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LORENTZ ESTIMATES FOR OBSTACLE PARABOLIC PROBLEMS

PAOLO BARONI

ABSTRACT. We prove that the spatial gradient of (variational) solutions to par-
abolic obstacle problems of p-Laplacian type enjoys the same regularity of the
data and of the derivatives of the obstacle in the scale of Lorentz spaces.

1. INTRODUCTION

In this paper we deal with the obstacle problem related to the parabolic Cauchy-
Dirichlet problem

ut − div a(x, t,Du) = f − div
[
|F |p−2F

]
in ΩT = Ω× (0, T ),

u = 0 on ∂latΩT = ∂Ω× (0, T ),

x(·, 0) = u0 in Ω,
(1.1)

where the vector field models the p-Laplacian operator with coefficients

a(x, t,Du) ≈ b(x, t)
(
s2 + |Du|2

) p−2
2 Du, p >

2n

n+ 2
, s ∈ [0, 1],

(1.2)

see (1.8), and where the obstacle ψ is not continuous, as often considered in the
literature. We are interested in sharp integrability estimates for the gradient Du of
solutions to the variational inequality related to (1.1) in terms of integrability of
the data on the right-hand side f, F and of the obstacle ψ in the scale of Lorentz
spaces; here Ω ⊂ Rn, n ≥ 2 is a bounded domain and it will be so for the rest of
the paper. More precisely, given an obstacle function ψ : Ω× [0, T ]→ R,

ψ ∈ Lp(0, T ;W 1,p(Ω)) ∩ C([0, T ];L2(Ω)) (1.3)

such that

∂tψ ∈ Lp
′
(ΩT ) and ψ ≤ 0 a.e. on ∂latΩT (1.4)

and functions

F ∈ Lp(ΩT ;Rn) and f ∈ Lp′(ΩT ) (1.5)

(with p′ we denote the Hölder conjugate of p, i.e., p′ := p/(p − 1) for p > 1), we
consider functions u ∈ K0, where

K0 :=
{
u ∈ Lp(0, T ;W 1,p

0 (Ω)) ∩ C([0, T ];L2(Ω)) : u ≥ ψ a.e. in ΩT

}
,
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satisfying the variational inequality∫ T

0
〈∂tv, v − u〉W−1,p×W 1,p

0
dt+

∫
ΩT

〈a(x, t,Du), Dv −Du〉 dz

≥ −1

2

∫
Ω
|v(·, 0)− u0|2 dx+

∫
ΩT

〈|F |p−2F,Dv −Du〉 dz

+

∫
ΩT

f(v − u) dz (1.6)

for any function v ∈ K ′0, with

K ′0 :=
{
v ∈ K0 : ∂tv ∈ Lp

′
(0, T ;W−1,p′(Ω))};

〈·, ·〉
W−1,p×W 1,p

0
denotes the duality pairing crochet between W 1,p

0 (Ω) and its dual

space W−1,p(Ω), while 〈·, ·〉 is the scalar product in Rn. We immediately mention
that existence and uniqueness for the problem we are considering can be inferred
from [5, Theorem 6.1]. For the initial value we shall assume

u0 ∈W 1,p
0 (Ω) and u0 ≥ ψ(·, 0) a.e. in Ω; (1.7)

using an approximation scheme, we can also allow for initial data in u0 ∈ L2(Ω).
The vector fields we treat model the p-Laplacian operator in the following sense:
we take a : ΩT ×Rn → Rn such that ∂ξa is a Carathéodory function and such that
the following ellipticity and growth conditions are satisfied:〈∂ξa(x, t, ξ)λ, λ〉 ≥ ν

(
s2 + |ξ|2)

p−2
2 |λ|2,

|a(x, t, ξ)|+ |∂ξa(x, t, ξ)|
(
s2 + |ξ|2

) 1
2 ≤ L

(
s2 + |ξ|2

) p−1
2 ,

(1.8)

for almost every (x, t) ∈ ΩT and all ξ, ξ1, ξ2, λ ∈ Rn; the structural constants
satisfy 0 < ν ≤ 1 ≤ L < ∞, s ∈ [0, 1] is the degeneracy parameter and the
exponent p will always satisfy the lower bound p > 2n

n+2 as in (1.2). Moreover
we shall consider the following nonlinear VMO condition in the spirit of [8, 19]:
defining for balls B ⊂ Ω and for all t ∈ (0, T ) and all ξ ∈ Rn the averaged vector
field

(a)B(t, ξ) :=

∫
B
a(·, t, ξ) dx, (1.9)

we require the averaged, normalized modulus of oscillation ωa(R) ∈ [0, 2L]

ωa(R) := sup
t∈(0,T ),

B∈BR,ξ∈Rn

(∫
B

(
|a(y, t, ξ)− (a)B(t, ξ)|

(s2 + |ξ|2)(p−1)/2

)2

dy

) 1
2

(1.10)

where BR is the collection of balls {B ≡ Br(x) ⊂ Ω : 0 < r ≤ R}, to satisfy

lim
R↘0

ωa(R) = 0. (1.11)

This means that, if we consider the model case in (1.2) with product coefficients
b(x, t) = d(x)h(t), we can allow bounded and measurable time-coefficients (h ∈
L∞(0, T )) and bounded and VMO spatial ones (d ∈ (L∞ ∩ VMO)(Ω)); this
kind on “non-linear VMO condition” includes, as particular case, the regularity
conditions we assumed in [2] for systems. VMO regularity only with respect to the
spatial variables has been often assumed to prove regularity estimates of this kind,
starting from [17, 16], in the case without obstacle; see also [1, 8].
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Finally we are in position to state the main result of our paper:

Theorem 1.1. Let u ∈ K0 satisfy the variational inequality (1.6), where the vector
field a satisfies (1.8) and (1.11); moreover suppose that

|Dψ|+ |∂tψ|1/(p−1) + |F |+ |f |1/(p−1) ∈ L(γ, q) locally in ΩT (1.12)

for some γ > p and some q ∈ (0,∞]. Then |Du| ∈ L(γ, q) locally in ΩT and
there exists a radius R0 ≤ 1, depending on n, p, ν, L, ωa(·), γ and on q in the
case q < ∞, such that the following local estimate holds, for parabolic cylinders
Q2R ≡ Q2R(z0) ⊂ ΩT , with R ≤ R0:

|QR|−
1
γ
∥∥|Du|+ s

∥∥
L(γ,q)(QR)

≤ c
(∫

Q2R

(
|Du|+ s

)p
dz

) d
p

+ c |Q2R|−
d
γ ‖Ψ2R + 1‖dL(γ,q)(Q2R), (1.13)

where the function ΨR, belonging locally to L(γ, q)(ΩT ), is defined by

ΨR := |F |+ |Dψ|+R1/(p−1)
(
|f |1/(p−1) + |∂tψ|1/(p−1)

)
. (1.14)

The constant in (1.13) depends on n, p, ν, L, γ, q (except in the case q =∞, where
it depends only on n, p, ν, L, γ) and the scaling deficit d ≥ 1 is defined by

d ≡ d(p) :=


p

2
if p ≥ 2,

2p

p(n+ 2)− 2n
if

2n

n+ 2
< p < 2.

(1.15)

Note that the constant c depends critically on γ− p, in the sense that c→∞ when
γ → p.

We recall that the Lorentz space L(γ, q)(A), for A ⊂ Rk, k ∈ N, open set
and for parameters 1 ≤ γ < ∞ and 0 < q < ∞, is defined by requiring, for a
measurable function g : A→ R, that

‖g‖qL(γ,q)(A) := q

∫ ∞
0

(
λγ
∣∣{ξ ∈ A : |g(ξ)| > λ}

∣∣) qγ dλ
λ
<∞. (1.16)

If q = ∞, 1 ≤ γ < ∞, the space L(γ,∞)(A) is by definition the Marcinkiewicz
spaceMγ(A), the space of measurable functions g such that

‖g‖L(γ,∞)(A) = ‖g‖Mγ(A) := sup
λ>0

(
λγ
∣∣{ξ ∈ A : |g(ξ)| > λ}

∣∣) 1
γ
<∞.

(1.17)

The local variant of such spaces is defined in the usual way; see Paragraph 2.2 for
some more details about Lorentz spaces.

A few comments about our assumptions and our result. To start with, note that
the lower bound for the exponent, analogous to that in (1.2)-(1.19), is unavoidable
since it already naturally appears in the regularity theory of solutions to parabolic
p-Laplacian operators (see [11, 30, 1, 18, 7]).

Note also that the result is sharp, and this follows if we consider the regular-
ity of solutions on the so-called coincidence set, i.e. that portion of the domain
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where the solutions and the obstacle coincide; if we consider solutions to (1.1), the
implication

|F | ∈ L(γ, q) locally in ΩT =⇒ |Du| ∈ L(γ, q) locally in ΩT

has been proved by the author in [2]. Our work essentially relies upon the work
[1] of Acerbi and Mingione, where the Lebesgue version q = γ of Theorem 1.1
without obstacle has been proved:

|F | ∈ Lγloc(ΩT ) =⇒ |Du| ∈ Lγloc(ΩT ) (1.18)

for γ > p. In this paper techniques to handle Calderón-Zygmund estimate for de-
generate and singular parabolic systems of p-Laplacian type have been developed
for the first time; see also [7] for a version up to the boundary. These techniques
have then been used extensively in the last year, for instance to obtain global esti-
mates in domains with rough boundaries [7, 8]; these tools (which we shall describe
in a while) have also been shown to be flexible enough to handle parabolic (and el-
liptic) obstacle problem. We refer in particular to [5], where the analogue of our
Theorem 1.1 has been proved in the setting of Lebesgue spaces:

|Dψ|+ |∂tψ|1/(p−1) + |F |+ |f |1/(p−1) ∈ Lγloc(ΩT )

=⇒ |Du| ∈ Lγloc(ΩT )

for γ > p. On the other hand in [2] the author proved the natural generalization
of (1.18) to the Lorentz spaces setting, see the same [2] for further comments and
references. In this paper we show how to modify the technique which lead to
(1.18) in order to meet both the obstacle-structure of the problem and the setting
of Lorentz spaces; moreover, while using extensively some of the results proved in
[5], we shall simplify some of the arguments: in particular we will not prove (1.13)
as an a priori estimate for solution with bounded gradient (this will be needed to re-
absorb certain terms appearing on the right-hand side), but we shall argue directly
on truncations of the gradient, see (4.34) and (4.35). Finally, with regard to obstacle
problems, we want to mention the recent interesting paper [21] by Lindqvist &
Parviainen, where it is discussed the topic of existence of solutions for irregular
obstacle problems, in the sense that obstacles do not even possess time derivative;
a delicate interaction between regularity of the obstacle and the regularity of the
test functions comes here into play.

