoting M := set(T ), one
easily deduces that such a cancellation phenomenon is avoided provided that the
multiplicity function N(Ψβ |M; z) := H0(M∩ Ψ−1

β ({z}) is equal to one for Hk-a.e.

point z in the shadow Ψβ(M).
We now see that this property is obtained by suitably rotating the target

space RN . To this purpose, we shall first consider the case of polyhedral chains,
Proposition 4.2.

Projection of currents. We first point out the following fact:

Lemma 4.1 Let T ∈ Rk(Rn × RN ) satisfying ∂T = 0. Then the image current

Tβ := Ψβ#T is i.m. rectifiable in Rk(Rn × Rk+1
β ) and satisfies the null-boundary

condition ∂Tβ = 0.

Proof Since T is i.m. rectifiable, the first assertion follows if we show that
M(Tβ) < ∞. To prove this, observe that for every ω ∈ Dk(Rn × Rk+1

β ) the pull-

back form Ψ#
β ω belongs to the class Ek

b (Rn × RN ) and satisfies ‖Ψ#
β ω‖ ≤ ‖ω‖.

Therefore, by dominated convergence we estimate

Tβ(ω) := T (Ψ#
β ω) ≤ M(T ) ‖Ψ#

β ω‖ ≤ M(T ) ‖ω‖

that gives M(Tβ) ≤ M(T ). As to the second assertion, for every η ∈ Dk−1(Rn ×
Rk+1

β ) we have

∂Tβ(η) = Tβ(dη) = T (Ψ#
β dη) = T (dΨ#

β η) = T (deη) ,

where the smooth form eη := Ψ#
β η belongs to Ek−1

b (Rn ×RN ). Since ‖eη‖+ ‖deη‖ <

∞, Lemma 2.6 gives T (deη) = 0, as required. 2

Projection of polyhedral chains. For N > k+1, denote by O∗(N, k+1)
the set of orthogonal projections p of RN onto the (k +1)-dimensional subspaces
of RN . There is a unique measure on O∗(N, k+1) that is invariant under Euclidean
motions of RN and normalized to have total measure 1.

Proposition 4.2 Let N > k + 1 and P ∈ Pk(Rn × RN ) be an integral polyhedral

chain, and let M := set(P ). Then for a.e. projection p ∈ O∗(N, k + 1) and for

Hk-a.e. z ∈ (IdRn ./ p)(M) we have

N(IdRn ./ p|M; z) := H0(M∩ (IdRn ./ p)−1({z})) = 1 .

Proof Every projection of the type IdRn ./ q, where q ∈ O∗(N, N − 1), is clearly
determined by a couple ±ν of opposite unit normals in Rn × RN , i.e., ±ν ∈
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Sn+N−1, where ν is orthogonal to the “horizontal” space Rn × {0} ⊂ Rn × RN .
Hence, the couple ±ν belongs to the “vertical” (N − 1)-sphere

SN−1
v := {(x, y) ∈ SN+n−1 ⊂ Rn × RN | x = 0} .

Using this identification, we write IdRn ./ q = π±ν .
Since P is a k-dimensional integral polyhedral chain, and k ≤ N − 2, it is

readily checked that the property

N(π±ν |M; z) := H0(M∩ π±ν
−1({z})) = 1 ∀ z ∈ π±ν(M)

holds true for every choice of ±ν ∈ SN−1
v except for a “bad” set B ⊂ SN−1

v of null
Hk+1-measure, Hk+1(B)=0. This proves the claim for N = k + 2. If N = k + m

with m ≥ 3, it suffices to iterate m− 2 times the above argument. 2

Remark 4.3 Proposition 4.2 is false for projections p ∈ O∗(N, k). If e.g. N = k+2,
it suffices to take P = δ0 × [[Q ]], where Q is a k-dimensional cube in Rk+2.

The area-coarea formula on currents. Let now T ∈ Rk(Rn × RN ),

where N > k + 1, and write T := τ(M, θ,
−→
ξ ). Moreover, for any index β with

|β| = m, where 1 ≤ m ≤ N − 1, denote by ξβ the component of the tangent

k-vector field
−→
ξ corresponding to the base k-vectors eα ∧ εγ , where β contains

all the entries of γ, i.e.,

ξβ :=
X

|α|+|γ|=k
γ⊂β

ξγ
α eα ∧ εγ if

−→
ξ =

X
|α|+|γ|=k

ξγ
α eα ∧ εγ .

Define
Mβ := {(x, y) ∈M | ξβ(x, y) 6= 0} (4.2)

and observe that the set Mβ is k-rectifiable, see Remark 2.1. According to (4.1),

this yields that Nβ := Ψβ(Mβ) is a k-rectifiable subset of Rn × Rk+1
β . Let

−→
ζβ

denote an Hk Nβ-measurable function such that
−→
ζβ(x, yβ) is a unit k-vector

orienting the approximate tangent space to Nβ at Hk-a.e. point (x, yβ) ∈ Nβ . By
applying the general area-coarea formula, Theorem 2.2, we obtain:

Proposition 4.4 Let |β| = m ∈ {1, . . . , N − 1}. Let |α|+ |γ| = k, with γ ⊂ β. Let

ηγ
α ∈ Dk(Rn × RN ) given by

ηγ
α := φ(x) f(yβ) g(yβ) dxα ∧ dyγ ,

where φ ∈ C∞c (Rn), f ∈ C∞c (RN−m

β
), g ∈ C∞c (Rm

β ). With the previous notation, we

have:

T (ηγ
α) =

Z
Nβ

〈φ(x) bΦ(x, yβ) g(yβ) dxα ∧ dyγ ,
−→
ζβ(x, yβ)〉 dHk(x, yβ) , (4.3)

where we have setbΦ(x, yβ) :=

Z
Mβ∩(ψ−1

β ({(x,yβ)})

σ(x, y) f(yβ) θ(x, y) dH0(x, y) (4.4)

for a suitable sign σ(x, y) = ±1, see formula (4.6) below.
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Proof Since γ ⊂ β, we clearly have

T (ηγ
α) =

Z
Mβ

〈ηγ
α, ξβ〉 θ dHk . (4.5)

The function Ψβ being an orthogonal projection, it is readily checked that the
k-dimensional tangential Jacobian of Ψβ agrees with the norm of the k-vector ξβ :

J
Mβ

Ψβ
(x, y) = |ξβ(x, y)| for Hk-a.e. (x, y) ∈Mβ .

