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Abstract. We study existence and partial regularity relative to the weighted
Steiner problem in Banach spaces. We show C1 regularity almost everywhere
for almost minimizing sets in uniformly rotund Banach spaces whose modulus
of uniform convexity verifies a Dini growth condition.
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1. Introduction

This paper contributes to the study of one dimensional geometric variational
problems in an ambient Banach space X . We address both existence and partial
regularity issues. The paradigmatic weighted Steiner problem is

(P)

{
minimize

∫
C w dH

1

among compact connected sets C ⊆ X containing F .

Here H 1 denotes the one dimensional Hausdorff measure (relative to the metric
ofX), w : X → (0,+∞] is a weight, and F is a finite set implementing the boundary
condition.

Assuming that problem (P) admits finite energy competing sets, we prove ex-
istence of a minimizer in case X is the dual of a separable Banach space, and w
is weakly* lower semicontinuous and bounded away from zero, Theorem 3.6. Ideas
on how to circumvent the lack of compactness that ensues from X being possibly
infinite dimensional go back to M. Gromov, [9], and have been implemented by
L. Ambrosio and B. Kirchheim [2] in the context of metric currents, as well as by
L. Ambrosio and P. Tilli [3] in the context of the Steiner problem (with w ≡ 1). The
novelty here is to allow for a varying weight w; the relevant lower semicontinuity
of the weighted length is in Theorem 3.4.

In studying the regularity of a minimizer C of problem (P), we regard C as
a member of the larger class of almost minimizing sets. Our definition is less
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restrictive than that of F.J. Almgren [1] who first introduced the concept. A gauge
is a nondecreasing function ξ : R+ \ {0} → R+ such that ξ(0+) = 0. We say
a compact connected set C ⊆ X of finite length is (ξ, r0) almost minimizing in
an open set U ⊆ X whenever the following holds: For every x ∈ C ∩ U , every
0 < r 6 r0 such that B(x, r) ⊆ U , and every compact connected C′ ⊆ X with

C \B(x, r) = C′ \B(x, r)

one has
H

1(C ∩B(x, r)) 6 (1 + ξ(r))H 1(C′ ∩B(x, r)) .

One easily checks that if C is a minimizer of (P) then it is (ξ,∞) almost minimizing
in U = X \ F , where ξ is (related to) the oscillation of the weight w, Theorem 3.8.
For instance if w is Hölder continuous of exponent α then ξ(r) behaves asymptoti-
cally like rα near r = 0.

In order to appreciate the hypotheses of our regularity results, we now make
elementary observations. In case cardF = 2 and w is bounded from above and
from below by positive constants, each minimizer C of (P) is a minimizing geodesic
curve Γ with respect to the conformal metric induced by w, with endpoints those
of F , Theorem 3.9. Since H 1(Γ) < ∞ we infer that Γ is a Lipschitz curve. In
general not much more regularity seems to ensue from the minimizing property of
Γ. Indeed in the plane X = ℓ2∞ with w ≡ 1, every 1-Lipschitz graph over one of
the coordinate axes is length minimizing, as the reader will happily check. However
if X is a rotund1 Banach space, then Γ must be a straight line segment. Finally,
in case w is merely Hölder continuous the Euler-Lagrange equation for geodesics
cannot be written in the classical or even weak sense, and our regularity results
do not seem to entail from ODE or PDE arguments, even when the ambient space
X = ℓ22 is the Euclidean plane.

In Section 4 we report on some properties of (ξ, r0) almost minimizing sets C in
general Banach spaces X . It is convenient – but not always necessary – to assume
that the gauge ξ verifies a Dini growth condition, specifically that

ζ(r) =

∫ r

0

ξ(ρ)

ρ
dL 1(ρ) <∞ ,

for each r > 0. We show that for each x ∈ C ∩ U the weighted density ratio

exp[ζ(r)]
H 1(C ∩B(x, r))

2r

is a nondecreasing function of 0 < r 6 min{r0, dist(x,X \ U)}, Theorem 4.7. Its
limit as r ↓ 0, denoted Θ1(H 1 C, x), verifies the following dichotomy:

Either Θ1(H 1 C, x) = 1 Or Θ1(H 1 C, x) > 3/2 ,

Corollary 4.8. We then establish that reg(C) := C∩U ∩{x : Θ1(H 1 C, x) = 1} is
relatively open in C ∩ U and that for each x ∈ reg(C) and every δ > 0 there exists
0 < r < δ such that C ∩ B(x, r) is a Lipschitz curve that intersects bdryB(x, r)
exactly in its two endpoints, Theorems 4.9 and 4.11.

In Section 5 we improve on the regularity of reg(C). Assume the ambient Banach
spaceX is uniformly rotund2 and let δX(ε) denote its modulus of uniform rotundity,
see 2.10. Let x ∈ reg(C). We assume rj ↓ 0 and each C ∩ B(x, rj) is a Lipschitz

curve Γj with endpoints x−j and x+j on bdryB(x, rj). We let Lj be the affine line

containing x−j and x+j . We want to show that Γj does not wander too far away

from Lj , i.e. we seek for an upper bound of maxz∈Γj
dist(z, Lj). Suppose this

maximum equals hjrj and is achieved at z ∈ Γj . The triangle inequality implies

1or strictly convex
2or uniformly convex
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H 1(Γj) > ‖z−x−j ‖+‖x+j −z‖. AsX is uniformly rotund, the latter is quantitatively

larger than the length of the straight line segment joining x−j and x+j , specifically

‖z − x−j ‖+ ‖x+j − z‖ > ‖x+j − x−j ‖ (1 + δX(Chj)) ,

Theorem 5.2. On the other hand, the almost minimizing property of C says that

H
1(Γj) 6 (1 + ξ(rj))‖x+j − x−j ‖ .

It now becomes clear that hj cannot be too large, in fact

hj 6 C(δ−1
X ◦ ξ)(rj) ,

which in turns yields the Hausdorff distance estimate

distH (Γj , Lj ∩B(x, rj)) 6 C′(δ−1
X ◦ ξ)(rj) .

Upon noticing that the good radii rj can be chosen in near geometric progression,
we infer that the sequence of affine secant lines {Lj} is Cauchy provided

∞∑

j=1

(δ−1
X ◦ ξ)(2−j) <∞ . (1)

The fact that the relevant inequalities are also locally uniform in x then yields our
main C1 regularity Theorem 5.5 under the assumption that δX and ξ verify the
Dini growth condition (1).

In case ξ(r) ∼= rα, a change of variable shows that (1) in fact involves solely δX ,
namely it is equivalent to asking that

∞∑

j=1

δ−1
X (2−j) <∞ . (2)

The condition is met for instance by all Lp spaces, 1 < p < ∞, as shown by the
Clarkson inequalities. The case when X = ℓn2 is a finite dimensional Euclidean
space has been worked out for instance in [14] (see also [5, Section 12] and [13]).

In Section 6 we apply our existence and regularity results to quasihyperbolic
geodesics for instance in Lp spaces. It is perhaps worth noticing that even in the
finite dimensional setting X = ℓnp , 2 < p < ∞, the problem is not “elliptic”, or
rather the metric is not Finslerian, as the smooth unit sphere Sℓnp has vanishing
curvature at ±e1, . . . ,±en. In fact, in case X is finite dimensional and the unit
sphere SX is C∞ smooth, (2) may be understood as a condition on the order of
vanishing of

fv : TvSX → R : h 7→ ‖v + h‖ − 1 ,

v ∈ SX . With this in mind, we show in Section 7 how to completely dispense
with (2) in case dimX = 2, and the norm of X is rotund and C2. The relevant
regularity result Theorem 7.7 states that reg(C) is made of differentiable curves (not
necessarily C1) provided C is (ξ, r0) almost minimizing and

√
ξ is Dini. In order to

prove this we localize the modulus of continuity δX(v; ε) relative to each direction
v ∈ SX . We then consider the subset G = SX ∩ {v : ∂2h,hfv(0) > 0}. We observe

it is relatively open in SX , and its complement SX \ G is nowhere dense because
the norm is rotund, i.e. the unit circle SX contains no line segment. Furthermore,
if v ∈ G then δX(v; ε) > c(v)ε2, the best case scenario for regularity. To prove the
differentiability of reg(C) at x ∈ reg(C) we need only to establish that the set of
tangent lines Tan(C, x) is a singleton. This set is connected, according to D. Preiss,
[15]. Thus either L ∈ Tan(C, x) ∩ G 6= ∅ and we can run the regularity proof of
Section 5 “in a cone about L”, or Tan(C, x) ⊆ SX \G and therefore Tan(C, x) is a
singleton.
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2. Preliminaries

2.1 (Metric spaces). — In a metric space (E, d) we define the open and closed
r-neighborhoods of a subset A ⊆ E by the relations

U(A, r) = E ∩ {y : dist(y,A) < r}
B(A, r) = E ∩ {y : dist(y,A) 6 r}

where dist(y,A) = inf{d(y, x) : x ∈ A}. If A = {x} is a singleton, these are the
usual open and closed balls U(x, r) and B(x, r). The interior, closure and boundary
of a subset S ⊆ E are respectively denoted by intS, closS and bdryS.

2.2 (The ambient Banach spaceX). — Throughout this paperX denotes a Banach
space with dimX > 2. We do not merely care about the isomorphic type of X ,
but also about the specific given norm. Changing the norm for an equivalent one
affects the corresponding Hausdorff measure, and therefore also the solutions of
the variational problems we are interested in, as well as their regularity theory.
Various collections of further requirements about X are made in distinct sections.
Specifically:

(3) In Section 3, X is the dual of a separable space;
(4) In Section 4, X is an arbitrary separable Banach space;
(5) In section 5, X is uniformly rotund, and the main result 5.5 applies when

δ−1
X verifies a Dini growth condition, δX being the modulus of uniform
rotundity of X ;

(6) In section 6, X is as in section 5;
(7) In section 7, X is a finite dimensional (uniformly) rotund space with C2

smooth norm, and the main result 7.7 also assumes that dimX = 2.

2.3 (Hausdorff distance). — In a metric space (E, d) we define the Hausdorff
distance between two closed sets A1, A2 ⊆ E as

distH (A1, A2) = inf{r > 0 : A1 ⊆ B(A2, r) and A2 ⊆ B(A1, r)} .
If (E, d) is compact then the Blaschke selection principle asserts that (K (E), distH )
is a compact metric space, where K (E) denotes the collection of nonempty compact
subsets of E. It is easily seen that

(I) If limn distH (An, A) = 0 and x ∈ A then there is a sequence {xn} in E
such that xn ∈ An, n = 1, 2, . . ., and limn d(xn, x) = 0;

(II) If limn distH (An, A) = 0, x ∈ E and {xn} is a sequence in E such that
xn ∈ An, n = 1, 2, . . ., and limn d(xn, x) = 0, then x ∈ A.

2.4 (Hausdorff measure). — Given a metric space (E, d) we will consider the
1 dimensional Hausdorff outer measure H 1 defined for subsets A ⊆ E by the
following formulas:

H
1
(δ)(A) = inf

{∑

i∈I

diamAi : {Ai}i∈I is a finite or countable family of

subsets of E such that A ⊆ ∪i∈IAi and diamAi 6 δ for all i ∈ I

}

corresponding to each 0 < δ 6 ∞, and

H
1(A) = sup

δ
H

1
(δ)(A) .

All Borel subsets of E are H 1 measurable in the sense of Caratheodory, and the
definition of H 1(A) remains unchanged if we restrict to closed (resp. open) covers
{Ai}i∈I in the definition of H 1

(δ)(A). If we want to insist about the underlying

metric space we will write H 1
E instead of H 1. It is useful to note that if F ⊆ E is
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considered as a metric space (F, d ↾ F ×F ) then H 1
E (F ) = H 1

F (F ). Finally, if E is
a normed linear space and a, b ∈ E, we define the line segment with endpoints a, b
by [[[a, b]]] = E ∩ {a+ t(b− a) : 0 6 t 6 1}, and one checks that H 1([[[a, b]]]) = ‖b− a‖.
2.5 (A covering theorem). — Given a metric space (E, d) and C ⊆ E, we define
the enlargement of C as

Ĉ = B(C, 2(diamC)) = E ∩ {x : dist(x,C) 6 2(diamC)} .
In particular B̂(x, r) ⊆ B(x, 5r), x ∈ E, r > 0.

A Vitali cover of A ⊆ E is a collection C of closed subsets of E with the following
property: For every x ∈ A and every δ > 0 there exists C ∈ C such that x ∈ C and
diamC < δ. It follows from [8, 2.8.6] that C admits a disjointed subcollection C ∗

with the following property: For every finite F ⊆ C ∗ one has

A \ ∪F ⊆ ∪{Ĉ : C ∈ C
∗ \ F} .

2.6 (Comparing measures). — Given a metric space (E, d) and a finite Borel
measure µ on E, we define at each x ∈ E the following generalized upper density:

Θ̃1(µ, x) = lim
δ→0+

sup

{
µ(C)

diamC
: x ∈ C ⊆ E, C is closed, and 0 < diamC < δ

}
.

If A ⊆ E is Borel, 0 < t < ∞, and Θ̃1(µ, x) > t for every x ∈ A, then
µ(A) > tH 1(A).

In order to prove this we fix δ > 0, ε > 0, and we choose an open set U ⊆ E
containing A such that µ(U) 6 ε + µ(A). Our assumption guarantees that with
each x ∈ A and i ∈ {1, 2, . . .} large enough we can associate a closed set Cx,i ⊆ U
such that x ∈ Cx,i, 0 < diamCx,i < i−1δ, and µ(Cx,i) > t(1 − ε)(diamCx,i). We
extract a disjointed subfamily {Cj}j∈J of {Cx,i : x ∈ A, i ∈ {1, 2, . . .}, Cx,i ⊆ U}
according to 2.5. Since for each finite F ⊆ J one has

∑

j∈F

diam Ĉj 6 5
∑

j∈F

diamCj 6 5(1− ε)−1t−1µ(E) <∞ ,

and since diamCj > 0 for every j ∈ J , we infer that J is at most countable. Thus
we as well assume J = N and we may select k large enough for

∞∑

j=k+1

diam Ĉj 6 ε .

Thus,

H
1
(δ)(A) 6

k∑

j=1

diamCj +
∞∑

j=k+1

diam Ĉj 6 (1− ε)−1t−1
k∑

j=1

µ(Cj) + ε

6 (1 − ε)−1t−1(ε+ µ(A)) + ε .

Letting ε→ 0 and δ → 0 completes the proof.

2.7 (The multiplicity function and Eilenberg’s inequality). — Here we consider a
complete separable metric space (E, d) and a Borel function f : E → R. We recall
that f(A) is L 1 measurable whenever A ⊆ E is Borel, see e.g. [4, Lemma 8.6.1
and Corollary 8.4.3]. It thus follows as in [8, 2.10.10] that the multiplicity function

R → N ∪ {∞} : r 7→ card(A ∩ f−1{r})
is L 1 measurable.

Assuming furthermore that f be Lipschitz, the Eilenberg’s inequality [8, 2.10.25]
states that ∫

R

card(A ∩ f−1{r}) dL 1(r) 6 (Lip f)H 1(A) .
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We will often apply these two results to the case when f(x) = d(x, x0), x0 ∈ X .

