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Abstract

A striking geometric property of elastic bodies with dislocations is that

the deformation tensor cannot be written as the gradient of a one-to-one

immersion, since its curl must not be zero, but equals to the density of dis-

locations, a concentrated Radon measure in the dislocation lines. In this

work, we discuss the mathematical properties of such constrained defor-

mations and study a variational problem in finite-strain elasticity, where

Cartesian maps allow us to consider deformations in Lp with 1 ≤ p < 2, as

required for dislocation-induced strain singularities. In its first part, this

paper addresses the problem of mathematical modeling of dislocations.

It is a key purpose of the paper to first build a framework where dislo-

cations are described in terms of integral 1-currents and to extract from

this theoretical setting a series of notions having a mechanical meaning

in the theory of dislocations. In particular, the paper aims at classifying

integral 1-currents, with modeling purposes. In the second part of the

paper, two variational problems are solved for two classes of dislocations,

at the mesoscopic, and at the continuum scale. By continuum it is here

meant that a countable family of dislocations is considered, allowing for

branching and cluster formation, with possible complex geometric pat-

terns. Therefore, modeling assumptions of the defect part of the energy

must also be provided, and discussed.

Keywords: Cartesian maps, integer-multiplicity currents, dislocations, finite elasticity,

modeling, variational problem.
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1 Introduction

1.1 Physical motivation of the problem

Consider one dislocation loop L in a continuum medium Ω(t) at time t. At the
mesoscopic scale it is assumed that Ω(t) \ L is an elastic body, and thus that
all dissipative (i.e., including plastic) effects are concentrated in L. It is also as-
sumed that L is a one-dimensional singularity set for the stress and strain fields.
Moreover, if a linear elastic constitutive law is chosen, classical examples of screw
and edge dislocations show that stress and strain are not square integrable [14],
and hence that the strain energy is unbounded near L. This strongly suggests
to consider finite elasticity near the line with a less-than-quadratic strain en-
ergy, possibly matched with a linear law at some distance from the singularities.
A crucial property of Ω(t) assumed as a single crystal (as opposed to a poly-
crystal with internal boundaries) is that the family of dislocations are free to
move in the bulk and through part of the boundary, and hence are likely to
form geometrically complex structures, called clusters (otherwise named dis-
location networks). This phenomenon is enhanced if the crystal is considered
at high temperature or subjected to high temperature gradients, since the con-
strained motion of dislocation on predefined glide planes only holds for moderate
temperature ranges. Overlooking on purpose the specific inter-dislocation dy-
namics [26, 29, 30] which causes attraction/repulsion between dislocations and
are responsible for their aggregation, in this paper we consider the cluster as
a mathematical object which must be described in a geometrically unified way
together and accordingly with any single dislocation loop.

1.2 Origin and nature of a dislocation singularity

Another intrisic difficulty of mesoscopic dislocations is that there is no natural
definiton of the displacement field (and so for the fictitious reference config-
uration), whereas the displacement field jump is a physical field attached to
L ⊂ Ω(t) and called the Burgers vector (this is the famous Weingarten’s the-
orem). Consider the current configuration Ω(t) (a bounded simply connected

2



set) with a single dislocation L and any dividing surface SL containing L. The
set Ω(t) \ L is not simply connected, but the upper and lower subsets of Ω(t),
Ω+(t) and Ω−(t) divided by SL, are simply connected and in each (an inverse)
displacement field uSL

: Ω(t) → R3 may be defined, which will be discontinuous
at SL, and will define a reference configuration with a mismatch along a surface
corresponding to the image of the jump set. This is precisely what characterizes
the presence of a dislocation. Now, the map Φ := ( Id + uSL

) allows us to de-
fine the associated elastic deformation tensor F = ∇φ (to be precise, an inverse
deformation tensor1) which is also discontinuous at SL. Taking two curves α±

in Ω±(t) with the same startpoint and two distinct endpoints outside and inside
L in SL, one classically has:

b =

∫

α±

Fdl, (1.1)

otherwise said, φ shows a jump of amplitude b at the jump set S◦
L enclosed by

L. Hence its distributional derivative writes as Dφ = F + b ⊗ nH2
xS◦

L
and it

holds −Curl F = Curl (b ⊗ nH2
xS◦

L
) (n representing the unit oriented normal

to S). Thus by Stokes theorem and written in terms of the dislocation density

Λ := τ ⊗ bH1
xL

(with τ the oriented tangent vector to L ⊂ Ω(t)) it holds

−Curl F = ΛT . (1.2)

1.3 The variational framework

Coming back to the physics and the mathematical properties of dislocations,
we have already mentioned that in linear elasticity F ∈ Lp(Ω(t),M3) with
1 ≤ p < 2, while specific examples for elastic bodies also show that p can-
not be greater or equal to 2 [31]. In fact, this properties originates from re-
lation (1.1) which shows that F behaves asymptotically near L as the inverse
of the distance to L. Moreover, with a view to a global model, cavitation so-
lutions cannot be ruled out, since they are at the origin of the nucleation of
dislocations from the growth of micro-voids in the bulk [21]. Here, classical
examples show that deformation allowing for radial cavitation are such that
cofF ∈ Lq(Ω(t),M3) with 1 ≤ q < 3/2 [13]. Thus, one cannot restrict to the
interval 3/2 ≤ p < 2 where some existence results in finite elaticity exists [20],
and must allow F, cofF ∈ Lp(Ω(t),M3) in the whole range 1 ≤ p < 2. For
this reason, as suggested in [20], Cartesian maps will be considered [12]. More-
over, nucleation of a dislocation loop resulting from the collapse of a void will
provoke locally high pressure gradient and hence the behaviour of the Jacobian
J = detF must be controlled. Therefore, classical pointwise conditions on J will
be considered: these are the non-negativeness (to ensure orientation preserving
deformation and non-interpenetration of matter) or the fact that J → 0+ is
precluded by finite energy states. Finally, to avoid any spurious, i.e., concen-
trated and dissipative, effects away from the dislocation set we will assume not

1This convention – of considering the inverse deformation gradient, defined in Ω(t) –, can
also be found in [1]. In fact, it is prefered to have a discontinuous reference configuration,
while the current configuration is the continuous medium containg the –possible moving–
dislocation network. Thus, the energy density of Ω(t) will also depend on such a F .
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only that detF, cofF ∈ Lp(Ω(t),M3) but also that their distributional coun-
terpart have no s-dimensional (0 ≤ s ≤ 3) singular parts in Ω \ L , that is,
DetF, CofF ∈ Lp(Ω(t),M3) locally away from L [19]. Indeed, the dislocation
induces a jump set where the distributional Jacobian concentrates. As a con-
sequence, the strain energy density We : M3 → R will depend on F, cofF and
detF and be assumed polyconvex, i.e., convex in each variable separately, and
satisfying the growth

We(F ) ≥ C(|F |p + | cofF |p + | detF |p)− β (1.3)

for some C, β > 0. In our problem, strain gradients play a crucial role and thus
a strain-gradient elastic energy involving F and Curl F will apply. This can be
achieved by considering an energy of the form W̃(F, Curl F ) =

∫

ΩWe(F )dx +

W̃defect(Curl F ) or equivalently since −Curl F = ΛT
L (here L denotes the cur-

rent associated to L) in terms of the internal thermodynamic variable ΛL as
W(F,L) =

∫

Ω
We(F )dx+Wdefect(ΛL), where

Wdefect(Λ) ≥ C‖ΛL‖M(Ω), (1.4)

allowing us to control pathological behaviours of dislocation clusters. The defect
part of the energy can also be seen as the energy depending on the concentration
of the Jacobian of the displacement (see section 6.3).

1.4 Scope and structure of the work

The variational framework was inspired by the pionneer paper [20], where a
single and fixed dislocation loop was considered, and hence minimization was
achieved only with respect to the deformation tensor F . The principal aim of
this paper is to generalize the problem, and thus minimization is made also w.r.t.
to the line location. With the aforementioned type of energy, our aim is twofold.
In a first step, to define classes of admissible deformations F and admissible
dislocations L satisfying (i) a boundary condition in terms of dislocation density
and (ii) the geometric contraint (1.2). In a second step, to prove existence of
solutions to

min
F,L

−Curl F=ΛT
L

W(F,L). (1.5)

To achieve the proof of existence, a series of preliminary results must be proved
and in particular we define and carefuly analyze two classes of dislocations,
at the mesoscopic and at the continuum scales. To this respect an important
result is Theorem 4.5 which states their equivalence under certain conditions.
Let us stress that each of these two classes has a specific interest in terms of
modeling, according to choice of the dislocation variable: either the line per
se (a current, L, which might be followed with time, though in this work we
restrict to statics), or its associated density (i.e., a measure, ΛL, while evolution
of L is not known everywhere). Then, the two existence results are Theorems
6.5 and 6.6, respectively for the class of mesoscopic and continuum dislocations.

Let us remark that by solving (1.5) we consider a static problem, whereas
dislocations are known to be moving defects inside the crystal by the action of
mechanical and thermal forces [1,15]. First, we should precise that by consider-
ing an equilibrium problem at fixed time t we indeed define a thermodynamical
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ground-state on the base of which dynamical effects will be added in a sec-
ond step, beyond the scope of this paper. Second, such minimization states
are reached very fast in actual crystals such as pure copper, where resistence
to dislocation motion is negligible [5]. Nonetheless we emphasize that the main
objective of this work is not the minimization result per se, but rather the math-
ematical definition of dislocations, achieved by means of integer-multiplicity
currents with coefficient in a group. A similar approch to continuum dislo-
cations by integral currents was already suggested in [16], [15], and [9], without
a sistematic description. It will be shown that these well-studied mathematical
objects are perfectly adapted to describe countable families of dislocations each
of which can deform and which mutually can be summed, possibly forming com-
plex transfinite geometries (in the sense of Cantor [7]), with appropriate laws
on their Burgers vectors.