The approach developed in [1], with elements from [9, 14], is essentially based
on the construction of an appropriate family of intrinsic cylinders where the equa-
tion re-homogenize: already when considering the homogeneous evolutionary p-
Laplace equation

∂tu− div
[
|Du|p−2Du

]
= 0, p >

2n

n+ 2
, (1.19)

one has to work not with the standard parabolic cylindersQR(x0, t0) := BR(x0)×
(t0 − R2, t0), but with certain cylinders whose shape is devised to rebalance the
lack of scaling of the equation: indeed the elliptic part is homogeneous of degree
p − 1, while the parabolic part is clearly of degree 1, and this tells us that no
universal family of balls is associated to the equation. As a consequence, typical
harmonic analysis tools like maximal operators are automatically ruled out. One,
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hence, following DiBenedetto [11, 10] and considering here for simplicity in the
case p ≥ 2, works on cylinders of the type

QλR(z0) ≡ QλR(x0, t0) := BR(x0)× (t0 − λ2−pR2, t0)

with λ ≥ 1 a scaling parameter; the heuristic underneath the choice of the scaling
parameter λ is the following. Suppose that on one of these cylinders the relation∫

QλR(z0)
|Du|p dz ≈ λp (1.20)

holds; we call such a cylinder intrinsic, since the parameter λ appears both in the
definition of the cylinder and in the values Du takes over it and therefore every
of these cylinders depends explicitly on the solution. Relation (1.20) roughly tells
that |Du| ≈ λ on QλR(z0) and hence one may think to equation (1.19) as actually
∂tu − λp−2 divDu = ∂tu − λp−24u = 0 in QλR(z0). Now, switching from the
intrinsic cylinder QλR(z0) to Q1, that is making the change of variables

v(x, t) := u(x0 +Rx, t0 + λ2−pR2t), (x, t) ∈ B1 × (−1, 0) ≡ Q1,

we note that our equation finally rewrites as ∂tv −∆v = 0 in Q1. This argument
tells that on an intrinsic cylinder like (1.20) the solution u behaves as a solution
to the heat equation. Note however that the previous argument is clearly only
heuristic, and its implementation is far from straightforward; in particular it clearly
has to be adapted to the problem we are dealing with, taking into account also
the eventual presence of right-hand sides or obstacles, as in our case. Indeed our
choice of intrinsic cylinders will be, see (4.6),(∫

QλR(z0)

(
|Du|+ s

)p
dz

) 1
p

+M

(∫
QλR(z0)

(ΨR + s)η dz

) 1
η

= λ,

for some η ∈ (p, γ) and a large constant M . This latter constant is essentially
the key point in the approach of Acerbi and Mingione: the weight M � 1 is a
suitably chosen parameter, depending on the structural constants of the problem,
which allow to quantitatively control the contribution of the data f, F, ψ. Indeed,
we know that whether∫

QλR(z0)

(
|Du|+ s

)p
dz ≈ λp or

∫
QλR(z0)

(ΨR + s)η dz ≈ λη

Mη

holds. Therefore, again heuristically, or the equation is the non-degenerate as above
inQλR(z0) or, if we chooseM large, u solves (approximately) the p-Laplacian type
equation

∂tu− div a(x, t,Du) ≈ 0 on QλR(z0),

with constant, negative obstacle; this, a bit more formally, will be formalized in
two steps: first we compare our variational solution to the solution to the Cauchy-
Dirichlet problem, where the right-hand side has small as we please Lp

′
norm{

∂tv − div a(x, t,Dv) = ∂tψ − div a(x, t,Dψ) in QλR(z0),

v ≡ u on ∂PQλR(z0),
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(see (4.20) for the resulting comparison inequality) and then we compare in turn v
with the solution of the homogeneous problem{

∂tṽ − div a(x, t,Dṽ) = 0 in QλR/2(z0),

ṽ ≡ v on ∂PQλR/2(z0);

the result is in (4.23). See also the analogue but somehow different heuristic expla-
nation in [5].

2. NOTATION, FUNCTION SPACES AND TOOLS

Here first we fix the notation we are going to use in this paper; moreover we shall
collect some definitions and results regarding functional spaces we shall employ
but also classic results for p-Laplacian type equations.

2.1. Notation. The Euclidean space Rn+1 will always be thought as Rn×R, so a
point z ∈ Rn+1 will be often also denoted as (x, t), z0 as (x0, t0) and so on. Being
BR(x0) the ball {x ∈ Rn : |x − x0| < R}, we shall consider parabolic cylinders
of the form

QR(z0) := BR(x0)× (t0 −R2, t0),

but we shall also deal with scaled cylinders of the form

QλR(z0) :=

{
BR(x0)×

(
t0 − λ2−pR2, t0) if p ≥ 2,

B
λ
p−2

2 R
(x0)×

(
t0 −R2, t0) if p < 2,

(2.1)

where the stretching parameter will be always greater than one: λ ≥ 1; hence in
both cases QλR(z0) ⊂ Q1

R(z0) = QR(z0). With χBR(x0), for a constant χ > 1,
we will denote the χ-times enlarged ball, i.e. χBR(x0) := BχR(x0), and the same
for cylinders: χQλR(z0) := QλχR(z0). In order to shorten notation, we shall denote
ΛλR(t0) =:

(
t0 − λ2−pR2, t0) and Bλ

R(x0) := B
λ
p−2

2 R
(x0), and we shall drop the

λ when it will be one: ΛR(t0) =:
(
t0−R2, t0) and Bλ

R(x0) := BR(x0). Often we
shall avoid to make explicit their centers in the following way: QλR ≡ QλR(z0) and
similar.

Given τ ∈ (0, T ) we shall write Ωτ for the cylinder Ω × (0, τ); by parabolic
boundary of K := C× I in Rn+1, we mean ∂PK := C×{inf I}∪∂C× I . Being
A ∈ Rk a measurable set with positive measure and f : A → Rm an integrable
map, with k,m ≥ 1, we indicate with (f)A the averaged integral

(f)A :=

∫
A
f(ξ) dξ :=

1

|A|

∫
A
f(ξ) dξ.

We will denote with c a generic constant always greater than one, possibly varying
from line to line; however, the ones we shall need to recall will be denoted with
special symbols, such as cDiB, c̃, c`. We finally remark that by sup we shall always
mean essential supremum.
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2.2. Lorentz spaces. The reader might recall the definition of Lorentz spaces in
(1.16)-(1.17). Since here we assume A of finite measure, the spaces L(γ, q)(A)
decrease in the first parameter γ; this means that for 1 ≤ γ1 ≤ γ2 < ∞ and
0 < q ≤ ∞ we have a continuous embedding L(γ2, q)(A) ↪→ L(γ1, q)(A) with

‖g‖L(γ1,q)(A) ≤ |A|
1
γ1
− 1
γ2 ‖g‖L(γ2,q)(A).

On the other hand the Lorentz spaces in general increase in the second parameter
q, i.e. we have for 0 < q1 ≤ q2 ≤ ∞ the continuous embedding L(γ, q1)(A) ↪→
L(γ, q2)(A) with

‖g‖L(γ,q2)(A) ≤ c(γ, q1, q2)‖g‖L(γ,q1)(A)

when q2 < ∞, while the constant clearly does not depend on q2 when q2 = ∞;
see, essentially, Lemma 2.8 for λ = 0 and an appropriate choice of the quantities
involved. Note moreover that by Fubini’s theorem we have

‖g‖γLγ(A) = γ

∫ ∞
0

λγ
∣∣{ξ ∈ A : |g(ξ)| > λ}

∣∣ dλ
λ

= ‖g‖γL(γ,γ)(A) ,

so that Lγ(A) = L(γ, γ)(A). Finally we have that L(γ, q)(A) ⊂ Lη(A) for any
η < γ and all 0 < q ≤ ∞, see for instance Lemma 2.9 together with the second
embedding above.

Remark 2.1. Note that the notation we use might be misleading, since, due to the
lack of sub-additivity, the quantity ‖ · ‖L(γ,q)(A) is just a quasi-norm. Neverthe-
less, the mapping g 7→ ‖g‖L(γ,q)(A) is lower semi-continuous with respect to a.e.
convergence, see [24, Remark 3] or [4, Section 3].

2.3. Parabolic spaces. We collect here some properties of parabolic Sobolev spaces,
restricting to the case p > 2n

n+2 . First notice that the embedding W 1,p
0 (Ω) ↪→

L2(Ω) for such exponents and the identification given by Riesz’s Theorem allows
to identify

〈v, u〉
W−1,p×W 1,p

0
=

∫
Ω
vu dx if v ∈ L2(Ω) ⊂W−1,p′(Ω), (2.2)

for any u ∈ W 1,p
0 (Ω), where, we recall, 〈·, ·〉

W−1,p×W 1,p
0

is the duality pairing

between W 1,p
0 (Ω) and W−1,p(Ω).

The space Lp
′
(0, T ;W−1,p′(Ω)) is the space of functions f (usually we will

have/denote f = ∂tg for some function g ∈ Lp(0, T ;W 1,p(Ω))) such that f ∈
W−1,p′(Ω) for a.e. t ∈ (0, T ) and moreover

t 7→ ‖f(·, t)‖W−1,p′ (Ω) ∈ L
p′((0, T ));

moreover note that the following implication holds

f ∈ Lp(0, T ;W 1,p(Ω)) and ∂tf ∈ Lp
′
(0, T ;W−1,p′(Ω))

=⇒ f ∈ C([0, T ];L2(Ω)), (2.3)

see [22]. This means that we made redundant assumptions (as in (1.3)-(1.4)), but
we shall keep doing that, for the sake of clarity. For the next result, which allows to
manipulate the parabolic part of the variational inequality, see [28] or [5, Lemma
2.1].
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Lemma 2.2. Let u, v ∈ Lp(0, T ;W 1,p(Ω)) be such that

∂tu, ∂tv ∈ Lp
′
(0, T ;W−1,p′(Ω)).

Then

〈∂tu(·, t), u(·, t)〉
W−1,p′×W 1,p

0
=

1

2

∫
Ω
|u(·, t)|2 dx (2.4)

for every t ∈ [0, T ] and moreover the following integration by parts formula holds
true: ∫ T

0
〈∂tu(·, t), v(·, t)〉

W−1,p′×W 1,p
0
dt =

∫
Ω
uv(·, τ) dx

∣∣∣∣T
τ=0

−
∫ T

0
〈∂tv(·, t), u(·, t)〉

W−1,p′×W 1,p
0
dt. (2.5)

Note that the previous result makes sense in light of (2.3).

