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Abstract. In a recent paper [16] we studied asymmetric metric spaces; in
this context we studied the length of paths, introduced the class of run-
continuous paths; we noted that there are different definitions of “length
space” (also known as “path-metric space” or “intrinsic space”). In this
paper we continue the analysis of asymmetric metric spaces. We propose
possible definitions of completeness and (local) compactness. We define the
geodesics using as admissible paths the class of run-continuous paths. We
define midpoints, convexity, and quasi–midpoints, but without assuming that
the space be intrinsic. We distinguish all along those results that need a stronger
separation hypothesis. Eventually we discuss how the newly developed theory
impacts the most important results, such as the existence of geodesics, and the
renowned Hopf–Rinow (or Cohn-Vossen) theorem.

1. Introduction

We here continue the analysis of asymmetric metric spaces in the setting that was
proposed in [16]. To keep this paper as self contained as possible we will summarize
the main definitions of [16] in Section 2. We now nonetheless start with a few
definitions and an informal discussion.

Let M be a non empty set.

Definition 1.1. b : M ×M → [0,∞] is an asymmetric distance if
• b ≥ 0 and ∀x ∈M, b(x, x) = 0 ;
• ∀x, y ∈M , b(x, y) = b(y, x) = 0 implies x = y ,
• ∀x, y, z ∈M , b(x, z) ≤ b(x, y) + b(y, z) .

The second condition implies that the associated topology (that is defined in
Sec. 2) is T2, so we will call it separation hypothesis. The third condition is usually
called the triangle inequality. If the second condition does not hold, then b is an
asymmetric semidistance. (A semidistance is also called a “pseudometric”.)

We call the pair (M, b) an asymmetric metric space.
The setting presented here and in [16] is similar to the approach of Busemann, see

e.g. [4, 5, 6]; it is also similar to the metric part of Finsler Geometry, as presented
in [2]. Differences were discussed in the appendix of [16], and are further highlighted
in the appendix A.2 of this paper.

A different point of view is found in the theory of quasi metrics (or ostensible
metrics); the main difference is that in this presentation there is only one topology as-
sociated to the space; whereas a quasi-metric is associated to three different topologies.
This brings forth many different and non-equivalent definitions of “completeness”
and “compactness”. We will compare the two fields in the appendix A.4.

In [16] we introduced three different classes of paths taking values in M ; this
produced three different definitions of “intrinsic space”. The larger class is the class
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Cr of “run-continuous paths”, that are paths ξ : [a, c]→M such that the length

Lenb
(
ξ|[a,t]

)
of the path ξ restricted to [a, t] is a continuous function of t. (Lenb is the length
computed using the total variation formula, see eqn. (2.2)). We then presented in
[16] some results regarding length structures and induced distances; those results
show that this class Cr seems more natural in the asymmetric case than the usual
class Cg of continuous paths.

We state a stronger version of the second condition in 1.1:
∀x, y ∈M, b(x, y) = 0 =⇒ x = y ; (1.1)

note that this is the “separation hypothesis” used by Busemann in [4, 6] and
Zaustinsky [19], and in [15]. We will call strongly separated an asymmetric
metric space (M, b) for which (1.1) holds. We will see all along this paper that using
the weaker or respectively the stronger separation hypothesis has many effects on
the theory; whereas the stronger separation hypothesis was unneeded for the results
in [16].

In this paper we will continue the analysis of asymmetric metric spaces. We
will propose possible definitions of completeness and (local) compactness. We will
define the geodesics using as admissible paths the class of run-continuous paths. We
will define midpoints, convexity, and quasi–midpoints. Eventually we will discuss
some classical topics, such as the existence of geodesics, and the Hopf–Rinow (or
Cohn-Vossen) theorem.

1.1. Hopf–Rinow like theorem. In what follows we will use the notations and
definitions that are used in the books by Gromov [11], or by Burago & Burago
& Ivanov [3]. 1 Consider a symmetric metric space (M,d): we can define the
length Lend γ of a continuous path γ using the total variation formula (again, see
eqn. (2.2)); then we can define a new metric dg(x, y) as the infimum of Lend(γ) in
the class of all continuous paths connecting x to y. When d = dg Gromov defines
that the space is “path-metric”, or “intrinsic”; whereas [3] calls such a space a
“length space”.

In §2.5.3 in [3] we can then find this result (a smaller version is in §1.11 §1.12 in
[11]).

Theorem 1.2 (symmetric Hopf–Rinow or Cohn-Vossen theorem). Suppose that
(M,d) is path-metric and locally compact; then the following facts are equivalent.

(1) (M,d) is complete;
(2) closed bounded sets are compact;
(3) every geodesic γ : [0, 1) → M can be extended to a continuous path γ :

[0, 1]→M .

The above is the metric counterpart of the theorem of Hopf–Rinow in Riemannian
Geometry: indeed, if (M, g) is a finite-dimensional Riemannian manifold, and d is
the associated distance, then (M,d) is path-metric and locally compact.

Since there is a Hopf–Rinow theorem in Finsler Geometry, we would expect that
there would be a corresponding theorem for “asymmetric metric spaces”. Indeed
Busemann proved such a result in its theory of “General Metric Spaces” (see e.g.
Chap. 1 in [6]) for the case of intrinsic and locally compact spaces. (Note that in

1Note that the authors of [11] and [3] were not the first to discover this kind of result; but the
axioms and definition used in previous works such as [6, 5] were different from what we use here.
Note also that a first form of theorem 1.2 is due to Cohn-Vossen [7], according to the introduction
of Busemann’s [6].
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“General Metric Spaces” there is only one notion of “intrinsic”, as in the symmetric
case).

In the following sections we will state “asymmetric definitions”, such as “forward
ball”, “forward local compactness”, “forward completeness”, “forward boundedness”,
(and respectively “backward”) and so on. We have moreover discussed in Sec. 3.6.2
in [16] three different definitions of “intrinsic” for the asymmetric case (they are
recalled in Defn. 2.1 here). Eventually we will prove the desired Hopf–Rinow-like
result for asymmetric metric spaces in Theorem 12.1.

1.2. Outline of the paper. In this paper we start in Sec. 2 by reviewing the
definitions from [16]. In the initial sections we will propose the basic definitions
for this paper. In Sec. 3 we will propose possible definitions of (local) compactness,
and of completeness in Sec. 4. We will explore the relations between these notions,
keeping parallels with the usual theory of symmetric metric spaces. (Sec. 5 contains
technical lemmas that the casual reader may want to skip on a first reading). We
will then encounter in Sec. 6 quasi-midpoints, and show (similarly to the symmetric
case) that the existence of quasi-midpoints is tightly related to the space being
“r–intrinsic”. We will then in Sec. 7 define geodesics as length minimizing paths
in the class Cr of run-continuous paths. If the space is compact and “strongly
separated” then the run-continuous paths are continuous, i.e. Cr ≡ Cg, so the
theories of “continuous geodesics” and “run-continuous geodesics” coincide. In
general they do not. We will then note in Sec. 8 that, in spaces that are not
strongly separated, the concept of arc-length reparameterization needs special care;
and in particular that the reparameterization of a continuous rectifiable path may
fail to be continuous. (All works fine though in the realm Cr of run-continuous
paths) In Sec. 9 we will show results of existence of geodesics when appropriate
container sets are compact (similarly to the classical results); both in the class Cr
and in Cg. In Sec. 10 we will talk of “convexity”, define midpoints and use them to
build geodesics (similarly to the classical theory by Menger, but without forcing the
space to be “intrinsic” in some sense); we will then note that in the asymmetric case
the classical method of Menger builds run–continuous geodesics, and not continuous
geodesics! In Sec. 11 we will see examples and counterexamples. Eventually in
Sec. 12 we will prove the renowned Hopf–Rinow (or Cohn-Vossen) theorem. We
will conclude the analysis with some remarks on the separation hypotheses in Sec. 13,
and the case when b(x, y) = ∞ for some points in Sec. 14. In Sec. 15 we will
draw some conclusions; in particular we will argue that, in the asymmetric metric
spaces, the class of Cr of run-continuous paths is more “natural” than the class Cg
of continuous paths.

2. Main definitions

We provide a short summary of the main definitions presented in the previous
paper [16].

We already defined the asymmetric distance b in 1.1, and the asymmetric metric
space as the pair (M, b). The space (M, b) is endowed with the topology τ
generated by the families of forward and backward open balls

B+(x, ε) def= {y | b(x, y) < ε}, B−(x, ε) def= {y | b(y, x) < ε}

for ε ∈ (0,∞); this is also the topology generated by the symmetric distance

d(x, y) def= b(x, y) ∨ b(y, x) . (2.1)

When we will talk of “continuity”, “compactness” or of “convergence”, we will always
use the topology τ on M . Note that a sequence (xn)n ⊂M converges to x if and



4 ANDREA C. G. MENNUCCI

only if d(x, xn)→n 0; note also that b is continuous. More details are in Sec. 3 in
[16].

We also define
D+(x, ε) def= {y | b(x, y) ≤ ε} , D−(x, ε) def= {y | b(y, x) ≤ ε} ,

for convenience. Note that in general B+ 6= D+ (even in the symmetric case).

Given a (semi)distance b and ξ : I →M with I ⊆ R an interval, we define from b

the length Lenb of ξ by using the total variation

Lenb(ξ) def= sup
T

n∑
i=1

b
(
ξ(ti−1), ξ(ti)

)
(2.2)

where the sup is carried out over all finite subsets T ⊂ I that we enumerate as
T = {t0, · · · , tn} so that t0 < · · · < tn. When Lenb(ξ) < ∞ we say that ξ is
rectifiable.

Given γ : [a, c]→M , we define the running length `γ : [a, c]→ R+ of γ to be
the length of γ restricted to [a, t], that is

`γ(t) def= Lenb
(
γ|[a,t]

)
. (2.3)

We will call run-continuous a rectifiable γ : [a, c]→M such that `γ is continu-
ous.

More in general, given an interval I ⊆ R (possibly unbounded) and a map
ξ : I →M , we will say that ξ is run-continuous when, for any a, c ∈ I with a < c,
we have that ξ restricted to [a, c] is rectifiable and run-continuous. (Note that it
may be the case that ξ is not rectifiable — as in the case of a straight line in the
Euclidean space).

Note that a run-continuous path is not necessarily continuous. 2 See Cor. 5.5 for
an equivalent definition of run-continuous path.

Let a ≤ s ≤ t ≤ c, then the length of γ restricted to [s, t] is `γ(t)− `γ(s); so by
the definition (2.2) we obtain that

b
(
γ(s), γ(t)

)
≤ `γ(t)− `γ(s) . (2.4)

We say that a path γ : [a, c]→M “connects x to y” when γ(a) = x, γ(c) = y.
We define three classes of paths taking values in M .
• Cr is the class of all run-continuous paths;
• Cg is the class of all continuous rectifiable paths (that are also run-continuous,
by Prop. 3.9 in [16] or Lemma 5.4 here);
• Cs is the class of all continuous paths such that both γ and γ̂(t) def= γ(−t)
are rectifiable (note that other equivalent definitions are in Prop. 3.8 in
[16]).

We noted in [16] that Cr ⊆ Cg ⊆ Cs; in symmetric metric spaces the three classes
coincide, but in asymmetric metric spaces they may differ.

These classes induce three new distances. Let then br(x, y) (respectively bg(x, y),
bs(x, y)) be the infimum of Lenb(ξ) for all ξ connecting x, y and ξ ∈ Cr (respectively
ξ ∈ Cg, ξ ∈ Cs). Obviously

b ≤ br ≤ bg ≤ bs . (2.5)
Note that br(x, y) <∞ if and only if there is a run-continuous rectifiable path

that connects x to y; and so on.
We thus proposed this definition.

2Actually we will use the word “path” only to denote a run-continuous path; otherwise we will
say “map” or “function”.
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Definition 2.1. An asymmetric metric space (M, b) is called
• r–intrinsic when b ≡ br,
• g–intrinsic when b ≡ bg,
• s–intrinsic when b ≡ bs.

(By eqn. (2.5) the third implies the second, the second implies the first). In
symmetric metric spaces the three notions coincide, so we simply say intrinsic.
The theorem 3.15 in [16] shows that the induced metric space (M, br) is always
r–intrinsic, and (M, bs) is always s–intrinsic. It may be that (M, bg) is not g–intrinsic,
see Example 4.4 in [16].

Remark 2.2. For any “forward” definition in this paper there is a corresponding
“backward” definition, obtained by exchanging the first and the second argument
of b, i.e. by using the conjugate distance b defined by

b(x, y) = b(y, x) . (2.6)

For this reason, in this paper we will mostly present the forward versions of the
theorems, since backward results are obtained by replacing b with b. For any
forward definition there is also a corresponding symmetric definition, obtained by
replacing b with d.

Before we end the introduction, we recall the definitions of Finslerian metric and
of General Metric Space for the convenience of the reader.

Definition 2.3. We recall that a “General Metric Space”, according to Buse-
mann [4, 6] and Zaustinsky [19], is a strongly separated 3 asymmetric metric space
satisfying also

∀x ∈M,∀(xn) ⊂M, lim
n→∞

b(xn, x) = 0 iff lim
n→∞

b(x, xn) = 0 . (2.7)

As already remarked in the appendix of [16], due to the extra hypothesis (2.7),
in a “General metric space” every run-continuous path is also continuous; so the
classes Cr = Cg and br = bg.

The following classical example was already discussed in [16] (see Example 1.3
and section 2.5.3) but again is here reported for convenience of the reader.

Example 2.4. Suppose that M is a differential manifold. Suppose that we are given
a Borel function F : TM → [0,∞], and that for all fixed x ∈M , F (x, ·) is positively
1-homogeneous. We define the length lenF (ξ) of an absolutely continuous path
ξ : [0, 1]→M as

lenF (ξ) =
∫ 1

0
F (ξ(s), ξ̇(s)) ds . (2.8)

We then define the asymmetric semidistance function bF (x, y) on M to be the
infimum of this length lenF (ξ) in the class of all absolutely continuous ξ connecting
x to y.

The length lenF is called a Finslerian Length in Example 2.2.5 in [3]. So we will
call bF the Finslerian distance function.