The chosen approach to minimize jointly the deformation and the line lo-
cation is more physical, since the fields of deformation and dislocation density
are bound in essence. To our knowledge, this is the first generalization in that
direction. Of course, to achieve this purpose, modeling assumptions on the
defect-part of the energy must be made, since otherwise dense clusters might
appear as limit of minimizing sequences, and hence the mesoscopicity assump-
tion would be violated. We attempted to also give a physical understanding on
the growth assumptions, but our aim was mainly to set a mathematical frame-
work, where the complete problem could be studied. We are certain that better
assumptions exist, but left these considerations for a more model-oriented future
work. In this respect, thanks to our minimization results, the dynamics of the
lines at optimality could be analysed and discussed in a subsequent paper [23].

This paper is self-contained and can be read without previous notions neither
on dislocations nor on currrents. After collecting some preliminaries, in Section
3 the general notion of dislocations as described by integral currents is provided,
while in Section 4 special emphasis is given on its two subclasses of so-called
mesoscopic and continuum dislocations. In particular the relation between these
two notions is discussed in Theorem 4.5. In Section 5, we discuss the admissible
deformations satisfying contraint (1.2). In particular, we show that the class of
admissible deformations satisfying the boundary conditions given in terms of the
dislocation density is well defined and this allows us to solve the two minimum
problems of Section 6. Section 6.3 shows how the concept of deformations in the
presence of dislocations is related to the space of functions oh bounded higher
variations introduced in [17]. Conclusions and plans to further extend the range
of applications of this approach are drawn in Section 7.

2 Preliminary notions and results

The curl of a tensor A will be defined componentwise as (Curl A)ij = ǫjklDkAil
where D is a symbol for the distributional derivative; if pointwise and distribu-
tional derivative coincide then (Curl A)ij = ǫjkl∂kAil. In particular one has

〈Curl A,ψ〉 = −〈Ail, ǫjklDkψij〉 = 〈Ail, ǫlkjDkψij〉 = 〈A, Curl ψ〉. (2.1)

Note that with this convention one has Div Curl A = 0 in the sense of distri-
butions, since componentwise the divergence is classicaly defined as (Div A)i =
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DjAij .
2 For the remaining of this section, our main references are [11, 12].

2.1 Preliminaries on compact sets

Let C be a bounded compact set in Rn. We define K(C) as the family of compact
and non-empty subsets of C. We define the Gromov-Hausdorff distance dH(·, ·)
in K(C) by

dH(A,B) := max{sup
a∈A

d(a,B), sup
b∈B

d(A, b)},

for all A,B ∈ K(C). If A is a Borel set in Rn, we denote by Aǫ the set of points
at distance less than ǫ from A, i.e.,

Aǫ := {x ∈ Rn : d(x,A) < ǫ}.

It is known that the Gromov-Hausdorff distance satisfies

dH(A,B) = inf{ǫ > 0 : A ⊂ Bǫ and B ⊂ Aǫ},

for all A,B ∈ K(C), and hence the latter can be taken as an equivalent defini-
tion. The following theorem is a standard result, whose proof can be found, for
instance, in [4, 6].

Theorem 2.1. (Blaschke) Let C ⊂ Rn be a bounded compact set. Then the
space K(C) endowed with the Gromov-Hausdorff distance dH is sequentially
compact.

In particular, if Kn is a sequence in K(C) converging to K, than K is a
compact set. Moreover, it holds (for the proof see, e.g., [4, 6]):

Theorem 2.2. (Golab) Let {Kn} be a sequence of connected sets in K(C)
converging to K, such that H1(Kn) < λ < ∞. Then K is connected, has
Hausdorff dimension 1, and

H1(K) ≤ lim inf
n→∞

H1(Kn). (2.2)

2.2 Currents and graphs of Sobolev functions

Let M,n be integers with 0 ≤ M ≤ n. We denote by ΛMRn and ΛMRn the
vector spaces of M -covectors and M -vectors respectively. A M -vector ξ is said
simple if it can be written as a single wedge product of vectors, ξ = v1∧v2∧· · ·∧
vM . Let α be a multiindex, i.e., an ordered (increasing) subset of {1, 2, . . . , n}.
We denote by |α| the cardinality of α, and we denote by ᾱ the complementary
set of α, i.e., the multiindex given by the ordered set {1, 2, . . . , n} \ α.

For a n × n matrix A with real entries and for α and β multiindices such
that |α| + |β| = n, Mβ

ᾱ (A) will denote the determinant of the submatrix of A

2In this paper we therefore follow the transpose of Gurtin’s notation convention [8] but care
must be payed since the curl and divergence of tensor fields are given alternative definitions
in the literature (including the second author references [25]- [27] where it holds Curl A =
−A×∇).
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given by erasing the i-th columns and the j-th rows, for all i ∈ α and j ∈ β̄.
Moreover, symbol M(A) will denote the n-vector in ΛnR

2n given by

M(A) :=
∑

|α|+|β|=n

σ(α, ᾱ)Mβ
ᾱ (A)eα ∧ εβ,

where {ei, εi}i≤n is the Euclidean basis of R2n and σ(α, ᾱ) denotes the sign of the
ordered set {α, ᾱ} seen as a permutation of the set {1, 2, . . . , n}. Accordingly,
it holds

|M(A)| := (1 +
∑

|α|+|β|=n
|β|>0

|Mβ
ᾱ (A)|

2)1/2.

For a matrix A ∈ M3 it is intended by adj A and detA the adjunct, i.e.
the transpose of the matrix of the cofactors of A, and the determinant of A,
respectively. Explicitly,

M i
j(A) = Aij , M I

J (A) =M ī
j
(A) = ( cofA)ij M

{1,2,3}
{1,2,3} (A) = detA, (2.3)

where I and J are the complementary set in {1, 2, 3} of {i} and {j}. Moreover,

|M(A)| =
(

1 +
∑

i,j

A2
ij +

∑

i,j

cof(A)2ij + det(A)2
)1/2

. (2.4)

Let us also define
M(A) := (A, adj A, detA), (2.5)

and |M(A)| := |M(A)|.

Let Ω be an open set in Rn. For a non-negative integer M ≤ n, the space
DM (Ω) = D(Ω; ΛMRn) stands for of C∞-differential forms with degree M and
compact support in Ω. Moreover DM (Ω) := (D(Ω; ΛMRn))′ is the space of
M -dimensional currents on Ω, that is, continuous linear functionals on DM (Ω).
Since DM (Ω) is defined as a dual space, it is endowed with a natural weak
topology. More precisely, the currents Tk ∈ DM (Ω) are said to weakly converge
to T ∈ DM (Ω) if and only if

〈Tk, ω〉 → 〈T, ω〉

for every ω ∈ DM (Ω).

If S is a M -dimensional oriented submanifold in Rn and ~S : S → ΛM (Rn)
is a M -vector giving the orientation, symbol [S℄ ∈ DM (Rn) will denote the
current obtained by integration on S, i.e.,

[S℄(ω) =

∫

S

〈ω, ~S〉dHM for ω ∈ DM (Ω), (2.6)

where 〈·, ·〉 stands for the duality product between M -vectors and M -covectors,
and HM for the M -dimensional Hausdorff measure.

The boundary of a current DM (Ω) is the current ∂T ∈ DM−1(Ω) defined by

∂T (ω) := T (dω) for ω ∈ DM−1(Ω),

7



where dω is the external derivative of ω. Using again the duality with M -forms,
if U ⊂ Rn and V ⊂ Rm are open sets and F : U → V is a smooth map, it is
possible to define the push forward of a current T ∈ DM (U) through F as

F♯T (ω) := T (ζF ♯ω) for ω ∈ DM (V ),

where F ♯ω is the standard pull back of ω and ζ is any C∞
c (U) function that is

equal to 1 on sptT ∩ sptF ♯ω (where “spt” stands for support). It turns out that
F♯T ∈ DM (V ) does not depend on ζ and satisfies

∂F♯T = F♯∂T. (2.7)

The mass of a current T ∈ DM (Ω) is defined by

|T | := sup
ω∈DM(Ω),|ω|≤1

T (ω), (2.8)

and if V ⊂ Ω is an open set, we can consider the mass of T in V , i.e.,

|T |V := sup
ω∈DM(Ω),|ω|≤1,

sptω⊂V

T (ω). (2.9)

Not to weight up some formulas in the following, the following notation

N(T ) := |T |+ |∂T |, NU (T ) := |T |U + |∂T |U ,

will be employed whenever T ∈ DM (Ω) and U ⊂ Ω is open. Remark that this
number, which measures both the mass of a current and of its boundary, is not
a norm. Moreover, with a little abuse of notation, expression T ⊆ A will mean
in the sequel that the support of the current T is a subset of the closed set A.

A set S ⊂ Rn is said HM -rectifiable if it is contained in the union of a
negligible set and a countable family of C1-submanifolds. The current S is said
locally finite if for each compact set K ⊂ Rn we have HM (S∩K) <∞, and that
a HM -rectifiable set is a M -set if it has finite HM -measure. It is well known
that at HM -a.e. point x of a HM -rectifiable set S, there exists an approximate
tangent space defined as the M -dimensional plane TxS in Rn such that

lim
λ→0

∫

ηx,λ(S)

ϕ(y)dHM (y) =

∫

TxS

ϕ(y)dHM (y),

for all ϕ ∈ C0
c (R

n), where ηx,λ : Rn → Rn is the map defined by ηx,λ(y) =
λ−1(y − x) with x, y ∈ Rn and λ > 0.