Furthermore, for Hk-a.e. (x, yβ) ∈ Nβ and (x, y) ∈Mβ ∩ Ψ−1
β ({(x, yβ)}) we have

ξβ(x, y)

|ξβ(x, y)| = σ(x, y)
−→
ζβ(x, yβ) , where σ(x, y) := ±1 . (4.6)

We then apply Theorem 2.2, where M = Mβ , N = Nβ , µ = k, D1 = n + N ,

D2 = n + m, f = Ψβ , w = (x, y), z = (x, yβ), to the Hk Mβ-integrable function

Φ(x, y) := θ(x, y)〈φ(x) f(yβ) g(yβ) dxα ∧ dyγ , ξβ(x, y)〉 |ξβ(x, y)|−1
.

Since 〈ηγ
α, ξβ〉 θ = J

Mβ

ψβ
· Φ, by (4.5) we then obtain

T (ηγ
α) =

Z
Mβ

J
Mβ

ψβ
(x, y)Φ(x, y) dHk(x, y)

=

Z
Nβ

�Z
Mβ∩ψ−1

β ({(x,yβ)})
Φ dH0(x, y)

�
dHk(x, yβ)

=

Z
Nβ

〈φ(x) bΦ(x, yβ) g(yβ) dxα ∧ dyγ ,
−→
ζβ(x, yβ)〉 dHk(x, yβ) ,

where bΦ is given by (4.4). 2

Good projections. We now restrict to the case m = k + 1 of our interest.
Assume that T = P is an integral polyhedral chain in Pk(Rn ×RN ). On account
of Proposition 4.2, possibly slightly rotating the target space RN , and denoting
without loss of generality by (y1, . . . , yn) the rotated coordinates, using (4.2) we
may and do assume that

N(Ψβ |M; (x, yβ)) := H0(Mβ ∩ Ψ−1
β {(x, yβ)}) = 1 for Hk-a.e. (x, yβ) ∈ Nβ .

This gives Nβ := Ψβ(Mβ) = set(Pβ), where Pβ := Ψβ#P ∈ Pk(Rn × Rk+1
β ), see

Lemma 4.1. Writing as before P := τ(M, θ,
−→
ξ ), we also may and do choose the

orienting unit k-vector field
−→
ζβ is such a way that the sign σ(x, y) ≡ 1 in the

formula (4.4). We thus have Pβ = τ(Nβ , θβ ,
−→
ζβ), where the multiplicity function

θβ(x, yβ) = θ(x, y) for the unique point (x, y) ∈Mβ such that Ψβ(x, y) = (x, yβ) ∈
Nβ . Since (4.4) becomesbΦ(x, yβ) =

Z
Mβ∩(ψ−1

β ({(x,yβ)})
f(yβ) θβ(x, yβ) dH0(x, y) ,

we conclude that (4.3) can be equivalently written as

P (ηγ
α) = Pβ(φ(x) eΦ(x, yβ) g(yβ) dxα ∧ dyγ) ,
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where we have seteΦ(x, yβ) :=

Z
Mβ∩(ψ−1

β ({(x,yβ)})
f(yβ) dH0(x, y) . (4.7)

Projection of integral currents. We finally show the way to extend
the previous features to i.m. rectifiable currents with finite boundary mass.

Proposition 4.5 Assume N > k+1. Let T ∈ Rk(Rn×RN ) such that M(∂T ) < ∞.

Following the notation from Proposition 4.4, write for |β| = k + 1

T = τ(M, θ,
−→
ξ ) , Ψβ#T = τ(Nβ , θβ ,

−→
ζβ) .

Then, possibly by slightly rotating the target space, for |α|+ |γ| = k, with γ ⊂ β, we

have

T (ηγ
α) = Ψβ#T (φ(x) eΦ(x, yβ) g(yβ) dxα ∧ dyγ) , (4.8)

where eΦ(x, yβ) is defined as in (4.7), with Mβ given by (4.2).

Proof By the strong polyhedral approximation theorem 2.5, for each j ∈ N+ we
find an integral polyhedral chain Pj ∈ Pk(Rn × RN ) and a C1-diffeomorphism
gj of Rn × RN onto itself such that Lip(gj) ≤ 1 + 1/j, Lip(g−1

j ) ≤ 1 + 1/j, and

M(gj#T − Pj) + M(∂(gj#T − Pj)) ≤ 1/j.
Denote Mj = set(Pj). By applying Proposition 4.2 to the sequence {Pj}j , we

deduce that for a.e. projection p ∈ O∗(N, k +1), for each j ∈ N+, and for Hk-a.e.
z ∈ (IdRn ./ p)(Mj)

N(IdRn ./ p|Mj ; z) := H0(Mj ∩ (IdRn ./ p)−1({z})) = 1 .

As a consequence, possibly by slightly rotating the target space, we deduce that
for each multi-index β with |β| = k + 1 the projections Ψβ are “good” for each
Pj in the above sense, i.e.,

N(Ψβ |Mj ; z) := H0(Mj ∩ Ψβ
−1({z})) = 1 (4.9)

for each j ∈ N+ and for Hk-a.e. z ∈ Ψβ(Mj).

Define now ePj := fj#Pj , where fj = g−1
j , and write ePj = τ(fMj , θj , ξj),

where fMj := set( ePj). Formula (4.9) yields that for each j ∈ N+ and for Hk-a.e.

z ∈ Ψβ ◦ gj(fMj)

N(Ψβ ◦ gj |fMj ; z) := H0(fMj ∩ (Ψβ ◦ gj)
−1({z})) = 1 .

By applying the general area-coarea formula, Theorem 2.2, we thus infer thatZ
fMj

J
fMj

Ψβ◦gj
(z) eθj(z) dHk(z) = M((Ψβ ◦ gj)# ePj) .

By the strong convergence, and again by the area-coarea formula, we also have

lim
j→∞

M((Ψβ ◦ gj)# ePj) = M(ψβ#T ) ≤
Z
M

JMΨβ
(z) θ(z) dHk(z)

where, we recall, T = τ(M, θ,
−→
ξ ), and we can assume without loss of generality

M = set(T ). Since moreover M( ePj − T ) → 0, denoting by 4 the symmetric
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difference, we also infer that Hk(fMj4M) → 0 as j → ∞. Using that Lip(gj) ≤
1 + 1/j and Lip(g−1

j ) ≤ 1 + 1/j, we thus deduce thatZ
M

JMΨβ
(z) θ(z) dHk(z) ≤ lim inf

j→∞

Z
fMj

J
fMj

Ψβ◦gj
(z) eθj(z) dHk(z)

and definitively that

M(ψβ#T ) =

Z
M

JMΨβ
(z) θ(z) dHk(z) .

Using again the general area-coarea formula, this yields that for each β

N(Ψβ |M; z) := H0(M∩ Ψβ
−1({z})) = 1

for Hk-a.e. z ∈ Ψβ(M). This means exactly that each Ψβ is a “good” projection
in the above sense. The claim follows from Proposition 4.4 and from the above
argument concerning “good” projections. 2

Remark 4.6 For future use, we notice that the function eΦ in (4.7) is bounded
and Hk Nβ-summable, hence it can be extended to a bounded Borel function eΦ
on Rn × Rk+1

β . Since moreover Tβ has finite mass, the action of Tβ is uniquely

extended to such class of forms ω = φ(x) eΦ(x, yβ) g(yβ) dxα ∧ dyγ .