2.8 (Curves). — A curve in a metric space (E, d) is a topological line segment,
i.e. a set Γ ⊆ E of the type Γ = γ([a, b]) where a < b are real numbers and
γ : [a, b] → E is an injective continuous map. We call γ(a) and γ(b) the endpoints

of Γ, and we write Γ̊ := Γ\{γ(a), γ(b)}. If x ∈ Γ is not an endpoint then Γ\{x} has
two components. If H 1(Γ) <∞ then there exists an injective γ′ : [0,H 1(Γ)] → E
such that Lip γ′ 6 1 and im γ′ = Γ as well. If S ⊆ E is compact connected, and
H 1(S) < ∞, then for each distinct x, x′ ∈ S there exists a curve contained in S
whose endpoints are x and x′ (see e.g. [3, 4.4.7]).

2.9 (Gauges and Dini Gauges). — Given an interval I = R ∩ {r : 0 < r 6 b},
0 < b <∞, a gauge on I is a nondecreasing function

ξ : I → R+

such that limr→0+ ξ(r) = 0. We often omit to specify the interval I when it is
clearly determined by the context. We say that a gauge ξ on I is a Dini gauge
provided

ζ(r) :=

∫ r

0

ξ(ρ)

ρ
dL 1(ρ) <∞ ,

r ∈ I, and we call ζ the mean slope of ξ. Notice ζ is a gauge as well.
The following are useful examples of gauges. If ξ(r) 6 arα, a > 0, 0 < α 6 1, we

call ξ a geometric gauge and we easily check that it is Dini with ζ(r) = α−1ξ(r). As
another class of examples we consider the gauges ξ(r) = a| log r|−1−α, 0 < r < 1,
corresponding to α > 0 and a > 0. We call these log-geometric gauges and we check
they are Dini as well, with ζ(r) = α−1a| log r|−α. The gauge ξ(r) = | log r|−1,
0 < r < 1, however, is not Dini.

Let β > 1. Define Ij = [β−(j+1), β−j ], j ∈ N. For any gauge ξ in I and any
Ij ⊆ I one has
(
β − 1

β

)
ξ(β−(j+1)) 6 L

1(Ij)

(
inf
ρ∈Ij

ξ(ρ)

ρ

)

6

∫

Ij

ξ(ρ)

ρ
dL 1(ρ)

6 L
1(Ij)

(
sup
ρ∈Ij

ξ(ρ)

ρ

)
6 (β − 1)ξ(β−j) .

Thus the appropriate comparison tests imply that ξ is Dini if and only if
∞∑

j=0
Ij⊆I

ξ(β−j) <∞ .

Furthermore,
∞∑

j=k

ξ(β−j) 6

(
β

β − 1

)
ζ(β−(k−1)) ,

whenever k is sufficiently large for Ik−1 ⊆ I. Given r such that β2r ∈ I and
choosing j such that r ∈ Ij , this also implies that

ξ(r) 6 ξ(β−j) 6

(
β

β − 1

)
ζ(β−(j−1)) 6

(
β

β − 1

)
ζ(β2r) .

2.10 (Uniformly rotund spaces). — We recall that a Banach space X is called
uniformly rotund3 (abbreviated UR) whenever the following holds. For every ε > 0

3or uniformly convex
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there exists δ > 0 such that for every x, y ∈ BX ,

‖x− y‖ > ε⇒
∥∥∥∥
x+ y

2

∥∥∥∥ 6 1− δ . (3)

Notice that, corresponding to a fixed ε > 0, the set of those 0 < δ < 1 for which
(3) holds is a closed interval. Thus there exists a nondecreasing choice ε 7→ δ(ε) for
which (3) is valid. In fact, given an arbitrary Banach space X and 0 < ε 6 2, we
put

δX(ε) = inf

{
1−

∥∥∥∥
x+ y

2

∥∥∥∥ : x, y ∈ X,max{‖x‖, ‖y‖} 6 1 and ‖x− y‖ > ε

}
.

It is most obvious that δX is a gauge. One notices that X is uniformly rotund if
and only if δX(ε) > 0 for every 0 < ε 6 2. In this case δX is called the modulus of
uniform rotundity of X .

We also define

δ−1
X (t) = sup{ε > 0 : δX(ε) 6 t}

and we readily infer that δX(ε) 6 t implies ε 6 δ−1
X (t) for all ε > 0 and all t > 0. The

gauge δ−1
X , particularly its growth, pertains to the regularity theory of Section 5.

2.11. Remark. — In the definition of δX(ε) one may require that ‖x‖ = ‖y‖ = 1
instead of max{‖x‖, ‖y‖} 6 1. This leads to an equivalent definition of rotundity.
4

3. Existence

3.1 (Local hypotheses about the ambient Banach space). — In this section X is
the dual of a separable Banach space, with norm ‖ · ‖. Its closed unit ball BX

equipped with the restriction of the weak* topology of X is a compact separated
topological space. It is metrizable as well, owing to the separability of a predual
of X . We let d∗ denote any metric on BX compatible with its weak* topology, for
instance

d∗(x1, x2) =
∑

n

2−n|〈yn, x1 − x2〉| ,

where y1, y2, . . . is a dense sequence of the unit ball of some predual of X . Notice
that d∗(x1, x2) 6 ‖x1 − x2‖. In the compact metric space (BX , d

∗) we denote the
corresponding Hausdorff distance as dist∗H . We consider two metrizable topologies
on BX : that induced by the norm of X , and that induced by the weak* topology
of X . When we refer to closed (resp. compact) subsets C ⊆ BX we always mean
strongly closed (resp. compact), i.e. with respect to the norm topology of X , and
we use the terminology weakly* closed (resp. weakly* compact) otherwise.

3.2. Lemma. — Let (E, d) be a metric space.

(A) If C ⊆ E is connected, x ∈ C and 0 < r 6 diamC, it follows that

H
1(C ∩B(x, r)) > r ;

(B) If Γ if a curve in E with endpoints a and b then H 1(Γ) > d(a, b).

Proof. (A) There is no restriction to assume C is nonempty. Given x ∈ C we
consider the Lipschitz function u : E → R : y 7→ d(y, x). Since C is connected so is
u(C), and r ∈ closu(C) whenever 0 < r 6 diamC. As Lipu 6 1 we infer that

r = H
1
R
([0, r[) = H

1
R
(u(B(x, r) ∩ C)) 6 H

1
E (B(x, r) ∩ C) .

(B) follows from (A) on letting C = Γ, x = a, and r = d(a, b). �

4Definition 1.e.1 (Vol. II Chap. 1 Paragraph e) in [11].
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3.3. Lemma. — Every sequence {Cn} of nonempty compact subsets of BX contains
a subsequence {Ck(n)} such that dist∗H (Ck(n), C) → 0 as n→ ∞ for some nonempty
closed set C ⊆ BX .

Proof. Upon noticing that each Cn is weakly* compact, this becomes a consequence
of the Blaschke selection principle applied to the compact metric space (BX , d

∗),
and the fact that a weakly* compact set C is closed. �

3.4. Theorem (Compactness and lower semicontinuity). — Assume that

(A) {Cn} is a sequence of nonempty compact connected subsets of BX ;
(B) dist∗H (Cn, C) → 0 for some nonempty closed subset C of BX ;
(C) w : BX → (0,+∞] is weakly* lower semicontinuous and

sup
n

∫

Cn

w dH 1 <∞ .

It follows that

(D) C is compact and connected;
(E)

∫
C
w dH 1 6 lim infn

∫
Cn
w dH 1;

(F) F ⊆ C whenever F ⊆ Cn for every n = 1, 2, . . ..

3.5. Remark. — If the function w fails to be weakly* lower semicontinuous, con-
clusion (E) does not need to hold, as the following counterexample shows. Denote
by {ek}∞k=1 the canonical orthonormal basis of X = ℓ2, and define w : X → [1, 2] by
w(x) := max{1, 2 − 8 dist(x, span{e1})}. Then consider the sequence {Cn} ⊆ BX

of compact connected sets Cn := γn([0, 1]) where

γn(t) :=





ten for 0 6 t 6 1/8 ,

1
8en + (t− 1

8 )e1 for 1/8 < t 6 7/8 ,

(1− t)en + 3
4e1 for 7/8 < t 6 1 .

One easily checks that 3.4 (B) holds with C = [0, 34e1]. On the other hand we have∫
Cn
w dH 1 = 9

8 for every n = 1, 2, . . ., while
∫
C
w dH 1 = 3

2 >
9
8 .

Proof. Conclusion (F) is a trivial consequence of assumption (B). If infn diamCn =
0 then diam∗ C = limn diam

∗ Cn 6 lim infn diamCn = 0, thus C is a singleton and
there is nothing to prove. We henceforth assume that a := infn diamCn > 0.
The weak* compactness of BX together with the nonvanishing and weak* lower
semicontinuity of w guarantee that η := infBX

w > 0. Therefore H 1(Cn) 6

η−1
∫
Cn
w dH 1, n = 1, 2, . . ., and it ensues from (C) that b := supn H 1(Cn) <∞.

We claim that the sequence of metric spaces {Cn} is equicompact. Indeed given
r > 0, n = 1, 2, . . . , and x1, . . . , xκn

in Cn which are pairwise a distance at least 2r
apart, it follows from Lemma 3.2 that

κnr 6

κn∑

k=1

H
1(Cn ∩B(xk, r)) 6 H

1(Cn) 6 b ,

whence κn is bounded independently of n. It follows from the Gromov compactness
Theorem (see e.g. [3, 4.5.7]) that there exists a compact metric space (Z, dZ), a
subsequence of {Cn} which we still denote as {Cn}, and isometric embeddings
in : (Cn, ‖ · ‖) → (Z, dZ) such that Dn := in(Cn) converge in Hausdorff distance in
Z to some compact set D ⊆ Z.

We now consider the mappings jn := i−1
n : (Dn, dZ) → (Cn, ‖·‖). We claim that,

restricting to a subsequence of {Dn} if necessary (still denoted by {Dn}), there
exists a 1-Lipschitz map j : (D, dZ) → (BX , ‖ · ‖) with the following property: For
any sequence {zk(n)} in Z satisfying zk(n) ∈ Dk(n), n = 1, 2, . . ., and zk(n) → z ∈ D,
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we have d∗(jk(n)(zk(n)), j(z)) → 0. In order to prove this we consider the graphs
of jn,

Gn = (Z ×BX) ∩ {(z, jn(z)) : z ∈ Dn} .
According to the Blaschke selection principle {Gn} subconverges in Hausdorff dis-
tance, in the compact metric space (Z, dZ) × (BX , d

∗), to some compact set G.
One readily checks that the projection of G on Z equals D. In addition, we observe
that for any pair (z1, x1), (z2, x2) ∈ G we can find (zn1 , jn(z

n
1 )), (z

n
2 , jn(z

n
2 )) ∈ Gn

such that {(znk , jn(znk ))}n converges to (zk, xk) in (Z, dZ) × (BX , dw), k = 1, 2, as
n → ∞. Referring to the weak* lower semicontinuity of ‖ · ‖, and to the fact that
jn is an isometry, we infer that

‖x1 − x2‖ 6 lim inf
n→∞

‖jn(zn1 )− jn(z
n
2 )‖ = lim inf

n→∞
dZ(z

n
1 , z

n
2 ) = dZ(z1, z2) .

ConsequentlyG is the graph in Z×BX of a 1-Lipschitz map j : (D, dZ) → (BX , ‖·‖),
i.e. G = {(z, j(z)) : z ∈ D)}. In order to complete the proof of our claim, we need to
establish the asserted property of j. We consider a sequence {zk(n)} in Z such that
zk(n) ∈ Dk(n), n = 1, 2, . . ., and dZ(zk(n), z) → 0 for some z ∈ D. Any subsequence
of {jk(n)(zk(n))} contains a subsequence itself converging weakly* to some x ∈ BX .
The Hausdorff distance convergence of {Gn} to G then implies that (z, x) ∈ G,
i.e. x = j(z). Since this is independent of the original subsequence, the conclusion
follows.

We now establish that C = j(D), starting with the inclusion C ⊆ j(D). Given
x ∈ C we choose xn ∈ Cn, n = 1, 2, . . ., such that d∗(xn, x) → 0. Letting zn :=
in(xn), n = 1, 2, . . . we infer from the compactness of Z that a suitable subsequence
{zk(n)} of {zn} converges to some z ∈ Z. The Hausdorff convergence of {Dn} to
D implies that z ∈ D, and in turn the claim of the preceding paragraph implies
that limn d

∗(xk(n), j(z)) = limn d
∗(jk(n)(zk(n)), j(z)) = 0, thus x = j(z). The other

way round, given z ∈ D we choose zn ∈ Dn, n = 1, 2, . . ., such that dZ(zn, z) → 0.
The claim of the preceding paragraph implies that d∗(jn(zn), j(z)) → 0. Since
jn(zn) ∈ Cn we conclude that j(z) ∈ C.

The connectedness of D follows from that of each Dn, the Hausdorff convergence
of {Dn} to D and the relation β := supn H 1(Dn) < ∞, in the following fashion.
Given z1, z2 ∈ D and n = 1, 2, . . ., we choose a curve Γn ⊆ Dn with endpoints
z1, z2. Since H 1(Γn) 6 β we may select a parametrization γn : [0, 1] → Z of Γn so
that Lip γn 6 β. It follows from the Arzela-Ascoli Theorem and the compactness of
Z that some subsequence of {γn} converges uniformly to some Lipschitz γ : [0, 1] →
Z. One readily checks that Γ = im γ is a curve in D with endpoints z1 and z2.
Conclusion (D) follows at once from the equality C = j(D).

We now turn to proving conclusion (E). There is no restriction to assume that
lim infn

∫
Cn
w dH 1 < ∞ and, extracting a subsequence of {Dn} in the first place,

we may also assume that this limit inferior is a limit:

lim inf
n

∫

Cn

w dH 1 = lim
n

∫

Cn

w dH 1 .

We also notice that there is no restriction to assume diamD > 0, for if diamD = 0
then H 1(C) 6 H 1

Z (D) = 0, because Lip j 6 1, and (E) is trivially verified.
With each n = 1, 2, . . . we associate a finite Borel measure µn on Z by the

formula

µn(B) =

∫

B∩Dn

w(jn(z)) dH
1
Z (z) ,

B ⊆ Z Borel. Since jn is an isometry we observe that

µn(Z) =

∫

Dn

w(jn(z)) dH
1
Z (z) =

∫

Cn

w(x) dH 1(x) . (4)
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Thus {µn} is bounded in C(Z)∗ and it follows from the Banach-Alaoglu and Riesz-
Markov Theorems that some subsequence, still denoted {µn}, converges weakly* in
C(Z)∗ to a finite Borel measure µ. We establish now that

Θ̃1(µ, z) > w(j(z)) (5)

for every z ∈ D.
Fix z ∈ D, 0 < r < diamD and ε > 0. Choose zn ∈ Dn, n = 1, 2, . . ., so that

dZ(zn, z) → 0. Choose next z′n ∈ Dn \B(z, r) and a curve Γn ⊆ Dn with endpoints
zn and z′n, according to 2.8. If n is sufficiently large then B(zn, r/3) ⊆ B(z, r),
and arguing as in Lemma 3.2 we infer the existence of z̃n ∈ Γn ∩ bdryB(zn, r/3).
We let Γi

n, i = 1, 2, denote the two components of Γn \ {z̃n}. Upon noticing that
diamΓi

n > r/3, i = 1, 2, we infer from Lemma 3.2 that H 1
Z (Γi

n∩B(z̃n, r/3)) > r/3,
i = 1, 2, and therefore

H
1
Z (Dn ∩B(z̃n, r/3)) >

2r

3
. (6)

Considering a subsequence if necessary we may assume that dZ(z̃n, z̃) → 0 for
some z̃ ∈ Z. Now we abbreviate ρ = r/3 + 2ε where ε > 0 is chosen sufficiently
small for (1 − ε)ρ 6 r/3, and we further consider only integers n so large that
dZ(zn, z) < ε and dZ(z̃n, z̃) < ε. One then readily checks that z ∈ B(z̃, ρ) and that
B(z̃n, r/3) ⊆ B(z̃, ρ). It follows from the latter and (6) that

(1− ε)(diamB(z̃, ρ)) 6 (1− ε)2ρ 6
2r

3
6 H

1
Z (Dn ∩B(z̃n, r/3))

6 H
1
Z (Dn ∩B(z̃, ρ)) . (7)

We now make the additional assumptions that w be Lipschitz (with respect to the
norm ‖ · ‖ of BX) and we observe that for every ζ ∈ B(z̃, ρ) one has

w(jn(ζ)) > w(jn(zn))− (Lipw)‖jn(ζ)− jn(zn)‖
= w(jn(zn))− (Lipw)dZ(ζ, zn) > w(jn(zn))− 2(Lipw)ρ .