3Unfortunately in [16] we omitted to stress the fact that a “General metric space” has to satisfy
(1.1) as well.
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3. Local compactness

We say that (M, b) is forward-locally compact if ∀x ∈M ∃ε > 0 such that

D+(x, ε) def= {y | b(x, y) ≤ ε}

is compact. “Backward” and “symmetrical” definitions are obtained as explained
in Remark 2.2. We say that (M, b) is locally compact if ∀x ∈ M ∃ε > 0 such
that both D−(x, ε) and D+(x, ε) are compact; that is, if (M, b) is both forward and
backward locally compact. The following implications hold.

locally compact

backward locally compact

forward locally compact

symmetrically locally compact

The opposite implications do not hold in general, as shown in examples in Sec. 11.
Other definitions are used in the literature, such as finitely compact, see Sec. A.3

and Sec. A.1 in [16].

3.1. Properties in strongly separated spaces. This section collects properties
valid in (locally) compact spaces that are strongly separated (i.e. where (1.1)
holds). All may be proved by using this Lemma (that is similar to (2.3),(2.6) in
Zaustinsky’s [19]).

Lemma 3.1 (modulus of symmetrization). Suppose that the space is strongly
separated. Let C ⊆ M be a compact set. Then there exists a monotonic non
decreasing continuous function

ω : [0,∞)→ [0,∞)

with ω(0) = 0, such that

∀x, y ∈ C, b(x, y) ≤ ω(b(y, x)) .

Proof. Define
f(r) = sup

x,y∈C, b(x,y)≤r
b(y, x)

and then f is monotone. Since C is compact, then f <∞. Moreover limr→0 f(r) = 0;
otherwise we may find ε > 0 and xn, yn s.t. b(xn, yn)→ 0 while b(yn, xn) > ε; but,
extracting converging subsequences, we obtain a contradiction. From f we can
define an ω as required, for example ω(r) = 1

r

∫ 2r
r
f(s)ds (note that ω ≥ f). �

Corollary 3.2. Suppose that the space is strongly separated. If (xn) ⊂ M is a
sequence such that b(x, xn)→ 0, and M is forward-locally compact, then xn → x.

The lemma may also be used as follows.

Corollary 3.3. Suppose that the space is strongly separated. If (M, b) is locally
compact then ∀x ∈M, ε > 0 ∃r > 0 s.t.

B+(x, r) ⊆ B−(x, ε), B−(x, r) ⊆ B+(x, ε)

and then τ = τ+ = τ−.

In particular, an asymmetric metric space that is compact and strongly separated,
is also a General Metric Space as defined by Busemann (see Definition 2.3), and
Cr = Cg (but Cg 6= Cs in Exa. 4.4 in [16]).

The following is another corollary of 3.1 and is, in a sense, a vice versa of Prop. 3.9
in [16].
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Corollary 3.4. Suppose that the space is strongly separated. Let γ : [a, c]→M be
a rectifiable path, and `γ be its running length. Suppose that `γ is continuous and
that the image of γ is compact, then γ is continuous. (Proof follows from lemma
3.1 and eqn. (2.4)).

Note that, when the space is not strongly separated, then the examples 8.3 and
8.6 provide counterexamples to the above theses.

4. Completeness

Definition 4.1. A sequence (xn)n∈lN ⊂M is called a forward Cauchy sequence
if

∀ε > 0, ∃N ∈ lN such that ∀n,m, m ≥ n ≥ N ⇒ b(xn, xm) < ε (4.1)

Definition 4.2. We say that (M, b) is forward complete if any forward Cauchy
sequence (xn) converges to a point x ∈M .

“Backward” and “symmetrical” definitions are obtained as explained in Re-
mark 2.2. Note that these definitions agree with those used in Finsler Geometry
(see Chapter VI in [2]). In the appendix, in Remark A.5 we will present a different
definition. When (M, b) is both “forward” and “backward” complete, we will simply
say that it is complete.

Some relations hold.

Proposition 4.3. Let (xn) ⊂M be a sequence. Then the following are equivalent
• (xn) is forward Cauchy and backward Cauchy,
• (xn) is symmetrically Cauchy.

From that we obtain that, if (M, b) is either forward or backward complete, then
it is symmetrically complete.

forward complete =⇒ symmetrically complete ⇐= backward complete
The second statement cannot be inverted, as shown in example 4.2 in [16], and 11.3,
11.4 here.

Proof. Suppose that (xn) is symmetrically Cauchy: then ∀ε > 0 ∃N such that ∀n,m > N ,
d(xn, xm) < ε: then b(xn, xm) < ε.

Suppose that (xn) is forward Cauchy and is backward Cauchy: ∀ε > 0 ∃N ′′ such that
∀n > m > N ′′, b(xn, xm) < ε, and ∃N ′ such that ∀n > m > N ′, b(xm, xn) < ε: then we
let N = N ′ ∨N ′′, and ∀n,m > N , d(xn, xm) < ε.

Suppose that (M, b) is forward complete; let (xn) be symmetrically Cauchy: then it
is forward Cauchy, and then, since (M, b) is forward complete, there is an x such that
xn → x. Similarly if (M, b) is backward complete. �

An important property that is often used in symmetric metric spaces holds also
in the asymmetric case.
Proposition 4.4. Suppose that (xn) is either forward Cauchy, or backward Cauchy,
and there exists a subsequence nk and a point x such that limk→∞ xnk

= x. Then
limn→∞ xn = x.

Proof. Fix ε > 0; since (xn) is forward Cauchy, ∃N such that ∀m,m′ with m′ ≥ m ≥ N ,
b(xm, xm′) ≤ ε; let H be such that nH ≥ N and ∀k ≥ H, d(x, xnk ) ≤ ε; for n ≥ nH ,

b(x, xn) ≤ b(x, xnH ) + b(xnH , xn) ≤ d(x, xnH ) + b(xnH , xn) ≤ 2ε
at the same time, choosing a large h ≥ H such that nh ≥ n,

b(xn, x) ≤ b(xn, xnh ) + b(xnh , x) ≤ b(xn, xnh ) + d(xnh , x) ≤ 2ε
so in conclusion d(xn, x) ≤ 2ε. Similarly if (xn) is backward Cauchy. �
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A similarly looking property though does not hold.

Remark 4.5. Fix a sequence (xn) ⊂ M . Suppose that ∀ε > 0 there exists a
converging sequence (yn) such that ∀n, b(yn, xn) < ε. If b is symmetric and (M, b)
is complete, then (xn) converges. If b is asymmetric and (M, b) is complete, then
there is a counter-example in Example 11.5.(8).

So this standard property holds, as in the symmetric case.

Proposition 4.6. Suppose that (M, b) is compact, then it is complete.

The proof follows from Prop. 4.4. We will see that other properties valid in the
symmetric case may fail, though.

Another interesting property links completeness and induced distances.

Proposition 4.7. Suppose that (M, b) is forward complete, then (M, br) and (M, bg)
are forward complete.

Proof. Let (xn)n≥0 be a forward Cauchy sequence in (M, br). Up to a subsequence,
with no loss of generality (using 4.4), we assume that br(xn, xn+1) ≤ 2−n. Let ε > 1.
We can then build a run-continuous path γ : [0, 1)→M such that γ(1− 2−n) = xn
and the length of γ(t) for t ∈ [1−2−n, 1−2−n−1] is less than ε2−n; so γ is rectifiable.
Since (M, b) is forward complete, by Lemma 5.8 there exists z = limt→1− γ(t), and
we define γ(1) = z for convenience. Since γ(t) is continuous for t = 1, Lemma
5.4 guarantees that `γ(t) is continuous at t = 1 as well; this implies that γ is
run-continuous on all of [0, 1]; so by definition of br, limτ→1− b

r(γ(τ), z) = 0, so we
conclude using 4.4 in (M, br).

For the case of (M, bg) we use continuous rectifiable paths. �

The opposite is not true, as shown in this simple (and symmetric) example.

Example 4.8. Let M ⊂ R2 be given by the union of segments as follows

M =
⋃

n∈lN,n≥1
{(x, y) : x ∈ [0, 1], y = x/n}

and b the Euclidean distance, then M is not closed in R2, its closure is
M = M ∪ {(x, 0), x ∈ [0, 1]} ,

hence (M, b) is not complete; but (M, br) is complete.
If we add the segment {(x, 0), x ∈ [1/2, 1]} to M , we obtain a set M̃ such that

(M̃, b) is connected but (M̃, br) is disconnected.

4.1. Completeness and run-continuous paths.
Proposition 4.9. Suppose that the space is strongly separated. Suppose γ : [a, c]→
M is rectifiable and run-continuous. If the space (M, b) is backward complete, then
γ is right-continuous; if (M, b) is forward complete, then γ is left-continuous.

The proof follows from technical Lemmas 5.8 and 5.9 (that also detail the rôle
played by each of the hypotheses). If the space is not strongly separated, then
this result may be false, see the path ψ in Example 8.6.

In Proposition 3.9 in [16] we saw that a rectifiable and continuous path is also
run-continuous. The opposite holds in complete strongly separated spaces.

Corollary 4.10. If (M, b) is complete and strongly separated, then any run-
continuous rectifiable path is continuous; hence the classes Cr and Cg coincide,
and br ≡ bg.

Note that a space may be complete and strongly separated, but still not a General
Metric Space, as in Example 11.5.
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5. Technical lemmas

This section contains some technical lemmas and definitions that are needed
in proofs. The reader not interested in the details of the fine properties of run-
continuous paths may skip to next section.

Lemma 5.1. Suppose that γ : [a, c] → M is run-continuous, let z ∈ M , define
ϕ(t) def= b(z, γ(t)), suppose that for all t ∈ [a, c], ϕ(t) <∞. Then ∀τ ∈ [a, c]

if τ 6= a, lim inf
θ→τ−

ϕ(θ) ≥ ϕ(τ) ; if τ 6= c, ϕ(τ) ≥ lim sup
θ→τ+

ϕ(θ) . (5.1)

This has some consequences. For any s, t with a ≤ s < t ≤ c such that ϕ(s) < ϕ(t),
the image of ϕ on [s, t] contains the interval [ϕ(s), ϕ(t)]. Moreover there is a
t̃ ∈ (s, t] such that ϕ(t̃) = ϕ(t) and ϕ(τ) < ϕ(t) when s ≤ τ < t̃, and again
ϕ([s, t̃]) ⊇ [ϕ(s), ϕ(t)].

The same holds for ϕ(t) = br(z, γ(t)).

Intuitively the above is a Darboux–type condition that holds only when ϕ
increases; and t̃ is the first time when ϕ(t̃) = ϕ(t). In general ϕ(t) is not continuous
(set z = 1, γ(t) = t in example 4.6 in [16]).

Proof. For s, t ∈ [a, c], b(z, γ(s)) + b(γ(s), γ(t)) ≥ b(z, γ(t)) so when s < t

ϕ(t)− ϕ(s) ≤ `γ(t)− `γ(s) (5.2)

and then we can prove (5.1). By eqn. (3.11) in [16] the same holds for br. The rest
of the proof is based only on (5.2) and is standard.

We first prove that the image of ϕ on [s, t] contains the interval [ϕ(s), ϕ(t)]; that is for
any λ with ϕ(s) ≤ λ ≤ ϕ(t) there exists τ with s ≤ τ ≤ t such that ϕ(τ) = λ.

Assume λ > ϕ(s). Consider Iλ to be union of all intervals [s, a] (with s ≤ a ≤ t) such
that [s, a] ⊆ {ϕ < λ}; this union is an interval of the form Iλ = [s, τ) or Iλ = [s, τ ] with
τ = τ(λ). If ϕ(τ) < λ then τ < t and by (5.1), ϕ(θ) < λ for θ ∈ [τ, τ + ε] with ε > 0 small,
then [s, τ + ε] ⊆ {ϕ < λ}, contradicting the definition of τ . If ϕ(τ) > λ then τ > s and by
(5.1), ϕ(θ) > λ for θ ∈ [τ − ε, τ ], contradiction again. So ϕ(τ) = λ and Iλ = [s, τ). To
conclude define t̃ = τ(t) so [s, t̃) = Iϕ(t); then replace t with t̃ and use the first condition.

�

5.1. On length and dense subsets. We introduce a convenient notation. Let
ξ : [a, c] → M be a path. For any T ⊂ [a, c] finite subset (containing at least two
points), we denote by Σ(ξ, T ) the sum

Σ(ξ, T ) def=
n∑
i=1

b
(
ξ(ti−1), ξ(ti)

)
(5.3)

that is used when computing the length (cf eqn. (2.2)), where we enumerate
T = {t0, · · · , tn} so that t0 < · · · < tn. The definition in eqn. (2.2) then reads

Lenb(ξ) def= sup
T∈F,T⊂[a,c]

Σ(ξ, T ) (5.4)

where F is the family of all finite subsets of R. Note that Σ(ξ, ·) is monotonically
non decreasing w.r.t. inclusion (due to the triangle inequality); so the definition
(5.4) is also the limit on the directed family F (ordered by inclusion).

For the purposes of this technical section, we generalize slightly the definitions
given in the introduction.
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Definition 5.2. Given D ⊆ I ⊆ R, 4 given a map ξ : I →M , we define

LenbD(ξ) def= sup
T∈F,T⊂D

Σ(ξ, T ) . (5.5)

We agree that if D contains less than two points, then we set LenbD(ξ) = 0.
Similarly given D ⊆ I ⊆ [a, c] and given γ : I →M we define `γD : [a, c]→ R as

`γD(t) def= LenbD
(
γ|[a,t]

)
= sup
T∈F,T⊂D∩[a,t]

Σ(γ, T ) . (5.6)

When I = D we can omit the subscript “D” in LenbD and `γD.

Lemma 5.3. Take γ as above and a ≤ s ≤ t ≤ c. If s ∈ D, or if γ is continuous
at s, then the length of γ restricted to [s, t] can be deduced from `γD using

LenbD(γ|[s,t]) = `γD(t)− `γD(s) ; (5.7)
otherwise in general the length may be strictly less.

Lemma 5.4. Let D ⊆ [a, c], with D dense in [a, c]. Let ξ : D →M be a rectifiable
map. Let τ ∈ D. 5 We write ` for `ξD for simplicity.

• Suppose τ > a. Then
`(τ)− lim

t→τ−
`(t) = lim

t→τ−
b(ξ(t), ξ(τ)) (5.8)

(and the limit in RHS is guaranteed to exist).
In particular, ` is left continuous at τ iff limt→τ− b(ξ(t), ξ(τ)) = 0.