Moreover, if τ : S → ΛM (Rn) and θ : S → R are HM -integrable and such
that τ(x) ∈ TxS is a simple unit M -vector for HM -a.e. x ∈ S, then we can
define the current T as

T (ω) =

∫

S

〈ω(x), τ(x)〉θ(x)dHM (x) for ω ∈ DM (Ω). (2.10)

Every current for which there exists S, τ , and θ as before is said rectifiable
current. If also its boundary ∂T is rectifiable, then to denote T , the short
notation

T ≡ {S, τ, θ} (2.11)
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will be adopted.
The current T ∈ DM (Ω) is rectifiable with integer multiplicity if it is re-

cifiable with rectifiable boundary, and S, τ , and A integer multiplicity current
T such that N(T ) < ∞ is said integral currents. The following compactness
theorem for integer multiplicity (“i.m.”) currents holds:

Theorem 2.3 (Compactness for i.m. currents). Let {Ti} ⊂ Dk(Ω) be a sequence
of integer multiplicity currents such that

NU (Ti) < C for all i and U ⊂⊂ Ω,

with C > 0. Then there exist an integer multiplicity current T ∈ Dk(Ω) and a
subsequence, still denoted by {Ti}i, such that Ti ⇀ T weakly in Ω as i→ ∞.

An integer-multiplicity current T ∈ DM (Rn) is said indecomposable if there
exists no integral current R such that R 6= 0 6= T −R and

N(T ) = N(R) +N(T −R).

The following theorem provides the decomposition of every integral current
and the structure of integer-multiplicity indecomposable 1-current (see [11, Sec-
tion 4.2.25]).

Theorem 2.4. For every integer-multiplicity current T there exists a sequence
of indecomposable integral currents Ti such that

T =
∑

i

Ti and N(T ) =
∑

i

N(Ti).

Suppose T is an indecomposable integer multiplicity 1-current on Rn. Then
there exists a Lipschitz function f : [0,M(T )] → Rn with Lip(f) = 1 such that

fx[0,M(T )) is injective and T = f♯[0,M(T )].

Moreover ∂T = 0 if and only if f(0) = f(M(T )).

Approximately differentiability almost everywhere is readily fulfilled if the
function u belongs toW 1,p(Ω,Rn). This will always be the case for the functions
considered in the sequel. We refer to [12, Section 3.1.5, Theorem 4] for the proof
of this fact and of Theorem 2.5. Given u ∈ W 1,p(Ω,Rn), we define its graph
Gu ⊂ Ω× Rn as

Gu := {(x, u(x)) : x ∈ Ru ∩ Ω}.

The following theorem provides a sufficient condition to guarantee that the
graph is a rectifiable set.

Theorem 2.5. Let u ∈ L1(Ω;Rn) be approximately differentiable almost every-
where. Then the graph Gu is a Hn-rectifiable set. Moreover it holds that if all
the minors of Du are integrable, then Hn(Gu) <∞.

Let us consider the map (Id × u) : Ω → Ω × Rn defined by (Id × u)(x) :=
(x, u(x)). If u ∈ W 1,p(Ω;Rn) and ω ∈ Dn(Ω×Rn), we can extend the definition
of pull-back also to the map Id× u, i.e.,

(Id× u)♯ω =
∑

|α|+|β|=n

σ(α, ᾱ)ωαβ(u, u(x))M
β
ᾱ (Du(x))dx1 ∧ dx2 ∧ · · · ∧ dxn
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where
ω(x, y) =

∑

|α|+|β|=n

ωαβ(x, y))dx
α ∧ dyβ . (2.12)

This allows us to extend the definition of push-forward of a current T also
throughout the map Id × u, provided u ∈ W 1,p(Ω;Rn). Let us consider the
current [Ω℄, the canonical current given by integration on Ω, we set Gu :=
(Id× u)♯[Ω℄, so that, for all ω satisfying (2.12), we have

Gu(ω) =

∫

Ω

〈ω(x, u(x)),M(Du(x))〉dx

=
∑

|α|+|β|=n

∫

Ω

σ(α, ᾱ)ωαβ(x, u(x))M
β
ᾱ (Du(x))dx.

2.3 Cartesian maps

Let u ∈ W 1,p(Ω;R3), and suppose uiDuj ∈ L1(Ω,R3) for all i 6= j, we define the
distributional cofactor of Du, the distribution CofDu writing componentwise

(CofDu)ij := Dj+1(ui+1Du(i+2)(j+2))−Dj+2(ui+1Du(i+2)(j+1))

with indices i, j ∈ {1, 2, 3} (taken mod 3 when summed and with the deriva-
tives intended in the sense of distributions). Moreover, AdjDu is the dis-
tributional adjunct of Du, that is the transpose matrix of the distributional
cofactor CofDu. In general it is not true that the pointwise and distribu-
tional adjuncts coincide. Suppose u1(adjDu)

1 ∈ L1(Ω,R3), with (adjDu)1 :=
(adj(Du)11, adj(Du)21, adj(Du)31) being the first column of adjDu. The distri-
butional determinant of Du is the distribution DetDu given taking the distri-
butional divergence of u1(adjDu)

1, i.e.,

〈DetDu,ϕ〉 :=

∫

Ω

u1(adjDu)
1Dϕdx, ∀ϕ ∈ C∞

c (Ω,R3).

As for the adjunct, in general DetDu and detDu differ. Let us define for p ≥ 1

Ap(Ω,Rn) := {u ∈ W 1,p(Ω,R3) :Mβ
ᾱ (Du) ∈ Lp(Ω) ∀α, β with |α|+ |β| = 3}.

In other words, a function u ∈ Ap(Ω,R3) if and only if u ∈ W 1,p(Ω,R3), and
adj Du, detDu belong to Lp(Ω).

Theorem 2.6. If u ∈ A1(Ω,Rn) then Gu is an integer multiplicity current
with multiplicity 1 and support given by the rectifiable set Gu whose orientation
is given by the n-form

~Gu(x, u(x)) :=
M(Du(x))

|M(Du(x))|
,

which turns out to be almost everywhere orthogonal to the approximate tangent
plane to Gu.

In symbols,

Gu(ω) =

∫

Ω

〈ω,
M(Du(x))

|M(Du(x))|
〉dHn

xGu
, (2.13)
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whereby for p ≥ 1, the class of Cartesian maps is defined as the function set

Cartp(Ω,Rn) := {u ∈ Ap(Ω;Rn) : ∂Gux(Ω×Rn)= 0}. (2.14)

The following closure theorem for Cartesian maps holds (see [12, Section 3.3.3]):

Theorem 2.7. Let uk ∈ Cartp(Ω,Rn) a sequence such that

uk ⇀ u weakly in Lp(Ω,Rn),

Mβ
ᾱ (Duk)⇀ vβᾱ weakly in Lp(Ω),

for all α, β with |α|+ |β| = n, then u ∈ Cartp(Ω,Rn) and vβᾱ =Mβ
ᾱ (Du).

The crucial point for our purposes is that for Cartesian maps it is always
true that DetDu = detDu and AdjDu = adjDu. In particular DetDu ∈ Lp(Ω)
and AdjDu ∈ Lp(Ω,Rn×n).

3 Dislocations as currents

A dislocation in an elasto-plastic body arises as a closed arc, or a path con-
necting two points of the boundary, to which a Burgers vector b ∈ R3 and a
measure concentrated on the dislocation line (the dislocation density) are asso-
ciated. Since dislocation densities fullfil linear additivity when dislocation lines
overlap, and since to each dislocation 2 preferential directions are associated,
which also define its density, we will describe dislocations by the tool of integer-
multiplicity 1-currents with coefficients in a group, that in the crystallographic
case is assumed isomorphic to Z3. The coefficient θ represents the Burgers
vector with its multiplicity, and the fact that it is constant on any dislocation
and that the dislocations are closed correspond to the requirement that such
currents are boundaryless (i.e., that the density is divergence free). Moreover,
integer-multiplicity 1-currents, thanks to Theorem 3.22, are essentialy Lipschitz
curves, and hence a description of dislocations without using the notion of cur-
rents is also possi ble. However the notion of currents, as we will see, simplifies
some descriptions and provides more direct proofs of some of the following state-
ments. In the sequel, we will introduce and discuss two families of dislocations
emphasizing the equivalence between them.

Let Ω be a bounded and connected open set in R3, with smooth boundary.
Let I ⊂ N be a family of indices.

Definition 3.1. A dislocation is a couple LI := (Li, b
i)i∈I , where Li are closed

integer-multiplicity 1-currents in Ω, and bi are vectors of R3. We define BI =
{bi}i∈I the set of Burgers vectors of LI. Each dislocation LI can be represented
by mean of the quadruple {Li, τi, θi, b

i}i∈I.

In many applications, the Burgers vector is constraint by crystollagraphic
properties to belong to a lattice. For simplicity this lattice will be assumed
isomorphic to Z3. Let the lattice basis {b̄1, b̄2, b̄3} be fixed, and define the set
of admissible Burgers vectors as

B := {b ∈ R3 : ∃β ∈ Z3 such that b =
3

∑

k=1

βib̄
i}. (3.1)

11



Accordingly, if BI ⊂ B, then LI is called crystallographic dislocation. Without
loss of generality we will assume that b̄i = ei, that is B := Z3. With this
definition we can identify each dislocation with a current with coefficients in the
group Z3. Specifically, given a dislocation LI , for all i ∈ I we define the current

L̂i := {Li, τi, θib
i}, (3.2)

which has multiplicity in Z3. In other words if ω is a 1-form with vector-
valued coefficients, i.e. ω = (ω)j , j = 1, 2, 3, with ωj = ωkjdxk, (with Einstein
summation convention on repeated indices), then, for every fixed i,

L̂i(ω) := Li(ωb
i),

where ωbi = ωkj(b
i)jdxk. Accordingly, the current associate to the dislocation

is defined by

L̂I :=
∑

i∈I

L̂i. (3.3)

In the sequel the space of 1-forms with vector-valued smooth and compactly
supported coefficients will be denoted by D1(Ω,R3).