5 The structure theorem I for integral cycles

In this section we prove the structure theorem 1.1 in the case of integral cycles,
i.e. satisfying ∂T = 0. In Step 1, we deal with the easier case k = N −1, where we
directly apply Proposition 3.1. In Step 2 we consider the case of higher codimension
N ≥ k + 2, and make use of the projection argument from Sec. 4. In Step 3 we
conclude that T = 0 if N = k.

Step 1: the case k = N − 1. Since N = k + 1 ≥ 2, we follow the notation from
Sec. 3, and apply this concentration property:

Lemma 5.1 Let λ and µ be respectively a non-negative and a signed Radon measure

on Rn, with finite total variation, such that for every x0 ∈ Rn and a.e. r > 0 we have

|µ(Br(x0)| ≤ c λ(Br(x0))
α

for some fixed constants c > 0 and α > 1. Then µ is purely atomic, and it is

concentrated on the at most countable set of atoms of λ.

For a proof of Lemma 5.1, we refer to [14, Lemma 4.4] and also [11, Lemma 6.3],
where a gap (the absolute continuity of µ with respect to λ) is filled.

Now, by Proposition 3.1 we obtain the isoperimetric inequality (3.2). We can
thus apply Lemma 5.1 with α = N/(N − 1), µ = µg, and λ = λ(T ) given by

〈λ(T ), B〉 := M(T B × RN ) , B ∈ B(Rn) .
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Denoting by {ai}i ⊂ Rn the at most countable family of atoms of λ(T ), we deduce
that for every i there exists a signed Radon measure λi on RN such that for
every φ ∈ C∞c (Rn) and g ∈ C∞c (RN ,RN )

T (φ ∧ ωg) = (−1)N−1〈µg, φ〉 =
∞X

i=1

δai(φ) · λi(g) ,

where ωg ∈ DN−1(RN ) is given by (3.1). Also, forms of the type φ∧ωg are dense
in the space of forms η = η(N−1) in DN−1(Rn × RN ), whereas T (η(h)) = 0 for
h ≤ N − 2, by the assumption (1.1) with k = N . Define Σi ∈ DN−1(RN ) by

Σi(ωg) := λi(g) , g ∈ C∞c (RN ,RN ) .

Now, for every x ∈ Rn and for all but an at most countable set of “bad” radii
r > 0, the boundary ∂Br(x) does not contain atoms of λ(T ). Hence, by Lemma 5.1,
for any “good” radius we have 〈µg, ∂Br(x)〉 = 0 for every g ∈ C∞c (RN ,RN ). Tak-
ing a smooth sequence {φj} ∈ C∞c (Rn) strongly converging in L1 to the charac-
teristic function of Br(x), we find that

lim
j→∞

T (φj ∧ ωg) =
X

{Σi(ωg) | i is such that ai ∈ Br(x)}

for each g ∈ C∞c (RN ,RN ). Since T ∈ RN−1(Rn × RN ) with ∂T = 0, this yields
that (1.2) holds true, where Σi ∈ RN−1(RN ) satisfies ∂Σi = 0 for each i.

Step 2: the case N > k + 1. For a multi-index β of length |β| = k + 1, let
Ψβ denote the projection map given by (4.1), and define Tβ := Ψβ#T . By the

assumption, Lemma 4.1 yields that Tβ is i.m. rectifiable in Rk(Rn × Rk+1
β ) and

satisfies ∂Tβ = 0. Moreover, by (1.1) it is readily checked that Tβ(η) = Tβ(η(k))
for every form η ∈ Dk(Rn×Rk+1

β ). Then, by using the case N = k +1, we deduce

the existence of an at most countable subset Sβ
0 of Rn such that

set(Tβ) ⊂ Sβ
0 × Rk+1

β . (5.1)

It then remains to show that

set(T ) ⊂ S0 × RN , where S0 :=
[

|β|=k+1

Sβ
0 . (5.2)

To this purpose, possibly by slightly rotating the target space, we may and do
apply Proposition 4.5 with γ = β− j for some j ∈ β, so that |α| = 0. The current

Tβ = τ(Nβ , θβ ,
−→
ζβ) satisfies (5.1), whereas in (4.8) we have just obtained that

T (φ(x) f(yβ) g(yβ) dyβ−j) = Tβ(φ(x) eΦ(x, yβ) g(yβ)dyβ−j) , (5.3)

with eΦ given by (4.7). Moreover, linear combinations of forms of the type

φ(x) f(yβ) g(yβ) dyβ−j , where φ ∈ C∞c (Rn) , f ∈ C∞c (RN−k−1) , g ∈ C∞c (Rk+1)

yield a dense subclass of forms η = η(k) ∈ Dk(Rn×RN ), see Remark 4.6. Therefore,
we deduce that (5.2) follows from (5.1). In conclusion, the structure property (1.2)
is obtained by means of the same argument that is used at the end of Step 1.
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Step 3: the case N = k. We show that T = 0 if N = k. Recall that the claim is
trivial for N < k, by the verticality property (1.1).

Assume then N = k, and consider the injection map i : Rn × Rk → Rn ×
Rk+1 such that i(x, y) := (x, y, 0). On account of Lemma 2.6, it is readily checked
that the current eT := i#T satisfies the hypotheses of Theorem 1.1. However, the
corresponding currents Σi ∈ Rk(Rk+1) in (1.2) are supported in Rk × {0} and
satisfy ∂Σi = 0. By the Constancy theorem, see [18, 26.27], any integral k-cycle
with finite mass in Rk × {0} is equal to zero. Therefore, Σi = 0 for all i, hence
i#T = 0 and finally T = 0.

6 The structure theorem II for integral cycles

In this section we prove the more general structure theorem 1.2 for the subclass
of integral currents, i.e., satisfying ∂T = 0. The proof relies on some arguments
from slicing theory, for which we refer to [18, Sec. 28] and [9, Sec. 2.5].

We make use of an induction argument on p ∈ N in order to deal with the
case q = k− p in (1.3), for any choice of the dimensions n, N of the domain and
target spaces, respectively, and k of the current T . Notice that for p = 0 the claim
has been proved in Theorem 1.1.

We thus fix p a positive integer, and assume that we have proved the claim if
T satisfies (1.3) with q = k − ν for each natural ν = 0, 1, . . . ,p− 1.