It follows from (7) and the above that

µn(B(z̃, ρ)) =

∫

B(z̃,ρ)

w(jn(ζ)) dH
1
Z (ζ)

>

(
inf

ζ∈B(z̃,ρ)
w(jn(ζ))

)
H

1
Z (Dn ∩B(z̃, ρ))

>
(
w(jn(zn))− 2(Lipw)ρ

)
(1 − ε)(diamB(z̃, ρ)) ,

for n sufficiently large. Letting n→ ∞ in the above and referring to Portmanteau’s
Theorem, the weak* lower semicontinuity of w, and limn d

∗(jn(zn), j(z)) = 0, we
infer that

µ(B(z̃, ρ)) > lim sup
n

µn(B(z̃, ρ)) >
(
w(j(z))− 2(Lipw)ρ

)
(1− ε)(diamB(z̃, ρ)) .

Letting ε→ 0 and ρ 6 r → 0 we obtain (5).
Since (5) holds for every z ∈ D we infer from 2.6 that for every 0 < t < 1 and

every k ∈ Z,

µ(Dk) > tkH 1
Z (Dk) > t

∫

Dk

Θ̃1(µ, z) dH 1
Z (z)

where

Dk = D ∩ {z : tk−1 > Θ̃1(µ, z) > tk} .
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Since we have not discussed the measurability of Θ̃1(µ, ·) we refer to [8, 2.4.10 and
2.4.3(2)] for the next estimate. Summing over k ∈ Z and letting t→ 1− yields

µ(Z) > µ(D) >

∫ ∗

D

Θ̃1(µ, z) dH 1
Z (z) >

∫

D

w(j(z)) dH 1
Z (z) .

Next we infer from the surjectivity of j and the inequality Lip j 6 1 that H 1 C 6

j∗(H
1
Z D). Thus

∫

C

w dH 1 6

∫

C

w d
[
j∗(H

1
Z D)

]
=

∫

D

(w ◦ j) dH 1
Z .

It then follows from (4) that
∫

C

w dH 1 6

∫

D

(w ◦ j) dH 1
Z 6 µ(Z) = lim

n
µn(Z)

= lim
n

∫

Dn

(w ◦ jn) dH 1
Z = lim

n

∫

Cn

w dH 1 .

This completes the proof in case w is Lipschitz. It thus remains only to remove
that assumption. To this end we introduce the Yosida approximations wk of w,
defined by the relation

wk(x) = inf {w(y) + k‖y − x‖ : y ∈ BX} ,
x ∈ BX , k = 1, 2, . . .. We easily check that the sequence {wk} is nondecreasing and
converges everywhere to w, and that each wk is both Lipschitz and weakly* lower
semicontinuous. Therefore,∫

C

wk dH
1 6 lim inf

n

∫

Cn

wk dH
1 6 lim inf

n

∫

Cn

w dH 1 ,

for each k = 1, 2, . . ., and the conclusion follows from the Monotone Convergence
Theorem. �

We now consider a nonempty finite set F ⊆ X and a weakly* lower semicontin-
uous function

w : X → (0,+∞]

such that infX w > 0. We let CF denote the collection of connected compact sets
C ⊆ X such that F ⊆ C. With each C ∈ CF we associate the weighted length

Lw(C) =

∫

C

w dH 1 .

We consider the variational problem

(PF,w)

{
minimize Lw(C)

among C ∈ CF ,

assuming that inf(PF,w) < ∞. Note that this finiteness assumption holds for
instance if w is bounded on the convex hull K of F . Indeed if F = {x0, x1, . . . , xκ}
we let C0 = ∪κ

k=1[[[x0, xk]]], so that C0 ∈ CF and Lw(C0) 6 (supK w)
∑κ

k=1 ‖xk−x0‖.
3.6. Theorem (Existence). — Whenever F and w are as above, the variational
problem (PF,w) admits at least one solution.

Proof. We apply the direct method of calculus of variations. Define β := inf(PF,w)
and let {Cn} be a minimizing sequence such that Lw(Cn) 6 1 + β, n = 1, 2, . . ..
Given n, let x ∈ Cn be such that ‖x−x0‖ = maxy∈Cn

‖y−x0‖, where x0 ∈ F . Let
Γ be a curve in Cn with endpoints x and x0. It follows that

1 + β > Lw(Cn) >

∫

Γn

w dH 1 > (inf
X
w)H 1(Γn) > (inf

X
w)‖x − x0‖ .
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Therefore Cn ⊆ B(x0, R) where R = (1 + β)(infX w)−1 and the conclusion follows
from Theorem 3.4 applied with B(x0, R). �

We end this section by showing that the minimizers of problem (PF,w) are
almost minimizing in a sense to be defined momentarily, and the remaining part
of the paper will be devoted to studying the regularity properties of these (more
general) almost minimizing sets.

3.7 (Almost minimizing sets). — Given a gauge ξ, an open set U ⊆ X , and r0 > 0,
we say a compact connected set C ⊆ X is (ξ, r0) almost minimizing in U provided
H 1(C) < ∞ and the following holds: For every x ∈ C ∩ U , every 0 < r 6 r0 such
that B(x, r) ⊆ U , and every compact connected set C′ ⊆ X with

C′ \B(x, r) = C \B(x, r)

one has

H
1(C ∩B(x, r)) 6 (1 + ξ(r))H 1(C′ ∩B(x, r)) . (8)

A set C′ as above is called a competitor for C in the ball B(x, r).

Given an open set U ⊆ X , a function w : U → R, and r > 0, we recall that the
oscillation of w at scale r > 0 is defined by

osc(w, r) = sup{|w(x1)− w(x2)| : x1, x2 ∈ U and ‖x1 − x2‖ 6 r} .
Thus limr→0+ osc(w, r) = 0 if and only if w is uniformly continuous.

3.8.Theorem. — Assume that F ⊆ X is a nonempty finite set, that w : X → [a, b]
(where 0 < a < b < ∞) is uniformly continuous, and that the variational problem
(PF,w) admits a minimizer C. It follows that C is (ξ,∞) almost minimizing in
X \ F , relative to the gauge

ξ(r) = osc(w, r)

(
a+ b

a2

)
.

Proof. Notice that ξ is indeed a gauge since w is both bounded and uniformly
continuous. Define U = X \ F , and fix x and r such that x ∈ C and B(x, r) ⊆ U .
We abbreviate B = B(x, r) and we observe that for each competitor C′ in B one
has

aH 1(C ∩B) 6

∫

C∩B

w(x) dH 1(x) 6

∫

C′∩B

w(x) dH 1(x) 6 bH 1(C′ ∩B),

as well as

(w(x0)− osc(w, r))H 1(C ∩B) 6

∫

C∩B

w(x) dH 1(x)

6

∫

C′∩B

w(x) dH 1(x)

6 (w(x0) + osc(w, r))H 1(C′ ∩B).

Therefore,

w(x0)H
1(C ∩B) 6 (w(x0) + osc(w, r))H 1(C′ ∩B) + osc(w, r)H 1(C ∩B)

6 (w(x0) + osc(w, r))H 1(C′ ∩B) + osc(w, r)
b

a
H

1(C′ ∩B) ,

and the conclusion follows upon dividing by w(x0) > a > 0. �

Since we are considering 1 dimensional geometric variational problems, it is worth
pointing out the easy local topological regularity of minimizers.
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3.9.Theorem. — Assume that cardF = 2 and that w : X → R+\{0} is uniformly
continuous. It follows that every minimizer of problem (PF,w) is a curve Γ with

endpoints those of F , and that Θ1(H 1 Γ, x) = 1 for each x ∈ Γ̊.

Proof. If C is a minimizer then it contains a curve Γ with endpoints those of F ,
according to 2.8. It follows that Lw(C \Γ) = 0, and in turn H 1(C \Γ) = 0. From
this we infer that in fact C\Γ = ∅, for if x ∈ C\Γ and r > 0 is so that B(x, r)∩Γ = ∅
then 0 < H 1(C ∩B(x, r)) 6 H 1(C \ Γ), according to 3.2, a contradiction.

Let x0 ∈ Γ̊ and r > 0 so that B(x0, r) ∩ F = ∅. We choose an arclength
parametrization γ : [a, b] → X of Γ, and a < t0 < b such that x0 = γ(t0). Define

t− := inf{t 6 t0 : γ(t) ∈ bdryB(x0, r)},
t+ := sup{t > t0 : γ(t) ∈ bdryB(x0, r)}.

We create a competitor for the problem (PF,w) as follows:

C′ = γ([a, t−]) ∪ [[[γ(t−), x0]]] ∪ [[[x0, γ(t+)]]] ∪ γ([t+, b]) .
From the relation Lw(C) 6 Lw(C

′) we obtain
∫

γ([t−,t+])

w dH 1 6

∫

[[[γ(t−),x0]]]∪[[[x0,γ(t+)]]]

w dH 1 .

It entails from the definition of t+ and t− that Γ ∩ B(x0, r) ⊆ γ([t−, t+])), thus in
fact ∫

Γ∩B(x0,r)

w dH 1 6

∫

[[[γ(t−),x0]]]∪[[[x0,γ(t+)]]]

w dH 1 .

We next infer from the uniform continuity of w that

(w(x0)− osc(w; r))H 1(Γ ∩B(x0, r)) 6

∫

Γ∩B(x0,r)

w dH 1 ,

as well as ∫

[[[γ(t−),x0]]]∪[[[x0,γ(t+)]]]

w dH 1 6 (w(x0) + osc(w; r))2r .

Therefore, if r > 0 is sufficiently small then,

H 1(Γ ∩B(x0, r))

2r
6
w(x0) + osc(w; r)

w(x0)− osc(w; r)
.

Letting r → 0+ we infer that Θ∗ 1(H 1 Γ, x0) 6 1. The reverse inequality
Θ1

∗(H
1 Γ, x0) > 1 is proved in 4.6(C). �

4. Almost minimizing sets in arbitrary Banach spaces

We establish the basic discrepancy between regular and singular points of almost
minimizing sets.

4.1 (Local hypothesis about the ambient Banach space). — In this section X
denotes a separable Banach space.

4.2. Scholium. — We will repeatedly use (without mention) the following ob-
servation. If B ⊆ X is a closed ball of radius r > 0 and Γ is a curve in X with
endpoints a and b so that a 6∈ B and b ∈ B, then Γ∩bdryB 6= ∅. This is because if
γ : [0, 1] → X parametrizes Γ so that f(0) = a and f(1) = b, and if x is the center
of the ball B, then f(t) = ‖γ(t) − x‖ is continuous and f(1) 6 r < f(0). In fact,
there is the smallest parameter t∗ such that γ(t∗) ∈ bdryB. Thus the subcurve Γ′

of Γ with endpoints a and γ(t∗) is so that Γ̊′ ∩B = ∅.
4.3. Proposition. — Assume that:
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(A) C ⊆ X is compact and connected, H 1(C) < ∞, x ∈ C, r > 0, and
B = B(x, r);

(B) N ∈ N \ {0}, cardC ∩ bdryB = N , and

C ∩ bdryB = {x1, . . . , xN} .
If x0 ∈ B then

C′ = (C \B) ∪
(
∪N
n=1[[[x0, xn]]]

)

is a competitor for C in B. In particular, if N = 1 then

C′ = C \ intB
is a competitor for C in B.

Proof. Since C′ is the union of C \ intB and finitely line segments, it is compact.
We now show that any pair of a, b ∈ C′ is connected by a curve contained in C′.
If a and b both belong to B, they are related connected by a curve in C′ ∩B. We
now assume one or both of a and b does not belong to B. Recalling 2.8, we select a
curve Γ ⊆ C with endpoints a and b. If Γ̊∩B = ∅ we are done. Assume a 6∈ B and
choose n ∈ {1, . . . , N} such that xn is closest to a along Γ, and denote Γa,xn

the
corresponding subcurve of Γ, so that Γa,xn

⊆ C′. If b ∈ B then b can be joinded
to xn in C′ ∩B by a curve Γb,xn

, and Γa,xn
∪ Γxn,b ⊆ C′ is a curve with endpoints

a and b. If instead b 6∈ B then let xm, m ∈ {1, . . . , N} be closest to b along Γ,
and denote Γb,xm

the corresponding subcurve of Γ, so that Γb,xm
⊆ C′. Finally,

choose a curve Γxn,xm
contained in C′ ∩ B with endpoints xn and xm and notice

that Γa,xn
∪ Γxn,xm

∪ Γxm,b ⊆ C′ is a curve with endpoints a and b. �

4.4. Theorem. — Assume that:

(A) C ⊆ X is compact and connected, U ⊆ X is open, 0 < r < r0, x ∈ C,
B(x, r) ⊆ U , ξ is a gauge;

(B) C is (ξ, r0) almost minimizing in U ;
(C) r < min(diamC, r0).

The following hold:

(D) card(C ∩ bdryB(x, r)) > 2;
(E) If card(C ∩ bdryB(x, r)) = 2 then C ∩ B(x, r) contains a Lipschitz curve

whose endpoints are {x0, x1} = C ∩ bdryB(x, r);
(F) If card(C∩bdryB(x, r)) = 2 and r is a point of L 1 approximate continuity

of ρ 7→ card(C∩bdryB(x, ρ)) then for every 0 < ε < 1 there exists (1−ε)r <
ρ < r such that the following dichotomy holds:

either C ∩ B(x, ρ) is a Lipschitz curve and C ∩ bdryB(x, ρ) consists of its
endpoints;

or C∩B(x, r) contains three Lipschitz curves Γ1,Γ2,Γ3 whose intersection
is a singleton {x̃} = Γ1 ∩ Γ2 ∩ Γ3, and x̃ ∈ intB(x, r) is an endpoint
of each Γ1,Γ2 and Γ3.

4.5. Remark. — Several comments are in order.

(A) The “temporary” conclusion (E) does not assert that C ∩B(x, r) is a Lip-
schitz curve Γ, but merely that it contains such Γ whose endpoints are on
bdryB(x, r); in particular it is not claimed that x ∈ Γ.