The density of a dislocation is a key measure associated to the dislocation
current.

Definition 3.2. The density associated to LI is the linear functional ΛL de-
fined by

〈ΛL, w〉 :=
∑

i∈I⊂N

Li((wb
i)∗) =

∑

i∈I

L̂i(w
T dx), (3.4)

for every matrix test function w := [wij ] ∈ C∞(Ω̄,M3), where (wbi)∗ :=
wkjb

i
jdxk (with Einstein summation convention on repeated indices) and dx =

(dxj)j.

If
∑

i∈I

|Li|‖b
i‖ < ∞ then ΛL is well defined as a Radon measure, and we

write ΛL ∈ M(Ω̄,M3).

Definition 3.3 (Equivalence between dislocations). Two dislocations LI and
L′
I are said geometrically equivalent if

ΛL = ΛL′ . (3.5)

Definition 3.4 (Geometrically necessary dislocation set). The geometric nec-
essary dislocation set L⋆ is the support of ΛL. In particular there are τ⋆ and
I⋆, such that {L⋆, τ⋆, 1,BI⋆} is said the minimal dislocation equivalent to LI.

Under suitable assumptions L⋆ turns out to be a H1-rectifiable compact set.
In the sequel we discuss some sufficient assumptions in order for L⋆ to have this
regularity.

12



3.1 Regular dislocations

Definition 3.5 (b-dislocation). Let b ∈ B. A b-dislocation Lb is a dislocation
LI such that (i) bi = b for all i ∈ BI, (ii) I is finite with cardinality kb, (iii)
there exist kb Lipschitz functions ϕbi : [0, Ti] → Ω̄ with Lip(ϕbi ) ≤ 1 such that

Li = ϕbi♯[[0, Ti]℄. (3.6)

Moreover, for all i ≤ kb we have either ϕbi(0) = ϕbi (Ti) or ϕbi(0), ϕ
b
i (Ti) ∈ ∂Ω.

We set
Lb =

∑

i∈I

Li. (3.7)

The current L̂b defined by
L̂b(ω) := Lb(ωb), (3.8)

for all 1-form with vector-valued coefficients ω ∈ D1(Ω,R3), is called b-dislocation
current associate to Lb.

In particular, with this definition, we require that a b-dislocation is always
closed in Ω.

By Theorem 2.4, one can always decompose Lb as follows

Lb =
∑

i∈Ib

Lbi , (3.9)

with Lbi indecomposable 1-current such that
∑

i∈Ib

N(Lbi ) = N(Lb). The compo-

nents Lbi are called current loops. Thanks to the Lipschitzianity of the functions

ϕbj one has

kb
∑

j=1

lbj :=

kb
∑

j=1

∫ Tj

0

‖ϕ̇bj‖dt <∞, meaning that the total length of the

supporting set of the current Lb counted with overlapping is finite. Here lbj is

the length of the current given by ϕbj .
We remark that even if the word loop usually refers to a closed path, we use

the same word when refering to a no-closed path (with endpoints belonging to
∂Ω).

By definition of rectifiable current, if Lb is a b-dislocation then there is a
1-set called dislocation set that we denote by Lb, such that

Lb(ω) =

∫

Lb

〈ω(x), τb(x)〉θb(x)dH1(x) for ω ∈ D1(Ω). (3.10)

We can choose

Lb :=

kb
⋃

j=1

ϕbj([0, Tj]), (3.11)

for the rectifiable set supporting the current Lb, and we will also write Lb =
{Lb, τb, θb}. With such a choice Lb is a compact set. Note that with this choice
for the dislocation set, in general Lb does not coincide with the geometrically
necessary dislocation set L⋆, since somewhere on Lb it may happen that θb = 0.
Indeed, with this notation, θb may also take the value 0 in a set of H1 positive
measure. If Lbi are the indecomposable components of Lb in (3.9), we write
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(a)

b

b

b b = 0Ξ

(b)

b
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b

b

2b

(c)

b1

b2

b2b1
b1 + b2

(d)

Figure 1: Typical indecomposable dislocation loops and the resulting disloca-
tion currents: in (a), a single b-dislocation loop is equivalently viewed as two
indecomposable b-loops with opposite orientations and connected by a geomet-
rically unnecessary arc Ξ; the inverse property is observed in (b) where two
identical b-loops give rise to a single connected b-dislocation loop and a geomet-
rically unnecessary arc Ξ where Λ = 0; in contrast, (c) describes two b-loops
with opposite orientation which provide a simple cluster showing subarcs with
Burgers vectors b and 2b; the general case is shown in (d) where the cluster is
due to the union of two loops with distinct Burgers vectors obeying to Frank
rule.
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At P : b1 + b2 + b3 = 0
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b3 −b3 b3

b1 + b2

b1

b3

b2 + b3
b1 − b3

Ξ

b2

−b3

(b)

Figure 2: For certain combinations of Burgers vectors, the three separated loops
of (a) might intersect and form the cluster element of (b) where the Frank law
at the intersection points is satisfied.

b2b1 b1 + b2

b3Ξ

(a)

b b = 0Ξ

Ξ
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(b)

b
b
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bbbbb
b

b

bΞ

b
=

0

Ξ
b

=
0

(c)

Figure 3: Different kinds of cluster components: in (a) the sum of b-current
dislocations Lb1 + Lb2 + Lb3 is depicted, whereas (b) shows a single b-current
constituted of three elementary b-loops. In (c) a b-dislocation cluster writing as
Lb = ϕb♯[[0, T ]℄ is shown: it can be viewed as a countable chain of indecompos-
able b-loops interconnected with geometrically unnecessary arcs.
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Lbi = {Lbi , τ
b, θb}, in such a way that it holds Lb = (∪i∈IbLbi) ∪ Ξb, where Ξb is

defined as the set {x ∈ Lb : θb(x) = 0}.
As for general dislocations, to any b-dislocation we associate a density.

Definition 3.6. The density of a b-dislocation Lb is the measure ΛLb ∈ Mb(Ω̄,M
3)

defined by
〈ΛLb , w〉 := Lb((wb)∗), (3.12)

for every w := [wij ] ∈ C∞
c (Ω,M3), where (wb)∗ := wkjbjdxk.

Note that, by (3.8), if we identify smooth compactly supported tensor-valued
fields with smooth 1-forms with vector-valued coefficients, the density and the
current associated to a dislocation becomes the same object.

Since kb is finite ΛLb is always a Radon measure. In the sequel we will use
the following shortcut notation from (3.10) and (3.12):

ΛLb = Lb ⊗ b = τb ⊗ bθb H1
xLb . (3.13)

Definition 3.7 (Regular dislocation). A regular dislocation is a sequence of b-
dislocations LB := {Lb}b∈B whose total density (or associate current) has finite
mass. According to the previous definitions, the dislocation current, still denoted
by L̂, and the dislocation density ΛL, are given by

L̂ :=
∑

b∈B

L̂b, ΛL :=
∑

b∈B

ΛLb . (3.14)

The dislocation set L is defined as

L :=
⋃

b∈B

Lb, (3.15)

so that we can write L̂ = {L, τ, θ} with

τ ∈ TanL, θ =
∑

b∈B

sg(τb)θbb, (3.16)

where sg(τb) being 1 or −1, chosen in such the way that τ = sg(τb)τb (note that
θ ∈ Z3, while θb ∈ Z).

The dislocation current L = {L, τ, θ} is said connected if L is a connected
set. By (3.7), every dislocation current can also be written as

L̂(ω) =
∑

b∈B

L̂b(ω) =
∑

b∈B

∑

1≤j≤kb

ϕbj♯[[0, Tj]℄(ωb), (3.17)

for all ω ∈ D1(Ω,R3), and, enumerating the family of generating functions {ϕbj},
we construct a set of indices J = J (L) such that

∑

b∈B

∑

1≤j≤kb

ϕbj♯[[0, Tj]℄ =
∑

j∈J

ϕj♯[[0, Tj]℄. (3.18)

Moreover, setting Si := ϕi([0, Ti]), from (3.11) and (3.15) we also have

L =
⋃

j∈J

Sj . (3.19)
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Every current of the form L′ =
∑

j∈J ′ ϕj♯[[0, Tj]℄, where J ′ ⊂ J , is said a
subcurrent of L, and we write L′ ⊂ L. In such a case, setting L′ :=

⋃

j∈J ′ Sj ,
we can write L′ = {L′, τ, θ}. Again we say that a subcurrent L′ is connected if
the set L′ is connected.

Definition 3.8. Υ ⊂ L is called a cluster current if it is a maximal connected
subset of L with respect to the inclusion ⊂.

3.2 Canonical regular dislocations

Among all geometrically equivalent dislocations there exists one representation
which is sharp in the sense that it is expressed in terms of the independent ele-
mentary Burgers vectors. Let LB be a regular dislocation. Since a b-dislocation
Lb with b = (β1, β2, β3) has integer multiplicity, it can be written by means of
projections. Recalling definition (3.1) and notation (2.11), we introduce

Lb,i := {Lb, τb, βiθ
b}, (3.20)

with the corresponding density ΛLb,i := Lb,i ⊗ ei = Lb ⊗ βiei. Observe that for
fixed b it holds

3
∑

i=1

ΛLb,i =

3
∑

i=1

Lb,i ⊗ ei =

3
∑

i=1

τb ⊗ βiei θ
bH1

xLb= ΛLb .