2.4. The V -function. We introduce the auxiliary vector field Vs : Rn → Rn
defined by

Vs(z) :=
(
s2 + |z|2

) p−2
4 z,

which is a locally Lipschitz bjiection from Rn into itself and which turns out
to be very useful in particular to deal with monotonicity conditions related to p-
Laplacian operator. Notice indeed that there holds

1

cV
|ξ1 − ξ2|2 ≤

|Vs(ξ1)− Vs(ξ2)|2

(s2 + |ξ1|2 + |ξ2|2)
p−2

2

≤ cV |ξ1 − ξ2|2

for all vectors ξ1, ξ2 ∈ Rn not simultaneously null if s = 0 and for every p >
1; the constant cV depends only on n, p. The previous inequality is relevant in
manipulations involving the classic monotonicity estimate

〈a(x, t, ξ1)− a(x, t, ξ2), ξ1 − ξ2〉

≥ 1

c(n, p, ν)

(
s2 + |ξ1|2 + |ξ2|2

) p−2
2 |ξ1 − ξ2|2

for any ξ1, ξ2 ∈ Rn as above and with p > 1, which in turn follows by (1.8)1 and
which, at this point, can be rewritten as

〈a(x, t, ξ1)− a(x, t, ξ2), ξ1 − ξ2〉 ≥
1

cm(n, p, ν)

∣∣Vs(ξ1)− Vs(ξ2)
∣∣2. (2.6)

Moreover the function Vs can be used to rephrase a quite classical inequality, see
[1, Lemma 5] and references therein.

Lemma 2.3. Let p > 1. Then there exists a constant c` ≡ c`(n, p) such that for
any ξ1, ξ2 ∈ Rn, not both zero, there holds(

s+ |ξ1|
)p ≤ c`(s+ |ξ2|

)p
+ c`

∣∣Vs(ξ1)− Vs(ξ2)
∣∣2.
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2.5. Auxiliary results. The following comparison principle has been proved in
[5, Lemma 2.8] in the case the vector field has no dependence on (x, t). The proof
in our case requires no modification, since the only assumption used in to treat the
elliptic part is (the version without coefficients of) (2.6).

Lemma 2.4. Suppose v, ψ ∈ Lp(0, T ;W 1,p(Ω)) ∩ C([0, T ];L2(Ω)) satisfy in the
weak sense{

∂tψ − div a(x, t,Dψ) ≤ ∂tv − div a(x, t,Dv) in ΩT ,

ψ ≤ v on ∂PΩT ,

where a satisfies (2.6). Then ψ ≤ v almost everywhere in ΩT .

The following is the higher-integrability result for local solutions to parabolic
p-Laplacian systems by Kinnunen and Lewis. We restate it for equations with zero
right-hand side, including also minor modifications to adapt it to this situation.
Note that in general is the better estimate we can expect for such equation, due to
the low degree of regularity of the partial map x 7→ a(x, t, ξ).

Theorem 2.5. Let K = C × I ⊂ ΩT and let ṽ ∈ Lploc(I;W 1,p
loc (C)), p > 2n

n+2 , be
a local weak solution to

ṽt − div a(x, t,Dṽ) = 0 in K.

Then there exists a constant ε0 > 0 depending on n, p, ν, L, such that Dṽ ∈
L
p(1+ε0)
loc (K) and moreover if Qλ2R(z0) ⊂ K is a cylinder where the intrinsic re-

lation ∫
Qλ2R

(
s+ |Dṽ|

)p
dz ≤ κλp

holds for some constant κ ≥ 1, then∫
QλR

(
s+ |Dṽ|

)p(1+ε)
dz ≤ c λp(1+ε) (2.7)

for any ε ∈ (0, ε0] and for a constant c ≡ c(n, p, ν, L, κ).

Proof. The proof follows in the case p ≥ 2 from [1, Lemma 3] and in the case
p < 2 from [1, Lemma 4], with minor modification. �

Once known that the dependence of the vector field with respect of the spatial
variable is more regular, one can expect gradient boundedness. The celebrated in-
trinsic sup-bound for the gradient by DiBenedetto, see [11, Chapter 8], [18, Section
7], [25], is indeed encoded in the following

Theorem 2.6. Let K = C × I ⊂ ΩT and let w̃ ∈ Lploc(I;W 1,p
loc (C)), p > 2n

n+2 , be
a local weak solution to

∂tw − div ā(t,Dw) = 0 in K

where the vector field ā : I × Rn → Rn satisfies (1.8), recast to the case with no
x-dependence. Then Du ∈ L∞loc(K); moreover, if the cylinder Qλ2R(z0) ⊂ K is
such that∫

Qλ2R(z0)

(
|Dw|+ s

)p
dz ≤ κλp
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for some constant κ ≥ 1, then

sup
QλR(z0)

|Dw|+ s ≤ cDiBλ

for a constant cDiB depending on n, p, ν, L, κ.

2.6. Technical tools. This first Lemma is the classic Hardy’s inequality; see [12,
Theorem 330] or [13].

Lemma 2.7. Let f : [0,+∞)→ [0,+∞) be a measurable function such that∫ ∞
0

f(λ) dλ <∞; (2.8)

then for any α ≥ 1 and for any r > 0 there holds∫ ∞
0

λr
(∫ ∞

λ
f(µ) dµ

)αdλ
λ
≤
(α
r

)α ∫ ∞
0

λr
[
λf(λ)

]αdλ
λ
.

The following reverse-Hölder inequality is also classic; for its proof, see [29,
Appendix B.3] for λ = 0 or [2].

Lemma 2.8. Let h : [0,+∞) → [0,+∞) be a non-increasing, measurable func-
tion and let α1 ≤ α2 ≤ ∞ and r > 0. Then, if α2 <∞[∫ ∞

λ

[
µrh(µ)

]α2 dµ

µ

]1/α2

≤ λrh(λ) + c

[∫ ∞
λ

[
µrh(µ)

]α1 dµ

µ

]1/α1

for any λ ≥ 0; if α2 =∞ then

sup
µ>λ

[
µrh(µ)

]
≤ c λrh(λ) + c

[∫ ∞
λ

[
µrh(µ)

]α1 dµ

µ

]1/α1

. (2.9)

The constant c depends only on α1, α2, r except in the case α2 = ∞. In this case
c ≡ c(α1, r).

The following is a a standard Hölder type inequality in Marcinkiewicz spaces;
see [23, Lemma 2.8].

Lemma 2.9. Let f ∈Mγ(A) for A ⊂ Rk, k ≥ 1, of finite measure. Then∫
A
|f |η dz ≤ γ

γ − η
|A|1−

η
γ ‖f‖ηMγ(A),

for any η ∈ [1, γ).

Finally, a very well-known iteration lemma.

Lemma 2.10. Let φ : [R, 2R]→ [0,∞) be a function such that

φ(r1) ≤ 1

2
φ(r2) +A+

B
(r2 − r1)β

for every R ≤ r1 < r2 ≤ 2R,

where A,B ≥ 0 and β > 0. Then

φ(R) ≤ c(β)

[
A+

B
Rβ

]
.
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3. PROBLEMS WITH VARIABLE COEFFICIENTS

We collect in this section some results regarding the variational inequality (1.6).
First we show how it can be localized in time.

Lemma 3.1 (Localization). Let u ∈ K0 satisfy the variational inequality (1.6) for
every v ∈ K ′0, with the obstacle ψ and the data F, f satisfying (1.3) to (1.5). Then
for every τ ∈ (0, T ) and for every

ṽ ∈ K̃ ′0 :=
{
ṽ ∈ Lp(0, τ ;W 1,p

0 (Ω)) :

ṽ ≥ ψ a.e. in Ωτ and ∂tṽ ∈ Lp
′
(0, τ ;W−1,p′(Ω))

}
,

(see (2.3)), we have∫ τ

0
〈∂tṽ, ṽ − u〉W−1,p×W 1,p

0
dt+

∫
Ωτ

〈a(x, t,Du), Dṽ −Du〉 dz

≥ −1

2

∫
Ω
|ṽ(·, 0)− u0|2 dx+

∫
Ωτ

〈|F |p−2F,Dṽ −Du〉 dz

+

∫
Ωτ

f(ṽ − u) dz; (3.1)

we recall that Ωτ = Ω× (0, τ).

Proof. This proof is just technical, since we have to show how to appropriately
choose a test function v ∈ K ′0 in (1.6) to get (3.1); in particular we want to choose
v = u in ΩT r Ωτ and this poses some difficulties, since we don’t know whether
∂tu exists. Hence an appropriate approximation should be considered: we hence
define, following [26], for h ∈ (0, T ], t ∈ (0, T ] and u0 as in (1.7), the mollification

JuKh(·, t) := e−
t
hu0(·) +

1

h

∫ t

0
e
s−t
h v(·, s) ds

and moreover we take

uh := max{JuKh, ψ},
being ψ the obstacle. In [26], see also [5, 15] for other details, it is proved that
uh ∈ K ′0 and in particular

∂tuh ∈ Lp
′
(0, T ;W−1,p′(Ω)) ∩ Lmin{2,p′}(ΩT ),

that uh → u in Lp(0, T ;W 1,p(Ω)) and in L2(ΩT ) as h → 0 and uh(·, 0) = u0 in
the L2 sense.

Now, for h ∈ (0, T − τ ] take a decreasing Lipschitz cut-off function in time
ζ ≡ ζε ∈ W 1,∞(R) such that 0 ≤ ζε ≤ 1, ζε ≡ 1 on [0, τ − ε], ζε ≡ 0 on [τ, T ]
and ζ ′ε = 1/ε in (τ − ε, τ) and use as test function in (1.6)

v ≡ vh,ε = ζεṽ + (1− ζε)uh ∈ K ′0 in ΩT .

Notice indeed that since both ṽ and uh stay above ψ, then also v does; moreover,
vh,ε ≡ ṽ in Ωτ−ε, vh,ε ≡ uh in ΩT r Ωτ . Hence the function vh,ε can be used into
(1.6) and this yields∫ τ−ε

0
〈∂tṽ, ṽ − u〉W−1,p×W 1,p

0
dt+

∫ τ

τ−ε
〈∂tvh,ε, vh,ε − u〉W−1,p×W 1,p

0
dt
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+

∫ T

τ
〈∂tuh, uh − u〉W−1,p×W 1,p

0
dt+

∫
Ωτ−ε

〈a(x, t,Du), Dṽ −Du〉 dz

+

∫
Ω×(τ−ε,τ)

〈a(x, t,Du), Dvh,ε −Du〉 dz

+

∫
Ω×(τ,T )

〈a(x, t,Du), Duh −Du〉 dz

≥ −1

2

∫
Ω
|ṽ(·, 0)− u0|2 dx+

∫
Ωτ−ε

〈|F |p−2F,Dṽ −Du〉 dz

+

∫
Ω×(τ−ε,τ)

〈|F |p−2F,Dvh,ε−Du〉 dz+
∫

Ω×(τ,T )
〈|F |p−2F,Duh−Du〉 dz

+

∫
Ωτ−ε

f(ṽ−u) dz+

∫
Ω×(τ−ε,τ)

f(vh,ε−u) dz+

∫
Ω×(τ,T )

f(uh−u) dz.