• Vice versa, suppose τ < c, then
lim
t→τ+

`(t)− `(τ) = lim
t→τ+

b(ξ(τ), ξ(t)) . (5.9)

In particular, ` is right continuous at τ iff limt→τ+ b(ξ(τ), ξ(t)) = 0.

Note that this lemma proves (in a more descriptive way) Prop. 3.9 in [16], namely,
“a rectifiable continuous path is run-continuous”.

Proof. Let (sk)k ⊂ [a, τ ] ∩ D be an increasing sequence with limk sk = τ ; let
xk = ξ(sk) and z = ξ(τ) for convenience. Let F be the family of finite subsets T of
[a, τ ] ∩D, by definition

`(τ) = sup
T∈F

Σ(ξ, T ) .

Let Fk be the subfamily of T ∈ F such that sk, τ ∈ T and the last element before τ
in T is sk. Let

Lk
def= sup

T∈Fk

Σ(ξ, T ) ,

obviously Lk ≤ `(τ). Expanding the definition of Σ(ξ, T ) when T ∈ Fk we see that
Lk = `(sk) + b(xk, z) .

For any T ∈ Fk we can add sk+1 to it and obtain that (T ∪ {sk+1}) ∈ Fk+1, so we
obtain that Lk ≤ Lk+1. Since the family

⋃
k Fk is cofinal in F then

`(τ) = sup
k

sup
T∈Fk

Σ(ξ, T ) = sup
k
Lk = lim

k
Lk

since Lk is monotonic; since ` is monotonic, then
`(τ) = lim

k
Lk = lim

k

(
`(sk) + b(xk, z)

)
= lim

k
`(sk) + lim

k
b(xk, z) .

4Usually in the applications I is an interval and D a set dense in I; or I = D is dense in an
interval.

5If τ /∈ D then a more complex statement is possible.



GEODESICS IN ASYMMETRIC METRIC SPACES 11

The limit limk `(sk) does not depend on the choice of the sequence, hence the limit
limk b(xk, z) as well.

For the vice versa, let (sk)k ⊂ [τ, c] be a decreasing sequence with limk sk = a;
we now let G be the family of finite subsets T of [τ, c] ∩D, and Gk be the subfamily
of T ∈ G such that τ, sk ∈ T and the first element after τ in T is sk; reasoning as
above

`(c)− `(τ) = sup
k

sup
T∈Gk

Σ(ξ, T ) = lim
k

(
b(z, xk) + `ξ(c)− `(sk)

)
etcetera. �

The above Lemma is the quantitative argument behind this fact.

Corollary 5.5. Let τ+ be the topology generated by forward balls, τ− be the topology
generated by backward balls. Let ξ : [a, c] → M be a rectifiable map. ξ is run-
continuous, if and only if ξ is left continuous in the τ− topology and ξ is right
continuous in the τ+ topology.

(One implication in this corollary was already announced in Remark 3.7 in [16]).

Lemma 5.6. Let D ⊆ I ⊆ [a, c]. Let γ : I →M be a rectifiable path such that `γ
is continuous on [a, c]. 6 Let L = `γ(c) = Lenb(γ) be its length. Suppose that `γ(D)
is dense in [0, L] then

Lenb(γ) = LenbD(γ) , `γ ≡ `γD .

Note that if D is dense in [a, c] then `γ(D) is dense in [0, L]; but the opposite
may be false.

Proof. As a first step, suppose for a moment that a, c ∈ D. We know that L =
Lenb(γ) ≥ LenbD(γ) we wish to prove the converse. Let D′ = `γ(D). Fix ε > 0. Let
T ⊆ I finite such that Σ(γ, T ) ≥ L− ε. Let n be the number of points in T . Let
T ′ = `γ(T ).

(1) For any t′ ∈ T ′ with t′ /∈ D′ (note that then t′ 6= 0, L), find two nearby
points e, f ∈ D with e < f such that `γ(f)− `γ(e) < ε/n and moreover all
counterimages t of t′ lie in [e, f ], but no other points of T lie there; i.e. in
formulas

∀t ∈ T, `γ(t) = t′ ⇒ e < t < f

and
`γ
(
[e, f ] ∩ T

)
= {t′} .

(In the picture the points in T are represented as
black dots). ��
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�
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Then we add all such points e, f to T ; at the end of this step Σ(γ, T )
may have increased.

(2) For any t′ ∈ T ′ with t′ /∈ D′, and then for any t with `γ(t) = t′, we delete t
from T ; at the end of this step Σ(γ, T ) may have decreased, but not more
than 2ε.

At the end of all steps above, we obtain a T ⊂ D such that Σ(γ, T ) ≥ L− 3ε. So by
arbitrariness of ε, we have proved that, when a, c ∈ D, surely Lenb(γ) = LenbD(γ).

Now, given s, t ∈ D, s < t, the same reasoning may be applied by restricting γ to
I ∩ [s, t]; so by Lemma 5.3 we obtain that

`γ(t)− `γ(s) = `γD(t)− `γD(s)

6It is not enough to ask that `γD is continuous on [a, c], as can be seen with simple examples of
maps γ : [0, 1] → R.
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since both functions are monotonic and `γ is continuous and
`γ(a) = `γD(a) = 0 , `γ(c) ≥ `γD(c)

we obtain that `γ ≡ `γD. �

Lemma 5.7. Let γ : I → M be a map; let D ⊆ I be a dense set, that is I ⊆ D;
suppose that for any t ∈ I, t /∈ D there exists a sequence (sn) ⊂ D with sn →n t and
γ(sn)→n γ(t); then

Lenb(γ) = LenbD(γ) .

Proof. Obviously Lenb(γ) ≥ LenbD(γ); for 0 ≤ l < Lenb(γ) consider a T ⊂ I finite
such that Σ(γ, T ) > l; we want to build a S ⊂ D so that Σ(γ, S) > l: indeed using
the hypothesis, for any t ∈ T , if t ∈ D we add t to S; whereas if t /∈ D we can
add to S a point d ∈ D that is near enough to t (taking it from the approximating
sequence in hypothesis), and use the continuity of b to obtain in the end Σ(γ, S) > l.
By arbitrariness of l we conclude. �

This is (an easy adaptation of) a well known result for functions of bounded
variations.

Lemma 5.8. Let D ⊆ [a, c] be a dense set; let γ : D →M be a rectifiable map. Let
τ ∈ [a, c].

• If τ > a and (M, b) is forward complete then the limit
lim
t→τ−

γ(t)

exists;
• If τ < c and (M, b) is backward complete, then the limit

lim
t→τ+

γ(t)

exists.

Proof. We write ` for `γD for simplicity.
• Consider an increasing sequence (sn)n ⊂ D with sn ↗n τ ; let xn = γ(sn)
then for ∀n,m, m ≥ n

b(xn, xm) ≤ `(sm)− `(sn) ≤ lim
t→τ−

`(t)− `(sn)

(by eqn. (2.4) and (5.7)) so the sequence (xn)n is forward Cauchy, hence
it converges to a point x. Given another increasing sequence (tn)n ⊂ D
with tn →n τ , suppose for a moment that γ(tn) converges to a point z; the
union (ln)n of the two sequences (sn)n and (tn)n is though an increasing
sequence, hence the limit of γ(ln) must be both x and y (by Prop. 4.4) so
x = z. Hence the limit does not depend on the chosen sequence.
• Similar, using a decreasing sequence (s̃n)n ⊂ D and proving that x̃n = γ(s̃n)
is a backward Cauchy sequence.

�

The following Lemma is particularly useful when the space is strongly separated.

Lemma 5.9. Let D ⊆ [a, c] be a dense set; let γ : D →M be a rectifiable function.
Let τ ∈ [a, c], and suppose that `γ(t) is continuous at τ .

• If τ ∈ (a, c), if the limits
x = lim

s→τ−
γ(s) , y = lim

t→τ+
γ(t)

exist then necessarily b(x, y) = 0.
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• If τ > a and the limit

x = lim
s→τ−

γ(s)

exists and τ ∈ D then necessarily b(x, γ(τ)) = 0.
• If τ < c and the limit

y = lim
t→τ+

γ(t)

exist and τ ∈ D then necessarily b(γ(τ), y) = 0.

Proof. We write ` for `γ for simplicity.
• Consider s < τ < t, by triangle inequality

b(x, y) ≤ b(x, γ(s)) + b(γ(s), γ(t)) + b(γ(t), y) ≤ b(x, γ(s)) + `(t)− `(s) + b(γ(t), y)

then let t↘ τ and s↗ τ and use the continuity of b and of ` at τ .
• If τ ∈ D then write

b(x, γ(τ)) ≤ b(x, γ(s)) + b(γ(s), γ(τ)) ≤ b(x, γ(s)) + `(τ)− `(s)

then let s↗ τ .
• If τ ∈ D then write

b(γ(τ), y) ≤ b(γ(τ), γ(t)) + b(γ(t), y) ≤ `(t)− `(τ) + b(γ(t), y)

then let t↘ τ .
�

Lemma 5.10. Let D ⊆ [a, c] be a dense set. Let ξ : D → M be a map. Suppose
that `ξD is continuous on all [a, c], and L = LenbD(ξ) < ∞. Suppose that one of
these two holds:

• (M, b) is forward complete and a ∈ D; or
• (M, b) is backward complete and c ∈ D.

Then there exists a run-continuous path γ : [a, c] → M that extends ξ, and
`γ ≡ `ξD.

Proof. • Assume that (M, b) is forward complete. For any t ∈ [a, c] if t ∈ D
we define γ(t) = ξ(t); whereas if t /∈ D, we use Lemma 5.8 and define
γ(t) = lims→t− ξ(s). We then use Lemma 5.7 on all intervals [a, t] to obtain
that `γ(t) = `γD(t) = `ξD(t), for all t ∈ [a, c].
• Assume that (M, b) is backward complete. For any t ∈ [a, c] if t ∈ D
we define γ(t) = ξ(t); whereas if t /∈ D, we use Lemma 5.8 and define
γ(t) = lims→t+ ξ(s). We then use Lemma 5.7 on all intervals [t, c] to obtain
that Lenb(γ|[t,c]) = LenbD(γ|[t,c]) = LenbD(ξ|[t,c]). In particular Lenb(γ) =
LenbD(γ) = L. By equation (5.7) in Lemma 5.3 this implies that `γ(t) =
`γD(t) = `ξD(t) for all t ∈ [a, c] ∩D. Since D is dense, and `ξD is assumed to
be continuous, and both are monotonic, and

`γ(a) = `γD(a) = 0 , `γ(c) = `γD(c) = L

this implies the result.
�
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6. Quasi midpoints

In r-intrinsic spaces, for any two points x, y with b(x, y) < ∞, for any ε > 0
small, there is always a path ξε joining them with a quasi optimal length, that is,
Lenb(ξε)− ε < b(x, y) = br(x, y). This is used in the following proposition to find
approximate intermediate points z between x and y.

Proposition 6.1. Suppose that the asymmetric metric space (M, b) is r–intrinsic
(that is b ≡ br). Then ∀θ ∈ (0, 1), ∀x, y ∈M with b(x, y) <∞

∀ε > 0 ∃z ∈M , such that
b(x, z) < θb(x, y) + ε, b(z, y) < (1− θ)b(x, y) + ε .

(6.1)

Note that the triangle inequality is almost an equality for the triple x, z, y: indeed
summing the above two inequalities we obtain

b(x, z) + b(z, y) < b(x, y) + 2ε .

The proof follows straightforward from the definition and from the relation
eqn. (2.4). When θ = 1/2, the point z is a called ε-midpoint in Lemma 2.4.10 in [3].

On the other hand,

Proposition 6.2. if M is either forward or backward complete, if ∃θ ∈ (0, 1) such
that ∀x, y with b(x, y) <∞ property (6.1) holds, then (M, b) is r–intrinsic.

We just sketch the proof since it is classic. (It is also quite similar to the proof of
Prop. 10.3).

Proof. Let x, y ∈ M with x 6= y; if b(x, y) = 0 then br(x, y) = 0 as in the proof of
Prop. 7.4. Suppose now x 6= y and b(x, y) > 0. Fix ε > 0. We aim to define a
run-continuous γ : [0, 1]→M connecting x to y that has Lenb(γ) ≤ b(x, y)(1 + ε).
By arbitrariness of ε this will imply that b(x, y) = br(x, y). We set D0 = {0, 1};
given Dh we define Dh+1 as

Dh+1
def= Dh ∪ {tθ + s(1− θ) : s, t ∈ Dh consecutive points in Dh, s < t}

that is we interpolate consecutive points in Dh using the parameter θ. We define
the dense set D ⊂ [0, 1] as D = ∪hDh. Let δ > 0 small so that 1/(1− δ) < 1 + ε.
Let

δh
def= 1 + δ(2h) , c0

def= δ0 , ch+1
def= chδh+1

and note that

cn
def=

n∏
h=0

δh =
2n+1−1∑
k=0

δk = 1− δ(2n+1)

1− δ ↗n
1

1− δ . (6.2)

Let L = b(x, y). Iterating on h we can define a map ξ : D →M . Indeed ξ(0) = x,
ξ(1) = y so ξ is defined on D0. Once ξ is defined on Dh, consider τ ∈ Dh+1 \Dh;
then τ = tθ + s(1 − θ) with s, t consecutive points in Dh; we define ξ on τ using
(6.1), we set ξ(τ) to be the point z such that

b(ξ(s), z) ≤ θδhL , b(z, ξ(t)) ≤ (1− θ)δhL ,

and then for τ1, τ2 ∈ Dh+1, τ1 < τ2 we can prove that

b(ξ(τ1), ξ(τ2)) ≤ Lch(τ2 − τ1) ,

using (6.2) and some triangle inequalities. So for s, t ∈ D, s < t we obtain that
Lenb(ξ|[s,t]) ≤ L(1 + ε)(t− s); moreover the space is forward or backward complete;
so we can use Lemma 5.10 to extend ξ to run-continuous path γ : [0, 1]→M with
Lenb(γ) ≤ L(1 + ε). �
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Regarding the completeness hypothesis, see example 11.1.
We now prove a property in Cor. 6.5 that will be used in Lemma 12.5, that is

needed for the proof of the Hopf–Rinow–like Theorem. We will use the technical
lemma 5.1.

Lemma 6.4. If (M, b) is r–intrinsic, ρ > 0, x, z ∈M with ρ ≤ b(x, z) <∞ then
inf

y∈D+(x,ρ)
b(y, z) = b(x, z)− ρ . (6.3)

In particular if the above infimum has a minimum point ỹ then b(x, ỹ) = ρ and
b(ỹ, z) = b(x, z)− ρ.