(B) The first alternative of conclusion (F), however, states that C ∩B(x, ρ) is
a Lipschitz curve Γ, and that C ∩ bdryB(x, ρ) consists of the endpoints of
Γ, for ρ close to r.

(C) The function ρ 7→ card(C ∩ B(x, ρ)) is L 1 measurable on R+, recall 2.7,
and hence approximately continuous L 1 almost everywhere, see [8, 2.9.12
and 2.9.13].
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Proof of Theorem 4.4. We abbreviate B = B(x, r) and we start by proving (D).
Since x ∈ C ∩B and r < diamC we infer that C ∩ bdryB is not empty. Assuming
C ∩bdryB is a singleton, we infer from 4.3 (applied with x0 = x1) that C

′ = C \B
is a competitor for C in B. Now since C is almost minimizing we would have
H 1(C ∩B) 6 (1 + ξ(r))H 1(C′ ∩B) = 0, in contradiction with 3.2.

We now turn to proving (E). Let C ∩ bdryB = {x0, x1}. We will show that

C contains a Lipschitz curve Γ with endpoints x0 and x1, whose interior Γ̊ =
Γ\{x0, x1} is contained in intB. Recalling 2.8 we infer that there exists a Lipschitz

curve Γ ⊆ C with endpoints x0 and x1. If Γ̊∩intB 6= ∅ then Γ̊ ⊆ intB for otherwise
card(C ∩ bdryB) > 3, a contradiction. Thus (E) will be established if we rule out

the case Γ̊ ⊆ X \B.

b

B = B(x, r)

xx0 x1
b C

Γ

b

Figure 1. A case to rule out in proving (E).

Assuming if possible that Γ̊ ⊆ X \B we verify that

C′ = (C \B) ∪ {x0, x1}
is a competitor. It is indeed easy to check that C′ is compact and we now show
that it is connected. Given a, b ∈ C′ we will find a curve Γ′ ⊆ C′ with endpoints
a and b. According to 2.8, there exists a curve Γ′′ ⊆ C with endpoints a and b.
If Γ′′ ∩ intB = ∅ we let Γ′ = Γ′′ and we are done. Otherwise Γ′′ contains one
of x0 and x1, and hence also both. We denote by Γ′′

0 the subcurve of Γ′′ with
endpoints a and (say) x0, by Γ′′

1 the subcurve of Γ′′ with endpoints x1 and b, and
we put Γ′′

B = Γ′′ ∩B. Thus Γ′′ = Γ′′
0 ∪ Γ′′

B ∪ Γ′′
1 and we define a new curve Γ′ ⊆ C′

corresponding to Γ′′
0∪Γ∪Γ′′

1 . This completes the proof that C′ is a competitor. Now
since H 1(C′ ∩B) = 0 and C is almost minimizing, we infer that H 1(C ∩B) = 0.
Together with hypothesis (C), this contradicts Lemma 3.2. Thus conclusion (E) is
established.

It remains to prove (F). Let Br = B(x, r), {x0, x1} = C ∩ bdryB(x, r), and

let Γ ⊆ C denote a Lipschitz curve with endpoints x0 and x1, and Γ̊ ⊆ intBr,
whose existence results from conclusion (E). The L 1 approximate continuity of
ρ 7→ card(C ∩bdryB(x, ρ)) at ρ = r implies the existence of an increasing sequence
{ρk} with limit r and such that card(C ∩ bdryB(x, ρk)) = 2 for every k. Choose
ρ = ρk with k large enough for (1 − ε)r < ρ < r. Taking k even larger we may

assume that card(Γ ∩ B(x, ρ)) > 2 since Γ̊ ⊆ intBr and x0, x1 ∈ bdryBr are the
endpoints of Γ. The curve Γ being a subset of C we must have card(Γ∩B(x, ρ)) = 2.
Abbreviate Bρ = B(x, ρ). If C∩Bρ = Γ∩Bρ then the first branch of the dichotomy
occurs and the proof is finished. Otherwise let {y0, y1} = C∩bdryBρ = Γ∩bdryBρ.
Choose y ∈ (C ∩Bρ) \Γ. Thus C contains a curve Γ′ with endpoints y and y0. Let
y′ be the first point on Γ′ (starting from y) that belongs to Γ. Clearly y′ ∈ Bρ.
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Whether y′ ∈ intBρ or y′ ∈ {y0, y1}, one checks that C contains three nontrivial
Lipschitz curves Γ1,Γ2,Γ3 whose intersection is {y′}, two of which are subcurves
of Γ, the other one being a subcurve of Γ′. �

We now state the basic discrepancy regarding the density of points of almost
minimizing sets.

4.6. Theorem. — Assume that

(A) C ⊆ X is compact and connected, U ⊆ X is open, ξ is a gauge, r0 > 0,
x ∈ C ∩ U ;

(B) C is (ξ, r0) almost minimizing in U .

The following hold.

(C) Θ1
∗(H

1 C, x) > 1;
(D) One of the following occurs: either

ap lim
r→0+

H 1(C ∩B(x, r))

2r
= 1 ,

or

Θ1
∗(H

1 C, x) > 3/2 .

Proof. Given r > ρ > 0 sufficiently small, it follows from Theorem 4.4 (D) that
card(C ∩ bdryB(x, ρ)) > 2. Thus

2r 6

∫ r

0

card(C ∩ bdryB(x, ρ))dL 1(ρ) 6 H
1(C ∩B(x, r))

according to Eilenberg’s inequality, recall 2.7. Conclusion (C) readily follows.
In view of (C), conclusion (D) will be established as soon as we show that the

alternative holds with the first condition replaced by the formally weaker

ap lim sup
r→0+

H 1(C ∩B(x, r))

2r
6 1 . (9)

We define an L 1 measurable set G = R∩{r > 0 : card(C ∩bdryB(x, r)) = 2}, and
ϑ(r) = r−1L 1(G ∩ [0, r]). We choose 0 < r′0 6 r0 small enough for B(x, r′0) ⊆ U
and ξ(r′0) < 1/4. We claim that if r ∈ G ∩ [0, r′0] then

H 1(C ∩B(x, r))

2r
6 1 + ξ(r) (10)

and
ϑ(r) > 1− 2ξ(r) . (11)

In order to prove (10) we recall that our assumption card(C ∩ bdryB(x, r)) = 2
implies C′ = (C \B(x, r))∪ ([[[x0, x]]]]∪[[[x, x1]]]) (where {x0, x1} = C ∩bdryB(x, r)) is
a competitor, according to 4.3. The desired inequality thus ensues from the almost
minimizing property of C. In order to establish (11) we refer to Theorem 4.4(D),
to Eilenberg’s inequality 2.7, and to (10):

2L 1(G ∩ [0, r]) + 3L 1([0, r] \G)

6

∫ r

0

card(C ∩ bdryB(x, ρ))dL 1(ρ)

6 H
1(C ∩B(x, r)) 6 (1 + ξ(r))2r .

In other words,
2rϑ(r) + 3r(1− ϑ(r)) 6 (1 + ξ(r))2r ,

from which (11) readily follows. Still assuming that r ∈ G ∩ [0, r′0], the bound
ξ(r) < 1/4 together with (11) shows there exists another r̂ ∈ G with r/4 6 r̂ 6 3r/4.
Iterating this observation, we infer from the hypothesis G∩ [0, r′0] 6= ∅ the existence
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of a sequence {rk} in G ∩ [0, r′0] such that limk rk = 0 and 1 6 rk/rk+1 6 4. Now
if rk+1 6 r 6 rk then

L 1([0, r] \G)
r

6
L 1([0, rk] \G)

rk+1
6

4L 1([0, rk] \G)
rk

6 8ξ(rk) ,

according to (11). Therefore

lim
r→0+

L 1([0, r] ∩G)
r

= 1 .

Furthermore it follows from (10) that

lim sup
r→0+

r∈G

H 1(C ∩B(x, r))

2r
6 1 .

It is now clear that if G ∩ [0, r′0] 6= ∅ then (9) holds. If instead G ∩ [0, r′0] = ∅ then
Eilenberg’s inequality implies that for each 0 < r 6 r′0 one has

3r 6

∫ r

0

card(C ∩B(x, ρ))dL 1(ρ) 6 H
1(C ∩B(x, r)) .

In particular Θ1
∗(H

1 C, x) > 3/2. �

In the remaining part of this section we will obtain better information under the
assumption that the gauge ξ is Dini.

4.7. Theorem (Almost monotonicity). — Assume that:

(A) C ⊆ X is compact and connected, U ⊆ X is open, r0 > 0;
(B) ξ is a Dini gauge with mean slope ζ;
(C) C is (ξ, r0) almost minimizing in U ;

It follows that for every x ∈ C ∩ U the function

(0,min{r0, dist(x, bdryU)}) → R
+ : r 7→ exp[ζ(r)]

H 1(C ∩B(x, r))

2r

is nondecreasing.

Proof. Fix x ∈ C ∩ U and let r(x) := dist(x, bdryU). We define N(ρ) = card(C ∩
bdryB(x, ρ)) ∈ N ∪ {∞} for 0 < ρ < r(x), and

ϕ(r) = H
1(C ∩B(x, r)) ,

for 0 < r < r(x). Notice that ϕ > 0 according to 3.2.
We infer from Eilenberg’s inequality 2.7 (applied to A = C ∩ (B(x, b) \B(x, a))

that ∫ b

a

N(ρ)dL 1(ρ) 6 ϕ(b)− ϕ(a)

for every 0 < a < b < r(x). In particular N is almost everywhere finite and

N(ρ) 6 ϕ′(ρ) (12)

at those ρ which are Lebesgue points of N and at which ϕ is differentiable. Since ϕ
is nondecreasing this occurs almost everywhere. We next select 0 < ρ < r(x) such
that N(ρ) <∞ and we define

C′ = (C \B(x, ρ)) ∪


 ⋃

y∈C∩bdryB(x,ρ)

[[[x, y]]]


 .
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It follows from 4.3 that C′ is a competitor for C in B(x, ρ). Assuming also that
(12) holds, the almost minimizing property of C yields

ϕ(ρ) = H
1(C ∩ bdryB(x, ρ)) 6 (1 + ξ(ρ))H 1(C′ ∩B(x, ρ))

= (1 + ξ(ρ))N(ρ)ρ 6 (1 + ξ(ρ))ϕ′(ρ)ρ .

It follows from the above that

d

dρ
logϕ(ρ) =

ϕ′(ρ)

ϕ(ρ)
>

1

(1 + ξ(ρ))ρ
>

1− ξ(ρ)

ρ
=

d

dρ
log

(
ρ exp[−ζ(ρ)]

)
.

Since this inequality occurs almost everywhere and ϕ is nondecreasing, we infer
upon integrating each member that

logϕ(r2)− logϕ(r1) > log

(
r2 exp[−ζ(r2)]

)
− log

(
r1 exp[−ζ(r1)]

)
.

for every 0 < r1 < r2 < r(x). Our conclusion now easily follows. �

4.8. Corollary. — At each x ∈ C ∩ U the density

Θ1(H 1 C, x) = lim
r→0+

H 1(C ∩B(x, r))

2r

exists, and either Θ1(H 1 C, x) = 1 or Θ1(H 1 C, x) > 3/2.

4.9. Theorem (Lipschitz regularity). — Assume that:

(A) C ⊆ X is compact and connected, U ⊆ X is open, 0 < r < r0, x ∈ C,
B(x, r) ⊆ U , 0 < τ 6 1/6;

(B) ξ is a Dini gauge with mean slope ζ;
(C) C is (ξ, r0) almost minimizing in U ;
(D) exp[ζ(r)] 6 1 + τ/4;
(E) ξ(r) 6 τ/4;
(F) card(C ∩ bdryB(x, r)) = 2.

It follows that there exists τr/2 6 ρ 6 τr and a Lipschitz curve Γ such that C ∩
B(x, ρ) = Γ and C ∩ bdryB(x, ρ) consists of the two endpoints of Γ.

Proof. We start arguing as in the proof of Theorem 4.6. Letting G and ϑ be defined
as in that proof, we infer from our hypotheses (E) and (F) that ϑ(r) > 1− τ/2, see
(11), and we infer from our hypotheses (D), (E), (F), and the inequality τ 6 1/6
that

exp[ζ(r)]H 1(C ∩B(x, r)) 6 (1 + τ/4)22r 6 (1 + τ)2r , (13)

see (10). Thus there exists ρ ∈ G ∩ (τr/2, τr) which is a point of L 1 approximate
continuity of ρ 7→ card(C∩bdryB(x, ρ)). It then follows from Theorem 4.4(F) that
our conclusion will be established provided we rule out the second alternative in
that conclusion. Assume if possible that such x̃ ∈ C∩B(x, ρ) exists. The Eilenberg
inequality easily implies that Θ1(H 1 C, x̃) > 3/2. The following contradiction
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ensues:

3

2
6 Θ1(H 1 C, x̃)

6 exp[ζ((1 − τ)r)]
H 1(C ∩B(x̃, (1− τ)r))

2(1− τ)r

6 exp[ζ((1 − τ)r)]
H 1(C ∩B(x, ‖x− x̃‖+ (1− τ)r))

2(1− τ)r

6 exp[ζ((1 − τ)r)]
H 1(C ∩B(x, ‖x− x̃‖+ (1− τ)r))

2(‖x− x̃‖+ (1− τ)r)

(‖x− x̃‖+ (1− τ)r

(1− τ)r

)

which, according to ‖x− x̃‖ 6 ρ 6 τr and Theorem 4.7, is bounded by

6 exp[ζ(r)]
H 1(C ∩B(x, r))

2r

(
1 +

τ

1− τ

)

which, according to (13), is bounded by

6 (1 + τ)

(
1 +

τ

1− τ

)

<
3

2

since τ 6 1/6. �

4.10. Definition. — Let C ⊆ X and x ∈ C. We say that:

(1) x is a regular point of C if for each δ > 0 there exists 0 < r < δ such that
C ∩B(x, r) is a Lipschitz curve Γ and C ∩ bdryB(x, r) consists of the two
endpoints of Γ;

(2) x is a singular point of C if it is not a regular point of C.

The set of regular points of C is denoted reg(C), and the set of singular points of
C is denoted sing(C) = C \ reg(C).
4.11. Theorem. — Assume that:

(A) C ⊆ X is compact and connected, U ⊆ X is open, r0 > 0;
(B) ξ is a Dini gauge;
(C) C is (ξ, r0) almost minimizing in U .

It follows that U ∩ reg(C) = U ∩ {x : Θ1(H 1 C, x) = 1}, that U ∩ sing(C) is
relatively closed in U ∩ C, and that H 1(U ∩ sing(C)) = 0.

Proof. Let x ∈ U . We first show that if Θ1(H 1 C, x) = 1 then x is a regular
point of C. Since C is closed, we infer that x ∈ C. If r′ > 0 is sufficiently small
then 2r′ 6 H 1(C ∩ B(x, r′)) < 3r′; the first inequality follows as in the proof of
Theorem 4.6(C), whereas the second results from our assumption. Therefore there
exists 0 < r < r′ such that card(C ∩ bdryB(x, r)) = 2, according to Eilenberg’s
inequality. One can of course assume that r′ is small enough for hypotheses (D)
and (E) of Theorem 4.9 to be verified as well. It then follows from that Theorem
that C ∩ B(x, r′′) is indeed a Lipschitz curve, for some 0 < r′′ < r′. Since r′ is
arbitrarily small, we conclude that x is a regular point of C.