In Step 1, using a slicing argument we easily solve the case N < k. In Step 2,
we assume N = k and exploit the assumption ∂T = 0. In Steps 3 and 4, the
hardest part of the proof, we deal with the case N = k + 1. In Step 5, using the
projection argument from Sec. 4, we readily recover the case N > k + 1.

Let T ∈ Rk(Rn × RN ) satisfying ∂T = 0 and property T(h) = 0 for h =
0, . . . ,q − 1, where q = k − p. Since k − q = p, we have show the existence of a
countably Hp-rectifiable subset Sp of Rn such that

set(T ) ⊂ Sp × RN . (6.1)

Now, every form η ∈ Dk(Rn × RN ) decomposes as η =
P

m η(m), where
max{0, k − n} ≤ m ≤ min{k, N} and

η(m) =
X

|α|=k−m

ηα , ηα :=
X
|β|=m

ηα,β(x, y) dyβ ∧ dxα (6.2)

for some ηα,β ∈ C∞c (Rn ×RN ). Since (1.3) gives T (η(m)) = 0 for m < q, we shall
analyze the action of T on the components η(m), where we assume m ≥ q.

Step 1: the case N < k. According to (6.2), denote by πα : Rn → Rk−m the
orthogonal projection onto the α-components of x, i.e., πα(x) = xα, and by Πxα

the (n + m − k)-plane π−1
α ({xα}). Notice that m < k if N < k. For Hk−m-a.e.

xα ∈ Rk−m, we thus define the sliced current

Txα := 〈T, πα ./ IdRN , xα〉 , (πα ./ IdRN )(x, y) := (xα, y) .
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Remark 6.1 Recall that a dense sub-class of smooth forms is given by linear combi-
nations of forms with coefficients of the type ηα,β(x, y) = ϕ(xα) eϕ(xα)ψ(y), where
ϕ ∈ C∞(Rn+m−k), eϕ ∈ C∞(Rk−m), and ψ ∈ C∞c (RN ).

By assumption, and using that the slicing map is an orthogonal projection only
involving the “horizontal” coordinates x, for Hk−m-a.e. xα ∈ Rk−m the following
properties hold:

1. Txα belongs to Rm(Πxα × RN ) ;
2. the boundary of the slice agrees (up to the sign) with the slice of the boundary,

hence condition ∂T = 0 yields ∂Txα = 0 ;
3. Txα(η(h)) = 0 for every h < q and η ∈ Dm(Πxα × RN ) .

This yields that the sliced m-current Txα satisfies the hypothesis of Theo-
rem 1.2. Moreover, we have k − p = q = m − ν, where ν := p − (k −m), and by
the assumptions 0 < k − m ≤ p, hence 0 ≤ ν < p. Therefore, by the inductive
hypothesis, and since m − q = p − (k −m), we find the existence of a countably
Hp−(k−m)-rectifiable subset Sp−(k−m) of Πxα such that

set(Txα) ⊂ Sp−(k−m) × RN . (6.3)

Now, the slicing formula gives

T (ϕ(xα) eϕ(xα)ψ(y) dyβ ∧ dxα) =

Z
Rk−m

�
Txα(ϕ(xα)ψ(y) dyβ)

� eϕ(xα) dxα ;

therefore the property (6.1) follows from (6.3), on account of Remark 6.1.

Remark 6.2 If N = q, i.e. p = k − N , we thus obtain that T = 0. This property
follows from the argument in Step 3 from Sec. 5 in the case p = 0, whereas for
p > 0, whence N < k, it is an immediate consequence of the previous slicing
argument.

Step 2: the case N = k. Since the previous slicing argument holds for m < k, in
this case it suffices to consider the action of T on forms of the type η = η(k).

We have η(k) = φ(x, y) dy for some φ ∈ C∞c (Rn ×Rk), where dy := dy1 ∧ · · · ∧
dyk. By linearity and density, we may and do assume φ(x, y) = ϕ(x) f(y1) g( by1),
where ϕ ∈ C∞c (Rn), f ∈ C∞c (R), and g ∈ C∞c (Rk−1). We thus denote by F a
primitive of f , and set

ξ := ϕ(x)F (y1) g( by1)ddy1 ∈ En−1
b (Rn × Rk) .

Using the usual convention of summation on the repeated indices, we compute

dξ = ϕ,xi(x)F (y1) g( by1) dxi ∧ddy1 + ϕ(x) f(y1) g( by1) dy .

Since ξ has bounded Lipschitz coefficients, property ∂T = 0 and Lemma 2.6 yield
that T (dξ) = 0, hence

T (ϕ(x) f(y1) g( by1) dy) = −T (ϕ,xi(x)F (y1) g( by1) dxi ∧ddy1) .

Therefore, the argument that we used for the component η(k−1), applied this

time to the k-form ϕ,xi(x)F (y1) g( by1) dxi∧ddy1, yields the assertion, thanks to the
dominated convergence theorem.



A structure property of “vertical” integral currents 21

Step 3: the case N = k + 1. Fix j ∈ {1, . . . , k + 1}. For t1 < t2, denote

{t1 < yj < t2} := {(x, y) ∈ Rn × Rk+1 | t1 < yj < t2} .

For a.e. choice of t1 < t2 it turns out that the sliced current T {t1 < yj < t2} is

i.m. rectifiable and with boundary of finite mass. Write as usual T = τ(M, θ,
−→
ξ ),

where we may and do assume M = set(T ). In Step 4, we shall prove the following

Proposition 6.3 For a.e. real numbers t1 < t2 there exists a k-rectifiable set fM ⊂
Rn × Rk+1, with fM⊂ set(T {t1 < yj < t2}), and a countably Hp-rectifiable subset

Sp of Rn satisfying fM⊂ Sp × Rk+1

such that for every k-form ω of the type ω := φ(x, byj)
ddyj , where φ ∈ C∞c (Rn×Rkbyj

),

T {t1 < yj < t2}(ω) =

Z
fM〈ω,

−→
ξ 〉 θ dHk . (6.4)

Now, any completely vertical k-form in Dk(Rn × Rk+1) can be written as

η = η(k) =
k+1X
j=1

ψj(x, y)ddyj , ψj ∈ C∞c (Rn × Rk+1) .

Fix j ∈ {1, . . . , n}. By a density argument, we may and do assume that ψj(x, y) =

φ(x, byj) f(yj) for some φ ∈ C∞c (Rn × Rkbyj
) and f ∈ C∞c (R).

For ν ∈ N and h ∈ Z, denote tνh := h 2−ν . Possibly by slightly moving the
points tνh, we may and do assume that for each ν and h we can apply Proposi-
tion 6.3 to the restricted current T {tνh < yj < tνh+1}. We then find a k-rectifiable

set fMν
h ⊂ Rn × Rk+1, with fMν

h ⊂ M, where M = set(T ), and a countably Hp-
rectifiable subset Sp(ν, h) of Rn satisfyingfMν

h ⊂ Sp(ν, h)× Rk+1

and such that (the sliced currents having finite mass) for every φ ∈ C∞c (Rn×Rkbyj
)

T {tνh < yj < tνh+1}(φ(x, byj)
ddyj) =

Z
fMν

h

〈φ(x, byj)
ddyj ,

−→
ξ 〉 θ dHk .