(3.2)

In the display above, first we want to let ε ↘ 0. The first and the fourth term on
the left-hand side converge, respectively, to the corresponding ones over (0, τ) and
Ωτ ; the same happens for the second and the fifth on the right-hand side. For the
other ones, using the explicit expression for vh,ε and triangle inequality, and also
that |ζε| ≡ |ζε(t)| ≤ 1 yields

lim
ε↘0

∫
Ω×(τ−ε,τ)

〈a(x, t,Du), Dvh,ε −Du〉 dz

≤
∫

Ω×(τ−ε,τ)

(
s2 + |Du|2

) p−1
2

[
|Du|+ |Duh|+ |Dṽ|

]
dz −−→

ε↘0
0;

similarly for the sum∫
Ω×(τ−ε,τ)

〈|F |p−2F,Dvh,ε−Du〉 dz+

∫
Ω×(τ−ε,τ)

f(vh,ε−u) dz −−→
ε↘0

0,

Finally, the most problematic one: we split∫ τ

τ−ε
〈∂tvh,ε, vh,ε − u〉W−1,p×W 1,p

0
dt

=

∫ τ

τ−ε
〈∂t(vh,ε − uh), vh,ε − uh〉W−1,p×W 1,p

0
dt

+

∫ τ

τ−ε
〈∂t(vh,ε − uh), uh − u〉W−1,p×W 1,p

0
dt

+

∫ τ

τ−ε
〈∂tuh, vh,ε − uh〉W−1,p×W 1,p

0
dt

+

∫ τ

τ−ε
〈∂tuh, uh − u〉W−1,p×W 1,p

0
dt =: I + II + III + IV.

The first one is estimated as follows: taking into account that vh,ε−uh = ζε(ṽ−uh),

I =

∫ τ

τ−ε

1

2

d

dt

∫
Ω

∣∣vh,ε(·, t)− uh(·, t)
∣∣2 dx dt

=
1

2

∫
Ω

[
|ṽ − uh|2ζ2

ε

]
(·, τ) dx− 1

2

∫
Ω

[
|ṽ − uh|2ζ2

ε

]
(·, τ − ε) dx ≤ 0
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the first estimate follows by (2.4), while the last one is due to the fact that ζε(τ) =
0. For III , taking into account that ζε(t) is zero in t = τ and one in t = τ − ε,
integrating by parts (in the sense specified by (2.5)) after recalling again (2.2):

III =

∫
Ω×(τ−ε,τ)

〈∂t(vh,ε − uh), uh〉W−1,p×W 1,p
0
dt

−
∫

Ω

[
(ṽ − uh)uh

]
(·, τ − ε) dx.

Adding now II and III and recalling again that

−∂t(vh,ε−uh) = −ζε∂t(ṽ−uh)−∂tζε(ṽ−uh) = −∂t(ṽ−uh)ζε+
ṽ − uh
ε

,

we infer

II + III = −
∫

Ω×(τ−ε,τ)
〈∂t(vh,ε − uh), u〉

W−1,p×W 1,p
0
dt

−
∫

Ω

[
(ṽ − uh)uh

]
(·, τ − ε) dx

= −
∫

Ω×(τ−ε,τ)
〈∂t(ṽ − uh), u〉

W−1,p×W 1,p
0
dt

+

∫ τ

τ−ε

∫
Ω

(ṽ − uh)u dx dt−
∫

Ω

[
(ṽ − uh)uh

]
(·, τ − ε) dx

−−→
ε→0

∫
Ω

[
(ṽ − uh)u

]
(·, τ) dx−

∫
Ω

[
(ṽ − uh)uh

]
(·, τ) dx,

since (ṽ− uh)u, (ṽ− uh)uh ∈ C([0, T ];L2(Ω)). Finally we also have IV → 0 as
ε↘ 0. Now, taking the limit ε↘ 0 in (3.2), we get∫ τ

0
〈∂tṽ, ṽ − u〉W−1,p×W 1,p

0
dt+

∫
Ω

[
(ṽ − uh)u

]
(·, τ) dx

−
∫

Ω

[
(ṽ − uh)uh

]
(·, τ) dx+

∫ T

τ
〈∂tuh, uh − u〉W−1,p×W 1,p

0
dt

+

∫
Ωτ

〈a(x, t,Du), Dṽ−Du〉 dz+

∫
Ω×(τ,T )

〈a(x, t,Du), Duh−Du〉 dz

≥ −1

2

∫
Ω
|ṽ(·, 0)− u0|2 dx+

∫
Ωτ

〈|F |p−2F,Dṽ −Du〉 dz

+

∫
Ω×(τ,T )

〈|F |p−2F,Duh −Du〉 dz +

∫
Ωτ

f(ṽ − u) dz

+

∫
Ω×(τ,T )

f(uh − u) dz. (3.3)

To conclude, we want to take the lim sup as h↘ 0 in the previous inequality. Note
that by the convergence of uh to u in Lp(0, T ;W 1,p(Ω)).∫

Ω×(τ,T )
〈a(x, t,Du)−|F |p−2F,Duh−Du〉 dz+

∫
Ωτ

f(ṽ−u) dz −−−→
h→0

0

and moreover, by (2.2) and (minor modifications of) [5, Lemma 2.5] we know that
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lim sup
h↘0

∫ T

τ
〈∂tuh, uh − u〉W−1,p×W 1,p

0
dt

= lim sup
h↘0

∫
Ω×(τ,T )

∂tuh(uh − u) dz ≤ 0.

To conclude,

lim sup
h↘0

∫
Ω

[
(ṽ − uh)u

]
(·, τ) dx−

∫
Ω

[
(ṽ − uh)uh

]
(·, τ) dx = 0

since uh → u in L2(ΩT ). Indeed, up to a sub-sequence, ‖[uh − u](·, τ)‖L2(Ω) →
0 for almost every τ ∈ [0, T ]; since τ → ‖[uh − u](·, τ)‖L2(Ω) is continuous
over [0, T ], then convergence actually takes place everywhere. Putting all these
informations into (3.3) finally gives (3.1). �

We shall later need a higher integrability-type result for variational solutions to
(1.6); the following one has been proved by Bögelein and Scheven in [6]. We show
the minor modifications that have to to be done with respect to their proof in order
to get the following formulation.

Theorem 3.2. Let u ∈ Lp(0, T ;W 1,p(Ω)) satisfy the variational inequality (1.6),
where the vector field satisfies (2.6) and

|a(x, t, ξ)| ≤ L
(
s2 + |ξ|2

) p−1
2 ;

moreover suppose that F, |Dψ| ∈ L
p(1+σ)
loc (ΩT ) and f, ∂tψ ∈ L

p′(1+σ)
loc (ΩT ) for

some σ > 0. Then there exists a constant ε1 ∈ (0, σ] depending on n, p, ν, L, σ,
such that |Du| ∈ L

p(1+ε1)
loc (ΩT ) and moreover if Qλ2R(z0) ⊂ ΩT is a cylinder

where the intrinsic bound∫
Qλ2R

(
s+ |Du|

)p
dz +

(∫
Qλ2R

Ψ
p(1+ε1)
2R dz

)1/(1+ε1)

≤ κλp (3.4)

holds for some constant κ ≥ 1, where ΨR has been defined in (1.14), then∫
QλR

(
s+ |Du|

)p(1+ε1)
dz ≤ c λp(1+ε1) (3.5)

for a constant c ≡ c(n, p, ν, L, σ, κ).

Proof. We cannot prove the local estimate (3.5) using the rescaling argument em-
ployed in [1, Lemma 3-4], since we cannot localize (1.6): assumptions on the
boundary data in [6] are not usually satisfied locally by the solution we want to
rescale. Therefore, rather than facing a technical regularization process, we prefer
to proceed in a direct way by only showing the modifications to be done in the
proof of [6, Lemma 4.1]. In particular we want here to show that, under the as-
sumptions of the Theorem, if Qλ2R ≡ Qλ2R(z0) ⊂ ΩT , then the following estimate
holds: ∫

QλR

(
s+ |Du|

)p(1+ε)
dz ≤ c λp(1+ε)

+c λ(1−d)pε

(∫
Qλ2R

[(
s+ |Du|

)p
+Ψp

2R

]
dz

)1+εd

+c

∫
Qλ2R

Ψ
p(1+ε)
2R dz

(3.6)
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for all ε ∈ (0, ε1] and some constant c, as in the statement, with the scaling deficit
defined in (1.15). If moreover (3.4) holds, from the previous display it is immediate
to get (3.5). Since the procedure we are going to implement is very similar to that
we shall describe in detail in Section 4, we shall be very brief and we shall also
write the major points, clearly for the arguments which do not need modifications.

We fix Qλ2R ⊂ Ω, in both cases p ≥ 2 and p < 2, and we consider the nested
cylinders

QλR ⊂ Qλr1 ⊂ Q
λ
r2 ⊂ Q

λ
2R, with R ≤ r1 < r2 ≤ 2R.

We also fix the quantity

µ
p
d
0 := λ(1−d) p

d

(∫
Qλ2R

[(
s+ |Du|

)p
+ Ψp

2R

]
dz + λp

)
≥ λ

p
d

and we consider points z ∈ Qλr1 and cylinders Qµ%(z). Note that in the case p < 2
we are considering here cylinders as defined in (2.1), differently from [6]; we shall
however show the modification that should be done, taking into account that in any
case Qµ%(z) ⊂ Q%(z), since we are going to consider µ ≥ 1. Notice that also
our notation is slightly different from that of [6]: we indeed denote with Qµ%(z)

the (intrinsic) cylinders which play the role of the Q(λ)
s (z0) in [6, Section 4]. We

consider here

µ > Bµ0, where B
p
d :=

(
160R

r2 − r1

)N
;

r2 − r1

80
≤ % ≤ r2 − r1

and the important point is to note that, for such radii %, Qµ%(z) ⊂ Qλ2R if z ∈ QλR
and µ ≥ λ, since B ≥ 1. Hence, defining the operator

CZ
(
Qµ%(z)

)
:=

∫
Qµ% (z)

[(
s+ |Du|

)p
+ Ψp

2R

]
dz

we can estimate as in [6, Step 1, pag. 951], enlarging the domain of integration

CZ
(
Qµ%(z)

)
≤
|Qλ2R|
|Qµ%(z)|

λ(d−1) p
dµ

p
d
0 <

|Qλ2R|
|Qµ%(z)|

λ(d−1) p
dµ

p
dB−

p
d .