We now assume that x ∈ C is a regular point of C and we will establish that
Θ1(H 1 C, x) = 1. By definition, there are r > 0 arbitrarily small such that, in
particular, card(C ∩ bdryB(x, r)) = 2. If we denote by x0,r and x1,r the corre-
sponding two intersection points, then

C′ = (C \B(x, r)) ∪ ([[[x0,r, x]]] ∪ [[[x, x1,r]]])
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is a competitor for C in B(x, r), according to 4.3, and therefore H 1(C ∩B(x, r)) 6
(1+ ξ(r))2r according to the almost minimizing property of C. If r is chosen small
enough for 1+ ξ(r) < (3/2) exp[−ζ(r)] then Θ1(H 1 C, x) < 3/2 according to 4.7.
In turn, it follows from 4.8 that Θ1(H 1 C, x) = 1.

We turn to proving the relative closedness of sing(C) in U . We first observe that
the function

Θ : U → R : x 7→ Θ1(H 1 C, x)

is upper semicontinuous. Indeed, according to 4.7, Θ(x) = infr>0 Θr(x), where

Θr : U → R : x 7→ exp[−ζ(r)]H
1(C ∩B(x, r))

2r
.

It then suffices to note that U → R : x 7→ (H 1 C)(B(x, r)) is uper semicon-
tinuous, for each r > 0. Finally, U ∩ sing(C) = U ∩ {x : Θ1(H 1 C, x) > 3/2},
according to 4.8, and the proof is complete.

To conclude, since C is rectifiable [3, Theorem 4.4.8.] it follows from [10] that
Θ1(H 1 C, x) = 1 for H 1 almost every x ∈ C. Hence H 1(U ∩ sing(C)) = 0. �

5. The excess of length of a nonstraight path and a regularity

theorem

5.1 (Local hypothesis about the ambient Banach space). — In this section X
denotes a uniformly rotund Banach space, with modulus of uniform rotundity δX ,
recall 2.10.

If x0, x1 and z are the three vertices of a nondegenerate triangle in a Hilbert space,
then the length of the broken line from x0 to x1 passing through z is substantially
larger than the length of the straight path from x0 to x1, specifically

‖x0 − z‖+ ‖z − x1‖ > ‖x0 − x1‖
√
1 +

h2

max{‖x0 − z‖2, ‖z − x1‖2}
,

where h = dist(z, L), L = x0 + span{x1 − x0}. This ensues from the Pythagorean
Theorem and from the observation that among all such triangles with same height
h, the isoceles triangle has the shortest perimeter.

If X is an arbitrary Banach space, the collection of inequalities

‖x0 − z‖+ ‖z − x1‖ > ‖x0 − x1‖
(
1 + δ2

(
h

max{‖x0 − z‖, ‖z − x1‖}

))
,

for some gauge δ2, is equivalent to the uniform convexity of X , see [7, Lemma
IV.1.5]. Next comes an ersatz of the Pythagorean Theorem that makes this obser-
vation quantitative, showing that δ2 and the modulus of uniform convexity of X
have the same asymptotic behavior.

5.2. Proposition. — Assume that X is a uniformly convex Banach space with
modulus of uniform convexity δX , and that x0, x1, z are the vertices of a nondegen-
erate triangle. It follows that

‖x0 − z‖+ ‖z − x1‖ > ‖x0 − x1‖
(
1 + δX

(
dist(z, x0 + span{x1 − x0})
2(‖x0 − z‖+ ‖z − x1‖)

))
.

Proof. We let SX = bdryB(0, 1) denote the unit sphere. Referring to the Hahn-
Banach Theorem, with each unit vector v ∈ SX we associate a closed linear subspace
Hv ⊆ X of codimension 1 such that BX lies entirely on one side of v + Hv. We
observe that v 6∈ Hv by necessity, and that there is no restriction to assume that
H−v = Hv.

We denote by V the 2 dimensional affine subspace of X containing x0, x1 and
z, and V0 the corresponding linear subspace. We define v = ‖x1 − x0‖−1(x1 − x0),
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Lv = V0 ∩ Hv, and L′
v = span{v}. As Lv and L′

v are nonparallel, the following
defines y′:

{y′} = (x0 + L′
v) ∩ (z + Lv) .

We now distinguish between the cases when y′ lies on x0 + L′
v between x0 and x1,

or not.
First case : y′ ∈ [[[x0, x1]]]. We define ρ0 = ‖x0 − y′‖, B0 = V ∩ B(x0, ρ0), and

we let S0 be the boundary of B0 relative to V . Our choice of Hv guarantess that
B0 lies, in V , on one side of y′ + Lv. Therefore, among the two points of which
S0 ∩ (x0 + span{z − x0}) consists, one belongs to [[[x0, z]]]. We denote it as y.

b

bb

b b
x1y′

x0

S0

B0 z
y

z + Lv

x0 + L′
v

v

Figure 2. Situation of the first case.

We now abbreviate ε = ρ−1
0 ‖y′ − y‖ and we infer from the uniform convexity of

X that ∥∥∥∥
y′ + y

2

∥∥∥∥ = (1− β)ρ0 6 (1− δX(ε))ρ0 , (14)

where the equality defines β (thus β > δX(ε)).
We claim that

‖y − z‖ > βρ0 . (15)

In other words, we are comparing the lengths of the line segments [[[y, z]]] and [[[(y′ +
y)/2, w]]], where w is at the intersection of x0 +span{(y′+ y)/2−x0} and S0, in the
triangle of vertices y′, y and z (see Figure 3 just after).

With each s ∈ R we associate zs = y′+s(z−y′). If we denote by P : V → V the
projection onto the line y′ + span{y′ − x0}, parallel to the line y′ + span{z − y′},
then the maps fs =

(
P ↾[[[x0,zs]]]

)−1
are affine bijections from [[[x0, y

′]]] to [[[x0, zs]]]. We
note that the convex function s 7→ ‖zs − x0‖ has a mimimum at s = 0 – according
to our choice of Hv –, and therefore is nondecreasing on the interval s > 0. It
follows that there exists a nondecreasing function s 7→ λ(s), s > 0, such that

H
1(fs(I)) = λ(s)H 1(I)

for each interval I ⊆ [[[x0, y
′]]]. We now choose 0 6 s1 6 s2 such that (y′ + y)/2 ∈

[[[x0, zs1]]] and z = zs2 . It is easily seen that

P ([[[y, z]]]) ⊇ P ([[[(y′ + y)/2, zs1]]]) ⊇ P ([[[(y′ + y)/2, w]]])

and the the proof of (15) follows.
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bx0

z

y′

y b

b

b

ρ0

βρ0

S0

Figure 3. Illustration of (15): the blue segment is larger than the
tiny red one.

It ensues from (15) that

‖x0 − z‖ = ‖x0 − y‖+ ‖y − z‖
> (1 + β)‖x0 − y‖
> (1 + δX(ε))‖x0 − y‖ .

(16)

We are now going to establish that

‖x0 − z‖ >

(
1 + δX

(
dist(z, x0 + span{x1 − x0})

2‖x0 − z‖

))
‖x0 − y′‖ . (17)

Either ‖x0 − z‖ > 2‖x0 − y‖, in which case (17) readily holds since δX(η) 6 1 for
each 0 < η 6 2, or ‖x0 − z‖ < 2‖x0 − y‖. In the latter case,

dist(z, x0 + span{x1 − x0}) =
‖z − x0‖
‖y − x0‖

dist(y, x0 + span{x1 − x0})

6 2 dist(y, x0 + span{x1 − x0})
6 2‖y − y′‖ ,

therefore

ε =
‖y − y′‖
ρ0

>
dist(z, x0 + span{x1 − x0})

2‖x0 − y‖ >
dist(z, x0 + span{x1 − x0})

2‖x0 − z‖ .

Thus (17) follows from (16), because δX is nondecreasing.
We now repeat the same argument with the vertex x1 playing the role of x0.

Since L−v = Lv, we observe that the new point y′ coincides with the one found
previously. The analogous calculations therefore yield

‖x1 − z‖ >

(
1 + δX

(
dist(z, x0 + span{x1 − x0})

2‖x1 − z‖

))
‖x1 − y′‖ . (18)

Upon summing inequalities (17) and (18) we obtain

‖x0 − z‖+ ‖z − x1‖ >

(
1 + δX

(
dist(z, x0 + span{x1 − x0})
2max{‖x0 − z‖, ‖z − x1‖}

))
‖x0 − x1‖ , (19)



WEIGHTED LENGTH 23

which proves the proposition in this case.
Second case : y′ 6∈ [[[x0, x1]]]. We start by observing that we may as well assume

λ := min{‖x0 − z‖, ‖z − x1‖} < ‖x0 − x1‖ (20)

for otherwise the conclusion

‖x0 − z‖+ ‖z − x1‖ > 2‖x0 − x1‖

>

(
1 + δX

(
dist(z, x0 + span{x1 − x0})
2(‖x0 − z‖+ ‖z − x1‖)

))
‖x0 − x1‖

readily follows from the trivial inequality 0 < δX(η) 6 1, 0 < η 6 2. We define
c = (x0 + x1)/2, r = ‖x0 − x1‖/2, and we let

{x′0, x′1} = (x0 + L′
v) ∩ bdryB(c, r + λ) .

It follows from our choice of λ, (20), and the definition of Lv that the point y′

defined by
{y′} = (x0 + L′

v) ∩ (z + Lv)

belongs to the line segment [[[x′0, x
′
1]]]. Therefore the first case of this proof applies to

the triangle with vertices x′0, x
′
1 and z. Accordingly,

‖x′0 − z‖+ ‖z − x′1‖ > (1 + δ′)‖x′0 − x′1‖ (21)

where

δ′ = δX

(
dist(z, x0 + span{x1 − x0})
2max{‖x′0 − z‖, ‖z − x′1‖}

)
.

We notice that

‖x′0 − z‖+ ‖z − x′1‖ 6 ‖x0 − z‖+ ‖z − x1‖+ 2λ

6 ‖x0 − z‖+ ‖z − x1‖+ 2(1 + δ′)λ

as well as
‖x′0 − x′1‖ = ‖x0 − x1‖+ 2λ .

Plugging these inequalities in (21) yields

‖x0 − z‖+ ‖z − x1‖ > (1 + δ′)‖x0 − x1‖ ,
and it remains to observe that

δ′ > δX

(
dist(z, x0 + span{x1 − x0})
2(‖x0 − z‖+ ‖z − x1‖)

)

because

max{‖x′0 − z‖, ‖z − x′1‖} 6 max{‖x0 − z‖, ‖z − x1‖}+ λ = ‖x0 − z‖+ ‖z − x1‖ .
The proof is now complete. �

The following is an ersatz of the Pythagorean Theorem, valid in uniformly convex
Banach spaces.

5.3. Proposition (Height bound). — Assume that:

(A) C ⊆ X is compact, connected, U ⊆ X is open, 0 < r < r0, x ∈ C,
B(x, r) ⊆ U ;

(B) ξ is a gauge and ξ(r) 6 δX(1/32);
(C) C is (ξ, r0) almost minimizing in U ;
(D) C∩B(x, r) is a Lipschitz curve with endpoints x0 and x1, and C∩bdryB(x, r) =

{x0, x1};
(E) L = span{x1 − x0}.

It follows that

(F) ‖x1 − x0‖ > (1− ξ(r))2r;
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(G) For every z ∈ C ∩B(x, r) one has

dist(z, x+ L) 6 16(δ−1
X ◦ ξ)(r) .

5.4. Remark. — Under the same assumptions one can in fact show that

1

r
distH

[
C ∩B(x, r), (x + L) ∩B(x, r)

]
6 80(δ−1

X ◦ ξ)(r) ,

but only the weaker version (G) will be used in the proof of Theorem 5.5.

Proof of Proposition 5.3. We start by observing that

2r 6 H
1(C ∩B(x, r)) 6 (1 + ξ(r))‖x1 − x0‖ . (22)

The first inequality results from 4.4(D) as in the proof of 4.6(C), and the second
inequality follows from the almost minimizing property of C together with the fact
that

C′ = (C \B(x, r)) ∪ [[[x0, x1]]]

is a competitor for C in B(x, r), according to 4.3. This proves conclusion (F).
Let z ∈ C ∩B(x, r) and define

hz = dist(z, x0 + L) .

Notice that ‖x0 − z‖+ ‖z − x1‖ 6 4r, name Γ the Lipschitz curve C ∩B(x, r), and
write Γ0 (resp. Γ1) for the subcurve of Γ with endpoints x0 and z (resp. z and x1).
It ensues from 5.2 that

‖x0 − x1‖
(
1 + δX

(
hz
8r

))
6 ‖x0 − z‖+ ‖z − x1‖

6 H
1(Γ0) + H

1(Γ1)

= H
1(C ∩B(x, r))

6 (1 + ξ(r))‖x1 − x0‖
where the last inequality follows from (22). Therefore

δX

(
hz
8r

)
6 ξ(r) ,

and in turn,
hz
r

6 8(δ−1
X ◦ ξ)(r) , (23)

recall 2.10.
We abbreviate η = 8r(δ−1

X ◦ ξ)(r). So far we showed that given z ∈ C ∩B(x, r),
there is vz ∈ L such that ‖z − (vz + x0)‖ 6 η. As x ∈ C ∩ B(x, r), there exists
vx ∈ L such that ‖x− (vx + x0)‖ 6 η. Therefore ‖z − (vz − vx + x)‖ 6 ‖z − (vz +
x0)‖+ ‖x− (vx + x0)‖ 6 2η and the proof of (G) is complete. �

In the following we use the terminology universal constant for real numbers that
do not depend on the data (X , C, ξ etc).

5.5. Theorem (C1 regularity). — There are universal constants η > 0 and C > 0
with the following property. Assume that:

(A) C ⊆ X is compact, connected, U ⊆ X is open, r0 > 0, x0 ∈ C, B(x0, r0) ⊆
U ;

(B) ξ is a gauge and the gauge δ−1
X ◦ ξ is Dini;

(C) C is (ξ, r0) almost minimizing in U ;
(D) exp[ζ(r0)] 6 1 + η where ζ is the mean slope of ξ;
(E) (δ−1

X ◦ ξ)(r0) 6 η;
(F) H 1(C ∩B(x0, r0)) 6 (1 + η)2r0.
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It follows that C ∩ B(x0,ηr0) is a C1 curve Γ. Furthermore if γ is an arclength
parametrization of Γ then

osc(γ′; η) 6 Cω(Cη)

where ω is the mean slope of the Dini gauge δ−1
X ◦ ξ.

5.6. Remark. — Several comments are in order.

(A) Since δX(ε) 6 ε2 for every 0 < ε < 2, see [11, p. 63], we infer that
t 6

√
t 6 δ−1

X (t) whenever 0 < t 6 1. Thus for any gauge ξ and any t such
that ξ(t) 6 1 one has

ξ(t) 6 δ−1
X (ξ(t)) ,

and it immediately follows from the definition that ξ is a Dini gauge when-
ever δ−1

X ◦ ξ is Dini. In particular hypothesis (D) makes sense. In our

statement ζ is the mean slope of ξ and ω is the mean slope of δ−1
X ◦ ξ.