Since moreover f ∈ C∞c (R), there exists a sequence {fν}ν of piecewise constant
and bounded functions fν : R→ R satisfying:

i) fν is constant on Iν
h :=]tνh, tνh+1[ for each h ;

ii) fν has compact support contained in the support of f ;
iii) fν → f uniformly as ν →∞.

As a consequence, using that T = τ(M, θ,
−→
ξ ) is i.m. rectifiable, we have

T (f(yj)φ(x, byj)
ddyj) = lim

ν→∞T (fν(yj)φ(x, byj)
ddyj) . (6.5)

Since moreover fν(yj) ≡ aν
h ∈ R for each yj ∈ Iν

h and each h, we have

T (fν(yj)φ(x, byj)
ddyj) =

X
h

aν
h · T {tνh < yj < tνh+1}(φ(x, byj)

ddyj) ,
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where the sum in h is finite for each fν . Setting fMν :=
S

h
fMν

h and Sp(ν) :=S
h Sp(ν, h), then fMν is a k-rectifiable subset of M, and Sp(ν) a countably

Hp-rectifiable subset of Rn satisfying fMν ⊂ Sp(ν)× Rk+1 and such that

T (fν(yj)φ(x, byj)
ddyj) =

Z
fMν
〈fν(yj)φ(x, byj)

ddyj ,
−→
ξ 〉 θ dHk .

Therefore, setting fM(j) :=
S

ν
fMν and Sj

p :=
S

ν Sp(ν), again fM(j) is a k-

rectifiable subset of M, and Sj
p a countably Hp-rectifiable subset of Rn satisfyingfM(j) ⊂ Sj

p × Rk+1 and such that

T (fν(yj)φ(x, byj)
ddyj) =

Z
fM(j)

〈fν(yj)φ(x, byj)
ddyj ,

−→
ξ 〉 θ dHk ∀ ν ∈ N .

By (6.5), we thus obtain

T (f(yj)φ(x, byj)
ddyj) =

Z
fM(j)

〈f(yj)φ(x, byj)
ddyj ,

−→
ξ 〉 θ dHk .

By linearity and density, letting fM = ∪j
fM(j) and Sp :=

S
j Sj

p, we have just
shown that

T (η(k)) =

Z
fM〈η(k),

−→
ξ 〉 θ dHk

where fM is a k-rectifiable subset of M, and Sp a countably Hp-rectifiable subset
of Rn satisfying fM⊂ Sp ×Rk+1. Arguing as in Step 1 for the components η(m),
where m < k, the claim (6.1) follows.

Step 4: proof of proposition 6.3. By slicing theory, for a.e. radius R > 0 the
i.m. rectifiable current

T j,R := T {(x, y) ∈ Rn × Rk+1 | |yh| < R for any h 6= j}

satisfies M(∂T j,R) < ∞. Moreover, for any such “good” radius R the current

T j,R
s1,s2 := T {(x, y) ∈ Rn × Rk+1 | s1 < yj < s2, |yh| < R for any h 6= j}

satisfies M(∂T j,R
s1,s2) < ∞ for a.e. s1 < s2. Therefore, for a.e. t1 < t2 we can find

an increasing sequence of good radii Rh ↗∞ such that the compactly supported
i.m. rectifiable current T j,Rh

t1,t2
∈ Rk,c(Rn × Rk+1) satisfies M(∂T j,Rh

t1,t2
) < ∞ for

each h.
Consider the affine homotopy map hj,Rh : (Rn × Rk+1)× [0, 1] → Rn × Rk+1

hj,Rh(x, y, t) := t (x, y) + (1− t) fj,Rh(x, y) ,

where fj,Rh(x, y) := (x, Rh + 1, . . . , Rh + 1, yj , Rh + 1, . . . , Rh + 1). The current

hj,Rh

#

�
T j,Rh

t1,t2
× [[ 0, 1 ]]

�
is compactly supported in Rk+1,c(Rn × Rk+1). Similarly,

both the currents

Sj,Rh
t1,t2

:= (−1)k hj,Rh

#

�
∂T j,Rh

t1,t2
× [[ 0, 1 ]]

�− fj,Rh

# (T j,Rh
t1,t2

) ,eT j,Rh
t1,t2

:= T j,Rh
t1,t2

+ Sj,Rh
t1,t2

(6.6)
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are compactly supported in Rk,c(Rn×Rk+1). Moreover, using that ∂f j,Rh

# (T j,Rh
t1,t2

)

agrees with fj,Rh

# (∂T j,Rh
t1,t2

), the homotopy formula (2.4) gives ∂ eT j,Rh
t1,t2

= 0.
We claim that

Hk�set(T j,Rh
t1,t2

)4 set(Sj,Rh
t1,t2

)
�

= 0 . (6.7)

In fact, set(fj,Rh

# (T j,Rh
t1,t2

)) is contained in {(x, y) | yh = Rh + 1 if h 6= j}, hence

it is Hk-essentially disjoint with set(T j,Rh
t1,t2

). Since moreover M(∂T j,Rh
t1,t2

) < ∞, by
our construction we also get

Hk�set(T j,Rh
t1,t2

)4 set
�
hj,Rh

#

�
∂T j,Rh

t1,t2
× [[ 0, 1 ]]

���
= 0 .

By (6.7) we thus infer that there is no cancellation in the sum in the second
line of the definition (6.6), i.e.,

M( eT j,Rh
t1,t2

) = M
�
T j,Rh

t1,t2

�
+ M

�
Sj,Rh

t1,t2

�
.

Therefore, writing as usual

T j,Rh
t1,t2

= τ(Mh, θ,
−→
ξ ) , eT j,Rh

t1,t2
= τ(Nh, eθ,

−→
ζ ) , (6.8)

and assuming without loss of generality that θ 6= 0 on Mh and eθ 6= 0 on Nh,
this yields that

Hk(Nh) = Hk(Mh) +Hk(Nh \Mh) . (6.9)

If e.g. j 6= 1, setting ey := y
(1,j)

, by a density argument we may and do

choose φ(x, byj) = ϕ(x) f(y1) g(ey) in (6.4), where ϕ ∈ C∞c (Rn), f ∈ C∞c (R), and

g ∈ C∞c (Rk−1). Denote by F a primitive of f , and let

ξ := ϕ(x)F (y1) g(ey) dey , dey := dy(1,j) ,

so that ξ ∈ Ek−1
b (Rn × Rkbyj

) satisfies dξ = ω + eω, where

ω := ϕ(x) f(y1) g(ey)ddyj , eω := ϕ,xi(x)F (y1) g(ey) dxi ∧ dey .