To any regular dislocation LB we associate univoquely three currents {L1,L2,L3},
with

Li :=
∑

b∈B

Lb,i, (3.21)

so that Li = {L, τ, θi}, θi defined by

θi :=
∑

b∈B

sg(τb)βiθ
b, with b = (β1, β2, β3),

and sg(τb) being such that τ = sg(τb)τb. We then define the canonical disloca-
tion current associate to LB:

L̂ = L̂1 + L̂2 + L̂3, (3.22)

where L̂i is the i-th component of L̂ defined as

L̂i(ω) := Li(ωei) = Li(ωi), (3.23)

for all ω ∈ D1(Ω,R3), and fixed i = 1, 2, 3. In other words L̂i = {L, τ, θiei}.
A usefull property of the decomposition (3.22) is that the three measures

{ΛLi
}3i=1 operate on different (pointwise) orthogonal subspaces of C∞

c (R3,M3).

Lemma 3.9. The following assertions hold true:

(a) The currents Li (i = 1, 2, 3) are integer-multiplicity currents in Ω. As a
consequence L̂i are integral currents with coefficients in Z3.
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(b) The mass of the current and the total variation of the associated measure
are related by

|Li|Ω = |L̂i|Ω = ‖ΛLi
‖M(Ω) ≤ ‖ΛL‖M(Ω) = |L̂|Ω, (3.24)

for i = 1, 2, 3.

(c) The geometrically necessary dislocation set reads L⋆ :=

3
⋃

i=1

spt(Li) ⊂ L̄

and coincides with the support of the density ΛL.

Proof. Assertion (a) follows by Theorem 2.3 since
∑

b∈B

N(Lb,i) <∞ by definition

of regular dislocation.
The equalities in (3.24) follows by definitions and identifying forms with

smooth functions. Moreover it holds

ΛL =
∑

b∈B

ΛLb =

3
∑

i=1

ΛLi
, (3.25)

and explicitly,

ΛL =

3
∑

i=1

τ ⊗ eiθi H
1
xL=

3
∑

i=1

Li ⊗ ei, (3.26)

(recall that τ and θi are functions of x ∈ L). So that

‖ΛL‖M ≥ ‖ΛLi
‖M for i = 1, 2, 3. (3.27)

To prove (c), observe first that Li = {L, τ, θi} and by definition of Li and
ΛLi

it easily follows that sptLi = sptΛLi
. So we only need to prove that

sptΛL = ∪3
i=1sptΛLi

. But this is a direct consequence of the fact that ΛLi
acts

on orthogonal subspaces of C∞
c (R3,M3).

Definition 3.10 (Unnecessary dislocations). The set of unnecessary disloca-
tions Ξ is defined as L̄ \ L⋆.

Let us remark that L defined in (3.19) depends on the generating loops of
Definition 3.5.

4 Classes of admissible dislocations

In view of studying the dislocations motion, two classes of dislocations will now
be introduced, the first being usefull if one wishes to follow (for instance, with
time) each line as it deforms, intersect with others etc., whereas the second will
be more appropriate if the model relevant quantity is the dislocation density,
and not the single lines. In the latter case dislocations are determined up to the
equivalence relation (3.5) and the clusters might exhibit locally dense subsets
of unnecessary dislocations.
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4.1 The class of dislocations at the mesoscopic scale

At the mesoscopic scale, it is considered that every dislocation L has been
generated by a finite number of b-dislocation currents Lb.

Assumption 4.1 (Finite generation). The number of generating loops is finite,
i.e.,

kL :=
∑

b∈B

kb <∞, (4.1)

with κb introduced in Definition 3.5.

Let us recall that a finite number of generating b-dislocation currents does
not imply that the dislocation density ΛL is associated to a finite number of
distinct Burgers vectors, since the multiplicity on each arc of L is not limited
and since countably intersections of arcs may take place (in other words, the
resulting Burgers vector might be very large, provided it is attached to an arc
which is small enough). Moreover, the cluster of Fig. 3(c) made of countably
many loops whose lengths are summable and interconnected by unnecessary
segments, is a mesoscopic dislocation since it can be generated by a single b-
loop.

From the definitions above and Assumption 4.1 the following lemma is read-
ily proved.

Lemma 4.2. The following properties hold for dislocations at the mesoscopic
scale:

(a) The density of a dislocation ΛL is a bounded Radon measure since

‖ΛL‖M(Ω̄) ≤
∑

b∈BL

i=1,...,kb

|b|lbi <∞. (4.2)

with BL := {b ∈ Z3 : kb 6= 0} (Recall lbi is the length of the dislocation loop
ϕbi).

(b) The dislocation current L̂ is an integral current with coefficients in Z3

satisfying

‖ΛL‖ =M(L̂) ≤
∑

b∈BL

i=1,...,kb

|b|lbi <∞, (4.3)

with BL := {b ∈ Z3 : kb 6= 0}. In particular θ and θi, for i = 1, 2, 3 are all
summable functions with respect to H1

xL.

(c) The dislocation set L of the current L (defined in (3.15)) is a closed set
with finite H1-measure. In particular L⋆ ⊆ L and L = L⋆ ∪ Ξ.

Proof. To prove (a), observe that L = {Lb}b∈BL and hence ‖ΛL‖ ≤
∑

b∈BL

‖Lb ⊗

b‖ ≤
∑

b∈BL

i=1,...,kb

‖Lbi ⊗ b‖ ≤
∑

b∈BL

i=1,...,kb

|b|lbi , which is finite since the sum is finite by

the mesoscopicity Assumption 4.1. Statement (b) follows from (a) and prop-
erty (b) of Lemma 3.9. Property (c) is a straightforward consequences of the
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fact that H1(L) ≤
∑

b∈B

i=1,...,kb

lbi =
∑

b∈B

i=1,...,kb

∫ Ti

0

‖ϕ̇bi‖dt < ∞ by the mesoscopicity

Assumption 4.1.

We are ready to define the class of admissible dislocations at the mesoscale.

Definition 4.3 (Admissible mesoscopic dislocation).

MD := {L = {Lb}b∈B : Lb takes the form (3.7) and satisfies Assumption 4.1.}.
(4.4)

4.2 Dislocations at the continuum scale

A set in Rn is said a continuum if it is the finite union of connected and com-
pact 1-sets with finite H1 measure. Let us recall that the geometric necessary
dislocation set L⋆ is the support of ΛL. The space of admissible dislocations at
the continuum scale is introduced as follows:

Definition 4.4. [Admissible continuum dislocation]

CD := {LI , I ⊂ N : there exists a continuum K such that L⋆ ⊂ K}. (4.5)

When the context is clear, we will write L = LI and the set of continua K for
which L⋆ ⊂ K will be denoted by CL = CLI

.

In particular every L such that the support L⋆ of ΛL consists of finitely many
connected 1-sets is an admissible dislocation at the continuum scale. Contrarily
to mesoscopic dislocations (cf. Lemma 4.2 (b)), the density of a continuum
dislocation must not be finite (this might happen for an unconstraint family of
Burgers vectors).

4.3 An equivalence result

In the applications, the notion of continuum dislocations is usefull to study the
cases in which Assumption 4.1 is not satisfied. Moreover, if one is not interested
in the particular dislocation current associated to a given dislocation density,
mesoscopic dislocations become a superfluous notion. In fact, crystallographic
mesoscopic dislocations turn out to be equivalent to continuum dislocations, in
the sense that, for any continuum dislocation L, there is a mesoscopic dislocation
L′ such that L ≡ L′. The proof of this fact is based on the following theorem

Theorem 4.5. Let L be a closed integral 1-current with finite mass and whose
support L⋆ is contained in a connected and compact set K with finite H1-
measure. Then there exists a Lipschitz function α : S1 → K such that L =
α♯[S

1
℄.

To prove Theorem 4.5 we need some preliminary Lemmas:

Lemma 4.6. Let K be a compact connected set in Rn such that H1(K) < ∞.
Then there exists a Lipschitz map ψ : S1 → K that is onto and is homotopic to
the constant map.
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Proof. In the following we consider S1 as a subset of the complex plane C. Let
P ∈ K and let us consider the set

S := {φ : S1 → K satisfying the following three properties} (4.6)

(i) φ(1) = P .

(ii) φ is homotopic to the constant map φ ≡ P .

(iii) Letting C = φ(S1) and LC = H1(C), the curve φ is Lipschitz with con-
stant LC

π .

It is easily seen that, since K is a rectifiable set, S is non-empty. Given
φ ∈ S we want to enlarge its range in order to get an onto map. To this aim
we define the following order relation in S: we say that φ < φ′ if and only if
φ(S1) = C ⊆ C′ = φ′(S1). Let {φj}j∈J⊂R be a chain in S (assumed ordered by
the corresponding ordering of the indices in R), and set Lj := H1(φj(S

1)). Then
the sequence {Lj}j∈J is nondecreasing and bounded by H1(K), so that, since
the maps {φj} are uniformly continuous in j, there is an increasing sequence
jk → supJ and a map φ such that φjk → φ uniformly on S1. We claim that φ
is an upper bound for {φj}j∈J . Indeed, denoting Cj = φj(S

1), the increasing
sequence {Cj} converges to a compact set C ⊆ K with respect to the Gromov-
Hausdorff distance. Since jk → sup J we see that for each k ∈ J we have
Ck ⊆ C, so that we only have to prove that φ belongs to the family S. Setting
L := H1(C), we have L ≤ H1(K), and since Lj ≤ L the uniform convergence
and the uniform bound Lip(φj) ≤

L
π implies that Lip(φ) ≤ L

π . So (i) and (iii) are
readily fulfilled. Also (ii) is easy to see: let Φj be the homotopy map between
Φj(·, 1) = φj and the constant Φj(·, 0) ≡ P , and up to a rescaling, we suppose
that for all x ∈ S1 the map Φj(x, ·) is Lipschitz with Lip(Φj(x, ·)) ≤ L, so
that it readily turns out that Φj are uniformly continuous in j, and uniformly
converge to a map Φ; now it is straightforward that Φ is a homotopy between
φ and P , and the claim is proved.