In both the cases p ≥ 2 and p < 2 the right-hand side is bounded by µp: indeed
when p ≥ 2

|Qλ2R|
|Qµ%(z)|

λ(d−1) p
dµ

p
dB−

p
d =

(µ
λ

)p−2(2R

%

)N
λp−2µ2

(
160R

r2 − r1

)−N
≤ µp

recalling that d = p/2 in this case and that 1/% ≤ 80/(r2 − r1); if p < 2

|Qλ2R|
|Qµ%(z)|

λ(d−1) p
dµ

p
dB−

p
d

=
(µ
λ

) 2−p
2
n(2R

%

)N
λ−

p−2
2
nµp

n+2
n
−n
(

160R

r2 − r1

)−N
and the last quantity is again bounded by µp; recall that now d = 2p/[p(n+2)−2n].
At this point the proof continues as in [6]: if |Du(z)|+ s > µ, then by Lebesgue’s
differentiation Theorem we have that CZ(Qµ%(z)) > µ for small radii 0 < % � 1
and by absolute continuity we find a critical radius %z < (r2 − r1)/80 such that
CZ(Qµ%z(z)) = µ. Note again that Qµ80%z

(z) ⊂ Qλ2R and we slightly changed the
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super-level sets in play. Now the proof goes on exactly as after equation (4.8) in
[6], just keeping into account that there the Ψ function does not include the radius
R; this is to say, calling Ψ̃ the function therein appearing, that Ψ̃ = Ψ1, where
ΨR has been defined in (1.14). This change, on the other hand, does not prevent to
have the reverse Hölder’s inequality of [6, Lemma 3.1] also in our setting: that is,∫

Qµ%z (z)
(|Du|+ s)p dz

≤ c

(∫
Qµ2%z (z)

(|Du|+ s)q dz

) p
q

+ c

∫
Qµ8%z (z)

Ψp
8%z

dz,

where q ≡ q(n, p) < p and c ≡ c(n, p, ν, L). Indeed, at a certain point (see in
particular the estimates after (3.11)), in [6] the authors estimate Ψ8%z ≤ Ψ8 =

c(p)Ψ̃ since their radii %z are smaller than one. At this point the proof, that is
mostly algebraic and does not take into account the different expression for the
cylinders we have, goes exactly as in [6] until the end of Section 4, once taking
into account the aforementioned different meaning of the quantities into play; we
have just to stress that, at a certain point of the proof, after the covering argument,
we have to pointwise estimate Ψ8%z ≤ Ψ2R. Hence, the application of Lemma
2.10, together with a truncation argument similar to that we are going to use at the
end of Paragraph 4.3, leads to∫

QλR

(
s+ |Du|

)p(1+ε)
dz

≤ c

(
µεp0

∫
Qλ2R

(
s+ |Du|

)p
dz +

∫
Qλ2R

Ψ
p(1+ε)
2R dz

)
for any ε ≤ ε1, ε1 described in [6, Page 957]. Recalling the definition of µ0 it
is immediate now to see that (3.6) follows. Finally note that taking λ = 1 gives
exactly back the result and the proof of [6]. �

4. THE PROOF OF THE THEOREM

Fix QR(z0) as in the statement of the theorem, such that Q2R(z0) ⊂ ΩT and
2R ≤ R0; at this point of the proof we fix R0 ≡ 1, but in a subsequent step we
shall reduce it in order to satisfy certain smallness conditions and this will cause
the dependence stated in the theorem. For d ≥ 1 defined in (1.15) and Ψ given
by (1.14), and for M ≥ 1 to be fixed later (only depending on n, p, ν, L, γ and
possibily q), define the quantity

λ0 :=

(∫
Q2R(z0)

(
|Du|+ s

)p
dz

) d
p

+ Md

(∫
Q2R(z0)

(Ψ2R + s)η dz

) d
η

+ 1. (4.1)

where η := p(1+ε1), ε1 ≡ ε1(n, p, ν, L, γ) being the higher integrability exponent
given by Theorem 3.2 for the choice σ = (γ − p)/(2p) (that yields p(1 + σ) =

(p + γ)/2); note indeed that Ψ2R ∈ L
p(1+σ)
loc (ΩT ) ⊂ L

p(1+ε1)
loc (ΩT ) by (1.12)

and the facts described in Paragraph 2.2 about inclusions between Lorentz spaces.
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Notice moreover that this choice fixes a little imprecision in [2]; this value should
replace the not correct one [2]; on the other hand, the whole proof does not require
essentially any other change.

Consider now two intermediate radii r1, r2 such that R ≤ r1 < r2 ≤ 2R and
consider

B := 2d
( 80R

r2 − r1

)N
p
d
,

r2 − r1

40
≤ r ≤ r2 − r1. (4.2)

To begin, we prove that for points z ∈ Qr1 , levels λ > Bλ0 and radii as in (4.2),
we have

CZ
(
Qλr (z)

)
:=

(∫
Qλr (z)

(
|Du|+ s

)p
dz

) 1
p

+ M

(∫
Qλr (z)

(
Ψ2R + s

)η
dz

) 1
η

< λ. (4.3)

Indeed, enlarging the domain of integration (notice that for cylinders as those we
consider, we have Qλr (z) ⊂ Qr(z) ⊂ Q2R and hence |Qλr (z)| ≤ |Q2R|) we infer,
since λ > Bλ0

CZ
(
Qλr (z)

)
≤ 2

[
|Q2R|
|Qλr (z)|

] 1
p

λ
1
d
0 ≤ 2

[
|Q2R|
|Qλr (z)|

] 1
p

B−
1
dλ

1
d . (4.4)

Now in the case p ≥ 2 we estimate, recalling the definition of d

|Q2R|
|Qλr (z)|

≤ λp−2
(2R

r

)N
≤ λp(1−

1
d

)
( 80R

r2 − r1

)N
,

while if p < 2 we make the necessary changes, but we have the same result:

|Q2R|
|Qλr (z)|

≤ λ
(2−p)n

2

(2R

r

)N
≤ λp(1−

1
d

)
( 80R

r2 − r1

)N
.

Hence, plugging these two estimates into (4.4), depending clearly on the value of
p, one immediately sees that (4.3) holds. On the other hand, if we consider points

z̄ ∈ E(λ,Qr1)

:=
{
z ∈ Qr1 : z is a Lebesgue’s point of Du and |Du(z)|+ s > λ

}
,

for λ > 0, by Lebesgue differentiation Theorem we have

lim
r↘0

CZ
(
Qλr (z̄)

)
≥ lim

r↘0

(∫
Qλr (z̄)

(
|Du|+ s

)p
dz

) 1
p

= |Du(z̄)|+ s > λ

(4.5)

and therefore the converse inequality holds true. Hence, taking the previous two
facts (4.3) and (4.5) into account, we get from the absolute continuity of the integral
that for each λ > Bλ0 and for every z̄ ∈ E(λ,Qr1) there exists a maximal radius
rz̄ such that(∫

Qλrz̄ (z̄)

(
|Du|+ s

)p
dz

) 1
p

+M

(∫
Qλrz̄ (z̄)

(Ψ2R + s)η dz

) 1
η

= λ; (4.6)
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we use the word maximal in the sense that for any r ∈ (rz̄, r2−r1], CZ(Qλr (z̄)) <
λ. Note that by (4.3) we have rz̄ < (r2 − r1)/40 and therefore Qλ40rz̄(z̄) ⊂ Qr2
since in particular z̄ ∈ Qr1 . Moreover, we have

λ

40
N
p

≤
(∫

Qλ40rz̄
(z̄)

(
|Du|+ s

)p
dz

) 1
p

+ M

(∫
Qλ40rz̄

(z̄)
(Ψ2R + s)η dz

) 1
η

≤ λ (4.7)

the left-hand side inequality reducing the integration domain to Qλrz̄(z̄), the right-
hand side from the aforementioned maximality of the radius rz̄ .

We stress again that for the remainder of the proof, when dealing with cylinders
of the type QλR we shall implicitly understand which kind of parabolic cylinders
we are using, depending on the value of p.

4.1. A density estimate. Fix here λ > Bλ0 and single out one of the cylinders
previously chosen, say Q ≡ Qλrz̄(z̄), such that CZ(Q) = λ. We must be in one of
the following two cases:(λ

2

)p
≤
∫
Q

(
|Du|+ s

)p
dz or

(λ
2

)η
≤Mη

∫
Q

(Ψ2R + s)η dz. (4.8)

In the case the first alternative holds, we split the average in the following way:(λ
2

)p
≤
∫
Q

(
|Du|+ s

)p
dz (4.9)

≤ |Qr E(λ/4, Qr2)|
|Q|

(λ
4

)p
+

1

|Q|

∫
Q∩E(λ/4,Qr2 )

(
|Du|+ s

)p
dz

≤
(λ

4

)p
+

(
|Q ∩ E(λ/4, Qr2)|

|Q|

) ε1
1+ε1

(∫
Q

(
|Du|+ s

)p(1+ε1)
dz

) 1
1+ε1

,

being ε1 the higher integrability exponent of Theorem 3.2. Thus, taking into ac-
count (4.6), we have a constant depending on n, p, ν, L, γ but not on M such that∫

Q

(
|Du|+ s

)p(1+ε1)
dx ≤ c λp(1+ε1).

Therefore plugging this estimate in (4.9), reabsorbing (λ/4)p, dividing by λp and
recalling that Q = Qλrz̄(z̄) yields

|Qλrz̄(z̄)| ≤ c
∣∣Qλrz̄(z̄) ∩ E(λ/4, Qr2)

∣∣, (4.10)

with the constant depending on n, p, ν, L, γ.

If, on the other hand, (4.8)2 holds, take

ς =
1

4M
; (4.11)

then using Fubini’s Theorem and splitting the integral( λ

2M

)η
≤
∫
Q

(Ψ2R + s)η dz



LORENTZ ESTIMATES FOR OBSTACLE PARABOLIC PROBLEMS 19

=
η

|Q|

∫ ∞
0

µη
∣∣{z ∈ Q : Ψ2R(z) + s > µ}

∣∣dµ
µ

≤ (ςλ)η +
η

|Q|

∫ ∞
ςλ

µη
∣∣{z ∈ Q : Ψ2R(z) + s > µ}

∣∣dµ
µ
.

The choice of ς allows to reabsorb the first term on the left-hand side and to infer,
dividing by λη and recalling the expression for ς

|Q| ≤ η

(ςλ)η

∫ ∞
ςλ

µη
∣∣{z ∈ Q : Ψ2R(z) + s > µ}

∣∣dµ
µ
.

Merging the estimate in the last display with (4.10) gives

|Qλrz̄(z̄)| ≤ c
∣∣Qλrz̄(z̄) ∩ E(λ/4, Qr2)

∣∣
+

c

(ςλ)η

∫ ∞
ςλ

µη
∣∣{z ∈ Qλrz̄(z̄) : Ψ2R(z) + s > µ}

∣∣dµ
µ
, (4.12)

with c depending on n, p, ν, L, γ but not on M .

4.2. Comparisons. We start with the solution u ∈ K0 to (1.6) and a cylinder
40Q ≡ Qλ40rz̄(z̄), z̄ = (x̄, t̄), defined as above, for λ > Bλ0 and z̄ ∈ E(λ,Qr1);
hence we have 40Q ⊂ Qr2 and that (4.7) holds.