(B) Under the assumptions of the Theorem, if 0 < τ < 1, x ∈ C ∩ B(x0, τr0)
and 0 < r 6 (1− τ)r0 then 4.7 (almost monotonicity) implies that

H 1(C ∩B(x, r))

2r
6 exp[ζ((1 − τ)r0]

H 1(C ∩B(x, (1 − τ)r0))

2(1− τ)r0

6 exp[ζ(r0)]
H 1(C ∩B(x0, r0))

2r0

(
1

1− τ

)

6
(1 + η)2

1− τ
.

In particular, when τ is small, a version of hypothesis (F) holds (with a
slightly worse constant that η) for x close to x0 and r sligthly smaller than
r0. We will refer to this observation in the core of the proof.

(C) It is useful to notice that the Theorem applies at all. In fact, if C ⊆ X is
compact, connected and H 1(C) < ∞, and if ξ is a Dini gauge, then for
H 1 almost every x0 ∈ C there exists r0 = r0(x) > 0 such that assump-
tions (D), (E) and (F) are verified. Of course assumptions (D) and (E) are
satisfied for r0 small enough independently of x0, whereas assumption (F)
follows from the rectifiability of C [3, Theorem 4.4.8.] which implies that
Θ1(H 1 C, x0) = 1 for H 1 almost every x0 ∈ C, see e.g. [10]. Thus the
only nontrivial assumption of the Theorem, apart from the almost mini-
mizing property of C, is that δ−1

X ◦ ξ be Dini.
(D) Let us spell out the kind of regularity obtained in case ξ(r) 6 Crα, 0 < α 6

1, and X = Lp, 1 < p < ∞. Here we consider an Lp space relative to any
measure space, and we point out that the (ξ, r0) almost minimizing property
is verified by a solution of the variational problem (PF,w) (see near the end
of section 3) provided the weight w is Hölder continuous of exponent α (see
3.8). One infers from [11, p.63] that δ−1

Lp
(ε) 6 Cpε

1/max{2,p}. Thus the

gauge δ−1
Lp

◦ ξ is geometric and it follows that Γ̊ is C1,α/max{2,p}.

Proof of Theorem 5.5. We say a pair (x, r) ∈ C × (R+ \ {0}) is good if C ∩B(x, r)
is a Lipschitz curve Γx,r and if C ∩ bdryB(x, r) consists exactly of the endpoints
of Γx,r.

Claim #1. For every x ∈ C ∩ B(x0, r0/6) and every 0 < r 6 (5/6)r0, there
exists r/144 6 ρ 6 r/6 such that (x, ρ) is good.

We first notice that

H
1(C ∩B(x, (5/6)r0)) 6 H

1(C ∩B(x0, r0)) 6 (1 + 1/6)2r0 ,
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according to hypothesis (F). Thus we infer from hypothesis (D) and 4.7 (almost
monotonicity) that

H 1(C ∩B(x, r))

2r
6 exp[ζ(r)]

H 1(C ∩B(x, r))

2r

6 exp[ζ((5/6)r0)]
H 1(C ∩B(x, (5/6)r0))

2(5/6)r0
<

(
1 +

1

24

)(
7

5

)
=

3

2
− 1

24
.

We next define an L 1 measurable set G = [0, r] ∩ {ρ : cardC ∩ bdryB(x, ρ) = 2},
recall 2.7. It follows from 4.4(D) and Eilenberg’s inequality that

2L 1(G) + 3(r − L
1(G)) 6

∫ r

0

(cardC ∩ bdryB(x, ρ))dL 1(ρ)

6 H
1(C ∩B(x, r)) <

(
3

2
− 1

24

)
2r .

It readily follows that L 1(G) > r/12. Pick r′ ∈ G with r′ > r/12 and apply 4.9
(with τ = 1/6). �

We apply Claim #1 to x = x0 and r = (5/6)r0 to find some ρ0 such that

1

144

(
5r0
6

)
6 ρ0 6

1

6

(
5r0
6

)

and C ∩B(x0, ρ0) is a Lipschitz curve Γ0.
We define rj = 72−j, j ∈ N, and for the remaining part of this proof we assume

j > j0 where j0 is chosen sufficiently large for rj0 6 (5/6)r0. For such rj and
x ∈ C ∩B(x0, ρ0), Claim #1 applies to yield ρx,j such that

rj+1

2
=

rj
144

6 ρx,j 6
rj
6

= 12rj+1 (24)

and C ∩ B(x, ρx,j) is a Lipschitz curve Γx,j whose two endpoints coincide with
C ∩ bdryB(x, ρx,j). We easily infer that

3 6
ρx,j
ρx,j+1

6 1728 . (25)

We parametrize Γ0 by arclength γ : [a, b] → X . Corresponding to each good pair
(x, ρx,j) obtained above, we notice Γx,j ⊆ Γ0, and therefore

Γx,j = γ([sx + h−x,j, sx + h+x,j])

where a < sx < b is so that x = γ(sx) and h
−
x,j < 0 < h+x,j.

Claim #2. One has

ρx,j 6 |h±x,j| 6 (1 + 2ξ(rj))ρx,j (26)

and

3/2 6
|h±x,j|

|h±x,j+1|
6 3456 . (27)

The first of the four (set of) inequalities simply follows from Lip γ 6 1,

ρx,j = ‖γ(sx + h±x,j)− γ(sx)‖ 6 |h±x,j| .
We next infer from the almost minimizing property ofC and the fact that (x, ρx,j)

is a good pair,

|h−x,j|+ |h+x,j| = H
1(Γ−

x,j) + H
1(Γ+

x,j) = H
1(Γx,j)

= H
1(C ∩B(x, ρx,j)) 6 (1 + ξ(ρx,j))2ρx,j .

The second inequality ensues easily from this and from the first inequality.
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The third and fourth inequalities are consequences of (25) and of |h±x,j | 6 2ρx,j
which itself follows from the second inequality and ξ(rj) 6 1/2. �

Next we apply 5.3 to each good pair (x, ρx,j), x ∈ C ∩B(x0, ρ0). This provides
us with a 1 dimensional linear subspace Lx,j ⊆ X such that

max{dist(z, x+ Lx,j) : z ∈ Γx,j} 6 ε(rj)ρx,j ,

where we have abbreviated

ε(r) = 16(δ−1
X ◦ ξ)(r) .

It is useful to recall that ξ 6 ε, cf. 5.6. Associated with each h ∈ [h−x,j , h
−
x,j+1] ∪

[h+x,j+1, h
+
x,j] we choose vx,h,j ∈ Lx,j such that

‖γ(sx + h)− x− vx,h,j‖ 6 ε(rj)ρx,j . (28)

We choose a unit vector wx,j ∈ X spanning Lx,j, and tx,h,j ∈ R such that vx,h,j =
tx,h,jwx,j . Replacing wx,j by −wx,j if necessary, we also assume that tx,h+

x,j
,j > 0.

In the remaining part of this proof we will also use the following abbreviations:

v±x,j = vx,h±

x,j
,j

t±x,j = tx,h±

x,j
,j .

B(x, ρx,j)

b
Lx,j

wx,j

C
b

b

b

v+x,j = t+x,jwx,j

γ(sx + h+x,j)

ε(rj)ρx,j x = γ(sx)
b

v−x,j = t−x,jwx,j

γ(sx + h−x,j)

Γx,j

Figure 4. Notation of the proof of differentiability.

Claim #3.The following hold:
∣∣|t±x,j| − ρx,j

∣∣ 6 ε(rj)ρx,j , (29)

and t+x,j > 0 as well as t−x,j < 0.

Since ‖γ(sx+h±x,j)−x‖ = ρx,j the first inequality is an immediate consequence of

(28). In order to determine the signs of the t±x,j we proceed as follows. As t+x,j > 0

(by choice of wx,j) we infer from the first conclusion of the claim that t+x,j > 0.

We now show that t−x,j < 0. We infer from (28) that

‖γ(sx + h+x,j)− γ(sx + h−x,j)− (t+x,j − t−x,j)wx,j‖ 6 2ε(rj)ρx,j . (30)
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It follows from 5.3(F) that

‖γ(sx + h+x,j)− γ(sx + h−x,j)‖ > 2ρx,j(1− ξ(rj)) . (31)

Thus,

|t+x,j − t−x,j| > 2ρx,j(1− 3ε(rj)) , (32)

according to (30) and (31). If t+x,j and t−x,j had the same sign it would follow from
the first conclusion of this claim that

|t+x,j − t−x,j | 6 2ε(rj)ρx,j .

Plugging this into (32) would yield

2(1− 3ε(rj)) 6 2ε(rj) ,

in contradiction with hypothesis (E). �

We now introduce a notation for the difference quotients of γ. Let s ∈ [a, b] and
h ∈ R \ {0} such that s+ h ∈ [a, b]. We define

△γ(s, h) =
γ(s+ h)− γ(s)

h
.

We will prove that △γ(sx, h) and △γ(sx, h
+
x,j) are close, for h ∈ [h−x,j, h

−
x,j+1] ∪

[h+x,j+1, h
+
x,j]. To this end we will observe these two vectors are close to positive

multiples of wx,j , and they both have length nearly equal to 1.
Claim #4. For every x ∈ C ∩ B(x0,ηr), every j > j0, and every h ∈

[h−x,j, h
−
x,j+1] ∪ [h+x,j+1, h

+
x,j] one has

1− C0ξ(rj) 6 ‖△γ(sx, h)‖ 6 1 ,

for some universal constant C0 > 0.
The second inequality simply follows from the fact that Lip γ 6 1. In order to

establish the first inequality we abbreviate x−j = γ(sx + h−x,j), y = γ(sx + h), and

x+j = γ(sx + h+x,j). We will also denote by Γp,q the portion of the curve Γx,j with
endpoints p, q ∈ Γx,j. We first show that there exists a universal η0 > 0 such that

η0|h| 6 ‖γ(sx + h)− γ(sx)‖ = ‖y − x‖ (33)

for every h ∈ [h−x,j, h
−
x,j+1] ∪ [h+x,j+1, h

+
x,j]. We note that for such h,

H
1(Γx,y) = |h| > ρx,j+1 >

ρx,j
1728

,

where we used the fact that γ is parametrized by arclength, inequalities (26) (ap-
plied to j+1) and (25). Now assume if possible that ‖x−y‖ < η0|h| for some small
η0 to be determined momentarily. We would then infer that

H
1(Γy,x+

j
) > ‖y − x+j ‖ > ρx,j − ‖x− y‖ > (1− 2η0)ρx,j ,

according to 3.2 and (26). In turn,

H
1(Γx,x+

j
) = H

1(Γx,y)+H
1(Γy,x+

j
) > ρx,j

(
1 +

1

1728
− 2η0

)
> ρx,j

(
1 +

1

1729

)

if η0 is small enough. Of course the same estimate holds with x−j in place of x+j .
Therefore,

2ρx,j

(
1 +

1

1729

)
6 H

1(Γx−

j
,x) + H

1(Γx,x+

j
)

= H
1(C ∩B(x, ρx,j))

6

(
(1 + η)2

1− η

)
2ρx,j ,

(34)
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according to Remark 5.6(B) applied with τ = η and r = ρx,j. One can choose η

small enough to yield a contradiction, thereby proving the validity of (33).
We next improve on (33) by showing that there exists a universal C0 > 0 such

that
|h|

1 + C0ξ(rj)
6 ‖γ(sx + h)− γ(sx)‖ = ‖y − x‖ . (35)

We define 0 6 η(h) by the the following first equation

‖y − x‖ =
|h|

1 + η(h)
=

H 1(Γx,y)

1 + η(h)

(the second equation ensues from the fact that γ is an arclength parametrization)
and we seek an upper bound for η(h). We define set S′ ⊆ B(x, ρx,j) by

S′ = Γx−

j
,x ∪ [[[x, y]]] ∪ Γy,x+

j
.

We notice that S′ is the image of a (possibly non injective) Lipschitz map [−1, 1] →
B(x, ρx,j) that sends −1 to x−j and +1 to x+j . It is now easy to check that

C′ = (C \B(x, ρx,j)) ∪ S′

is a competitor for C in B(x, ρx,j). Therefore

H
1(C ∩B(x, ρx,j)) 6 (1 + ξ(rj))H

1(C′ ∩B(x, ρx,j)) . (36)

Furthermore,

H
1(C′ ∩B(x, ρx,j)) 6 H

1(Γx−

j
,x) + ‖x− y‖+ H

1(Γx,x+

j
) . (37)

Since also

H
1(C ∩B(x, ρx,j)) = H

1(Γx,j) = H
1(Γx−

j
,x) + H

1(Γx,y) + H
1(Γx,x+

j
) ,

it follows from the definition of η(h) that

H
1(C ∩B(x, ρx,j))− H

1(C′ ∩B(x, ρx,j)) = H
1(Γx,y)− ‖x− y‖

> η(h)‖y − x‖ > η(h)η0|h| > η(h)η0|h±x,j+1| > η(h)η0ρx,j+1

according to (33) and (26) (applied to j + 1). Plugging this into (36) we obtain

η(h)η0ρx,j+1 6 ξ(rj)H
1(C′ ∩B(x, ρx,j) .

Finally, we notice that (37) and (34) imply that H 1(C′ ∩ B(x, ρx,j)) 6 H 1(C ∩
B(x, ρx,j)) 6 3ρx,j (if η is small enough). Thus,

η(h) 6 3
ρx,j
ρx,j+1

1

η0
ξ(rj) ,

which proves (35) in view of (25). �

Claim #5. Let x ∈ C ∩ B(x0,ηr) and j > j0. If h−x,j 6 h 6 h−x,j+1 then

tx,h,j < 0 and if h+x,j+1 6 h 6 h+x,j then tx,h,j > 0.

We prove it in case h+x,j+1 6 h 6 h+x,j, the other case is analogous. We infer

from (28) that

‖γ(sx + h+x,j)− γ(sx + h)− (t+x,j − tx,h,j)wx,j‖ 6 2ε(rj)ρx,j ,

and in turn from (26) (applied to both j and j + 1) that

|t+x,j − tx,h,j| 6 ‖γ(sx + h+x,j)− γ(sx + h)‖ + 2ε(rj)ρx,j

6 h+x,j − h+ 2ε(rj)ρx,j

6 h+x,j − h+x,j+1 + 2ε(rj)ρx,j

6 (1 + 2ε(rj))ρx,j − ρx,j+1 + 2ε(rj)ρx,j .
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Assuming if possible that tx,h 6 0 we would infer from (29) that

ρx,j(1 − ε(rj)) + |tx,h,j| 6 t+x,j + |tx,h,j| = |t+x,j − tx,h,j| .
Thus,

|tx,h,j| 6 5ε(rj)ρx,j − ρx,j+1 6 (5.1728 ε(rj)− 1)ρx,j+1 6 (5.16.1728η− 1)ρx,j+1 .