We now are in the hypotheses of the Zorn’s Lemma, so that we get a maximal
element ψ for the class S. It remains to show that ψ is onto. Suppose it is not
the case. We set Cψ := ψ(S1) and suppose X ∈ K \ Cψ . Since Cψ is closed
and K is connected, there is a Lipschitz continuous arc α : [0, 1] → K such that
α(0) ∈ Cψ, α(1) = X , and α(y) ∈ K \ Cψ for y > 0. Let x ∈ ψ−1(α(0)), and
split S1 = [1, x] ∪ [x, 1]. Consider the restriction of ψ to this two intervals, ψ1

and ψ2. Then it is readly seen that the arc ψ1 ⋆α⋆α−1 ⋆ψ2, if suitably rescaled
as a function on S1, is a map in S that is strictly greater than ψ, contraddicting
the maximality of ψ. Hence the thesis follows.

Lemma 4.7. Let K be a compact 1-set and ψ : S1 → K be a Lipschitz contin-
uous map homotopic to a constant map. Then ψ♯[S

1
℄ = 0.

Proof. Suppose for simplicity K ⊂ R2. Since K is compact, Kc is an open
set, with only one unbounded connected component A. If X ∈ B := Kc \ A,
there exists an open ball centered in X that does not intersect K, so that it
follows that any connected component of B has positive Lebesque measure. As
a consequence there are at most countably many connected components in B.
Let Xi be a point in the i-th connected component of B. The homotopic group
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of Lipschitz closed arcs in K coincides with the free group on the generators
{Xi}i∈N.

Now, if the current carried by ψ is nonzero, the decomposition theorem
implies that there exists T = α♯[S

1
℄ an undecomposable component of the 1-

current ψ♯[S
1
℄. Let Xα be the homotopy class of T , setting T̂ = ψ♯[S

1
℄− T , it

turns out that the homotopy class of T̂ := α̂♯[S
1
℄ is −Xα. Since K is a compact

1-set, the unique arc (up to adding 0-homotopic branches) with homotopy class
Xα is the one passing on ∂Xα. This means that ∂Xα is run (at least) twince, one
time by α and another time by α̂ with opposite direction. But this contradict
the fact that α♯[S

1
℄ is an undecomposable component. Thus ψ♯[S

1
℄ = 0 and

the proof is complete.

Now we can prove Theorem (4.5).

Proof of Theorem 4.5. By the decomposition Theorem there are loops βj such
that L =

∑

j βj♯[S
1
℄. Consider a function ψ like in Lemma 4.6, so that there

are points xj ∈ S1 such that ψ(xj) = βj(1). Suppose for simplicity x1 = 1 and
xj are clockwise ordered on S1. Setting ψj := ψx[xj , xj+1], then the chain

ϕ := β1 ⋆ ψ1 ⋆ β2 ⋆ ψ2 ⋆ . . . βj ⋆ ψj . . . ,

suitably rescaled, will match the required conditions, since ψ, being homotopic
to the constant, is such that ψ♯[S

1
℄ = 0 from Lemma 4.7.

The precise equivalence theorem is stated as follows.

Theorem 4.8. Let LI be a continuum dislocation such that BI ⊂ Z3 and ΛLI

is finite. Then LI is a mesoscopic dislocation.

Proof. Considering the canonical dislocation current L̂ equivalent to LI (cf. Eq.
(3.22)), the thesis follows from Eq. (3.24) and Theorem 4.5. Indeed the latter
provides three Lipschitz functions αi (i = 1, 2, 3) such that αi♯[S

1
℄ = Li so it

follows ΛL =
∑

i αi♯[S
1
℄ ⊗ ei.

In particular Theorem 4.8 tells us that continuum and mesoscopic dislocation
are equivalent if the energy W of the system does not depend on the particular
dislocation current, but only on its dislocation density. We remark that the
thesis does not hold true if we do not make the assumption that the set of
Burgers vectors B is crystallographic (i.e., isomorphic to Z3).

4.4 Boundary conditions for dislocations

Let U be a bounded open set such that U ∩ ∂Ω = ∂DΩ.

Definition 4.9 (Boundary conditions). A boundary condition is a terne (N,P , αD)
satisfying:

(i) N ≥ 0 is a natural number.

(ii) P is a terne (Pi, Qi,BD)0≤i≤N with {Pi} and {Qi} sequences of points
in ∂DΩ, and BD = {biD}0<i≤N a sequence of vectors belonging to B. We

associate to P the 0-current with coefficients in Z3 as T̂D :=
∑

0<i≤N

δPi
biD−

δQi
biD, with δP the Dirac mass at P .
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(iii) αD := α+α′ is the sum of two mesoscopic dislocations in U . We suppose
that α is a closed current with support in ∂DΩ consisting of M <∞ loops
αi and Burgers vector biα, while α

′ consists of the union of N dislocation
loops αi with support in Ū \Ω, such that for all i, αi has boundary ∂αi =
δQi

− δPi
and associated Burgers vector biD ∈ BD.

From (iii) we can define ΛαD
=

∑

0≤i≤M

αbiα ⊗ biα +
∑

0≤i≤N

αb
α̂i

⊗ biD to be the

density of the dislocation current α. According to the definitions of dislocation
currents given above we denote by α̂D, α̂, and α̂′ the corresponding currents
with coefficient in Z3.

Definition 4.10. We say that the boundary condition (N,P , αD) is admissible
if the following condition is satisfied: there exists a regular dislocation L such
that ∂L̂ = T̂D. We say that a dislocation L satisfies the admissible boundary
condition (N,P , αD) if it satisfies the previous property.

As a consequence of the previous definition, it turns out that α̂D+L̂ is closed
in Ū ∪ Ω̄.

5 The class of admissible deformations

Let us fix an admissible boundary condition (N,P , αD). In the sequel, whenever
we consider an admissible dislocation L, it is always supposed that such L
satisfies the boundary condition (N,P , αD), and hence it will be convenient to
still denote the dislocation L′ := L+ α by L. In other words, when referring to
an admissible dislocation current, it is intended that it has been already summed
with α̂. We also fix a map F̄ ∈ Lp(Ω̂,M3) such that −Curl F̄ = (Λα)

T on U .

Definition 5.1.

F := {(F,L) ∈ Lp(Ω,M3)×MD : F satisfies (i)-(iii) below} (5.1)

(i) The dislocation current L̂ = {L, τ, θ} satisfies the boundary condition and
the function F̂ := χΩ̂\ΩF̄ + χΩF ∈ Lp(Ω̂,M3) is such that −Curl F̂ =

(ΛL)
T in Ω̂ (χA denoting the characteristic function of A).

(ii) We require that for every point x ∈ Ω\L there is a ball B ⊂ Ω\L centered
at x such that there exists a function φ ∈ Cartp(B;R3) with F = Dφ in
B.

(iii) detF > 0 almost everywhere in Ω.

Let us recall that if F = Du is the gradient of a Cartesian map, then
it is readily satisfied that the distributional determinant Det(F ) and adjoint
Adj(F ) of F are elements of L1(U,M3) and coincide with det(Du) and adj(Du)
respectively. It is also straightforward that smooth functions u ∈ C1(U,R3) are
Cartesian.

We will show that there exists at least one element in F with an admissible
L whose generating b-loops have a finite mutual intersection coincinding with α
in ∂ΩD. In the following theorem, we will use the following identity:

−Curl F = b⊗ τ H1
xL if and only if

∫

CL

F eθdH
1 = b. (5.2)
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for all Lipschitz-continuous closed path CL in Ω enclosing once L and with
unit tangent vector eθ. To check identity (5.2), simply observe that, if SL is
a Lipschitz and closed surface in Ω with boundary L and normal ν, Ω \ SL is
simply connected and hence there exists a function φ ∈ W 1,p(Ω \ SL) such that
F = ∇φ in Ω\SL. By (5.2), φ has a constant jump on SL (i.e., [[φ]]SL

= b). Thus
the distributional derivative of φ writes as Dφ = ∇φ+ b⊗ νH2

xSL
. Multiplying

by a test function ψ one has by (2.1) that 〈Curl (b ⊗ νH2
xSL

), ψ〉 = 〈b ⊗
νH2

xSL
, Curl ψ〉. Componentwise, by Stokes theorem, it reads as

∫

SL

nibjǫikl∂kψjldH
2 = bj

∫

L

τpψjpdH
1,

and hence 〈Curl (b⊗ νH2
xSL

), ψ〉 = 〈(b⊗ τH1
xL), ψ〉.

Theorem 5.2. The set F is non-empty for 1 ≤ p < 2.