Proof. Let δ def= infz∈D+(x,ρ) b(y, z) be the LHS and t def= b(x, z)−ρ be the RHS; note
that by hypothesis t ≥ 0. Since b(y, z) ≥ b(x, z)− b(x, y) ≥ t then to the infimum
δ ≥ t. For any ε > 0 small there exists a run-continuous γε : [0, 1]→M connecting
γε(0) = x to γε(1) = z and with

Lε = Lenb(γε) < br(x, z) + ε = b(x, z) + ε = ρ+ t+ ε ,

where we define Lε
def= Lenb(γε) for convenience.

We use Lemma 5.1; we set ϕε(t) = b(x, γε(t)) that is finite due to (2.4), and
s = a = 0, t = c = 1 in the Lemma; by the Lemma we obtain t̃ε such that, setting
yε

def= γε(t̃ε), the image of b(x, γε(·)) on [0, t̃ε] is [0, ρ] and b(x, yε) = ρ,
The paths γε(t) are divided into two parts, the part for t ∈ [0, t̃ε] that connects x

to yε and has length λε, and the part for t ∈ [t̃ε, 1] that connects yε to to z and has
length Lε − λε. As ε→ 0 the paths get tighter and tighter; since in the first part
we have

ρ = b(x, yε) = br(x, yε) ≤ λε
then for the second part

b(yε, z) ≤ Lε − λε ≤ ρ+ t+ ε− ρ = t+ ε .

So letting ε→ 0 we prove that δ = t.
The last claim follows from δ = b(ỹ, z) ≥ b(x, z)− b(x, ỹ) ≥ b(x, z)− ρ = t. �

Corollary 6.5. Let x ∈M , ρ, t > 0 and

Vt
def=

⋃
y∈D+(x,ρ)

D+(y, t) ; (6.4)

then (by triangle inequality) Vt ⊆ D+(x, ρ+ t). If (M, b) is r–intrinsic and D+(x, ρ)
is compact then Vt = D+(x, ρ+ t).

Proof. Let z ∈ D+(x, ρ+t); if z ∈ D+(x, ρ) then z ∈ Vt; suppose z 6∈ D+(x, ρ), then
we use Lemma 6.4 and since D+(x, ρ) is compact, we obtain a ỹ ∈ D+(x, ρ) such
that b(x, ỹ) = ρ and b(ỹ, z) = b(x, z)− ρ ≤ t so z ∈ D+(ỹ, t) and then z ∈ Vt. �

In general we do not have equality in (6.4): consider the Example 10.5 and set
x = (−1, 0), ρ = t = 1.

The equality Vt = D+(x, ρ+ t) holds also when (M, b) is convex and is r-intrinsic;
see 10.6.

As noted in Remark 3.17 in [16], not all properties that are valid in intrinsic
symmetric metric spaces are also valid in r–intrinsic asymmetric metric spaces.

Proposition 6.6. Suppose that the asymmetric metric space (M, b) is g–intrinsic
(that is b ≡ br ≡ bg). Let ρ > 0 and

S+(a, ρ) def= {y | b(a, y) = ρ}
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D+(a, ρ) def= {y | b(a, y) ≤ ρ}
(which are closed, since b is continuous) then

B+(a, ρ) = D+(a, ρ), S̊+(a, ρ) = ∅ . (6.5)

Note that this result may be false in spaces where b ≡ br 6= bg (set x = −1, ρ = 1
in Example 4.2).

7. Geodesics

We recall that we will say that a path γ : [a, c] → M “connects x to y” when
γ(a) = x, γ(c) = y.

Definition 7.1. (1) Given x, y ∈ M , a “minimizing geodesic connecting
x to y” is a run-continuous rectifiable path γ that attains the minimum of
Lenb(ξ) in the family of all run-continuous paths ξ connecting x to y. In
particular Lenb(ξ) = br(x, y).

(2) A run-continuous path γ : I →M , with I ⊆ R interval, is a global mini-
mizing geodesic when any part of γ is a minimizing geodesic connecting
its endpoints; that is, ∀s, t ∈ I, s < t we have that

br(γ(s), γ(t)) = Lenb(γ|[s,t]) . (7.1)

(3) A run-continuous path γ : I →M , with I ⊆ R interval, is a local geodesic
7 when it is a minimizing geodesic on short enough sub parts; that is,
∀t0 ∈ I∃ε > 0 such that ∀s, t ∈ I with

t0 − ε < s < t < t0 + ε

we have that
br(γ(s), γ(t)) = Lenb(γ|[s,t]) .

Note that for the minimizing geodesic connecting x to y we must have Lenb(ξ) =
br(x, y) <∞; but a global geodesic may have Lenb(γ) =∞.

As in the symmetric case, there may be none, one, or multiple minimizing
geodesics connecting x to y.

There are many different definitions of “geodesics” in the literature. A short
overview and discussion of merits and caveats is in appendix A.2. The most
prominent difference between our definition and the definitions in other texts is that
we use the class Cr of run-continuous paths, instead of the class of continuous paths.
We may provide other notions of “geodesic” using the classes Cg or Cs, but we will
skip the definitions for sake of brevity, and just provide some remarks.

Proposition 7.2. A “minimizing geodesic” is also a “local geodesic”.
When I = [a, c] then the “minimizing geodesic γ connecting x to y” is a “global

minimizing geodesic” and vice versa; so we will usually just call it minimizing
geodesic. The proofs are easy and identical to the symmetric case (see e.g. [17]);
indeed for t0, t1, t2 ∈ I, t0 < t1 < t2 we have that

br(γ(t0), γ(t2)) = br(γ(t0), γ(t1)) + br(γ(t1), γ(t2)) . (7.2)

The property (7.2) implies that, if we split a piece out of a minimizing geodesic,
then this piece is itself a minimizing geodesic. Geodesics can also be joined, as
follows.

7We will not study the properties of local geodesics in this paper. This definition is needed to
be used as comparison tool in section A.2.
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Lemma 7.3 (joining). Suppose that γ : [t0, t1] → M , γ′ : [t1, t2] → M , are
minimizing geodesics, of lengths L and L′. Suppose that γ′(t1) = γ(t1): then the
two paths may be joined to form a path ξ : [t0, t2]→M (see Definition 2.2 in [16]
for details).
ξ is a minimizing geodesic if and only if

br
(
ξ(t1), ξ(t2)

)
= L+ L′ ,

that is, if the triangle inequality is an equality.
(This is a well known property, see e.g. Prop. 2.2.11 in [17]).
We conclude with this Proposition.

Proposition 7.4. (M, b) is strongly separated iff (M, br) is strongly separated.

Proof. The rightward implication follows from the relation b ≤ br.
For the leftward implication consider x, y ∈M,x 6= y but such that b(x, y) = 0;

consider the curve γ : [0, 1] → M , γ(1) = y, γ(t) = x for t ∈ [0, 1). The length of
this curve is zero, so γ is run-continuous and it is a minimizing geodesic connecting
x to y; moreover we obtain that br(x, y) = 0. We conclude that, if (M, b) is not
strongly separated, then (M, br) is not strongly separated as well. �

8. Arc parameter

Definition 8.1. We will say that a path ξ : [a, c]→M is parameterized by arc
parameter when `ξ(t) = t− a.

The following is a long–known but very powerful result 8.
Lemma 8.2. Suppose that the space is strongly separated. For any run-continuous
rectifiable path γ of length L there exists an unique path ξ : [0, L]→M such that

γ(t) = ξ(`γ(t)), `ξ(t) = t, ∀t ∈ [0, L] (8.1)
where `γ is the running length of γ and `ξ of ξ. Moreover if γ is continuous then ξ
is continuous.
ξ is called the reparameterization to arc parameter of γ. Note that if γ is

a minimizing geodesic then ξ is a minimizing geodesic.

Proof. The definition of ξ by the relation γ(t) = ξ(`γ(t)) is well posed: indeed, if
`γ(t) = `γ(t′) then γ(t) = γ(t′) by (2.4) and (1.1); moreover the domain of ξ is [0, L]
that is also the image of `γ . Let l̂ = `γ(t̂). If we restrict γ to [a, t̂] and ξ to [0, l̂], we
can write γ = ξ ◦ `γ . Since the length of a curve does not change when a curve is
reparameterized (see e.g. Proposition 2.7 in [16]), we have that `γ(t̂) = `ξ(l̂), that
is l̂ = `ξ(l̂). The statement on continuity follows from Prop. 3.4. �

8.1. Quasi arc parameter. When the space is not strongly separated, the above
Lemma may fail, as in this simple example.
Example 8.3. Let M = R and

b(x, y) =
{
y − x if y ≥ x ,

0 if y < x .

Let ε > 0 and γ : [−ε, ε]→M be defined simply as γ(t) = −t, this path has length
zero but is not constant and then it cannot be reparameterized to arc parameter.
(Note that (M, b) is neither forward nor backward complete, but see Example 8.6).

8It may be found in section I in [4] or in Ch. 1 Sec. 1 in [6]. In the symmetric case, as Theorem
2.5.9 in [3], or as Theorem 4.2.1 in [1], that also discusses the metric derivative issue. On the
metric derivative, see also Sec. 2.7 in [3].
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The above example is induced by the Finslerian metric F (x, v) = v+ on TM = R2,
(as explained in 2.4).

In this general case we may anyway state two results. The first may be seen as
the metric generalization of lemma 2.24 in [16].
Lemma 8.4. For any run-continuous rectifiable path γ : [a, c] → M of length L,
for any ε > 0, there exists an increasing homeomorphism ϕ : [a, c]→ [a, c] such that
for the path

ξ : [a, c]→M , ξ = γ ◦ ϕ−1 (8.2)
we have that `ξ satisfies

∀s, t , a ≤ s ≤ t ≤ c , `ξ(t)− `ξ(s) ≤ (t− s)(L+ ε)/(c− a) (8.3)
i.e. `ξ is Lipschitz of constant (L+ ε)/(c− a).

Note that the length of ξ is again L.

Proof. Let
ϕ(t) = a+ (c− a)`γ(t) + (t− a)ε

L+ ε
(8.4)

then ϕ : [a, c]→ [a, c] is an increasing homeomorphism. We now prove (8.2). Setting
t̃ = ϕ(t) and s̃ = ϕ(s) we obtain

(L+ ε)(t̃− s̃) =
(
`γ(t)− `γ(s)

)
(c− a) + ε(t− s) .

From ξ = γ ◦ ϕ−1 we obtain that `ξ ◦ ϕ = `γ hence eventually(
`ξ(t̃)− `ξ(s̃)

)
(c− a) =

(
`γ(t)− `γ(s)

)
(c− a) =

= (L+ ε)(t̃− s̃)− ε(t− s) ≤ (L+ ε)(t̃− s̃) .

�

This second Lemma is the generalization of 8.2 to the case of (possibly) non
strongly separated spaces.
Lemma 8.5. For any run-continuous 9 rectifiable path γ : [a, c] → M of length
L > 0, we define the map ψ : [0, L]→ [a, c] by

ψ(s) = min{t ∈ [a, c] , s = `γ(t)} ; (8.5)
then the paths

θ : [0, L]→M , θ = γ ◦ ψ (8.6)
and

β : [0, L]→M , β(t) =
{
θ(t) if t < L

γ(c) if t = L

are both parameterized by arc parameter, that is `θ(t) = `β(t) = t.
The proof is in Section B.5. Note that the map ψ is not the unique possible

map, any right inverse of `γ will do. Since ψ(0) = a, then θ(0) = β(0) = γ(a);
it may be the case that ψ(L) < c and θ(L) 6= γ(c), hence the definition of β. ψ
is monotonically increasing, but may fail to be surjective (it is surjective iff `γ is
injective). So the trace of the paths θ and β are contained in the trace of the path
γ; but they may be quite different. In particular if γ is continuous it may be easily
the case that θ and β are not continuous (as seen in the following example).

Consider that if we apply the reparameterization (8.6) in the Lemma to the map
γ in the Example 8.3 (that has length zero) then the map θ is just θ : {0} → R with
θ(0) = ε. (!!)

We view the two lemmas in action in the example that follows.

9Run continuity of γ is essential in this Lemma. A monotonic map γ : [0, 1] → R with a jump
discontinuity cannot be reparameterized to arc parameter.
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Example 8.6. Let M = R and define the Finslerian metric

F (x, v) =


v if v ≥ 0 ,

−v if v < 0 , x 6∈ [−1, 1]
0 if v < 0 , x ∈ [−1, 1].

so that induced distance (as by 2.4) is

b(x, y) =



y − x if x ≤ y ,

x− y if 1 ≤ y < x ∨ y < x < −1 ,

x− 1 if − 1 < y < 1 ≤ x ,

x− y − 2 if y < −1, 1 ≤ x .

0 if − 1 ≤ y < x < 1 ,

−1− y if y < −1 ≤ x < 1 .

Note that the associated topology is Euclidean; and all discs D+(x, r) and D−(x, r)
are compact; so this space (M, b) is complete.

Let γ : [−2, 2] → M be defined simply as γ(t) = −t; this path is continuous
and is a minimizing geodesic connecting 2 to -2; but is not parameterized by arc
parameter, indeed

`γ(t) = 1 +


t+ 1 if t < −1,
0 if − 1 ≤ t ≤ 1,
t− 1 if t ≥ 1 .

1 2−1−2

1

2

`γ

In this case the reparameterization (8.4) is

ϕ(t) = −2 + 4`γ(t) + (t+ 2)ε
2 + ε

=
4
(
`γ(t)− 1

)
+ tε

2 + ε

1 2−1−2

1

−1

2

−2

ϕ

so that the “quasi arc parameterized curve” is just ξ(t) = −ϕ−1(t); this curve
transverses the segment [−1, 1], where F = 0, with Euclidean speed (2 + ε)/ε; and
the parts where F 6= 0 with speed (2 + ε)/(4 + ε) ∼ 1/2 + ε/8.

The map ψ defined in the Lemma 8.5 is just

ψ(s) =
{
s− 2 if s ≤ 1
s if s > 1

and θ(s) = β(s) = −ψ(s), that are not continuous.
−2

−1

1

2

21 ψ

More in general, given a ∈ [−1, 1], all maps θa : [0, 2]→ R

θa(s) =


2− s if s < 1
a if s = 1
−s if s > 1

are arc parameterized minimal geodesics connecting 2 to −2.
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9. Existence of Geodesics

The following results is similar in spirit to (5),(6),(7) in section I in [6], but is
extended to the settings and needs of this paper.