Since the right member of the inequality is negative if η is chosen small enough, we
obtain the sought for contradiction. �

We are now ready to finish off the proof of the theorem. We start by fixing
x ∈ B(x0,ηr0) and we will show that γ is differentiable at sx. To this end we fix
first j > j0 and h ∈ [h−x,j, h

−
x,j+1]∪ [h+x,j+1, h

+
x,j]. Dividing (28) by |h|, and referring

to (26) and (25), we obtain
∣∣∣∣‖△γ(sx, h)‖ −

∣∣∣∣
tx,h,j
h

∣∣∣∣
∣∣∣∣

6

∥∥∥∥△γ(sx, h)−
tx,h,j
h

wx,j

∥∥∥∥ 6 ε(rj)
ρx,j
|h| 6 ε(rj)

ρx,j

|h±x,j+1|
6 ε(rj)

ρx,j
ρx,j+1

6 1728 ε(rj) . (38)

We notice that tx,h,j/h and t+x,j/h
+
x,j are both positive according to Claims #3

and #5. It therefore follows from Claim #4 that
∣∣∣∣∣
tx,h,j
h

−
t+x,j

h+x,j

∣∣∣∣∣ 6
∣∣∣∣
∣∣∣∣
tx,h,j
h

∣∣∣∣− ‖△γ(sx, h)‖
∣∣∣∣+
∣∣‖△γ(sx, h)‖ − ‖△γ(sx, h

+
x,j)‖

∣∣

+

∣∣∣∣∣‖△γ(sx, h
+
x,j)‖ −

∣∣∣∣∣
t+x,j

h+x,j

∣∣∣∣∣

∣∣∣∣∣
6 2.1728 ε(rj) + C0ξ(rj)

= C′
0ε(rj)

for some universal constant C′
0 > 0. In view of (38) we thus obtain

‖△γ(sx, h
+
x,j)−△γ(sx, h)‖ 6

∥∥∥∥∥△γ(sx, h
+
x,j)−

t+x,j

h+x,j
wx,j

∥∥∥∥∥

+

∥∥∥∥∥

(
t+x,j

h+x,j
− tx,h,j

h

)
wx,j

∥∥∥∥∥+
∥∥∥∥
tx,h,j
h

wx,j −△γ(sx, h)

∥∥∥∥

6 2.1728 ε(rj) + C′
0ε(rj)

= C′′
0 ε(rj) .

(39)

Applying temporarily this inequality to h = h+x,j+1 we see that

‖△γ(sx, h
+
x,j+1)−△γ(sx, h

+
x,j)‖ 6 C′′

0 ε(rj) .

Thus for any k > j0 and any l > 1 we have

‖△γ(sx, h
+
x,k+l)−△γ(sx, h

+
x,k)‖ 6

k+l−1∑

j=k

‖△γ(sx, h
+
x,j+1)−△γ(sx, x

+
x,j)‖

6 (16.72/71)C′′
0ω(rk−1) =: C′′′

0 ω(rk−1). (40)

according to 2.9. Therefore {△γ(sx, h
+
x,j)}j is a Cauchy sequence, whence also

convergent, and we denote its limit by γ′(sx). In order to verify that γ′(sx) is
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the derivative of γ at sx we combine (39) with (40) in which we let l → ∞: If
h ∈ [h−x,j, h

−
x,j+1] ∪ [h+x,j+1, h

+
x,j] then

‖γ′(sx)−△γ(sx, h)‖ 6 ‖γ′(sx)−△γ(sx, h
+
x,j)‖+ ‖△γ(sx, h

+
x,j)−△γ(sx, h)‖

6 C′′
0 ε(rj) + C′′′

0 ω(rj−1)

6 2C′′′
0 ω(rj−1)

= Civ
0 ω(rj−1).

(41)

We notice that (24), (25) and (26) imply that rj−1 6 144.1728 |h|. Thus (41) finally
yields

‖γ′(sx)−△γ(sx, h)‖ 6 Cv
0ω(C

v
0 |h|) ,

thereby establishing the differentiability of γ at h.
Finally, if x1, x2 ∈ C ∩ B(x0,ηr0) we let s1 = sx1

and s2 = sx2
and h =

H 1(Γx1,x2
) = |s1 − s2| (since γ is parametrized by arclength). Upon noticing that

△γ(s1, h) = △γ(s2,−h) we infer from the above inequality that

‖γ′(s1)− γ′(s2)‖ 6 ‖γ′(s1)−△γ(s1, h)‖+ ‖△γ(s2,−h)− γ′(s2)‖
6 2Cv

0ω(C
v
0 |h|) 6 Cω(C|s1 − s2|)

for some universal constant C > 0, and the proof of the theorem is complete. �

6. Application to the quasihyperbolic distance

6.1 (Local hypotheses about the ambient Banach space). — In 6.2 X is an arbi-
trary Banach space, in 6.3 X is a reflexive Banach space, and in 6.4 X is uniformly
rotund and δ−1

X is Dini.

6.2 (The quasihyperbolic distance). — In this section we assume D ⊆ X is a
nonempty open subset with the following property: For any pair x, y ∈ D there
exists a curve Γ ⊆ D with endpoints x and y, and H 1(Γ) < ∞. We now proceed
to define on D a new metric dq, so-called the quasihyperbolic distance of D. We
start by abbreviating

h : D → R : x 7→ dist(x,X \D) .

Since D is open and bounded we notice that 0 < h(x) < ∞, x ∈ D. It is also
helpful to note, for further purposes, that 1/h is locally Lipschitzian. In fact, if
η > 0 and Dη := D ∩ {x : h(x) > η} then Lip(1/h) ↾Dη

6 η−2, as follows from
∣∣∣∣

1

h(x)
− 1

h(y)

∣∣∣∣ =
∣∣∣∣
h(y)− h(x)

h(y)h(x)

∣∣∣∣ 6
|h(y)− h(x)|

η2
6

‖y − x‖
η2

,

x, y ∈ Dη. For x0, y0 ∈ D we now define

dq(x0, y0) = inf

{∫

Γ

1

h
dH 1 : Γ ⊆ D is a curve of finite length

with endpoints x0 and y0

}
.

It is obvious that for each given competitor Γ one has 1/h ∈ L1(X,H
1 Γ); in

particular dq(x0, y0) <∞. There are two points to this section:

(A) The infimum in the definition of dq(x0, y0) is achieved by some curve Γ
provided X is a separable reflexive Banach space and D is convex;

(B) If Γ is a curve that achieves the infimum in the definition of dq(x0, y0) then

Γ \ {x0, y0} is a C1 open curve provided X is uniformly rotund and δ−1
X is

Dini.
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In case X = ℓn2 is a finite dimensional Euclidean space, both results have been
obtained by G. Martin [12]. J. Väisälä proves the existence part (A), [16], and
obtains the regularity part in case X = ℓ2 is Hilbert, [17]. It should be noted that
our method shows a quasihyperbolic geodesic in ℓ2 is C1,1/2 in the interior, when in
fact the stronger C1,1 regularity entails from its quasihyperbolic property, see [17].

6.3 (Existence of quasihyperbolic geodesics). — We assume X is reflexive. As
mentioned before, the existence part (A) above was proved by J. Väisälä. We now
briefly comment on the proof. In order that 3.4 apply to a minimizing sequence
{Γn}, we ought to show that

(1) the weight w : X → (0,+∞] defined by w(x) = 1/h(x) if x ∈ D and
w(x) = +∞ otherwise, is weakly* lower semicontinuous, i.e. weakly lower
semicontinuous since X is reflexive;

(2) there exists R > 0 such that Γn ⊆ B(x0, R) for every n.

The Hahn-Banach Theorem implies that closD = ∩E where E is the collec-
tion of translates z + E0 of closed half spaces E0 ⊆ X such that D ⊆ z + E0.
Therefore h(x) = inf{dist(x,E) : E ∈ E }, and establishing (1) boils down to
showing that each ψE : x 7→ dist(x,E) is weakly upper semicontinuous. In fact,
as H = bdryE is a hyperplane, there exists a linear form x∗ : X → R such
that dist(x, bdryE) = |〈x, x∗〉|. Since this function of x is Lipschitzian, one has
x∗ ∈ X∗, and the weak continuity of ψE now readily follows. To establish (2) we
assume that M := supn

∫
Γn
w dH 1 < ∞, and we write Ln := H 1(Γn). Consid-

ering an arclength parametrization γn : [0, Ln] → X of Γn with γn(0) = x0, we
estimate
∫

Γn

w dH 1 =

∫ Ln

0

1

h(γn(t))
dt >

∫ Ln

0

1

h(x0) + ‖γn(t)− γn(0)‖
dt

>

∫ Ln

0

1

h(x0) + t
dt = log

(
1 +

Ln

h(x0)

)
.

Whence Ln 6 h(x0)e
M . Since ‖x− x0‖ 6 Ln for every x ∈ Γn, item (2) is proved.

See [16] for details.
We now apply 3.3 and 3.4 to obtain a connected compact set C ⊆ closD and a

(not relabeled) subsequence still denoted {Γn}, such that dist∗H (Γn, C) → 0 and∫
C w dH

1 6 dq(x0, y0). Recall 2.8 that C contains a curve Γ with endpoints x0
and y0; thus

∫
Γ
w dH 1 6 dq(x0, y0). It remains to establish that Γ ∩ bdryD = ∅.

For each 0 < 2η < min{h(x0), h(y0)} we note that if Γ ∩ (D \ Dη) 6= ∅ then
H 1(Γ∩(Dη \D2η)) > η and therefore

∫
Γ∩(Dη\D2η)

w dH 1 > 1
2 . As

∫
Γ
w dH 1 <∞,

Γ can therefore meet at most finitely many annuli D2−j \D2−j+1 .

6.4 (Regularity of quasihyperbolic geodesics). — We assumeX is uniformly rotund
and δ−1

X is Dini. Letting Γ be a quasihyperbolic geodesic with endpoints x0 and y0,
we recall from the argument above that Γ ⊆ U = Dη for some η > 0, and also that
Lipw ↾Dη

6 η−2. It follows from 3.8 that 5.5 will apply with ξ(r) 6 Cr at points

x ∈ Γ such that Θ1(H 1 Γ, x) = 1. This is the case of each x ∈ Γ̊, according to
3.9. Thus Γ is, near x, a C1,ω curve where ω is the mean slope of δ−1

X ◦ ξ. Since

ξ(r) 6 Cr, ω is asymptotic to the mean slope of δ−1
X . See also 5.6(D).

7. Differentiability of almost minimizing curves in 2 dimensional

rotund spaces

7.1 (Local hypotheses about the ambient Banach space). — In this section X is 2
dimensional and (uniformly) rotund. We also assume that its norm x 7→ ‖x‖ is C2

smooth on X \ {0}. We let SX = X ∩ {v : ‖v‖ = 1} be the unit circle.
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7.2 (Local modulus of rotundity). — Here we localize (in direction) the definition
of modulus of uniform rotundity of X . Specifically, for v ∈ SX and 0 < ε 6 1, we
define

δX(v; ε) = inf

{
1−

∥∥∥∥
v + (v + h)

2

∥∥∥∥ : h ∈ X, ‖v + h‖ 6 1 and ‖h‖ > ε

}
.

Our first aim is to show that the rotundity and C2 smoothness of the norm imply
δX(v; ε) has the best possible behavior (i.e. is asymptotic to ε2) except possibly for
a closed nowhere dense set of directions v.

7.3. Theorem. — There exists G ⊆ SX with the following properties.

(A) SX \G is closed and has empty interior in SX ;
(B) For every v0 ∈ G there exists ρ > 0 and C > 0 such that for each v ∈ SX ,

if ‖v − v0‖ < ρ then δ−1
X (v; ε) 6 C

√
ε for every 0 < ε 6 1.

Proof. We denote the norm of X as f : X → R : v 7→ ‖v‖. Given v ∈ SX we choose
a unit vector ev ∈ X that generates the tangent line TvSX . Thus v, ev is a basis ofX
and we denote as v∗, e∗v the corresponding dual basis (i.e. x = 〈x, v∗〉v + 〈x, e∗v〉ev
for each x ∈ X). We observe that Df(v) = v∗ and that D2f(v) is a positive
semidefinite bilinear form on X (owing to the convexity of f),

‖v + h‖ = 1 + 〈h, v∗〉+ 1

2
D2f(v)(h, h) + o(‖h‖2) (42)

whenever h ∈ X , where o(‖h‖2) is little o of ‖h‖2 uniformly in v.
Upon noticing that the function

SX → R : v 7→ D2f(v)(ev, ev)

is continuous, we immediately infer that

G = SX ∩ {v : D2f(v)(ev, ev) > 0}
is an open subset of SX and that

B := SX \G = SX ∩ {v : D2f(v)(ev, ev) = 0} .
Assume if possible that B contains a nonempty open interval V ⊆ SX . For each
v ∈ V one has D2f(v)(ev, ev) = 0 and D2f(v)(v, v) = 0 (because the norm f is
homogeneous of degree 1). Since D2f(v) is also symmetric, this clearly implies that
D2f(v) = 0. The same argument applied to points of r.V , r > 0, shows that D2f
vanishes identically in the open connected cone C = X ∩ {rv : r > 0 and v ∈ V }.
Therefore f ↾C is the restriction to C of a linear function l : X → R, which in turn
shows that V = C ∩ {l = 1} is a line segment, in contradiction with the rotundity
of f . This proves (A)

We now turn to proving (B). Let V ⊆ G be an open interval containing v0. With
v ∈ V we associate a(v) = 1

2D
2f(v)(ev, ev), so that a(v) > 0. Since v 7→ a(v) is

continuous, there is no restriction to assume that V is small enough for a(v) > a > 0
uniformly in v ∈ V . If t ∈ R then (42) implies

‖v + tev‖ = 1 + 〈tev, v∗〉+
1

2
D2f(v)(tev, tev) + o(t2) = 1 + a(v)t2 + o(t2) .

We let ht ∈ X be so that v + ht ∈ SX ,

v + ht =
v + tev

‖v + tev‖
,

and we define εt = ‖ht‖. Since

ht =

(
t

1 + a(v)t2 + o(t2)

)
ev −

(
a(v)t2 + o(t2)

1 + a(v)t2 + o(t2)

)
v (43)
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we readily verify that

lim
t→0

εt
t
= 1 uniformly in v ∈ V . (44)

Furthermore, (42) shows that∥∥∥∥v +
ht
2

∥∥∥∥ = 1 +
1

2
〈ht, v∗〉+

1

4

(
1

2
D2f(v)(ht, ht)

)
+ o(t2) , (45)

and it follows from (43) that

〈ht, v∗〉 =
t

1 + a(v)t2 + o(t2)
〈ev, v∗〉 −

a(v)t2 + o(t2)

1 + a(v)t2 + o(t2)
〈v, v∗〉

= − a(v)t2 + o(t2)

1 + a(v)t2 + o(t2)

= −a(v)t2 + o(t2) ,

as well as

1

2
D2f(v)(ht, ht) =

t2

(1 + a(v)t2 + o(t2))2

(
1

2
D2f(v)(ev, ev)

)

+

(
a(v)t2 + o(t2)

1 + a(v)t2 + o(t2)

)2(
1

2
D2f(v)(v, v)

)

− 2

(
t(a(v)t2 + o(t2))

(1 + a(v)t2 + o(t2))2

)(
1

2
D2f(v)(v, ev)

)

=
a(v)t2

(1 + a(v)t2 + o(t2))2
+O(t3)

= a(v)t2 + o(t2) .

Plugging these into (45) yields

1−
∥∥∥∥v +

ht
2

∥∥∥∥ =
a(v)

4
t2 + o(t2) .

In view of (44) this means that one can find ε0 > 0 such that

1−
∥∥∥∥v +

ht
2

∥∥∥∥ >
a(v)

5
‖ht‖2 ∀‖ht‖ 6 ε0 . (46)

Taking if necessary a smaller ε0, we can also assume that any h ∈ X satisfying both
v + h ∈ SX and ‖h‖ 6 ε0 is of the form ht for some t.