Proof. We first construct an admissible function for a simple geometry. Consider
the circle L := {(x, y, z) ∈ R3 : |x|2 + |y|2 = R2, z = 0} as a dislocation loop
with Burgers vector b = β1e1 + β2e2 + β3e3 = βRhR + βlhl + βzhz, with the
local basis on L, {hR, hl, hz} = Q(l){e1, e2, e3} where Q(l) is the matrix of
rotation around e3 = hz and with angle l (see Fig. 4(a)). Let Vδ be a tubular
neighborhood of L with radius δ > 0, and let (r, θ, l) ∈ [0, 2δ]× [0, 2π]× [0, 2πR]
be a system of cylindrical coordinates in Vδ chosen in the following way: the
origin of θ is chosen in such a way that all points (x, y, z) ∈ Vδ with z = 0 and
|x|2 + |y|2 < R2 satisfy θ = a + π/4 for some constant a > 0 which fix the
orientation of the solid angle of amplitude π/2 constructed on L (cf. the black
triangle on the box below left of Fig. 4(a) denoted as S or V in the sequel),
while the coordinate r is the distance from the set L, and l, as before, R times
the angle around z axis. In Vδ we denote by g := (g

r
, g
θ
, g
l
), with g

l
= hl, the

local cylindrical basis defined on the normal sections ∂Vδ, corresponding to such
coordinates. We then consider the function F inside Vδ whose components in
the basis {hR, hl, hz} read

F (r, θ, l) = ζ(θ)





− sin θ
r βR + cos θ

r βR 0
− sin θ

r βl + cos θ
r βl 0

− sin θ
r βz + cos θ

r βz 0



 , (5.3)

where (r, θ, l) are the coordinates associated to the basis system g, and ζ is a
smooth function on [0, 2π) which is non-negative in (a, a+π/2), zero outside, and
has integral equal to 1. It is readily checked that curl F = 0 in Vδ\γ. It is known
that there exists a solution to equation F = ∇φδ in the simply connected domain
S := {(r, θ, l) : a < θ < a+ π/2, 0 < r < δ} with 0 ≤ l ≤ 2π, and in order to fix
the arbitrary constant, set φδ = 0 on S∩{θ = a} and φδ = b on S̄∩{θ = a+π/2}.
Let V be the solid of revolution around the z-axis generated by S. Considering
the axisymmetry we then extend φδ over the whole V and note that U is constant
on the sets Cθ̄ := {(δ, θ̄, l) : 0 ≤ l ≤ 2πR} for every a < θ̄ < a + π/2. Let Dθ̄

be the disk with boundary Cθ̄ where for every x ∈ Dθ̄, φδ(x) is defined as
φδ(x) = φδ(y) with y ∈ Cθ̄; define also D :=

⋃

θ∈(a,a+π/2)Dθ. We set φδ = 0

in Ω \ V \D and observe that it is smooth everywhere except at the interface
I between V and D and on J := D̄a+π/2 ∪ (V ∩ {θ = a + π/2}) where it has
a constant jump of magnitude b (cf. Fig. 4(b) above). Therefore we introduce
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φ̃δ, a C
∞-regularization of φδ in a set D ∩ V , with V a neighborhood of I, in

such a way that ‖∇φ̃δ‖L∞(D∩V) ≤ 2‖∇φδ‖L∞(D∩V) and define F := ∇φ̃δ, the

absolutely continuous part of the distributional gradientDφ̃δ (i.e., the pointwise
gradient of φ̃δ), while in the jump set J , the jump part of Dφ̃δ reads b⊗ν H2

xJ .
Moreover, (5.2) and (5.3) together entail that −Curl F = b ⊗ τ H1 on L. As
a consequence, we have constructed a function F which is smooth outside L
and vanishes outside T := V ∪ D, while from expression (5.3), F ∈ Lp(Ω) for
p ∈ [1, 2), since

‖F‖pLp(Ω) ≤ C|b|(Rδ2−p + δ1−pR2), (5.4)

for some positive constant C independent of R and δ. Moreover, by adding to F
an appropriate multiple of the identity it is readily seen that det(F+cI) > 0 for
some c > 0, while det(F + cI), adj(F + cI) also belong to Lp(Ω) for p ∈ [1, 2).

Finally, fix a ball B ⊆ Ω \ L: in such a ball the function F is smooth and
has null rotation and hence there exists a φ ∈ C∞(B) such that Dφ = F . In
particular we can take φ = φ̃δ when the ball does not intersect the jump set
J , otherwise, if it does, we sum to φ̃δ the constant b at all points of B which
are below J , thereby nullifying the discontinuity due to the jump. Thus φ is
smooth, and hence, is a cartesian map.

L

e3
e2
e1

e3 = hz

g
l
= hl

hz
hl

hR

P (l)

CL

T = D ∪ V
(section for fixed l)

det (cI +
∑3

k=1 Fk) > 0

Da

D V

g
l
g
r

g
θ

Da+ π
2

I

J

P (l)

CL

g
θ

(a)

L1

L7

T1

L1 ∩ L2
L2 ∩ L3

L3 ∩ L4 ∩ L5

L6 ∩ L7

L5 ∩ L6 L4

T
3

T2

T6

T
7 T

4
T5

JŨδ

Ũδ + b

(b)

Figure 4: Picture of the tube construction for the proof (a); the case of finitely
many boundary dislocation segments (b)

Let us now reproduce this argument for a finite number of circles with pos-
sible mutual intersection in ∂Ω, and show that the constant c > 0 can be chosen
in such a way that the determinant of the resulting deformation still remains
non-negative. Let us consider a finite number of loops Lk with 1 ≤ k ≤ K
with the associated Tk := Vk ∪Dk constructed as described above, and observe
that (by possibly adapting the amplitude of the solid angle Sk, i.e., replacing
π/2 by π/N) the Tk’s only intersect at points in Lk for some k’s, while keeping
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the Vk’s with empty mutual intersection (cf. Fig 4(b) below left). Let Fk be
defined as (5.3) with βk in place of β and ak = âk(l) in place of a such that
fk(θ, l) := βkl (l) cos θ − βkR(l) sin θ = βk2 cos (θ + l

R ) − βk1 sin (θ +
l
R ) ≥ 0 (for

instance, if β1, β2 > 0 then ak := 3π
2 − l

R ). Defining F :=
K
∑

k=1

Fk + cI, (5.4)

entails that F, detF, adjF belong to Lp and also that

detF =
c2

r
fk(θ, l)ζ(θ) + c3 ≥ 0 in Vk, (5.5)

while in Dk, one has detF > 0 provided c > 3maxk{‖Fk‖L∞(Dk)} (cf. box
below right in Fig. 4a).

Since the arguments presented above for a finite family of circular loops
remain valid for a finite family of Lipschitz deformation of such loops, with
appropriate Lipschitz deformations of the Tks. In particular, it holds for the
boundary current α and for any finite family of curves joining Pi’s to the Qi’s
without self-intersections and prolonged by a geometrically unnecessary arc in
∂Ω (an admissible F can be constructed as above in Ω̂ ⊃ Ω and then restricted
to Ω with its curl restricted to Ω̄). Thus the proof is achieved.

6 Existence of minimizers

Let us recall that U is a bounded open set such that U ∩ ∂Ω = ∂DΩ, Ω̂ :=
U ∪ Ω. We propose two models in which the energy does not depend on the
particular currents generating the dislocations but only on the density. However,
we remark that in general, energies depending on the loops per se may also
be considered (this was considered beyond the scope of this paper). In the
first existence result the model variables are the deformation and the family of
mesoscopic dislocations. In the second existence result, the model variable is
the sole deformation, while the dislocations are sought at the continuum scale
and hence are only found in an equivalence class.

6.1 Existence result in F ×MD

We are given a potentialW : F×MD → R̄ such that there are positive constants
C and β for which

W(F,L) :=

∫

Ω

We(F )dx+Wdefect(ΛL) ≥

C
(

‖M(F )‖p +
∑

j≤kL

bj‖ϕ̇j‖L1 + kL
)

− β. (6.1)

with the notation

‖M(F )‖p = ‖F‖pLp + ‖ cofF‖pLp + ‖ detF‖pLp .

Let us recall that kL is defined in (4.1), {ϕj}j≤kL are the generating loops
defined in 3.7, andM(F ) is the vector defined in (2.5). Here,We is an integrable
function and Wdefect a functional defined on Radon measures. It is also assumed
that
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(W1) We(F ) ≥ h( detF ), for a continuous real function h such that h(t) → ∞
as t→ 0,

(W2) We is polyconvex, i.e., there exists a convex function g : M
3×M3×R+ → R̄

s.t. We(F ) = g(M(F )), ∀F ∈ F ,

(W3) Wdefect := W1
defect+W2

defect, with W1
defect(ΛL) ≥ κ1kL and W 2

defect(ΛL) ≥
κ2

∑

1≤j≤kL
bj‖ϕ̇j‖L1, for some constitutive material parameters κ1 and

κ2.

(W4) W 1
defect is weakly* lower semicontinuous, that is lim inf

k⇀∞
W1

defect(Λ
k) ≥

W1
defect(Λ) as Λ

k ⇀ Λ weakly* in Mb(Ω̄,M
3).

Note that assumption (W2) implies that We(F ) :=
∫

ΩWe(F )dx is weakly lower

semicontinuous, i.e., lim inf
k→∞

We(F
k) ≥ We(F ) as M(F k) → M(F ) weakly in

Lp(Ω,M3)× Lp(Ω,M3)× Lp(Ω).

Remark 6.1. The term involving ‖ϕ̇j‖L1 in the energy bound is mandatory
for mesoscopic dislocations, since it controls the length of the lines. In fact,
minimizing sequences of Lipschitz maps (describing minimizing sequences of
lines) might become locally dense, a phenomenon which should be prohibited to
get existence. For a physical viewpoint this term is questionnable since dense
arcs of the dislocation cluster might be nonnecessary, and hence admissible from
an energetical standpoint. This drawback is addressed in the second existence
result for continuum dislocations in Section 6.1. Moreover, recalling (4.2), this
term implies a bound on the densities.

Before stating the existence of minimizers of the problem

inf
(F,ΛL)∈F×MD

−Curl F=ΛT
L

W(F,ΛL), (6.2)

some technical results should be stated and proven.

Lemma 6.2. Let (Fk,Lk) be a minimizing sequence for the problem (6.2), and
suppose detFk ⇀ D weakly in Lp(Ω). Then D > 0 a.e. in Ω.