Condition ∂ eT j,Rh
t1,t2

= 0 yields eT j,Rh
t1,t2

(dξ) = 0, whence eT j,Rh
t1,t2

(ω) = − eT j,Rh
t1,t2

(eω).
Now, in the formulas (6.8) we denote

−→
ξ (z) =

X
|α|+|β|=k

ξα, β(z) eα ∧ εβ , z ∈Mh

−→
ζ (z) =

X
|α|+|β|=k

ζα, β(z) eα ∧ εβ , z ∈ Nh

and correspondingly definefMh := Mh \ {z ∈Mh | ξα, β(z) = 0 for each α and β s.t. β = j or β = (1, j) }eNh := Nh \ {z ∈ Nh | ζα, β(z) = 0 for each α and β s.t. β = j or β = (1, j) } .

On account or Remark 2.1, the set eNh is k-rectifiable and moreover

eT j,Rh
t1,t2

(ω) =

Z
fNh

〈ω,
−→
ζ 〉 eθ dHk , eT j,Rh

t1,t2
(eω) =

Z
fNh

〈eω,
−→
ζ 〉 eθ dHk .
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Since eω “contains” the differentials dxi, and ∂ eT j,Rh
t1,t2

= 0, by applying to the

term eT j,Rh
t1,t2

(eω) the slicing argument that we used in Step 1 for the component

η(k−1), we thus deduce the existence of a countably Hp-rectifiable subset Sh
p of

Rn such that eNh ⊂ Sh
p × Rk+1. Since moreover the property (6.9) yields

Hk( eNh) = Hk(fMh) +Hk( eNh \ fMh) ,

we also obtain that fMh ⊂ Sh
p × Rk+1.

Finally, since T {t1 < yj < t2} has finite mass, we deduce that T j,Rh
t1,t2

⇀

T {t1 < yj < t2} weakly in Dk(Rn×Rk+1) as h →∞. Therefore, Proposition 6.3

follows by taking fM = ∪h
fMh and Sp := ∪hSh

p.

Step 5: the case N > k + 1. Exactly as in Step 2 of the proof of Theorem 1.1
from Sec. 5, we make use of the projection argument from Sec. 4. We thus fix a
multi-index β of length |β| = k + 1, consider the projection map Ψβ given by
(4.1), and on account of Lemma 4.1 define

Tβ := Ψβ#T ∈ Rk(Rn × Rk+1
β ) .

By the assumption, we deduce that Tβ satisfies the hypotheses of Theorem 1.2,
with q = k − p. Then, by using the case N = k + 1, we find a countably Hp-
rectifiable subset Sβ

p of Rn such that

set(Tβ) ⊂ Sβ
p × Rk+1

β , Rk+1
β ↪→ RN . (6.10)

It then remains to show that

set(T ) ⊂ Sp × RN , where Sp :=
[

|β|=k+1

Sβ
p . (6.11)

To this purpose, possibly by slightly rotating the target space, we again apply
Proposition 4.5. The current Tβ = τ(Nβ , θβ ,

−→
ζβ) satisfies (6.10), whereas (4.8)

holds true, with eΦ given by (4.7). By Remark 4.6, we conclude that (6.11) follows
from (6.10), as required.

7 The structure theorems for normal currents

In this section we prove Theorems 1.1 and 1.2 for the wider classes of currents
T ∈ Rk(Rn × RN ) satisfying M(∂T ) < ∞. We thus assume that

T(h) = 0 for h = 0, . . . ,q− 1 , (7.1)

where 1 ≤ q ≤ k, and show that set(T ) ⊂ Sk−q × RN for some countably Hk−q-
rectifiable subset Sk−q of Rn.

To this purpose, consider the injection map i : Rn×RN → Rn×RN+1 given by
i(x, y) := (x, y, 0). Let BR ⊂ Rn×RN denote the open ball of radius R > 0 centered
at the origin. By slicing theory, for a.e. R > 0, the restriction TR := T BR

is a compactly supported i.m. rectifiable current in Rk,c(Rn × RN ) such that

M(∂TR) < ∞. Then, the image current i#TR belongs to Rk,c(Rn × RN+1), it
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has compact support contained in BR × {0}, and it satisfies M(∂ i#TR) < ∞.
Therefore, by the boundary rectifiability theorem 2.4, the current TR := ∂ i#TR

is i.m. rectifiable in Rk−1,c(Rn × RN+1).

Remark 7.1 The assumption (7.1) yields that i#TR (h) = 0 for h = 0, . . . ,q− 1.

Consider the affine homotopy map bh : [0, 1]× (Rn × RN+1) → Rn × RN+1

bh(t, x, y, z) := bht(x, y, z) := (x, ty, t(z−1)+1) , t ∈ [0, 1] , (x, y) ∈ Rn×RN , z ∈ R
and let bTR := bh#([[ 0, 1 ]]×TR), so that bTR is i.m. rectifiable in Rk,c(Rn×RN+1).
At the end of this section, we shall prove the following

Lemma 7.2 The current bTR satisfies the verticality property (7.1).

Now, by the definition we have bh0#TR = ∂ bh0#(i#TR) on Dk−1(Rn ×RN+1).

Since bh0(x, y, z) = (x, 0, 1) and k ≥ 1, the Remark 7.1 yields that bh0#(i#TR) = 0,

whence bh0#TR = 0. Therefore, since ∂TR = 0, the homotopy formula (2.4) yields

∂ bTR = bh1#TR − bh0#TR = TR =: ∂ i#TR .

We thus deduce that the current ΣR := i#TR − bTR ∈ Rk,c(Rn × RN+1) sat-
isfies the null-boundary condition ∂ΣR = 0 and the verticality property (7.1).
Since the structure theorems 1.1 and 1.2 have already been proved in the case of
boundaryless currents, we infer that

set(ΣR) ⊂ SR × RN+1 (7.2)

for some countably Hk−q-rectifiable subset SR ⊂ Rn. We now claim that

set(TR) ⊂ SR × RN , TR := T BR . (7.3)

In fact, using that bh0(x, y, z) = (x, 0, 1), by our construction

set(i#TR) ⊂ Rn × RN × {0} , Hk(set( bTR) ∩ (Rn × RN × {0})) = 0 .

Denoting by 4 the symmetric difference, this yields that

Hk(set(i#TR)4 set( bTR)) = 0 .