Theorem 9.1. Let ρ > 0. Fix x, y ∈M with br(x, y) ≤ ρ. We recall that

D+r(x, ρ) def= {y | br(x, y) ≤ ρ} .

Assume that, for all v with 0 < v < ρ, D+r(x, v) is contained in a compact set
(compact according to the (M, b) topology). Then there is a arc-parameterized
minimizing geodesic connecting x to y.

The choice of hypotheses in the above Theorem is different from what is usually
seen in texts; see the discussion in Sec. A.2.2. Note that D+r(x, ρ) is not guaran-
teed to be closed in the (M, b) topology: just consider the set M̃ in Example 4.8 and
consider the sequence (1/2, 1/2n) in D+r((0, 0), 1

)
. When the space is strongly

separated and D+r(x, ρ) is contained in a compact set, the proof of the theorem
9.1 uses the symmetrization estimate 3.1 and the reparameterization lemma (either
8.2 or 8.4) so that, inside D+r(x, ρ), the argument of the proof in General Metric
Spaces can be easily adapted (the proof is in Sec. B.7 for convenience of the reader).
When the space is not strongly separated, a different proof is needed, see in Sec. B.6.
Note that, in the above Theorem, we cannot replace D+r with D+: see in example
4.8 (that is a symmetric metric space!) in [16]. The above Theorem can be applied
to Example 8.6, where θa are all different arc parameterized minimal geodesics
connecting 2 to −2 that the proof of the Theorem can construct.

A possible result in the class Cg is as follows.

Theorem 9.3. Suppose that the space is strongly separated. Fix x, y ∈ M . Let
ρ > 0. We define

D+g(x, ρ) def= {y | bg(x, y) ≤ ρ} .

Suppose that D+g(x, ρ) is contained in a compact set (compact according to the
(M, b) topology). Then for any y ∈ D+g(x, ρ) ( i.e. bg(x, y) ≤ ρ), there is a arc-
parameterized continuous minimizing geodesic connecting x to y.

The proof is in Sec. B.7.
We currently do not know if the hypothesis “strongly separated” can be dropped

in this theorem.

As a corollary of the above discussion we obtain what is nowadays known as
Busemann’s theorem.

Theorem 9.4. Suppose that (M, b) is compact; for any x, y ∈M with br(x, y) <∞
there is a minimizing geodesic ξ that connects x to y.

10. Convexity

All of the results in Sec. 6 relate the existence of approximate intermediate points
to the fact that (M, b) be intrinsic (in some sense). In this section we will deal with
exact intermediate points z at a prescribed distance br from x and y. We present
two different definitions. We start with a weaker definition.

Definition 10.1. (M, b) is “weakly convex” if given two different points x, y ∈M
with 0 < br(x, y) < ∞, a third (different from x, y) point z exists such that
br(x, z) + br(z, y) = br(x, y).
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The weaker definition is similar to the definition of “Menger convexity” used in
other texts; the main difference is that, in our definition we used br, whereas in
other papers the definition is stated using b; see the discussion in Section A.3 in
appendix.

We propose also a stronger definition, that will be articulated in the following.

Definition 10.2. (M, b) is “strongly convex” if given any two points x, y ∈ M
with br(x, y) <∞, and any θ ∈ (0, 1),

∃z ∈M , such that
br(x, z) = θbr(x, y), br(z, y) = (1− θ)br(x, y) .

(10.1)

Note that the triangle inequality is an equality for the triple x, z, y: indeed
summing the above two equalities we obtain

br(x, z) + br(z, y) = br(x, y) .
By analogy with the theory of quasi-midpoints, we will call midpoint a point z

such that br(x, z) = br(x, y)/2, br(z, y) = br(x, y)/2.
With additional hypotheses, these definitions imply that any two points may be

connected by a minimizing geodesics, as shown below. In turn, if any two points
x, y with br(x, y) <∞ may be connected by a minimizing geodesics, then it is easily
seen that the space is convex (in both senses).

The following result is similar to a classical result, see Proposition A.3 in appendix.

Proposition 10.3. Suppose M is either forward or backward complete. Suppose
that there exists a θ ∈ (0, 1) such that for any two points x, y with br(x, y) <∞ the
property (10.1) holds. Then for any two points x, y with br(x, y) <∞ there exists a
minimizing geodesic connecting them.

(We just sketch the proof; it is also quite similar to the proof of Prop. 6.2).

Proof. Let x, y ∈ M . If x = y then the geodesic is the constant path. If x 6= y
but br(x, y) = 0 then the geodesic is γ as defined in the proof of Prop. 7.4. The
last case is when x 6= y and br(x, y) > 0. Let L = br(x, y). We aim to define a
γ : [0, 1] → M connecting x to y with Lenb(γ) = L; this γ is the sought geodesic.
Let D and Dh be defined as in the proof of Prop. 6.2. Iterating on h we can
define a map ξ : D →M ; indeed ξ(0) = x, ξ(1) = y so ξ is defined on D0; once ξ is
defined on Dh, taken τ ∈ Dh+1 \Dh then τ = tθ + s(1 − θ) with s, t consecutive
points in Dh; we define ξ on τ to be the point z such that

br
(
ξ(s), z

)
= θ br

(
ξ(s), ξ(t)

)
and br

(
z, ξ(t)

)
= (1− θ) br

(
ξ(s), ξ(t)

)
(using strong convexity with the given θ). For s, t ∈ D, s < t we can prove that
br(ξ(s), ξ(t)) = L(t−s), again by induction on h, and using some triangle inequalities.
Since b ≤ br then Lenb(ξ|[s,t]) ≤ L(t−s); moreover the space is forward or backward
complete; so we can use Lemma 5.10 to extend ξ to run-continuous path γ : [0, 1]→
M connecting x to y and satisfying Lenb(γ|[s,t]) ≤ L(t−s). Eventually we can prove
that Lenb(γ|[s,t]) = L(t− s) using triangle inequalities and the fact that the length
of γ is at least L. �

Another result is as follows.

Proposition 10.4. Suppose M is complete and weakly convex. Then for any two
points x, y with br(x, y) <∞ there exists a minimizing geodesic connecting them.

The proof uses Zorn’s Lemma to find a maximal ξ : D →M such that br(ξ(s), ξ(t)) =
t− s; it uses completeness to prove that D is closed, and convexity to prove that
D = [0, 1].
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Other similar statements are possible; we skip them for sake of brevity.
The above proposition are quite similar to the usual results in symmetric metric

theory. The surprising remark, in the setting of this paper, is that the classical
method of Menger, in the asymmetric case, builds run-continuous geodesics, and
not continuous geodesics! So the fact that the classical theory of geodesics studies
continuous geodesics looks just as a byproduct of the symmetry of the theory, and
not as a natural necessity.

“Completeness” is fundamental in the above propositions.
Example 10.5. The subset M = R2 \ {(0, 0)} obtained by deleting the origin from
2-space, endowed with the Euclidean distance b(x, y) = |x− y|, is a simple example
of a space that is intrinsic, it is weakly convex, but not strongly convex. It is also
locally compact but not complete. The points (0, 1) and (0,−1) cannot be connected
by a minimizing geodesic.

We conclude with this proposition.
Proposition 10.6. Let x ∈M , ρ, t > 0 and

Vt
def=

⋃
y∈D+(x,ρ)

D+(y, t) ;

as in eqn. (6.4). Suppose that (M, b) is r–intrinsic and strongly convex, then
Vt = D+(x, ρ+ t).

11. Examples

This subset of R2 complements the already seen Example 10.5.
Example 11.1. The set M = (R×Q) ∪ ({0} × R), equipped with b(x, y) = |x− y|,
admits quasi–midpoints; and it is weakly convex but not strongly convex; and
M is arc connected; but (M, b) is not complete; and (M, b) is not intrinsic, since
bg(x, y) = |x1|+ |y1|+ |x2 − y2| when x2 6= y2.
Example 11.2. Consider M ⊂ Rn to be an open set, and b to be the Euclidean
distance; then

• (M, b) is locally compact;
• (M, b) admits minimizing geodesics iff M is convex;
• (M, b) is complete iff M = Rn;
• if moreover M is equal to the interior of the closure of M in Rn, then (M, b)
is intrinsic iff M is convex.

Example 11.3. If M = R and

b(x, y) =
{
ey − ex if x < y

e−y − e−x if x > y
(11.1)

then b generates on R the usual topology, and (M, b) is locally compact and s–
intrinsic. Note that (M, b) is a Finsler manifold, indeed the distance b derives from
the metric

F (x, v) =
{

ex v v > 0
−e−xv v < 0

.

The balls are the open intervals
B+(a, r) = {y | b(a, y) < r} =

(
− log(r + e−a), log(r + ea)

)
B−(a, r) = {x | b(x, a) < r} =

(
log(ea − r),− log(e−a − r)

)
where log(z) = −∞ if z ≤ 0. (see fig. 1 and 2)
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Figure 1. forward and backward balls, left and right extrema
(M is vertical, r = 1/2, a in abscissa)
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Figure 2. forward and backward balls, left and right extrema
(M is vertical, a = 1/2, r in abscissa)

(1) We immediately note that B−(0, 1) = R, that is, M is backward bounded
(but is not forward bounded).

(2) If xn = n then for m < n, b(xn, xm) = e−m − e−n < e−m so this sequence
is backward-Cauchy: then M is not backward complete.

(3) (M, b) is forward complete (and then is symmetrically complete, by 4.3).
Proof: Suppose that (xn) is an increasing forward-Cauchy sequence: then for
m > n > N , b(xn, xm) = exm − exn < ε that implies xm ≤ log(ε + exn ), so xm
has a limit xm → x10; while if it were a decreasing forward-Cauchy sequence for
m > n > N , b(xn, xm) = e−xm − e−xn < ε that implies xm ≥ − log(ε + e−xn ),
and again xm has a limit. Suppose that xn is a generic forward-Cauchy sequence:
from any subsequence xnk of xn we may extract a monotonic sub-sub-sequence
(xnkh)h: this would be convergent to a point x; this point does not depend on the
choice of subsequence: indeed, b(xn, xnkh)→h b(xn, x) < ε for n large. �

(4) Consider the ball B+(0, ρ) of extrema (−R,R) with R(ρ) = log(ρ+ 1), and
then the two balls

B+(R, r) =
(
−log(r+e−R), log(r+eR)

)
, B+(−R, r) =

(
−log(r+eR), log(r+e−R)

)
then if r ≥ ρ/(ρ+ 1),

B+(0, ρ) ⊂ B+(R, r) ∪B+(−R, r) .

Proof: indeed the right extrema of B+(−R, r) is positive when log(r + e−R) ≥ 0
that is (r + e− log(ρ+1)) ≥ 1 that is (r + 1/(ρ+ 1)) ≥ 1 �

10xm → x in the topological sense, i.e. d(xm, x) → 0.
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Example 11.4. Consider two copies (M, b) of the above space, join them at the origin,
reverse the metric on one: the resulting space M̃, b̃ is symmetrically complete, but
is neither forward nor backward complete.

More precisely, let M+ = R× {+}, M− = R× {−},

M̃ = M+ ∪M−/ ∼

where (0,+) ∼ (0,−) and then

b̃(x, y) =


b(x, y) if x, y ∈M+

b(y, x) if x, y ∈M−
b̃(x, [0]) + b̃([0], y) otherwise

.

Example 11.5. Let M be the disjoint union of segments with glued extrema; more
precisely

M = (Z× [0, 1])/ ∼
with ∼ identifying (n, 0) ∼ (m, 0) and (n, 1) ∼ (m, 1) for n,m ∈ Z, so that all points
(n, 0) collapse into a class [0] in M , and all points (n, 1) into a class [1] in M .

Let b be defined on segments as follows, if x = (n, s), y = (n, t) then

b(x, y) =
{

(s− t)(1 + en) s ≥ t
(t− s)(1 + e−n) s ≤ t

whereas
b([0], [1]) = b([1], [0]) = 1

and extend b (geodesically) when x = (n, s) and y = (m, t) with n 6= m using the
rule

b(x, y) = min
{
b(x, [0]) + b([0], y), b(x, [1]) + b([1], y)

}
.

We highlight the following properties
(1) (M, b) is a complete space.
(2) (M, b) is a s–intrinsic space.
(3) It is strongly separated.
(4) (M, b) is not locally compact.
(5) There is no minimizing geodesic connecting [0] to [1].
(6) If xn = (−n, 1/n) then

b(xn, [0]) = (1 + e−n)/n→ 0

but
b([0], xn) = (1 + en)/n→∞ ;

so this space is not “General metric spaces”, it does not satisfy (2.7).
(7) Moreover the set A = {[0], xn | n} is backward bounded but not forward

bounded.
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(8) Moreover ∀ε > 0 we can define

yn =
{
xn if nε < 2
[0] if nε ≥ 2

and then b(xn, yn) < ε and yn → [0]; but nonetheless xn 6→ [0].

The following example marks a fundamental difference between the cutlocus in
Riemannian Manifolds, and in asymmetric metric spaces. It is based on Example
4.6 in [16]. 11 (A similar example using a Finsler structure may be built starting
from Example 4.1 in [16].)

Example 11.6. Given a continuous injective monotonic map ξ : [a, c]→ R we define
the length len6 as

len6(ξ) = ξ(c)− ξ(a)
if ξ is increasing, while when ξ is decreasing we set

len6(ξ) = ξ(a)− ξ(c) + 1
2#
(

(ξ(c), ξ(a)] ∩ Z
)

where #A is the cardinality of the set A. As in 4.6 the effect is that, when paths
run rightwards the space is Euclidean, whereas when they run leftwards, it looks as
if there is a gap of width 1/2 near any integer point (“infinitesimally at the left of”
any integer point, in a sense).

We then define CP as the class of γ : [a, c]→ R that are continuous and piecewise
strictly monotonic, and extend the length len6 to CP by addittivity.

We identify the circle S1 with the quotient R/Z. We define a length structure
in S1 by projecting the above structure (Cp, len6). We then induce the distance
function b6 from this length structure. By using the Theorem 2.19 in [16], it is
possible to prove that len6 ≡ Lenb6 in CP .