We let now ε > 0 be given and consider an arbitrary v + h ∈ SX with ‖h‖ > ε.
We distinguish two cases. Firstly if ‖h‖ 6 ε0 then (46) says

1−
∥∥∥∥v +

h

2

∥∥∥∥ >
a(v)

5
ε2 .

Secondly if ‖h‖ > ε0 then

1−
∥∥∥∥v +

h

2

∥∥∥∥ >Mε2,

where M is defined by

M := min

{
1−

∥∥v + h
2

∥∥
‖h‖2 : {v, v + h} ∈ SX and ‖h‖ > ε0

}
,

which is positive due to the uniform rotundity of the norm. We just have proved,
owing also to Remark 2.11, that

δX(v; ε) > C0ε
2 ∀v ∈ V,

with C0 = min(M, a5 ) and Conclusion (B) now easily follows. �
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7.4 (Excess of length of a nonstraight path). — Here we notice that 5.2 can be im-
proved in the following way. In case x0, x1 and z are the vertices of a nondegenerate
triangle in X , one has

‖x0 − z‖+ ‖z − x1‖ > ‖x0 − x1‖
(
1 + δX

(
v;

dist(z, x0 + span{x1 − x0})
2(‖x0 − z‖+ ‖z − x1‖)

))
.

where

v =
x1 − x0
‖x1 − x0‖

.

The proof is exactly the same as that of 5.2 once one recognizes that δX(ε) can be
replaced by δX(v; ε) in (14).

7.5 (Height bound). — Under our assumptions on X , the height bound 5.3(G)
can be improved to

dist(z, x+ L) 6 16.δ−1
X (v; ξ(r))

where v = (x1 − x0)‖x1 − x0‖−1. Here δ−1
X (v; ξ(r)) denotes the value at ξ(r) of the

reciprocal of the function δX(v; ·). The proof, based on 7.4, is identical.

7.6 (Tangent lines). — We now indicate how to apply the previous “localized”
observations to the study of regularity of almost minimizing curves, using the notion
of tangent measure. We point out that everything we do in this number makes sense
in a finite dimensional rotund Banach space. We will often refer to [6] and [15], but
only to elementary results in these papers, in particular those that do not depend
on the Euclidean structure of the ambient space Rn considered there.

Given C ⊆ X a set which is (ξ, r0) almost minimizing in U ⊆ X with respect to a
Dini gauge ξ, we consider the finite Borel measure µ = H 1 C in U . Given x ∈ U
and r > 0 we next consider the finite Borel measure r−1(Tx,r)∗µ on (U−x)/r, where
Tx,r(y) = (y− x)/r. A 1 dimensional tangent measure of µ at x is, by definition, a

weak* limit of some sequence {r−1
j (Tx,rj)∗µ}, where rj ↓ 0. The collection of those

is denoted Tan(1)(µ, x). We gather useful information about tangent measures.

(A) If x ∈ C ∩ U then Tan(1)(µ, x) 6= ∅;
(B) If x ∈ C ∩U , Θ1(H 1 C, x) = 1, and ν ∈ Tan(1)(µ, x), then ν = H 1 W

for some line W ∈ G(X, 1);
(C) If x ∈ C ∩U and Θ1(H 1 C, x) = 1, recall 4.11 that x is a regular point of

C: If γ is an arclength parametrization of some C ∩B(x, r) with γ(0) = x,

then γ is differentiable at 0 if and only if Tan(1)(µ, x) is singletonic;
(D) If x ∈ C ∩ U , Θ1(H 1 C, x) = 1, then the collection of tangent lines

G(X, 1) ∩ {W : H 1 W ∈ Tan(1)(µ, x)} is connected.

Proof of (A). The proof of (A) depends on our assumption dimX < ∞ through
the application of a compactness Theorem for Radon measures, see e.g. [6, Propo-
sition 5.4]. The relevant almost monotonicity property of µ is in 4.7. �

Proof of (B). Let rj ↓ 0 be such that ν is the weak* limit of the sequence {µj} where
µj = r−1

j (Tx,rj)∗µ. Abbreviate Cj = (C − x)/rj . Using the translation invariance,
and behavior under homothethy, of the Hausdorff measure, one immediately checks
that Cj is (ξj , r0/rj) almost minimizing in Ux,rj = (U−x)/rj , where ξj(t) = ξ(trj),

and that µj = H 1 Cj . In the vocabulary of [6], each µj is 1 concentrated,
according to 4.6(C). Notice that 4.7 does not show µj is (ξj , 1) almost monotone in
the sense of [6] (because the condition is verified only at those points of the support
of µj , not all points of Ux,rj): We will emphasize this by saying that µj is (ξj , 1)
almost monotone on its support. Carefully reading the proofs of [6, 4.2 and 4.1]
reveals that
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(1) For every λ > 0 and every δ > 0 there exists j0 such that Cj ∩ B(0, λ) ⊆
B(supp ν, δ) for every j > j0;

(2) Θ1(ν, z) > 1 for every z ∈ supp ν.

We put Z = supp ν, Zλ = Z ∩B(0, λ) and Fλ = Zλ ∩ bdryB(0, λ) for each λ > 0.
Select a subsequence {jk} satisfying

∑
k 2

kξ(2krjk) < 1/6. By the assumption on
the density and 4.4 (D), we may assume that

H 1(Cjk ∩B(0, 2k))

2k+1
− 1 <

1

6
,

and that cardCjk ∩ bdryB(0, 2k) > 2 for every k > 1. Setting

Gk := {λ ∈ [0, 2k] : cardCjk ∩ bdryB(0, λ) > 3} ,
we infer from 2.7 that L 1(Gk) < 2k/3 . Then we can find for each integer k > 1 a
radius λk ∈ (2k+1/3, 2k) such that cardCjk∩bdryB(0, λk) = 2. Writing {x1k, x2k} :=
Cjk ∩bdryB(0, λk), the set C′

jk
:= (Cjk \B(0, λk))∪ [0, x1k]∪ [0, x2k] is a competitor

for Cjk . From the almost minimality of Cjk we infer that

H
1(Cjk ∩B(0, λk)) 6 2λk(1 + ξ(λkrjk )) 6 2k+1 + 2k+1ξ(2krjk) .

Setting Hk := Gk ∩ [0, λk], we deduce from 2.7 that L 1(Hk) 6 2k+1ξ(2krjk).
ThereforeL 1(H) < 1/3 whereH := ∪kHk. Consequently, for each integer k ≥ 1 we
can find a radius Rk ∈ (λk−1/3, λk)\G. We shall keep in mind that Rk ∈ (2k−1, 2k)
by construction.

Let us now fix an arbitrary integer k > 1. The way we have selected the radius Rk

ensures that cardCjh ∩bdryB(0, Rk) = 2 for every h > k. We write {y1k,h, y2k,h} :=

Cjh ∩ bdryB(0, Rk). Noticing that the set C′′
jh

:= (Cjh \ B(0, Rk)) ∪ [y1k,h, y
2
k,h] is

a competitor for Cjh , the almost minimality of Cjh yields

H
1(Cjh ∩B(0, Rk)) 6 (1 + ξ(Rkrjh))‖y1k,h − y2k,h‖ .

On the other hand, limh H 1(Cjh∩B(0, Rk)) = 2Rk = diamB(0, Rk) by the density
assumption. By the inequality above, it then follows that limh ‖y1k,h− y2k,h‖ = 2Rk.

Referring to (1), we now choose a sequence δh ↓ 0 such that for every h > k
there exist z1k,h, z

2
k,h ∈ B(0, Rk + δh) with ‖yik,h − zik,h‖ 6 δh, i = 1, 2. Taking a

subsequence if necessary, zik,h → zik as h → ∞, zik ∈ FRk
, and ‖z1k − z2k‖ = 2Rk.

According to 5.2, the rotundity of the norm implies that the line segment [z1k, z
2
k]

is a diameter of B(0, Rk), i.e. 0 ∈ [z1k, z
2
k]. We claim that [z1k, z

2
k] ⊆ ZRk

. To prove
the claim, we first notice that Cjh ∩B(0, Rk) contains a curve Γh whose endpoints
are {y1k,h, y2k,h}, see 4.4 (E). By the Blashke Selection Principle, up to a further
subsequence, Γh → K∗ in the Hausdorff distance for some compact connected
set K∗ ⊆ B(0, Rk) containing z1k and z2k. In particular H 1(K∗) > ‖z1k − z2k‖ =
2Rk. On the other hand, by lower semicontinuity of H 1 with respect to Hausdorff
convergence, we have

H
1(K∗) 6 lim inf

h→∞
H

1(Γh) 6 lim
h→∞

H
1(Cjh ∩B(0, Rk)) = 2Rk .

Hence H 1(K∗) = 2Rk, and the rotundity of the norm yields K∗ = [z1k, z
2
k]. In view

of (1), we have thus proved the claim. It now follows from (2) and [8, 2.10.19(3)]
that ν B(0, Rk) > H 1 [z1k, z

2
k]. Finally, the monotonicity stated in 4.7 and

the density assumption classicaly implies that ν(B(0, λ)) = 2λ for every λ > 0.
Therefore ν(B(0, Rk)) = H 1([z1k, z

2
k]), whence ν B(0, Rk) = H 1 [z1k, z

2
k]. From

the arbitrariness of k we conclude that Z is a line through the origin and ν =
H 1 Z, which completes the proof of (B).

�
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We leave the easy proof of (C) to the reader. It relies on the local convergence
of Cj to Z in Hausdorff distance, as was already used in the proof of (B).

Conclusion (D) is our principal tool in this section. It is a consequence of [15,
Theorem 2.6] as we now explain.

Proof of (D). Let us recall that a tangent measure of µ at the point x in the sense
of [15] is a weak* limit of some sequence {cj(Tx,rj)∗µ}, where rj ↓ 0 and cj > 0.
Following the notations of [15], we write Tan(µ, x) the collection of all tangent
measures of µ at x. The set Tan(µ, x) is endowed with the topology induced by the
metric

D(ν1, ν2) :=
∑

p∈N

2−p min(1, Fp(ν1, ν2)) ,

where

Fp(ν1, ν2) := sup

{∣∣∣∣
∫

Rn

f dν1 −
∫

Rn

f dν2

∣∣∣∣ : supp f ⊆ B(0, p) , f > 0 , Lip(f) 6 1

}

(recall that the weak* convergence of Radon measures coincides with the conver-
gence with respect to D). Now we observe that 3.2 together with 4.7 shows that
for r > 0 small enough,

κ−1r 6
µ(B(x, r))

r
6 κr ,

for some constant κ > 0. It implies that Tan(µ, x) = {cν : c > 0 , ν ∈ Tan(1)(µ, x)}.
In turn, we infer from (B) that Tan(µ, x) = {cH 1 W : c > 0 , W ∈ G(X, 1)}.
According to [15, Theorem 2.6], we can conclude that Tan(µ, x) is connected. It is
now elementary to check that the map ν = cH 1 W ∈ Tan(µ, x) 7→ W ∈ G(X, 1)
is continuous, and (D) follows. �

7.7. Theorem (Differentiable regularity). — We recall our general assumption
for this section that X is a 2 dimensional rotund Banach space. Assume that

(A) C ⊆ X is compact, connected, U ⊆ X is open, x0 ∈ C ∩ U , r0 > 0,
B(x0, r0) ⊆ U ;

(B) ξ is a gauge and
√
ξ is Dini;

(C) C is (ξ, r0) almost minimizing in U ;
(D) Θ1(H 1 C, x0) = 1.

It follows that there exists r > 0 such that C ∩B(x0, r) is a differentiable curve.

Proof. We explain how to modify the proof of 5.5. Since x0 is a regular point of C,
recall 4.10, we may assume (letting r0 be smaller if necessary) each x ∈ C∩B(x0, r0)
is regular as well, and C ∩B(x, r0) is a Lipschitz curve, according to 4.11. In order
to establish the differentiability of a corresponding arclength parametrization, it

suffices to show Tan(1)(µ, x0) contains excatly one element, according to 7.6(C).
We let G be the set associated with the norm of X in 7.3. Abbreviate Tan(C, x0) =

SX ∩ {v : H 1 span{v} ∈ Tan(1)(H 1 C, x0)}. We will consider the following
alternative: Either Tan(C, x0) ∩ G = ∅, or Tan(C, x0) ∩ G 6= ∅. In the first case,
the connectedness property stated in 7.6(D) and the fact that SX \ G has empty
interior imply easily that Tan(C, x0) is a singleton and the proof is complete. In
the second case we pick span{v0} = W0 ∈ G(X, 1) such that v0 ∈ G, H 1 W0 is
a tangent measure to H 1 C at x0, and we choose η > 0 so that if v ∈ SX and
‖v − v0‖ < η then v ∈ G. The proof of 5.5 remains unchanged until the end of
the proof of Claim #2. The application of 5.3 is replaced by an application of 7.5
together with 7.3(B). To each r > 0 such that (x0, r) is a good pair we associate
the unit vector vr generating the line that joins the endpoints of Γx0,r. We may
choose r1 > 0 small so that ‖vr1 − v0‖ < η/2. We proceed through the remaining
part of the proof of 5.5 until near (39). In our new notations, this shows that
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‖vrj+1
− vrj‖ 6 C

√
ξ(rj). However for the computations to be valid, one must

make sure at each stage of the iteration that the unit vectors vrj still belong to G,
in fact we ought to guarantee that ‖vrj −v0‖ < η in order that 7.3(B) applies. This

of course can be enforced by choosing r1 so small that C
∑∞

j=1

√
rj < η/2. �
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7. Robert Deville, Gilles Godefroy, and Václav Zizler, Smoothness and renormings in Banach

spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 64, Longman
Scientific & Technical, Harlow, 1993. MR 1211634 (94d:46012)

8. Herbert Federer, Geometric Measure Theory, Die grundlehren der mathematischen wis-
senschaften, vol. 153, Springer-Verlag, New York, 1969.

9. Mikhael Gromov, Filling Riemannian manifolds, J. Differential Geom. 18 (1983), no. 1, 1–
147. MR 697984 (85h:53029)

10. Bernd Kirchheim, Rectifiable metric spaces: local structure and regularity of the Hausdorff
measure, Proc. Amer. Math. Soc. 121 (1994), no. 1, 113–123.

11. Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. II. Function spaces, Ergeb-
nisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas],
vol. 97, Springer-Verlag, Berlin, 1979, Function spaces. MR 540367 (81c:46001)

12. Gaven J. Martin, Quasiconformal and bi-Lipschitz homeomorphisms, uniform domains and
the quasihyperbolic metric, Trans. Amer. Math. Soc. 292 (1985), no. 1, 169–191. MR 805959
(87a:30037)

13. Thomas Meinguet, (M, crγ , δ)-minimizing curve regularity, Bull. Belg. Math. Soc. Simon
Stevin 16 (2009), no. 4, 577–591. MR 2583547 (2011a:49093)

14. F. Morgan, (M, ε, δ)-minimal curve regularity, Proc. Amer. Math. Soc. 120 (1994), 677–686.
15. D. Preiss, Geometry of measures in Rn: Distribution, rectifiability, and densities, Ann. of

Math. (2) 125 (1987), 537–643.
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