Therefore, M(ΣR) = M(i#TR) + M( bTR), i.e., there is no cancellation in the sum

ΣR := i#TR− bTR. Using (7.2), we can thus conclude that set(i#TR) ⊂ SR×RN+1

and definitely that (7.3) holds true.
Since set(TR) is increasing with R, and SR is countably Hk−q-rectifiable, by

choosing an increasing sequence of “good” radii Rj ↗∞ we obtain

set(T ) ⊂ Sk−q × RN , Sk−q = ∪jSRj
,

where Sk−q is countably Hk−q-rectifiable, as required.

Proof of Lemma 7.2 By Remark 7.1, the boundary TR := ∂ i#TR satisfies

TR (h) = 0 for h = 0, . . . ,q− 2 . (7.4)
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Moreover, the current [[ 0, 1 ]]× TR has compact support, andbTR(eω) = ([[ 0, 1 ]]× TR)(bh#eω) ∀ eω ∈ Dk(Rn × RN+1) .

Assume that eω = eω(j), where 1 ≤ j ≤ q − 1, and in particular that eω = η ∧ ω,
where η ∈ Dk−j(Rn) and ω ∈ Dj(RN+1). We decompose the pull-back of eω asbh#eω = η(x) ∧ (Φ(ey, t) ∧ dt + Ψ(ey, t)) , ey ∈ RN+1,

where the forms Φ(·, t) ∈ Ej−1(RN+1) and Ψ(·, t) ∈ Ej
b (RN+1) for every t ∈ (0, 1).

We have
([[ 0, 1 ]]× TR)(η(x) ∧ Ψ(ey, t)) = 0 ,

as η ∧ Ψ(ey, t) does not contain the differential dt, whereas

([[ 0, 1 ]]× TR)(η(x) ∧ Φ(ey, t) ∧ dt) = TR(η(x) ∧ eΦ(ey))

for some (j−1)-form eΦ ∈ Ej−1(RN ). Since j ≤ q−1, the verticality property (7.4)
gives TR(η(x) ∧ eΦ(ey)) = 0. The case j = 0 being trivial, Lemma 7.2 follows by
linearity and density. 2

8 Distributional determinant and minors

In this final section we discuss some new results concerning the distributional de-

terminant and the distributional minors, extending some properties proved in [15].

The distributional determinant. Let N = n ≥ 2 and u : Rn → bRn

satisfy the following properties:

(i) u ∈ L∞loc ∩W 1,n−1
loc or u ∈ Lq

loc ∩W 1,p
loc for some exponents q and p such that

n− 1 < p < n and
1

q
+

n− 1

p
≤ 1 ;

(ii) det∇u ∈ L1
loc ;

(iii) u is smooth outside some compact set K ⊂ Rn ;
(iv) the boundary current ∂Gu has finite mass.

If (i) holds, the distributional determinant is well defined by

Det∇u :=
1

n

nX
i,j=1

∂

∂xi

�
uj (adj∇u)j

i

�
, (8.1)

where adj∇u is the matrix of the adjoints of ∇u, and it is a signed Radon measure.
One has Det∇u = det∇uLn if u is locally Lipschitz and hence, by a standard
density argument, if u ∈ W 1,n

loc . More generally, as we have seen in the introduction,
if (ii) holds the graph current Gu is well-defined by (1.4) and (1.5). Therefore, the
distributional determinant can be described by means of the action of Gu.

In fact, following [14] we compute that

〈Det∇u, ϕ〉 = (−1)n
Z
Rn

u#ωn ∧ dϕ ∀ϕ ∈ C∞c (Rn) (8.2)
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where ωn :=
1

n

nX
j=1

(−1)j−1yj
ddyj ∈ En−1(bRn). Therefore, by (1.5) it turns out that

〈Det∇u, ϕ〉 = (−1)n Gu(ωn ∧ dϕ) .

Since moreover d(ωn ∧ ϕ) = dωn ∧ ϕ + (−1)n−1ωn ∧ dϕ, if u ∈ L∞loc ∩W 1,n−1
loc

〈Det∇u, ϕ〉 = Gu(dωn ∧ ϕ)− ∂Gu(ωn ∧ ϕ) . (8.3)

Using that dωn = dy1 ∧ · · · ∧ dyn, by (1.5) we also have

Gu(dωn ∧ ϕ) = Gu(ϕ dy1 ∧ · · · ∧ dyn) =

Z
Rn

ϕ(x) det∇u(x) dx .

Assume now in addition that (iii) and (iv) hold. Then, by the boundary recti-
fiability theorem 2.4 it turns out that ∂Gu is i.m. rectifiable in Rn−1(Rn × bRn),
whence the second addendum in the right-hand side of (8.3) agrees with the sin-

gular part (Det∇u)s with respect to the Lebesgue measure Ln. We thus deduce
for any bounded Borel function ϕ with compact support

〈(Det∇u)a, ϕ〉 = 〈det∇uLn, ϕ〉 , 〈(Det∇u)s, ϕ〉 = −∂Gu(ωn ∧ ϕ) (8.4)

i.e. the decomposition into absolute continuous and singular parts.
Recall from the introduction that by Proposition 1.4, the boundary current

T = ∂Gu satisfies the assumptions of the structure theorem 1.1, with k = n − 1
and N = n. Therefore, (1.6) holds true for some countable subset S0 of K.

As a consequence, we now prove the following:

Theorem 8.1 Let u : Rn → bRn satisfy the properties (i)–(iv). Then the singular part

(Det∇u)s w.r.t. the Lebesgue measure Ln has finite total variation and is concentrated

on the at most countable subset S0 of K.

Proof For R > 0, choose a cut-off function χR ∈ C∞c ([0,+∞)) as in the proof of
Lemma 2.6. By (8.2) and (1.5), for every ϕ ∈ C∞c (Rn) we have

〈Det∇u, ϕ〉 = (−1)n Gu(χR(|y|)ωn ∧ dϕ) + (−1)n Gu((1−χR(|y|))ωn ∧ dϕ) . (8.5)

The form χR(|y|)ωn∧ϕ has bounded Lipschitz coefficients, compact support, and

d(χR(|y|)ωn ∧ ϕ) = d(χR(|y|)ωn) ∧ ϕ + (−1)n−1χR(|y|)ωn ∧ dϕ .

By (ii)–(iv), we can write

(−1)n Gu(χR(|y|)ωn ∧ dϕ) = Gu(d(χR(|y|)ωn) ∧ ϕ)− ∂Gu(χR(|y|)ωn ∧ ϕ) , (8.6)

compare (8.3) for the case u ∈ L∞loc ∩W 1,n−1
loc . Now, we have

d(χR(|y|)ωn) = χR(|y|) dωn + χ′R(|y|) d|y| ∧ ωn

and recalling that dωn = dy1 ∧ · · · ∧ dyn

d|y| ∧ ωn =
� nX

j=1

yj

|y| dyj
�
∧ ωn =

1

n
|y| dωn .
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Let Kϕ ⊂ Rn denote the support of ϕ ∈ C∞c (Rn), so that det∇u ∈ L1(Kϕ). Since
u#dωn ∧ ϕ = ϕ · det∇u dx, by (1.5) we get

Gu(d(χR(|y|)ωn) ∧ ϕ) =

Z
Rn

ϕ(x)
�
χR(|u|) +

1

n
χ′R(|u|) |u|

�
det∇u(x) dx .