Consider now x = [1/3] ∈ S1 and the paths ξ, γ : [0, 1] → S1 given simply by
ξ(t) = 1/3− t and γ(t) = 1/3 + t; for these paths we have `γ(t) = t but

`ξ(t) =
{
t if t ≤ 1/3
t+ 1/2 if t > 1/3

.

Let then ε ≥ 0 but ε < 1/12; if we want to connect x to y = [−ε] we can use the
path γ(t) with t ∈ [0, 2/3− ε], or the path ξ(t) with t ∈ [0, 1/3 + ε]. The remarkable
fact is that, if ε > 0 then the path γ is the minimizing geodesic, and ξ is not even
run-continuous; but for ε = 0 then ξ is the minimizing geodesic, and γ is strictly
longer than ξ, so γ is not a minimizing geodesic anymore.

Note that the space in Example 4.6 in [16] is not r–intrinsic, since there is no
run continuous path connecting 1 to −1 hence b(1,−1) = 3 6= br(1,−1) = ∞.
Similarly this space (S1, b6) is not r–intrinsic and not compact (indeed (S1, b6) is
homeomorphic to [0, 1) and not to S1 with the usual topology).

11.1. Examples from [16]. In the following we refer to the examples in [16].
Consider the space ([−1, 1], b1) in Example 4.1.
• (M, b1) is forward complete. Indeed, we show that if xn is forward Cauchy,

then it converges. If at a certain point we have that xn > 0 then for all m > n,
xm > 0 (otherwise, b(xn, xm) = ∞!). So the sequence is definitively xn ≤ 0,
or definitively xn > 0. In the first case definitively b(xn, xm) = |xn − xm| so it

11Unfortunately in 4.6 in [16] we claimed that “(CH , len5) is a length structure”; this is inexact,
since the class CH described in 4.6 is not closed under join of paths. The correct class would be the
class CP described in this example. That inexactness fortunately does not affect the importance of
the Example 4.6.



26 ANDREA C. G. MENNUCCI

converges. In the second case let ε > 0 and then m ≥ n ≥ N as per definition,
then whenever xm < xn we have that b(xn, xm) = log(xn)− log(xm) ≤ ε so xm is
bounded from below by xNe−ε, but also bounded from above by xN + ε; in this
interval b is equivalent to the Euclidean metric.
• (M, b1) is not backward complete since the sequence xn = 1/n does not
converge to zero, but, for m ≥ n ≥ N , b1(xm, xn) = 1/n − 1/m ≤ 1/n ≤
1/N .
• We have that D+(0, ε) = [−ε, ε] while D−(0, ε) = [−ε, 0], so (M, b1) is
backward locally compact but is not forward locally compact.

Consider the space ([−1, 1], b2) in Example 4.2.
• The space ([−1, 1], b2) is symmetrically complete but it is not forward
complete and is not backward complete.
• (M, b2) is symmetrically locally compact, but it is not forward locally
compact and not backward locally compact.

The space ([−1, 1], b3) in 4.4 is forward and backward complete; it is compact.

11.2. Randers spaces. We now propose an example based on the Randers metrics
(that are a classical example of Finsler structures — see in Sec. 1.3C and Chap. XI
in [2]).

Consider a Riemannian manifold (M, g); we call leng the length of absolutely
continuous paths in (M, g), |v|x =

√
gx(v, v) the norm of vectors v ∈ TxM , and δ

the Riemannian distance in (M, g). It is well known that leng = Lenδ. (A possible
proof is Prop. 2.25 in [16]).

Suppose moreover that there exists a smooth f : M → R such that

∀x ∈M , |∇f(x)|x ≤ 1 ; (11.2)

this implies that
|f(y)− f(x)| ≤ δ(x, y) .

We now proceed as in Example 2.4. We define

F (x, v) = |v|x + gx(∇f(x), v) ,

a simple computation shows that

lenF (γ) = leng(γ) + f(y)− f(x)

for any γ connecting x to y, and then

bF (x, y) = δ(x, y) + f(y)− f(x) ,

and
dF (x, y) = δ(x, y) + |f(y)− f(x)| .

It is easy to prove that bF is always a distance (and not only a semi distance).
Moreover the identity map (M, bF ) → (M, δ) is continuous, so the topology of
(M, bF ) is finer than the topology of (M, δ) (it has more open sets and less compact
sets).

If the inequality in (11.2) is always strict, then the space (M,F ) is a classical
“Randers space”. In particular, the space (M, bF ) is strongly separated, and the
distances δ and bF are locally equivalent, so that the topology of (M, bF ) coincides
with the topology of M (as a differential manifold) and of (M, δ) (as a metric space).

If instead there is a large enough region in M where (11.2) is an equality, then
the space (M, b) is not strongly separated. In the general case we can anyway study
the above objects using the methods developed in this paper.

Proposition 11.7. lenF = Lenb
F

, and the space (M, b) is r–intrinsic.
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Proof. We recall some results from [16]. Let (len,C) be a length structure, and bl be
the induced semi distance. In Sec. 2.4 in [16] we noted that Lenb

l

is the relaxation
of len according to an appropriate topology τDF; in Thm. 2.19 we then concluded
that lenF = Lenb

f

iff lenF is lower semi continuous in τDF.
Let now CAC C the class of absolutely continuous paths. (leng,CAC) is a length

structure. We already argued that leng = Lenδ, and leng is lower semi continuous
in τDF.

The quantity f(y)− f(x) is locally constant according to the topology τDF; So
by obtain that is lenF lower semi continuous on CAC and that lenF = Lenb

F

.
It is also easy to see that (lenF ,CAC) is a run-continuous and length structure (as

defined in 2.4 in [16]). So by Prop. 3.18 in [16] the space (M, b) is r–intrinsic. �

Note that, when we have equality in (11.2) at some points in M , we cannot use
Prop. 2.25 in [16] directly.

We conclude by remarking that the above type of reasonings was also one of the
main ingredients of [15].

12. Hopf–Rinow Theorem

We now present the asymmetric Hopf–Rinow-like theorem that holds in our
settings. We define that A is forward–bounded if A ⊆ B+(x, r) for a choice of
x ∈M, r > 0.

Note for example that the image γ([a, c]) of a run-continuous path γ : [a, c]→M
is forward and backward–bounded.

Theorem 12.1 (Hopf–Rinow). Consider the following three statements.
(1) Forward–bounded and closed sets are compact.
(2) (M, b) is forward complete.
(3) Any rectifiable minimizing geodesic γ : [a, c) → M may be completed to a

path that is run-continuous on [a, c] and continuous at c.
In general, the implications (1)=⇒(2)=⇒(3) hold for any asymmetric metric

space (M, b).
Suppose that (M, b) is r–intrinsic and forward-locally compact, then the three

properties above are equivalent.

We gladly note that the theorem works as desired in the realm Cr of run-continuous
paths; and that strong separation is not a necessary condition.

Note that statement (1) implies that any two points x, y with ρ = br(x, y) <∞
may be connected by a minimizing geodesic (that is also continuous if the space is
strongly separated); indeed D+r(x, ρ) ⊆ D+(x, ρ) so we may apply Thm. 9.1.

Note that statement (3) is not saying that the extension of γ is a geodesic. Indeed
Example 11.6 shows that this may be false in general.

The example 2.1.17 in [17] show that, even in the symmetric case, we cannot
discard any of the hypotheses in the above theorem.

12.1. Lemmas. In the rest of the section we will mainly prove the Theorem. We
extracted from the proof a plethora of lemmas (some of some interest in themselves);
some were presented in the section 6 on midpoint properties, some in Sec. 5, the
others are here following.

Definition 12.2. Let D+(a, ρ) def= {y | b(a, y) ≤ ρ}. We define the forward radius
of compactness R : M → [0,+∞] as

R(x) def= sup{ρ ≥ 0 | D+(x, ρ) is compact } .
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Note that for all ρ with 0 ≤ ρ < R(x) we have that D+(x, ρ) is compact. (M, b)
is forward-locally compact iff R(x) > 0 ∀x ∈M .

Lemma 12.3. • ∀x, y ∈M with b(x, y) <∞ we have R(y) ≥ R(x)− b(x, y).
• Consequently, if R(y) <∞ then ∀x ∈M with b(x, y) <∞ we have R(x) <
∞.
• d(x, y) ≥ |R(x)−R(y)| for all x, y ∈M for which R(x), R(y) <∞.

Proof. Indeed, fix x, y ∈M with b(x, y) <∞; if R(x) ≤ b(x, y) there is nothing to be
proved; otherwise, for any ρ with b(x, y) < ρ < R(x) we have that D+(y, ρ− b(x, y))
is compact, since

D+(y, ρ− b(x, y)) ⊆ D+(x, ρ) .

This implies that R(y) ≥ ρ − b(x, y), and then by arbitrariness of ρ we obtain
R(y) ≥ R(x)− b(x, y). If R(y) is finite, the above entails

b(x, y) ≥ R(x)−R(y) ;
reversing the role of x, y we obtain the second statement. �

In general (even when 0 < R(x) < ∞) it is possible to find examples where
D+(x,R(x)) is compact, and examples where it is not.

Example 12.4. Let M ⊂ I be given by
I =

(
[−7,−6] ∩Q

)
∪ [−6,−4) ;

and M = I ∪ {0}; let

b(x, y) =


|x− y| if x, y ∈ I,
4 if x ∈ I, y = 0,
∞ if x = 0, y 6= 0

The topology of (M, b) is the Euclidean topology. We note that
• R(x) = 0 when x ∈ [−7,−6],
• R(x) = x+ 6 when x ∈ [−6,−5], and D+(x,R(x)) is compact,
• R(x) = −x− 4 when x ∈ [−5,−4), and D+(x,R(x)) is not compact,
• R(0) =∞ since D+(0, ρ) = {0} is compact for any ρ.

In r–intrinsic and forward-locally compact spaces, instead, we can precisely
describe the behavior of R(x) as follows.

Lemma 12.5. Suppose that (M, b) is r–intrinsic and forward-locally compact.
Choose x ∈M such that R(x) <∞ and fix ρ > 0 such that D+(x, ρ) is compact; let
δ

def= miny∈D+(x,ρ) R(y). Then δ > 0, and R(x) = ρ+ δ.

Proof. Since D+(x, ρ) is compact then b is bounded on it, so by the second point of
12.3, R(y) <∞ for all y ∈ D+(x, ρ); hence R is continuous and bounded by the third
point of 12.3; since D+(x, ρ) is compact and R > 0 we conclude that δ > 0. Choose
0 < t < δ; define Vt as in 6.5; we know that Vt = D+(x, ρ+ t). We want to prove
that Vt is compact. Indeed choose (zn)n ⊂ Vt; then zn ∈ D+(yn, t) for a choice of
yn ∈ D+(x, ρ); choose s so that t < s < δ; up to a subsequence, yn → y ∈ D+(x, ρ),
so that for n large, d(y, yn) ≤ s − t hence b(y, zn) ≤ s. We proved that zn is
definitively contained in D+(y, s); D+(y, s) is compact since s < δ ≤ R(y); so we
can extract a converging subsequence.

“Vt ⊇ D+(x, ρ+ t)” and “Vt compact” imply that R(x) ≥ ρ+ t, and we conclude
by arbitrariness of t that R(x) ≥ ρ+ δ. The opposite inequality is easily inferred
from first point in the previous lemma 12.3, namely R(y) ≥ R(x) − b(x, y), that
implies δ ≥ R(x)− ρ. �
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A corollary of the above lemma is that (in the above hypothesis) D+(x,R(x)) is
not compact; so the above lemma is the quantitative version of the argument shown
in (8) in section I in [6].

Lemma 12.6. Suppose that (M, b) is r-intrinsic, for simplicity. Suppose that
0 < R(x) < ∞, let ρ = R(x); then for any y with L = b(x, y) ≤ ρ there is a
arc-parameterized minimizing geodesic γ : [0, L]→M connecting x to y.

This Lemma is actually a Corollary of Theorem 9.1. An alternative proof, based
on the repeated application of Lemma 6.4 (similarly to Prop. 6.5.1 in [2]) is in
Sec. B.8.

The example 4.1 shows that, even if the space is strongly separated, we cannot
expect that γ(t) be continuous at t = ρ in general: indeed the “identity path”
γ : [0, 1]→ [0, 1] is a minimizing geodesic but is not continuous at 0.

Lemma 12.7. Suppose that (M, b) is r–intrinsic and forward locally compact.
Suppose that there is a x such that ρ = R(x) <∞. Suppose that any rectifiable
minimizing geodesic γ : [a, c)→M with γ(a) = x may be extended to a path that is
run-continuous on [a, c] and continuous at c. Then D+(x, ρ) is compact.

Proof. Let {yn} ⊂ D+(x, ρ), and let Ln = b(x, yn). If lim infn Ln < ρ, we can
extract a subsequence nk s.t. Lnk

≤ t < ρ, that is, {ynk
} ⊂ D+(x, t) that is compact:

so we can extract a converging subsequence.
Suppose now that limn Ln = ρ. For any yn we use Lemma 12.6 to obtain the

minimizing geodesic γn : [0, Ln]→M connecting x to yn; if Ln < ρ we extend γn
constantly to [Ln, ρ] (the same method is used in eqn. (B.5)).

This part of the proof follows closely the proof of 9.1 (see Sec. B.6), so we
will just sketch these steps. Let D ⊆ [0, ρ) be a countable dense subset. For any
t ∈ D, t < ρ we have that γn(t) ∈ D+(x, t) that is compact. Using a diagonal
argument, up to a subsequence, we obtain that limn γn(t) exists, and we define
ξ : D → M by ξ(t) = limn γn(t). Since length is lower semi continuous, then ξ
is run-continuous; moreover any ball D+(x, r) with r < ρ is compact and hence
complete; so we can apply Lemma 5.10, and extend ξ to a arc-parameterized run-
continuous γ : [0, ρ)→M . The hypothesis now states that we can further extend
γ : [0, ρ] → M so that γ(t) is continuous at t = ρ. Since the space is forward
locally compact, let then ε > 0 be small so that D+(y, 3ε) is compact. Since γ(t)
is continuous at t = ρ, there is a t s.t. b(y, γ(s)) < ε for all s, t ≤ s ≤ ρ; fix s > t,
s > ρ− ε, s ∈ D; we apply the triangle inequality to prove that

b(y, yn) ≤ b(y, γ(s)) + b(γ(s), γn(s)) + b(γn(s), yn) ;

this is less than 3ε, definitively in n. We proved that the sequence yn is definitively
contained in D+(y, 3ε), so it admits a convergence subsequence. �

12.2. Proof of Theorem 12.1. We now use the above lemmas to prove 12.1.

Proof. • Suppose that forward-bounded closed sets are compact. If xn is
a forward-Cauchy sequence, then there exists N s.t. b(xN , xm) ≤ 1 for
m > N , that is, xm ∈ D+(xN , 1) that is compact; then we can extract a
converging subsequence, and use Prop. 4.4 to obtain the result.
• Let γ : [a, c)→M be the rectifiable geodesic. Suppose that (M, b) is forward

complete, then by Lemma 5.8 the limit y = limt→c− γ(t) exists, so we define
γ(c) = y. By Lemma 5.4 this extension is run-continuous.
• Suppose that any minimizing geodesic γ : I →M defined on I = [a, c) may
be extended: we will prove that forward–bounded closed sets are compact
(that is, that the radius of compactness R(x) ≡ ∞).
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The proof is by contradiction: suppose that there is a x such that
ρ = R(x) <∞; Lemma 12.7 show that D+(x, ρ) is compact, contradicting
Lemma 12.5.