First comparison. We want to build an admissible comparison function v ∈
K ′0 to be used in the variational inequality (1.6), and to do this we shall solve an
appropriate Cauchy-Dirichlet parabolic problem. We shall write Q = 40I × 40B
independently of the value of p; therefore for the meaning of 40I and 40B we refer
to (2.1). Take the solution

v ∈ u+ Lp(40I;W 1,p
0 (40B)) ∩ C0(40I;L2(40B))

to {
∂tv − div a(x, t,Dv) = ∂tψ − div a(x, t,Dψ) in 40Q,

v = u on ∂P(40Q),
(4.13)

where ψ is the obstacle; existence of such a function is a classic fact since the right-
hand side belongs to Lp

′
(40Q) by (1.3)-(1.4) and the boundary value u belongs to

the energy space; moreover we clearly have, by difference and (1.3)-(1.4), that

∂tv ∈ Lp
′
(40I;W−1,p′(40B))

in the following sense: for ϕ ∈W 1,p
0 (40B) and for a.e. t ∈ 40I

〈∂tv(·, t), ϕ〉
W−1,p′×W 1,p

0

=

∫
40B
〈a(x, t,Dψ)− a(x, t,Dv), Dϕ〉 dx+

∫
40B

∂tψϕdx;

moreover the map t 7→ 〈∂tv(·, t), ϕ〉
W−1,p′×W 1,p

0
belongs to Lp

′
(40I). By com-

parison Lemma 2.4 we infer that v ≥ ψ on 40Q, since v = u ≥ ψ on ∂P(40Q).
If we now extend v to Ωt̄ (keeping denoted it by v) by setting v = u in Ωt̄ r 40Q,
this would give an admissible test function for the localized inequality (3.1), up to
a regularization process - recall here that u does not belong necessarily to K ′0. We
shall proceed formally here, referring the reader to [5, Paragraph 4.1] for the subtle
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regularization argument; see also [6] and the approach in [27]. Hence we have,
after changing sign

−
∫

40I
〈∂tv, v − u〉W−1,p×W 1,p

0
dt−

∫
40Q
〈a(x, t,Du), Dv −Du〉 dz

≤ −
∫

40Q
〈|F |p−2F,Dv −Du〉 dz −

∫
40Q

f(v − u) dz, (4.14)

taking into account that the extension of v agrees with u outside 40Q and hence
also the term

∫
40B |v(·, 0) − u0|2 dx disappears. On the other hand, using as test

function ϕ = v − u ∈ W 1,p
0 (40B) in the weak formulation of (4.13)1 and adding

it to (4.14) we get∫
40Q
〈a(x, t,Dv)− a(x, t,Du), Dv −Du〉 dz

≤
∫

40Q
〈a(x, t,Dψ)−|F |p−2F,Dv−Du〉 dz+

∫
40Q

(∂tψ−f)(v−u) dz,

after taking averages. Using now (2.6) to estimate the left-hand side from below
we deduce∫

40Q

∣∣Vs(Dv)− Vs(Du)
∣∣2 dz

≤ c
∫

40Q
〈a(x, t,Dψ)− |F |p−2F,Dv −Du〉 dz

+ c

∫
40Q

(∂tψ − f)(v − u) dz (4.15)

with c ≡ c(n, p, ν). At this point we shall use the previous inequality in two
directions. First we use Lemma 2.3 to get the following bound for the energy of
Dv: ∫

40Q

(
|Dv|+ s

)p
dz ≤ c

∫
40Q

(
|Du|+ s

)p
dz

+ c

∫
40Q
〈a(x, t,Dψ)− |F |p−2F,Dv −Du〉 dz

+ c

∫
40Q

(∂tψ − f)(v − u) dz, (4.16)

for a constant depending on n, p, ν; we call the three terms on the right-hand side
c I1, c II1 and c III1. We simply estimate I1 ≤ c λp by (4.7); also the estimate
for the remaining terms are easy. Indeed using the growth condition (1.8)2 and
Young’s inequality with ε ∈ (0, 1) to be chosen, we have

II1 ≤ c
∫

40Q

[(
s2 + |Dψ|2

) p−1
2 + |F |p−1

](
|Du|+ |Dv|

)
dz (4.17)

≤ c I1 + c ε−p
′
∫

40Q

[
|Dψ|p + |F |p + sp

]
dz + c̃ εp

∫
40Q
|Dv|p dz

c̃ depending on n, p, ν, L. In the same way, using Poincaré’s inequality slicewise
(note that (v − u)(·, t) ∈ W 1,p

0 (40B) for a.e. t ∈ 40I) we estimate, again with
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Young’s inequality, for ε as above and triangle inequality

III1 ≤ c ε−p
′
rp
′

z̄

∫
40Q

(
|∂tψ|p

′
+ |f |p

′
) dz

+ c̄ εp
∫

40Q

(
|Du|p + |Dv|p

)
dz. (4.18)

At this point we choose ε small enough, so that εp(c̃ + c̄) = 1/2; reabsorbing the
right-hand side energy of Dv, recalling that rz̄ ≤ 2R and the definition of Ψ2R in
(1.14) and also (4.7) and performing simple algebraic manipulation, gives∫

40Q

(
|Dv|+s

)p
dz ≤ c λp+ c

∫
40Q

Ψp
2R dz ≤

[
c+

c

M

]
λp ≤ cλp (4.19)

since M ≥ 1, for a constant depending only on n, p, ν, L. The second estimate we
shall deduce from (4.15) is the following comparison one: up to a constant, we still
have the two terms II1, III1 on the right-hand side; that is∫

40Q

∣∣Vs(Du)− Vs(Dv)
∣∣2 dz ≤ 1

c`
[II1 + III1];

here we simply use Young’s inequality in a different way (we don’t have to reabsorb
the energy of Dv). We have, recalling (4.17), using Hölder’s inequality, (4.7) and
(4.19)

II1 ≤
c(p)

Mp−1

(
Mp

∫
40Q

(
|Dψ|p + |F |p + sp

)
dz

) 1
p′

×

×
(∫

40Q

(
|Du|+ |Dv|

)p
dz

) 1
p

≤ c

Mp−1
λ
p
p′+1

=
c

Mp−1
λp.

Similarly we can bound III1 by

c

Mp−1

(
Mprp

′

z̄

∫
40Q

(
|∂tψ|+ |f |

)p′
dz

) 1
p′
(∫

40Q
|Dv −Du|p dz

) 1
p

≤ c

Mp−1
λp;

hence, all in all we have∫
40Q

∣∣Vs(Du)− Vs(Dv)
∣∣2 dz ≤ c

Mp−1
λp (4.20)

for a constant c depending only on n, p, ν, L; this is the first comparison estimate
we were looking for.

Second comparison. On a smaller cylinder now we want to consider the function
agreeing with v on the parabolic boundary but solving an homogeneous parabolic
equation. Therefore, with the same notation introduced in the previous step, we
consider the solution

ṽ ∈ u+ Lp(20I;W 1,p
0 (20B)) ∩ C0(20I;L2(20B))
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to the Cauchy-Dirichlet problem{
∂tṽ − div a(x, t,Dṽ) = 0 in 20Q,

ṽ = v on ∂P(20Q);
(4.21)

also here the existence is guaranteed by classic results. We test now the weak
formulation of (4.13) with v − ṽ as test function, extended to zero in 40Q r 20Q
and that of (4.21), tested with v − ṽ; notice that in both cases a regularization in
time via Steklov averaging is needed; however we shall proceed formally, here,
subtracting the second from the first one (we could also follow [5, Lemma 2.1], in
a more abstract setting). We hence have∫

20Q
∂t(v− ṽ)(v− ṽ) dz+

∫
20Q
〈a(x, t,Dv)−a(x, t,Dṽ), Dv−Dṽ〉 dz

=

∫
20Q

[
〈a(x, t,Dψ), Dv −Dṽ〉+ ∂tψ(v − ṽ)

]
dz.

We call I2 and II2 the terms on the left-hand side (respectively, the parabolic and
the elliptic one) and III2 the term on the right-hand side. For the parabolic term
we have

I2 =
1

2

∫
20Q

∂t|v − ṽ|2 dz =
1

2

∫
20B
|v − ṽ|2(·, t̄) dx ≥ 0;

therefore we can discard it. Monotonicity formula (2.6) tells that we can bound

II2 ≥
1

cm(n, p, ν)

∫
20Q

∣∣Vs(Dv)− Vs(Dṽ)
∣∣2 dz,

while for the remaining one we estimate, similarly as in (4.17)-(4.18), using Young’s
inequality twice, Poincaré’s inequality and enlarging the domain of integration:

III2 ≤ c(n,L)

∫
20Q

[(
s2 + |Dψ|2

) p−1
2
(
|Dv|+ |Dṽ|

)
+ ε−p

′
rp
′

z̄ |∂tψ|p
′
+ εp

( |v − ṽ|
20rz̄

)p]
dz

≤ εc(n,L)

∫
20Q
|Dṽ|p dz + c(n, p, L)

∫
40Q

(
|Dv|+ s

)p
dz

+ c(n, p, L, ε)

∫
20Q

[
|Dψ|p + (2R)p

′ |∂tψ|p
′
+ sp

]
dz

≤ 1

2cmc`

∫
20Q
|Dṽ|p dz + c(n, p, ν, L)λp

choosing ε ≡ ε(n, p, ν, L) small enough in the last line, taking into account (4.19)
and (4.7), exactly as done to obtain (4.19). Hence appealing to Lemma 2.3 and
again to (4.19), we have the following energy estimate for Dṽ:∫

20Q

(
|Dṽ|+ s

)p
dz ≤ c λp (4.22)

for a constant again depending on n, p, ν, L. Now, working in a competely anal-
ogous way as done to deduce (4.20), estimating quite differently III2, one can
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deduce the following∫
20Q

∣∣Vs(Dv)− Vs(Dṽ)
∣∣2 dz ≤ c

Mp−1
λp; (4.23)

the (easy) details are left to the reader. Before passing to the next step, however,
let us stress that due to (4.22) we have that the higher-integrability estimate (2.7)
reads here as follows:∫

10Q

(
|Dṽ|+ s

)p(1+ε0)
dz ≤ c λp(1+ε0). (4.24)

Third comparison. We finally come to the last comparison, and here we want
to get rid of the (x, t) dependence using (1.10) and comparing ṽ to another ap-
propriate more regular solution w, having bounded gradient. We consider here the
cylinder 10Q and for shortness we denote the averaged vector field

ã(t, ξ) := (a)10B(t, ξ) =

∫
10B

a(·, t, ξ) dx,

for any t ∈ 10I and for all ξ ∈ Rn, accordingly with (1.9). Now we define the
solution

w ∈ v + Lp(10I;W 1,p
0 (10B)) ∩ C0(10I;L2(10B))

to the initial-lateral boundary value problem∂tw − div ã(t,Dw) = 0 in 10Q,

w = ṽ on ∂P(10Q).

The usual procedure, already applied, after discarding the positive term gives

I3 + II3 :=

∫
10Q
〈ã(t,Dṽ)− ã(t,Dw), Dṽ −Dw〉 dz (4.25)

+

∫
10Q
〈a(x, t,Dṽ)− ã(t,Dṽ), Dṽ −Dw〉 dz

=

∫
10Q
〈a(x, t,Dṽ)− ã(t,Dw), Dṽ −Dw〉 dz ≤ 0.