We claim that there exists an increasing sequence {Rj} of integer radii Rj ↗∞
such that

lim
j→∞

Gu(d(χRj
(|y|)ωn) ∧ ϕ) =

Z
Rn

ϕ(x) det∇u(x) dx . (8.7)

In fact, since u ∈ L1
loc, we have that χR(|u|) → 1 a.e. in Kϕ. Whence, by the

dominated convergence

lim
R→∞

Z
Rn

ϕ(x)χR(|u|) det∇u(x) dx =

Z
Rn

ϕ(x) det∇u(x) dx .

Moreover, the restriction of χ′R(|u|) to Kϕ is uniformly bounded and supported
in KR

ϕ := {x ∈ Kϕ | R ≤ |u(x)| < R + 1}. Setting for R = j ∈ N

aj :=

Z
Kj

ϕ

|det∇u(x)| dx ,

condition det∇u ∈ L1(Kϕ) yields that
P

j aj < ∞, whence lim inf
j→∞

(j + 1) aj = 0.

Therefore, the claim (8.7) follows by observing that����ZRn

ϕ(x)
1

n
χ′R(|u|) |u| det∇u(x) dx

���� ≤ c ‖ϕ‖∞ (j + 1) aj .

Similarly, we get

Gu((1− χR(|y|))ωn ∧ dϕ) =

Z
Rn

((1− χR(|u|))u#ωn ∧ dϕ .

Since u satisfies (i), by dominated convergence, and using that (1− χR(|u|)) → 0
a.e. in Kϕ as R →∞, we deduce

lim
R→∞

Gu((1− χR(|y|))ωn ∧ dϕ) = 0 . (8.8)

By (8.5), (8.6), (8.7), and (8.8), we obtain that for every ϕ ∈ C∞c (Rn)

〈Det∇u, ϕ〉 =

Z
Rn

det∇u(x)ϕ(x) dx + lim
j→∞

〈µRj
, ϕ〉 ,

where the increasing sequence Rj ↗∞ is chosen as in (8.7) and

〈µRj
, ϕ〉 := −∂Gu(χRj

(|y|)ωn ∧ ϕ) .

Since by Theorem 1.1 all the measures µRj
are concentrated on the countable set

S0, the claim follows. 2

Distributional minors. More generally, let n, N ≥ 2 integers and let us fix
the order 2 ≤ m ≤ min(n, N). We assume that u : Rn → RN satisfies:
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(i’) u ∈ L∞loc ∩W 1,m−1
loc or u ∈ Lq

loc ∩W 1,p
loc for some exponents q and p such that

m− 1 < p < m and
1

q
+

m− 1

p
≤ 1 ; (8.9)

(ii’) all the minors of the Jacobian matrix ∇u are in L1
loc ;

and again the above properties (iii) and (iv).

Following the notation about multi-indices, for an (N × n)-matrix G, if |α| =
n − m and |β| = m, we denote by Gβ

α the square (m × m)-submatrix obtained

by selecting the rows and columns by β and α, respectively, and by Mβ
α (G) its

determinant. We also define the matrix of adjoints of Gβ
α by the formula

(adjGβ
α)j

i := σ(j, β − j)σ(i, α− i) detGβ−j
α−i , j ∈ β , i ∈ α .

If (i’) holds, the distributional minor of indices α and β of ∇u is well-defined by

Divβ
α u :=

1

|β|
X
j∈β

X
i∈α

∂

∂xi

�
uj (adj(∇u)β

α)j
i

�
.

Moreover, Divβ
α u is a signed Radon measure, that agrees with Mβ

α (∇u)Ln if u

is locally Lipschitz or even in W 1,m
loc .

Denote by ωα
ϕ ∈ Dn−m(Rn) the form ωα

ϕ(x) := (−1)|α|σ(α, α)ϕ(x) dxα , so

that ωα
ϕ := ϕ if m = n, and let ωβ :=

1

|β|
X
j∈β

σ(j, β − j) yj dyβ−j ∈ Em−1(RN ).

Following [14], similarly to (8.2) we get

〈Divβ
α u, ϕ〉 = (−1)m

Z
Rn

u#ωβ ∧ dωα
ϕ ∀ϕ ∈ C∞c (Rn) .

Therefore, if (ii’) holds, by (1.5) we similarly obtain

〈Divβ
α u, ϕ〉 = (−1)m Gu(ωβ ∧ dωα

ϕ) .

If u ∈ L∞loc ∩W 1,m−1
loc , we thus can write

〈Divβ
α u, ϕ〉 = Gu(dyβ ∧ ωα

ϕ)− ∂Gu(ωβ ∧ ωα
ϕ) (8.10)

where by (1.5) we compute

Gu(dyβ ∧ ωα
ϕ) =

Z
Rn

ϕ(x)Mβ
α (∇u(x)) dx .

Again, if (iii) and (iv) hold, ∂Gu is i.m. rectifiable in Rn−1(Rn × RN ), and we
thus obtain the decomposition

〈(Divβ
α u)a, ϕ〉 = 〈Mβ

α (∇u)Ln, ϕ〉 , 〈(Divβ
α u)s, ϕ〉 = −∂Gu(ωβ ∧ ωα

ϕ)

into absolute continuous and singular parts.
Furthermore, by Proposition 1.4, this time T = ∂Gu satisfies the assumptions

of the structure theorem 1.2, with k = n− 1 and q = m− 1, whence (1.6) holds,
with Sn−m a countably Hn−m-rectifiable subset of K. Therefore, arguing as in
the proof of Theorem 8.1, and with the obvious modifications, we similarly obtain:
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Theorem 8.2 Let n, N ≥ 2 and 2 ≤ m ≤ min(n, N). Let u : Rn → RN satisfy

the properties (i′), (ii′), (iii), and (iv), and let |α| = n −m and |β| = m. Then the

singular part (Divβ
α u)s w.r.t. the Lebesgue measure Ln has finite total variation and

is concentrated on a countably Hn−m-rectifiable subset Sn−m of K.

Remark 8.3 In the case m = 1, if β = j and α = i, we have (adj∇u)β
α = 1 and

Divβ
α u = Diu

j . Therefore, Theorem 8.2 describes in some sense the higher order
counterpart of some features concerning the class SBV0 studied in Thm. 3.1 and
Thm. 3.4 from [3].
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