�

We remark that the proof of the above equivalence cannot simply follow from the
proof for metric spaces §1.11 in [11], since that proof uses the property described in
Remark 4.5; neither it does follow from the proof in Finsler Geometry (see section
VI of [2]), since the latter uses the exponential map. The proof is also more involved
than in General metric spaces, many more extra technical lemmas are needed.

13. On the semidistances and the separation hypotheses

We conclude the paper with some remarks on the rôles of b = 0 or b =∞.
Consider a symmetric semidistance d, that is a d : M ×M → [0,∞] satisfying
• d ≥ 0 and ∀x ∈M,d(x, x) = 0;
• d(x, y) = d(y, x) ∀x, y ∈M ;
• d(x, z) ≤ d(x, y) + d(y, z) ∀x, y, z ∈M .

There is a standard procedure to reduce this case to the more usual case of metric
spaces. Indeed, the relation x ∼ y given by

x ∼ y ⇐⇒ d(x, y) = 0

is an equivalence relation; if we define M̃ = M/∼ and let d̃([x], [y]) = d(x, y) then
(M̃, d̃) is a metric space. Many important properties and operations (both metric
and topological) can be “projected” from (M,d) to (M̃, d̃).

Suppose that b is an asymmetric distance. If the space is not strongly separated,
it may be the case that, for a pair x, y ∈M with x 6= y, b(x, y) = 0 but b(y, x) > 0.
When we associate to (M, b) the symmetric distance d using (2.1), we also have
that d(x, y) > 0. So we cannot address this situation projecting to the quotient, as
above. This is the reason why we have to deal with the case of x, y ∈ M , x 6= y,
b(x, y) = 0 in some results of this paper, such as 10.3.

Note that the procedure described at the beginning of the section may be instead
used, in the asymmetric case, to project a space (M, b) where b is an asymmetric
semidistance to a space (M̃, b̃) where b̃ is an asymmetric distance; by defining
M̃ = M/∼ and

x ∼ y ⇐⇒ b(x, y) = b(y, x) = 0 .

14. When b =∞

The attentive reader may have noted that, in our definition of asymmetric metric
space, there may be points x, y at infinite distance. There are good reasons at that.
In general, even if the distance d is symmetric and d <∞ at all points, it may be
the case that two points x, y ∈M cannot be connected by a continuous curve, so
the induced geodesic distance dg(x, y) =∞. So we included this possibility in the
definition.

Anyway the case of infinite distance is uncommonly found in texts, so we propose
some remarks.

• Consider a symmetric distance d such that d : M×M → [0,∞], but otherwise
satisfying all the usual axioms. Again, there is a standard procedure 12 to

12Compare the idea in Exercise 2.1.3 in [3].
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reduce this case to the more usual case of metric spaces with d <∞. Indeed,
the relation x ∼ y given by

x ∼ y ⇐⇒ d(x, y) <∞
is an equivalence relation; moreover equivalence classes are both open
and closed, that is, points in different equivalence classes are in different
connected components.

Usual questions in topology and geometry can be studied by restricting
our attention to an equivalence class (or to a connected component); so
most texts, when presenting the theory of metric spaces, define the distance
d as d : M ×M → [0,∞).
• The above method immediately fails if the distance b is not symmetric,
since b(x, y) < ∞ is not an equivalence relation (it fails to be symmetric,
obviously). More in general, we have developed the theory of geodesics using
run-continuous curves; we have seen in examples that a run-continuous
curve can start in a connected component and end in a different connected
component: so we cannot study this theory by “restricting to a connected
component”.
• Another approach is as follows.
Proposition 14.1. Let ϕ : R+ → R+ be continuous and concave, ϕ(x) = 0
only for x = 0. Then ϕ is subadditive. So, defining b̃ def= ϕ ◦ b, b̃ is an
asymmetric distance.

Define ϕ by ϕ(t) = t/(1 + t) and ϕ(∞) = 1; then we set b̃ def= φ ◦ b; so
we obtain a space (M, b̃) that is topologically equivalent, and where the
distance does not assume the value +∞.
• Unfortunately this last remedy is, in general, only a placebo, when we are
interested in intrinsic spaces and/or in studying geodesics: suppose b is
intrinsic and we decide to set ϕ as above and define b̃ def= φ ◦ b: then b̃ is not
intrinsic; so if we try to substitute b̃ by its generated r-intrinsic distance
b̃r we find out, by prop. 14.2 below, that b̃r = br = b, and we are back to
square one.

So it seems that we may sometimes be forced to address the case when b =∞
for some points.
Proposition 14.2. Let ϕ : R+ → R+ be continuous and concave, ϕ(x) = 0 only
for x = 0. Let b̃ def= φ ◦ b. Suppose moreover the derivative of ϕ exists and is finite
at 0. If γ is run-continuous then

ϕ′(0) Lenb γ = Lenb̃ γ
so

br(x, y)ϕ′(0) = b̃r(x, y) ;
and similarly for bg and bs.
Proof. Let γ : [a, c] → M . Let ε > 0. In the definition (2.2) of Lenb γ it is
not restrictive to use only subsets T of [a, c] such that b(γ(ti), γ(ti+i)) ≤ ε ∀i ∈
{1, . . . , n− 1} (use uniform continuity of `γ and (2.4) to prove this fact).

Let now δ > 0; then there exists a ε > 0 such that
x(a− δ) ≤ ϕ(x) ≤ x(a+ δ) ∀x ∈ [0, ε]

with a = ϕ′(0); we obtain that

(a− δ) Lenb γ ≤ Lenb̃ γ ≤ (a+ δ) Lenb γ
hence the conclusion. �
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If ϕ′(0) =∞, wild things may happen: see Example 3.6 in [16], or 1.4.b in [11].

15. Conclusions

The results in Sec. 6 and Sec. 10 state that, in complete spaces (“complete” in
an appropriate sense),

• existence of quasi-midpoints is tightly related to the space being r–intrinsic;
• existence of midpoints is tightly related to existence of geodesics (in the
class Cr of run-continuous paths).

Furthermore,
• in Sec. 9, where we presented theorems that ensure the existence of min-
imizing geodesics, we found out that the results in the class Cr are more
satisfactory than the results in the class Cg; indeed in Cg (at the state of the
art of this paper) we needed to assume that the space is strongly separated;
• in Sec. 8 we noted that the arc-length reparameterization of a run-continuous
path is always run-continuous, but the reparameterization of a continuous
path may fail to be continuous.

Those results further support the idea (already developed in [16]) that, in the
asymmetric case, run-continuous paths are more “natural” than continuous paths.

The definition of asymmetric metric space was already presented also in Defn. 2.15
in [15], but in that case the space was always assumed to be strongly separated. In
[15] the Hopf–Rinow theorem was used as a tool to provide a condition for existence
and uniqueness to a class of Hamilton–Jacobi problems. One hope in developing
the current paper is that the more general Theorem 12.1 here presented may be
used for a generalization of the results in [15].

In developing this paper some natural definitions and questions have been skipped;
for example we did not present a definition of Lipschitz maps 13.

In the symmetric case the length of a curve may be seen as the integral of
the metric derivative along the curve itself; and the metric derivative itself is
then perused in the developing of analysis in metric spaces, a field in current and
interesting active development. An important question left unsolved is the definition
(if any) of metric derivative in the asymmetric case.

The reader may also have noted that no theory have been presented about the
class Cs defined in the introduction. A theory of geodesics in the class Cs has yet to
be developed (if it will be of any interest).

The proof of Prop. 9.1 (in Sec. B.6) does not use the (symmetric) Ascoli–Arzelà
theorem, since the space is not assumed to be strongly separated, and then run-
continuous paths may be not continuous (cf. Cor. 3.4). [8] presents an asymmetric
Ascoli–Arzelà theorem for quasi–metric spaces (where the topology is distinguished
in a “forward” and a “backward” topology, and hence the continuity of functions).
In this optic, part of the proof of Prop. 9.1 may be seen as a primitive Ascoli–
Arzelà theorem, valid only for run-continuous paths. It may be the case that an
adaptation of the arguments in [8] would provide an asymmetric Ascoli–Arzelà for an
appropriate class of functions between asymmetric metric spaces; this theorem then
would be used for a proof of Prop. 9.1 (but, see Example 5.13 in [8] for caveats).

13A definition had been there in a draft version...
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Appendix A. Comparison with related works

A.2. Regarding geodesics. Unfortunately the word geodesic has been associated
to different and incompatible definitions in the literature.

Remark A.1. In all works cited in this section, a path is a continuous mapping. We
remark moreover that in all of these works, a run-continuous path is also continuous;
either because the metric is symmetric, or because of the extra hypothesis (2.7).
Instead in this paper, when studying geodesics, we considered run-continuous paths;
and in this paper a run-continuous path is not necessarily continuous. This marks a
fundamental difference between the definitions in 7.1 here, and those found in other
papers.

A.2.1. Glossary. Let’s see other possible names and definitions. Let I ⊆ R be an
interval.

• Consider a minimizing geodesic connecting x to y as defined in in 7.1.
It is called shortest path in the definition 2.5.15 in [3].
It is called shortest join in [5, 6].
It is called geodesic in the introduction of Chap. 2 in [17]14.

• Consider a local geodesic as defined here in 7.1.
When the space is intrinsic, it is called geodesic in the definition 2.5.27

of [3].
• Consider a path connecting x, y such that

b(x, y) = Lenb(γ) . (A.1)
It is called segment in [4, 5, 19, 6].
A segment is necessarily a minimizing geodesic; the vice versa is true

when the space is intrinsic. Moreover existence of segments does imply that
the space be intrinsic, as we will see afterward.
• Consider a distance preserving path γ : I →M , i.e.

∀s, t ∈ I, s < t ⇒ t− s = b
(
γ(s), γ(t)

)
. (A.2)

When the space is intrinsic, this is called minimizing geodesic in Sec. 1.9
in [11].

In [5, 6] Busemann calls this a straight line (assuming I = R).
In Definition 2.2.1 in [17] this is called a geodesic path (or simply geodesic)

when I = [a, b], a geodesic ray if I = [0,∞), a geodesic line if I = R. A
geodesic segment in [17] is the image of a geodesic path; a straight line is
the image of a geodesic line.

Up to arc reparameterization, this is similar to the definition of global
geodesic proposed here in, but with an important difference: br is replaced
with b. That is, if the space is r-intrinsic, then a path satisfying (A.2) is a
arc parameterized global geodesic (in the language of this paper). See though
Remark A.2.
• Consider a locally distance preserving path γ : I →M , i.e.

∀t0 ∈ I, ∃ε > 0, ∀s, t ∈ I, t0−ε < s < t < t0 +ε ⇒ t−s = b
(
γ(s), γ(t)

)
. (A.3)

In [5, 6] Busemann calls this a partial geodesic, or geodesic if I = R. 15

When (M, b) is intrinsic, this is called geodesic in Sec. 1.9 in [11].
It is called local geodesic in Definition 2.4.8 in [17].
In [19] this same definition is called extremal.

14Curiously, the definition of geodesic given in the introduction of Chap. 2 in [17] is different
from the Definition 2.2.1 in the same book [17], see (A.2) here.

15In [4] geodesics were equivalence classes of paths; that definition was simplified in later texts.
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This is similar to the definition of local geodesic proposed here in, but
with an important difference: br is replaced with b. That is, if the space is
r-intrinsic, then a path satisfying (A.3) is a arc parameterized local geodesic.
See though Remark A.2.

Remark A.2 (Arc parameter and strong separation). If the space (M, b) is r-intrinsic
and strongly separated, then a theory of continuous partial geodesics based on the
the definition (A.3) would be equivalent to a a theory of continuous local geodesics
based on the definition in 7.1. Indeed we may always reparameterize any local
geodesic to arc parameter, so as to satisfy (A.3). Due to the discussion in Sec. 8.1
we understand that, in the general case of asymmetric metrics, when the hypothesis
(1.1) does not necessarily hold, the two approaches are not equivalent. This
explains why, in Definition 7.1, we used a formulation that does not force geodesics
to be arc–parameterized. The same remark holds for the definition in eqn. (A.2)
vs the definition of geodesic here presented.

A.2.2. Non intrinsic spaces. As we see above, another important difference between
the theory of geodesics in some texts and the definition 7.1 here, is that b is used
where we instead use br.

A first consequence is Prop. 2.4.2 in [17]: “if in a space any two points can be
connected by a segment ( i.e. a path satisfying (A.1)), then the space has to be
intrinsic”. The same is noted in the introduction in [6].

In some sense, this different choice does not lead to a loss of generality. We recall
from [16] that Lenb ≡ Lenb

r

and that the space (M, br) is r-intrinsic. So a path γ
that is a geodesic in (M, b) according to the definition in 7.1, is a geodesic/segment in
(M, br) according to the definition (A.1). So we may think that the two approaches
are equivalent, up to replacing (M, b) with (M, br).

There is though a subtle difference. Indeed the topology of (M, b) and of (M, br)
may be different (even when the metric is symmetric). In particular if D ⊆ M is
compact in (M, br) then it is compact in (M, b); the opposite is not true, as shown
e.g. by example 4.7 in [16]. So the result 9.1 is more general than what may be
expressed using the definition A.1 and/or assuming that the space is intrinsic. This
result 9.1 is then quite useful in cases when (M, b) is not intrinsic, the distance b
is known and well understood, but br is not completely understood, and yet it is
possible to prove that D+r is compact, or contained in a compact set, in the (M, b)
topology: this is the case e.g. in [9].