Energy estimate for Dw. We split, after using the growth condition (1.8)2

− II3 ≤ 2L

∫
10Q

(
s+ |Dṽ|

)p−1|Dṽ| dz

+ 2L

∫
10Q

(
s+ |Dṽ|

)p−1|Dw| dz;

we estimate in the first term∫
10Q

(
s+ |Dṽ|

)p−1|Dṽ| dz ≤ c(n)

∫
20Q

(
s+ |Dṽ|

)p
dz ≤ c λp,

c ≡ c(n, p, ν, L), while for the second we estimate, using Young’s inequality, ε ∈
(0, 1) to be fixed and (4.22)∫

10Q

(
s+ |Dṽ|

)p−1|Dw| dz



24 PAOLO BARONI

≤ ε
∫

10Q
|Dw|p dz + c(p, ε)

∫
10Q

(
s+ |Dṽ|

)p
dz

≤ ε
∫

10Q
|Dw|p dz + c(n, p, ν, L, ε)λp. (4.26)

Therefore, first estimating I3 from below with (2.6), then using Lemma 2.3 as done
in (4.16) (notice that (2.6) also, clearly, apply to ã(t, ξ)) and finally re-absorbing
the energy of Dw appearing in (4.26) we get∫

10Q

(
s+ |Dw|

)p
dz ≤ c λp (4.27)

for c ≡ c(n, p, ν, L). To complete this list of estimate, we come to the third com-
parison one; again, we want to take into account a smallness condition, that in this
case will be given by (1.10). We start again from (4.25).

Comparison estimate for Dw. Here we have to go trough a different path, since
we need to encode a smallness condition in the estimate; on the other hand, we can
use the just proved energy estimate (4.27). We call

As(Dṽ, 10B) :=
|a(x, t,Dṽ)− ã(t,Dṽ)|

(s+ |Dṽ|)p−1 .

We now have∫
10Q

∣∣Vs(Dṽ)−Vs(Dw)
∣∣2 dz

≤
∫

10Q
〈ã(t,Dṽ)− ã(t,Dw), Dṽ −Dw〉 dz

≤
∫

10Q
〈ã(t,Dṽ)− a(x, t,Dṽ), Dṽ −Dw〉 dz

by (2.6) and (4.25). Now we estimate, using Hölder’s inequality with exponents
p, p′(1 + ε0), p′(1 + ε0)′, where ε0 is the exponent in (4.24),∫

10Q
〈ã(t,Dṽ)− a(x, t,Dṽ), Dṽ −Dw〉 dz

≤
∫

10Q
As(Dṽ, 10B)

(
s+ |Dṽ|

)p−1|Dw −Dṽ| dz

≤
(∫

10Q

[
|Dw|p + |Dṽ|p

]
dz

) 1
p
(∫

10Q
(s+ |Dṽ|)p(1+ε0) dz

) 1
p′(1+ε0)

×

×
(∫

10Q

[
As(Dṽ, 10B)

]p′(1+ε0)′
dz

) ε0
p′(1+ε0)

.

Now we bound the first averaged integral using (4.22) and (4.27), the second with
(4.24); hence, taking finally into account that As(Dṽ, 10B) ≤ 2L and Hölder’s
inequality∫

10Q

∣∣Vs(Dṽ)− Vs(Dw)
∣∣2 dz

≤ c λ1+ p
p′

(∫
10I

(∫
10B

[ |a(x, t,Dṽ)− ã(t,Dṽ)|
(s+ |Dṽ|)p−1

]2
dx
) 1

2

) ε0
1+ε0
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≤ c λp
[
ωa(10rz)

]ε̄
; (4.28)

ε̄ ∈ (0, 1) is an exponent depending on ε0 and hence on n, p, ν, L.

4.3. Level-set estimates. Take a point z̄ ∈ E(Aλ,Qr1), for A ≥ 1 to be chosen;
hence |Du(z̄)| + s > Aλ and in particular z̄ ∈ E(λ,Qr1). Therefore we can
consider the cylinderQλrz̄(z̄) previously defined, where (4.6) and (4.7) hold. Define
the comparison functions v, ṽ and w, respectively, over the cylinders Qλ40rz̄(z̄),
Qλ20rz̄(z̄) and Qλ10rz̄(z̄), as in Paragraph 4.2.

Observe now that w is solution to a systems with just time-dependent coeffi-
cients and therefore Dw turns out to be locally bounded in Qλ10rz̄(z̄), see Theorem
2.6, and by estimate (4.27) we have that

sup
Qλ5rz̄ (z̄)

|Dw|+ s ≤ cDiBλ, (4.29)

with cDiB just depending on n, p, ν, L but not on the cylinder, neither on λ. We
shall use this to prove that(

|Dw(z)|+ s
)p ≤ ∣∣Vs(Dṽ(z))− Vs(Dw(z))

∣∣2
+
∣∣Vs(Dv(z))− Vs(Dṽ(z))

∣∣2 +
∣∣Vs(Du(z))− Vs(Dv(z))

∣∣2 (4.30)

holds for any z ∈ Qλ5rz̄(z̄) ∩ E(Aλ,Qr2), for an appropriate choice of A. Indeed
using Lemma 2.3 three times, we infer the inequality(

|Du(z)|+ s
)p ≤ c3

`

(
s+ |Dw(z)|

)p
+ c3

`

∣∣Vs(Dṽ(z))− Vs(Dw(z))
∣∣2

+ c2
`

∣∣Vs(Dv(z))− Vs(Dṽ(z))
∣∣2 + c`

∣∣Vs(Du(z))− Vs(Dv(z))
∣∣2.

(4.31)

Suppose now that (4.30) fails: this, together with the latter inequality would yield(
|Du(z)|+ s

)p
< 2c3

`

(
s+ |Dw(z)|

)p
and then, also by (4.29) and the fact that |Du(z)|+ s > Aλ(

|Dw(z)|+ s
)p ≤ cpDiB λp < cpDiB

(|Du(z)|+ s)p

Ap

<
2c3
`c
p
DiB

Ap
(
|Dw(z)|+ s

)p
,

which is a contradiction for the choice

A ≡ A(n, p, ν, L) := (2c3
` )

1
p cDiB ≥ 1.

Combining (4.30) and (4.31) we thus get(
|Du(z)|+ s

)p ≤ 2c3
`

[∣∣Vs(Dṽ(z))− Vs(Dw(z))
∣∣2

+
∣∣Vs(Dv(z))− Vs(Dṽ(z))

∣∣2 +
∣∣Vs(Du(z))− Vs(Dv(z))

∣∣2]
for all z ∈ Qλ5rz̄(z̄) ∩ E(Aλ,Q2R). Hence∣∣{z ∈ Qλ5rz̄(z̄) :

(
|Du(z)|+ s

)p
> Aλ}

∣∣
≤
∣∣{z ∈ Qλ5rz̄(z̄) :

∣∣Vs(Du(z))− Vs(Dv(z))
∣∣2 > (Aλ)p

8c3
`

}
∣∣
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+
∣∣{z ∈ Qλ5rz̄(z̄) :

∣∣Vs(Dv(z))− Vs(Dṽ(z))
∣∣2 > (Aλ)p

8c3
`

}
∣∣

+
∣∣{z ∈ Qλ5rz̄(z̄) : |Dw(z)−Dṽ(z)|p > (Aλ)p

8c3
`

}
∣∣.

Now recalling that A is fixed as a constant depending on n, p, ν, L and enlarging
appropriately the domains of integration we get, using also the comparison esti-
mates (4.20), (4.23) and (4.28) and finally the density estimate (4.12)∣∣{z ∈ Qλ5rz̄(z̄) :

(
|Du(z)|+ s

)p
> Aλ}

∣∣
≤ c

λp

∫
Qλ40rz̄

(z̄)

∣∣Vs(Du)− Vs(Dv)
∣∣2 dz

+
c

λp

∫
Qλ20rz̄

(z̄)

∣∣Vs(Dv)− Vs(Dṽ)
∣∣2 dz

+
c

λp

∫
Qλ10rz̄

(z̄)

∣∣Vs(Dṽ)− Vs(Dw)
∣∣2 dz

≤ c
[ 1

Mp−1
+
[
ωa(10rz̄)

]ε̄]∣∣Qλrz̄(z̄)∣∣
≤ cG(2R,M)

[∣∣Qλrz̄(z̄) ∩ E(λ/4, Qr2)
∣∣

+
1

(ςλ)η

∫ ∞
ςλ

µη
∣∣{z ∈ Qλrz̄(z̄) : Ψ2R(z) + s > µ}

∣∣dµ
µ

]
, (4.32)

where we denoted by G(2R,M) the quantity M1−p + [ωa(2R)]ε̄; the constant c
depends only on n, p, ν, L. Note that we used clearly the monotonicity of ρ 7→
ωa(ρ) and the fact 10rz̄ ≤ 2R.

Now consider the collection Eλ of cylindersQλrz̄(z̄), when z̄ varies inE(Aλ,Qr1).
By a Vitali-type argument, we extract a countable sub-collectionFλ ⊂ Eλ such that
the 5-times enlarged cylinders cover almost all E(Aλ,Qr1) in the sense that if we
denote the cylinders of Fλ by Q0

i := Qλrz̄i
(z̄i), for i ∈ Iλ, being possibily Iλ = N,

with their “verteces” z̄i ∈ E(Aλ,QR), we have

E(Aλ,Qr1) ⊂
⋃
i∈Iλ

Q1
i ∪Nλ with |Nλ| = 0

and where we denoted Q1
i := 5Q0

i = Qλ5rz̄i
(z̄i. Moreover the cylinders are pair-

wise disjoints, i.e., Q0
i ∩ Q0

j = ∅ whenever i 6= j. Using these two facts we can
deduce an estimate for the measure of the level sets in the full Qr1 of |Du|+ s: fix
λ > Bλ0, take (4.32) over the cylinders of the covering Qλ5rz̄ = Q1

i and sum over
Iλ: we get∣∣E(Aλ,Qr1)

∣∣ ≤ cG(2R,M)

[∣∣E(λ/4, Qr2)
∣∣

+
1

(ςλ)η

∫ ∞
ςλ

µη
∣∣{z ∈ Qr2 : Ψ2R(z) + s > µ}

∣∣dµ
µ

]
. (4.33)

Finally we show how to refine the previous estimate in order to be allowed to
reabsorb the Lorentz norm of Du on the right-hand side. We define the truncations
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|Du(z)|k := min
{
|Du(z)|, k

}
for z ∈ ΩT and k ∈ N ∩ [Bλ0,∞)

(4.34)

and note that by (4.33), calling Ek(λ,Qρ) := {z ∈ Qρ : |Du(z)|k + s > λ}, we
have ∣∣Ek(Aλ,Qr1)

∣∣ ≤ cG(2R,M)

[∣∣Ek(λ/4, Qr2)
∣∣

+
1

(ςλ)η

∫ ∞
ςλ

µη
∣∣{z ∈ Qr2 : Ψ2R(z) + s > µ}

∣∣dµ
µ

]
, (4.35)

for k ∈ N ∩ [Bλ0,∞). Indeed in the case k ≤ Aλ we have Ek(Aλ,Qr1) = ∅ and
therefore the previous estimate holds trivially. In the case k > Aλ on the other hand
it follows since Ek(Aλ,Qr1) = E(Aλ,Qr1) and Ek(λ/4, Q2R) = E(λ/4, Q2R).

4.4. Conclusion, case q < ∞. Now the proof goes on exactly as in [2], since
the estimate we start from is very similar to [2, Inequality (5.14)]; we sketch the
details, referring to the aforementioned paper for more details. Multiply inequality
(4.33) by (Aλ)γ for γ > p, then raise both sides to the power q/γ for q < ∞ and
integrate with respect to the measure dλ/(Aλ) over Bλ0, since (4.33) holds true
just for λ varying in this range. This yields, recalling again thatA ≥ 1 is a constant
depending on n, p, ν, L and ς depends on p,M∫ ∞

Bλ0

(
(Aλ)γ

∣∣{z ∈ QR : |Du(z)|k + s > Aλ}
∣∣) qγ dλ

Aλ

≤ c [G(2R,M)]
q
γ

[∫ ∞
0

(
λγ
∣∣{z ∈ Qr2 : |Du(z)|k + s > λ/4}

∣∣) qγ dλ
λ

+ c(p, γ, q,M)×

×
∫ ∞

0
λ
q(1− η

γ
)
(∫ ∞

ςλ
µη
∣∣{z ∈ Qr2 : Ψ2R(z) + s > µ}

∣∣dµ
µ

) q
γ dλ

λ

]
=: c [G(2R,M)]

q
γ
[
I + II

]
; (4.36)

c depends on n, p, ν, L, γ, q. A change of variable yields I = c(q)‖|Du|k +
s‖qL(γ,q)(Qr2 ). For II the situation is a bit more involved, and we have to con-
sider separately two different cases. The first one is when q ≥ γ; after changing
again variable λ ↔ ςλ, recalling the definition of ς in (4.11), and then we use
Lemma 2.7 with f(µ) = µη−1|{z ∈ Qr2 : Ψ2R(z) + s > µ}|, α = q/γ ≥ 1 and
r = q(1− η/γ) > 0 to infer

II ≤ c

(γ − p)q/γ

∫ ∞
0
λ
q(1− η

γ
)+η q

γ
∣∣{z ∈ Qr2 : Ψ2R(z) + s > λ}

∣∣ qγ dλ
λ

and the latter integral is nothing else than ‖Ψ2R+s‖qL(γ,q)(Qr2 ); here c ≡ c(p, γ, q,M)

and note that (2.8) is satisfied since Ψ2R ∈ Lη(Qr2).

In the case 0 < q < γ we use Lemma 2.8 with r = ηq/γ, α1 = 1 < γ/q = α2

and h(µ) = |{z ∈ Qr2 : Ψ2R(z) + s > µ}|
q
γ :
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λ

µη
∣∣{z ∈ Qr2 : Ψ2R(z) + s > µ}

∣∣dµ
µ

] q
γ

≤ λη
q
γ
∣∣{z ∈ Qr2 : Ψ2R(z) + s > λ}

∣∣ qγ
+ c

∫ ∞
λ

µ
η q
γ
∣∣{z ∈ Qr2 : Ψ2R(z) + s > µ}

∣∣ qγ dµ
µ
.

Putting this estimate into the expression on the right-hand side of (4.36), again after
changing variable ςλ↔ λ

II ≤ c ‖Ψ2R + s‖qL(γ,q)(Qr2 )

+ c

∫ ∞
0

λ
q(1− η

γ
)
[∫ ∞

λ
µ
η q
γ
−1∣∣{z ∈ Qr2 : Ψ2R(z) + s > µ}

∣∣ qγ dµ]dλ
λ

≤ c

γ − p
‖Ψ2R + s‖qL(γ,q)(Qr2 ),

by Fubini’s Theorem, c ≡ c(p, γ, q,M). Therefore, all in all, putting all these
estimates in (4.36), after simple manipulations, we have that for all γ > p and
0 < q <∞,∥∥|Du|k + s

∥∥
L(γ,q)(Qr1 )

≤ cBλ0|QR|
1
γ

+ c̃ [G(2R,M)]
1
γ

[∥∥|Du|k+s
∥∥
L(γ,q)(Qr2 )

+c(M)‖Ψ2R+s‖L(γ,q)(Qr2 )

]
with c̃ depending only on n, p, ν, L, γ, q. At this point the reader might recall the
definition of G(2R,M) after (4.32); we choose M large enough and R0 small
enough to have

c̃

Mp−1
≤ 1

2γ
, c̃

[
ωa(2R0)

]ε̄ ≤ 1

2γ

and this, taking into consideration the dependencies of c̃ and ε̄, yields the depen-
dencies for R0 stated in Theorem 1.1. Now we also have that M is a fixed constant
depending on n, p, ν, L, γ, q; recall that ε̄ has been defined after (4.28).

With these choices and taking into account that d ≥ 1, we have∥∥|Du|k + s
∥∥
L(γ,q)(Qr1 )

≤ 1

2

∥∥|Du|k + s
∥∥
L(γ,q)(Qr2 )

+ c‖Ψ2R + 1‖dL(γ,q)(Qr2 ) + c |Q2R|
1
γ

( R

r2 − r1

)N
p
d
×

×
[(∫

Q2R

(
|Du|+ s

)p
dz

) d
p

+

(∫
Q2R

(Ψ2R + 1)η dz

) d
η
]

(4.37)

all the constants depending on n, p, ν, L, γ, q. At this point Lemma 2.10 allows to
re-absorb the L(γ, q) norm of Du in the right-hand side: ‖|Du|k +s‖L(γ,q)(Q2R) is
clearly finite. Moreover first using the Hölder’s inequality in Marcinkiewicz spaces
Lemma 2.9, then using (2.9) with λ = 0 to get the Lorentz norm of Ψ2R + s from
the Marcinkiewicz one (see [2, (5.19)–(5.20)] for the missing details), we get(∫

Q2R

(
Ψ2R + 1

)η
dz

) 1
η

≤ c(p, γ, q)

(γ − p)1/η
|Q2R|−

1
γ ‖Ψ2R + 1‖L(γ,q)(Q2R).

Putting all these informations in (4.37) yields
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∥∥|Du|k + s
∥∥
L(γ,q)(QR)

≤ c |QR|
1
γ

[(∫
Q2R

(
|Du|+ s

)p
dz

) d
p

+ |Q2R|−
d
γ ‖Ψ2R + 1‖dL(γ,q)(Q2R)

]
;

finally dividing by |QR|
1
γ , taking the limit k → ∞ and using Fatou’s Lemma

together with Remark 2.1 yields (1.13) for q <∞.

4.5. Conclusion, case q = ∞. We have to come back to the second alternative
in (4.8). This time we split, for τ small to be chosen(λ

2

)η
≤Mη

∫
Q

(Ψ2R + s)η dz

≤Mη(τλ)η +
Mη

|Q|

∫
Ψ2R(τλ,Q)

(Ψ2R + s)η dz,

calling in short Ψ2R(τλ,Q) the set {z ∈ Q : Ψ2R(z) + s > τλ}. Hence, using
again Hölder’s inequality for Marcinkiewicz spaces, Lemma 2.9, we have with
Ψ2R(µ,Q) := {z ∈ Q : Ψ2R(z) + s > µ}(λ

2

)η
−Mη(τλ)η ≤ Mη

|Q|

∫
Ψ2R(τλ,Q)

(Ψ2R + s)η dz

≤ γMη

γ − η
|Ψ2R(τλ,Q)|1−

η
γ

|Q|
×

× sup
µ>0

µη
∣∣{z ∈ Ψ2R(τλ,Q) : |Ψ2R(z)|+ s > µ}

∣∣ ηγ
≤ γMη

γ − η

[
|Ψ2R(τλ,Q)|

|Q|
(τλ)η

+
|Ψ2R(τλ,Q)|1−

η
γ

|Q|
sup
µ>τλ

µη
∣∣Ψ2R(µ,Q)

∣∣ ηγ ].
Again we have been quite sloppy: we refer to [2, Paragraph 5.4]. Choosing τ
appropriate:

1

2η
−Mητη

2γ − η
γ − η

≥ 1

4η
, i.e. τ =

c(n, p, ν, L, γ)

M
,

we have

|Q| ≤ c |Ψ2R(τλ,Q)|1−
η
γ

(τλ)η

[
sup
µ>τλ

µγ
∣∣Ψ2R(µ,Q)

∣∣] ηγ
≤ c (τλ)−γ sup

µ≥τλ
µγ
∣∣Ψ2R(µ,Q)

∣∣.
Now we match the previous estimate, which follows if we suppose (4.8)2, together
with (4.10), which follows from (4.8)1 without changes with respect to the case
q < ∞, we estimate as in (4.32) and then we sum as in Paragraph 4.3; we get
hence ∣∣E(Aλ,Qr1)

∣∣ ≤ cG(2R,M)
[∣∣E(λ/4, Qr2)

∣∣
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+ (τλ)−γ sup
µ≥τλ

µγ
∣∣Ψ2R(µ,Qr2)

∣∣].
and also, with the notation introduced after (4.34),∣∣Ek(Aλ,Qr1)

∣∣
≤ cG(2R,M)

[∣∣Ek(λ/4, Qr2)
∣∣+ (τλ)−γ sup

µ≥τλ
µγ
∣∣Ψ2R(µ,Qr2)

∣∣].
We now multiply inequality (4.33) by (Aλ)γ and we take the supremum with re-
spect to λ over (Bλ0,∞); this gives, after changing variable

sup
λ>Bλ0

(Aλ)γ
∣∣{z ∈ Qr1 : |Du(z)|k + s > Aλ}

∣∣
≤ c̃ G(2R,M)

[
sup
λ>Bλ0

λγ
∣∣{z ∈ Qr2 : |Du(z)|k + s > λ/4}

∣∣
+ c(M) sup

λ>Bτλ0

sup
µ≥λ

µγ
∣∣Ψ2R(µ,Qr2)

∣∣].
Now some easy algebraic manipulations, see again [2, Paragraph 5.4], yield∥∥|Du|k + s

∥∥
Mγ(Qr1 )

≤ 1

2

∥∥|Du|k + s
∥∥
Mγ(Qr2 )

+ c ‖Ψ2R + s‖Mγ(Qr2 )

+cR
N
γ

( R

r2 − r1

)N
p
d
[(∫

Qr2

(
|Du|+s

)p
dz
) d
p
+
(∫

Qr2

(Ψ2R+1)η dz
) d
η

]
after choosing M large and R0 small enough to ensure that G(2R,M) ≤ 1/(2γ c̃)
for all R ≤ R0. Using one more time Lemma 2.9 we get(∫

Q2R

(
Ψ2R + 1

)η
dz

) 1
η

≤ c(p, γ)

(γ − p)1/η
|Q2R|−

1
γ ‖Ψ2R + 1‖Mγ(Q2R)

and this finally leads to (1.13) in the case q =∞.
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