A.3. Menger convexity. Suppose that, for any r > 0, x ∈ M , D+(x, r) and
D−(x, r) are compact: such space (M, b) is called finitely compact in [4] and
other texts. A finitely compact space is also complete.

In [4] and later works 16, a (possibly asymmetric) metric space (M, b) is called
Menger convex if given two different points x, y ∈M , a third point z (different
from x, y) exists such that b(x, z) + b(z, y) = b(x, y).

Proposition A.3. If the General Metric space (M, b) is finitely compact and
Menger convex then the space is intrinsic and any two points x, y with b(x, y) <∞
can be connected with a minimizing geodesic.

This proposition is adapted to the language of this paper from (1.16) in [4] 17 ;
[4] attributes to Menger this kind of result. As we see, the classical definition of
Menger convexity forces the space to be intrinsic.

16Or also in [17], where though only symmetric metrics are studied.
17Or see Theorem 2.6.2 in [17], where the hypothesis “proper” is the same as the hypothesis

“finitely compact” in Busemann’s works.
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For the already expressed reasons, we preferred to propose definitions of convexity
that do not force the space to be intrinsic.

The example 10.5 shows that “finitely compact” cannot be replaced with “locally
compact”.

A.4. Comparison with quasi metric spaces.

A.4.1. Topology. As already pointed out, our definition of the asymmetric metric is
quite similar to the definition of a quasi metric that is found in the literature, cf.
Wilson [18], Kelly [13], Reilly, Subrahmanyam and Vamanamurthy [12] 18 Fletcher
and Lindgren [10, (pp 176-181)], Künzi [14], and more recently Collins and Zimmer
[8]. One important difference is that in most texts, quasi–metrics are defined to be
strongly separated. Another important difference between our theory of asymmetric
metric spaces and quasi metric spaces is in the choice of the associated topology.

Indeed, we have three topologies at hand:
• the topology τ , generated by the families of forward and backward balls,
or equivalently by the metric d defined in (3.1);
• the topology τ+ generated by the families of forward balls;
• the topology τ− generated by the families of backward balls;

it may happen that these three topologies are different.
This problem has been studied in [13]: there Kelly introduces the notion of a

bitopological space (M, τ+, τ−), and extends many definition and theorems, (such as
the Urysohn lemma, the Tietze’s extension theorem, the Baire category theorem19)
to these spaces. Unfortunately Kelly does not include the topology τ in his studies.

We have chosen to associate the topology τ to the “asymmetric metric space”. τ
is a symmetric kind of object: as a consequence, we have only one notion of “open
set”, of “compact set”, of “the sequence (xn) converges to x”, and of “the functions
f : N →M and g : M → N are continuous”. Furthermore

Proposition A.4. If xn → x (according to τ) then the sequence (xn) is both a
forward Cauchy sequence and a backward Cauchy sequence,

as in the symmetric case.

A.4.2. Cauchy sequences, and completeness. In papers on quasi metric spaces, the
quasi-metric space (M, b) is instead usually endowed with the topology τ+: this
entails a different notion of convergence and compactness, and poses the problem to
find a good definition of “Cauchy sequence” and “complete space”.

This problem has been studied in [12], where 7 different notions of “Cauchy
sequence” are presented.

We remark that the list in [12] includes the three that we defined in Sec. 4: a
“forward Cauchy sequence” (resp. backward) is a “left K-Cauchy sequence” (resp.
right); a “symmetrical Cauchy sequence” is a “b-Cauchy sequence”.

Combining these 7 definition with the τ+ topology, [12] presents 7 different
definitions of “complete space”. 20

One of the notions of “Cauchy sequence” and “complete space” from [12] has been
further studied by Künzi [14]; we present it here.

Definition A.5.

18[12] provides also a wide discussion of the references on quasi metrics.
19Another version of Baire theorem, using a better definition of completeness, is found in Thm 2

in [12].
20Actually, by combining 7 “Cauchy sequences” with all the above 3 topologies, we may reach

a total of 14 (!) different definitions of “complete space” (using the b instead of b, see eq. (2.6)).
To our knowledge, no one has taken the daunting task of examining all of them.
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• A sequence (xn) ⊂M is a “left b-Cauchy sequence” when ∀ε > 0 ∃x ∈M
and ∃k ∈ lN such that b(x, xm) < ε whenever m ≥ k.
• (M, b) is a “left b-sequentially complete space” if any left b-Cauchy sequence
converges to a point, according to the topology τ+.

It is easy to prove that
(1) if xn → x according to τ+ then the sequence (xn) is a “left b-Cauchy

sequence”.
(2) Any “forward Cauchy sequence” (as defined in (4.1)) is a “left b-Cauchy

sequence”. (To prove this, choose n = N = k and x = xn in the definition
of left b-Cauchy sequence).

(3) If τ = τ+, then any “left b-sequentially complete space” is a “forward
complete metric space” as defined in this paper.

In case τ 6= τ+, the implication may not hold.
(4) Whereas, if xn → x according to τ+ then the sequence (xn) may fail to be

either a “forward Cauchy sequence” or a “backward Cauchy sequence”. 21

Cf. example 11.5.(6) here.
For those reasons, it is not easy to compare the results and examples in the above

papers, with the result and examples here presented.

Appendix B. Proofs

B.5. Proof of 8.5.

Proof. For s ∈ [0, L] we define the preimage

Is
def= {t ∈ [a, c] , s = `γ(t)} ;

since `γ is continuous then it is surjective, so Is is a bounded closed interval, never
empty, hence ψ(s) is just its leftmost point. Moreover ψ is injective, and ψ is a
right inverse of `γ i.e. `γ(ψ(s)) = s for all s ∈ [a, c].

Let D be the image of ψ, that is the family of all left extrema of Is for s ∈ [0, L].
Obviously `γ(D) = [0, L], so by Lemma 5.6 we obtain that `γ ≡ `γD.

Fix s̃ ∈ [0, L]. Let t̃ = ψ(s̃) so `γ(t̃) = s̃. Since ψ is injective and its image is D,
visual inspection shows that `γD(t̃) = `θ(s̃) so `θ(s̃) = s̃.

The proof for β is identical, just replace ψ(L) in D with c. �

B.6. Proof of 9.1.

Proof. Fix x, y ∈M , ρ > 0, as in the statement. suppose y 6= x (otherwise γ ≡ x is
the geodesic) and b(x, y) > 0 (otherwise the geodesic can be defined as in the proof
of 7.4).

Let L = br(x, y); since b(x, y) > 0 then L > 0. Let γn : [0, 1] → M be a
sequence of rectifiable run-continuous paths from x to y such that, Ln

def= Lenb γn,

L+ 1/n ≥ Ln ≥ Ln+1 ≥ L ,

and γn are parameterized using lemma 8.4 with ε = 1/n; so `γn is Lipschitz of
constant L+ 2/n.

Let now D ⊂ [0, 1] be a dense countable set with 0, 1 ∈ D; let ξn = γn|D the
restriction; by Lemma 5.6 `γn ≡ `ξn .

Consider t ∈ D, t 6= 0, 1; let v such that tL < v < ρ; since `ξn(t) ≤ t(L + 2/n)
we obtain that t(L+ 2/n) < v for n large, so ξn(t) ∈ D+r(x, v) for n large; hence
ξn(t) admits a converging subsequence. Using a diagonal argument we can find a

21Indeed, Kelly [13] had encountered this problem, which was a motivation of [12].
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subsequence nk such that ξnk
(t) converges for all t ∈ D. We define ξ(t) = limk ξnk

(t).
For t = 0, 1 we have

x = γn(0) = ξn(0) = ξ(0) , y = γn(1) = ξn(1) = ξ(1) ∀n.
Using Ascoli-Arzelá theorem we can also assume that `ξnk converges to a function `
that is monotonic and Lipschitz of constant L. For simplicity we will rename the
subsequence nk to n in the following.

The length LenbD is lower semi continuous w.r.t. the pointwise convergence, hence

`ξ(1) = Lenb(ξ) ≤ lim inf
n

Lenb(ξn) = L . (B.1)

By applying the above idea to any subinterval [s, t] with s ∈ D and using Lemma
5.3 we also obtain

`ξ(t)− `ξ(s) ≤ lim inf
n

(
`ξn(t)− `ξn(s)

)
= `(t)− `(s) ≤ L(t− s) . (B.2)

This inequality implies two important properties.
• Since D is dense it implies that `ξ is continuous on [0, 1].
• Setting s = 0, t ∈ [0, 1), from `ξ(t) ≤ Lt we obtain that ξ(t) ∈ D+r(x, Lt).
But Lt < L ≤ ρ so D+r(x, Lt) is contained in a compact set.

Hence we can define a map γ : [0, 1] → M as follows (similarly to the proof of
Lemma 5.10), setting γ = ξ on D, while for any t ∈ (0, 1) \ D we define γ(t) as
the limit of a subsequence of ξ(sn) for sn ⊆ D with sn ↗ t. By Lemma 5.7 we
obtain that `γ ≡ `ξ on [0, 1]. So γ is run-continuous. Since L = br(x, y) is the
infimum of the lengths, by eqn. (B.1) we obtain that actually `γ(1) = Lenb(γ) = L.
Eventually exploiting the relation (B.2) and the fact that `γ(1) = L, `γ(0) = 0 we
prove that actually `γ(t) = Lt. By a linear change of parameter we obtain the
desired curve. �

B.7. Proof of 9.3. This is instead the proof of 9.3; it is based on the classical
“direct method” in Calculus of Variations. By replacing D+g(x, ρ) with D+r(x, ρ),
and dropping the request that paths be continuous, 22 it can also be a proof of 9.1
when the space is strongly separated and D+r(x, ρ) is compact.

Proof. Fix x, y ∈ M , ρ > 0, as in the statement. We will write “D+g” instead of
“D+g(x, ρ)” and “len” for “Lenb” for brevity. By lemma 3.1, let ω be the modulus
of symmetrization of D+g; let ω̃(r) def= max{r, ω(r)}: then

d(z, y) ≤ ω̃
(
b(z, y)

)
(B.3)

for any z, y ∈ D+g.
Let L = br(x, y); suppose y 6= x (otherwise γ ≡ x is the geodesic). Let

γn : [0, 1]→M be a sequence of rectifiable continuous paths from x to y such that

Ln
def= len γn , Ln ≥ Ln+1 →n L

and moreover γn are parameterized using lemma 8.4 with ε = 1/n. By (B.3)
above,

d
(
γn(t), γn(s)

)
≤ ω̃

(
(L1 + 1) |t− s|

)
(B.4)

for all s, t ∈ [0, 1].
Suppose now that L = br(x, y) < ρ; then definitively Ln ≤ ρ; by eqn. (2.4), we

know that all of γn is contained in D+g. Combining this argument and (B.4) we
can apply the Ascoli-Arzelà theorem: we know that there is a γ : [0, 1]→M (that
again satisfies (B.4)) such that, up to a subsequence, there is uniform convergence
of γn → γ; this uniform convergence is w.r.t. the distance d(x, y) = b(x, y) ∨ b(y, x).

22But note that, due to Prop. 4.9, run-continuous paths are continuous in this proof!
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The functional γ 7→ len γ is l.s.c. w.r.t. uniform convergence so we conclude that γ
is a geodesic connecting x to y.

When L = br(x, y) = ρ, if γn is frequently wholly contained in D+g, all works as
above; otherwise the proof is obtained by a slight change in the above argument.
Let tn be the last of the times such that γn([0, t]) ⊆ D+g, that is,

tn
def= inf{s ∈ [0, 1] | γn(s) 6∈ D+g(x, ρ)} = inf{s ∈ [0, 1] | br(x, γn(s)) > ρ} .

Since `γn is Lipschitz then
br(x, γn(s)) ≤ `γn(s) ≤ (Ln + 1/n)s

so
ρ ≤ (Ln + 1/n)t̃n

so t̃n →n 1. Define

γ̃n(t) =
{
γn(t) if t < tn

γn(tn) if tn ≤ t ≤ 1
; (B.5)

since γ̃n are wholly contained in D+g, we can apply the above reasoning to say that
there is a continuous γ̃ such that γ̃n → γ̃ uniformly. To conclude the proof we need
to prove that γ̃(L) = y:

b(γ̃n(tn), y) ≤ br(γ̃n(tn), y) = Ln − ρ
so by (B.3) again, γ̃n(tn) → y: the sequence γ̃n is uniformly equicontinuous, this
implies that γ̃(1) = y. �

B.8. Proof of Lemma 12.6. This is an alternative proof of Lemma12.6.

Proof. We will define the sequence (zn)n≥1 iteratively. z0 = x and zn+1 is minimum
point for the problem

min
z∈D+(zn,2−n−1ρ)

b(z, y) . (B.6)

Let ρn = (1− 2−n)ρ so ρn−1 + ρ2−n = ρn. Iteratively, we assert by induction that
b(x, zn) = ρn , b(zn, y) = 2−nρ ,

then D+(zn, 2−n−1ρ) ⊆ D+(x, ρn+1); since ρn+1 < ρ we obtain that the leftmost is
compact, so the above problem (B.6) has a minimum zn+1 that satisfies

b(zn, zn+1) = 2−n−1ρ , b(zn+1, y) = b(zn, y)− 2−n−1ρ = 2−n−1ρ

by Lemma 6.4, so
b(x, zn+1) ≤ b(x, zn) + b(zn, zn+1) ≤ ρn + ρ2−n−1 = ρn+1

but also
ρ = b(x, y) ≤ b(x, zn+1) + b(zn+1, y) ≤ ρ

so b(x, zn+1) = ρn+1 and induction step is concluded.
Using 9.1, there exists a arc–parameterized geodesic γn : [ρn, ρn+1]→M connect-

ing zn to zn+1. We define γ on [0, ρ) as the join of all these paths; since all triangle
inequalites above are equalities, then γ is a arc-parameterized geodesic on [0, ρ).

To conclude, we set γ(ρ) = y; the properties γ(ρn) = zn, b(zn, y) = 2−nρ and
Lemma 5.4 imply that γ is rectifiable and Lenb(γ) = ρ, and that γ is run-continuous
on all of [0, ρ]. �
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