Proof. Let A := {D = 0} and suppose A has positive Lebesgue measure.
We have detFk ⇀ 0 weakly in Lp(A), which since detFk ≥ 0 on A implies
that lim inf detFk = 0 almost everywhere in A. Indeed, if B := {x ∈ A :
lim inf detFk(x) > 0} has positive measure, then lim inf

∫

A
detFk > 0 since

χA ∈ Lq(A), a contradiction.
Hence from condition (W1) we must haveW(Fk,ΛLk

) ≥
∫

AWe(Fk,ΛLk
)dx ≥

∫

A
h( detFk)dx. By Fatou’s Lemma and the fact that (Fk,Lk) is a minimiz-

ing sequence, the contradiction follows, so A must be negligible, achieving the
proof.

Lemma 6.3. Let γn be a sequence of 1-currents inside Ω̄ such that γn =
ϕn♯[[0,M ]℄ for Lipschitz functions ϕn with Lip(ϕn) ≤ 1 for all n. Then, there
is a 1-current γ such that, up to subsequence, γn ⇀ γ, and γ = ϕ♯[[0,M ]℄ for
a Lipschitz function ϕ with Lip(ϕ) ≤ 1.
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Proof. The functions ϕn are equibounded and equicontinuous on [0,M ], and by
the Ascoli-Arzelà Theorem there is a map ϕ : [0,M ] → R3 with Lip(ϕ) ≤ 1
such that, up to subsequence, ϕn → ϕ uniformly. So it easily follows that
γn ⇀ γ := ϕ♯[[0,M ]℄.

Lemma 6.4. Let L̂n = {Sn, τn, θn} be a sequence of equibounded dislocation
currents of the form (3.22) satisfying the same boundary condition. Then there
is a dislocation current L̂ such that L̂n weakly converges to L̂ in the sense of
currents and that Λn := ΛLn

, the sequence of densities of Ln, weakly* converges
to Λ ∈ M(Ω̄,M3). Moreover L̂ satisfies the boundary condition, it has density
equal to Λ = ΛL, and for all i = 1, 2, 3, Lni ⇀ Li, Λ

n
i ⇀ Λi, and Λi = Li ⊗ ei

(with the notation (3.13)).

Proof. As in (3.22) we write L̂n = L̂1
n+ L̂2

n+ L̂3
n, and Λn = Λ1

n+Λ2
n+Λ3

n, with
Λin = Ln ⊗ ei. By the assumption we have that also Lin are boundaryless in
Ω and, thanks to (3.24), we have that N(Lin) are uniformly bounded, so that,
by Theorem 2.3, we deduce the existence of three closed integer multiplicity
currents {Li}3i=1 such that Lin ⇀ Li. Since

L̂n(ω) =

3
∑

i=1

Lin(ωi) →

3
∑

i=1

Li(ωi), (6.3)

for all ω ∈ D1(Ω,R3), we get L̂n ⇀ L̂ :=
∑3
i=1 L̂

i. The fact that L̂ satisfies the

boundary condition follows from the fact that ∂L̂n ⇀ ∂L̂. Identifying D1(Ω,R3)
with C∞

c (Ω,M3) it is straightforward that Λn ⇀ Λ = Λ1 + Λ2 + Λ3 weakly* in
M(Ω̄,M3), with Λin ⇀ Λi weakly* in M(Ω̄,M3), and that Λi = Li ⊗ ei for all
i = 1, 2, 3, achieving the proof.

Now we are ready to solve Problem (6.2).

Theorem 6.5 (Existence in F ×MD). Under assumptions (W1)− (W4) and
assuming that there exists an admissible (F,L) ∈ F×MD such that W(F,ΛL) <
∞, there is at least a (F,L) solution of the minimum problem (6.2).

Proof. Let (Fn,Ln) be a minimizing sequence in F . Then ‖Fn‖Lp , ‖adjFn‖Lp ,
‖ detFn‖Lp are uniformly bounded, so that there exist F, A ∈ Lp(Ω,M3), D ∈
Lp(Ω) such that

Fn ⇀ F weakly in Lp(Ω,M3), (6.4a)

adj Fn ⇀ A weakly in Lp(Ω,M3), (6.4b)

detFn ⇀ D weakly in Lp(Ω). (6.4c)

Since we consider extensions F̂n of F on Ω̂, it is straightforward that we can
suppose the same boundedness for F̂n on Ω̂ as for Fn on Ω, so that F̂ , Â, and
D̂ are such that (6.4a)-(6.4c) hold for F̂n, F̂ , Â, and D̂. Moreover, since Fn
satisfy the same boundary condition, it is obvious that F̂n = F̂ = F̄ on Ω̂ \ Ω,
so F̂ satisfies the boundary condition.

By the uniform bound on
∑

j≤kL
bj‖ϕ̇j‖L1 in (6.1) and by (4.2), it holds

a uniform bound on ΛTn := −Curl F̂n, and there is a measure Λ ∈ M(Ω̄,M3)
such that

Λn ⇀ Λ weakly* in M(Ω̄,M3). (6.4d)
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The result will follow by the direct method of the calculus of variations and
classical semicontinuity results for convex functionals, since conditions (W1)−
(W4) hold, provided the found minimizer is admissible.

Since the energies at (Fn,Ln) are uniformly bounded by kL in (6.1), we can
suppose that the dislocation currents L̂n are generated by the same number k
of 1-Lipschitz functions {ϕjn}

k
j=1, i.e.,

L̂n(ω) =

k
∑

j=1

ϕjn♯[[0,M ]℄(ωbj) and Λn =

k
∑

j=1

ϕjn♯[[0,M ]℄⊗ ei. (6.5)

for all ω ∈ D1(Ω̂,R3). So by Lemma 6.3 we can suppose that for every j we
have

ϕjn♯[[0,M ]℄ ⇀ ϕj♯[[0,M ]℄,

for some 1-Lipschitz functions {ϕj}kj=1. If we set L̂(ω) :=
∑

j ϕ
j
♯[[0,M ]℄(ωbj)

for all ω ∈ D1(Ω̂,R3), by Lemma 6.4 we have L̂n ⇀ L̂, Λn ⇀
∑

j ϕ
j
♯[[0,M ]℄⊗bj

weakly* in M(Ω̂,M3), so from (6.4d) we get

Λ =
∑

j

ϕj♯[[0,M ]℄⊗ bj . (6.6)

Now, for a test function w ∈ C∞
c (Ω̂,M3), it holds

〈Curl F̂n, w〉 = 〈F̂n, Curl w〉 → 〈F̂ , Curl w〉 = 〈Curl F̂ , w〉. (6.7)

Since the first term in the left-hand side of (6.7) also tends to 〈−ΛT , w〉, we
finally get

−Curl F̂ =
∑

j

bj ⊗ ϕj♯[[0,M ]℄. (6.8)

Let us set Ln := ∪kj=1ϕ
j
n([0,M ]) and L := ∪kj=1ϕ

j([0,M ]). We now want to
show that for every point x ∈ Ω \ L there is a ball B ⊂ Ω \ L centered at x
and a map u ∈ Cartp(B,Rn) such that Du = F in B. Let x be such a point,
since ϕjn → ϕj uniformly, it follows that Ln tends to L in the Gromov-Hausdorff
topology, so that we have B ∩Ln = ∅ for n sufficently large. In such a ball, by
hypotheses, there are maps un ∈ Cartp(B,Rn) satisying Dun = Fn, and, up to
summing suitable constants to un, we can also suppose un have all zero average
in B. So that the Poincaré’s inequality provides u such that un ⇀ u weakly in
W 1,p. Now Theorem 2.6 implies that A = adjF and D = detF , so the thesis
follows from (6.4a)-(6.4c) and Lemma 6.2.

We remark that with the formulation (6.1) the potential W (F,ΛL) depends
explicitly on the dislocation current.

6.2 Second existence result

We now prove an existence result with W a function of F only, and where the
dislocations associated to the optimal F are geometrically equivalent to a 1-set.
This means that the dislocation itself can be locally dense and of infinite length.
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As for the first result, we fix a boundary condition α and a map F̄ ∈ Lp(Ω̂,M3)
such that −Curl F̄ = (Λα)

T on U . We redefine the set of admissible functions:

F ′ := {F ∈ Lp(Ω,M3) : F satisfies (i)-(iii) below} (6.9)

(i) There exists a continuum dislocation L := LI ∈ CD satisfying the bound-
ary condition such that F̂ := F̄χΩ̂\Ω+FχΩ ∈ Lp(Ω̂,M3) satisfies−Curl F̂ =

(ΛL)
T
in Ω̂.

(ii) There is a continuum C such that L⋆ ⊂ C and such that for every x ∈ Ω\C
there is a ball B ⊂ Ω \ C centered at x and a function φ ∈ Cartp(B;R3)
satisfying F = Dφ in B.

(iii) detF > 0 almost everywhere in Ω.

We consider a slightly different set of assumptions on W : F ′ → R̄:

(W5) there is a positive constant C such that

W(F ) ≥ C
(

‖M(F )‖p + ‖Curl F̂‖M(Ω̄) +G(L)
)

− β,

with
G(L) := inf

K∈CL

(

H1(K) + κ#K
)

, (6.10)

where #K represents the number of connected components of the em-
bedding continuum K and κ a material parameter. Note that by Golab
theorem G is also lower semi-continuous.

(W6) there exists a weakly lower semicontinuous functional Wdefect such that

W(F ) = We(F ) +Wdefect(−(Curl F̂ )T).

It is also assumed that We(F ) =
∫

Ω
g(M(DF ))dx with g as in (W2) above

and g(M(DF )) ≥ h( detF ), for some continuous real function h such that
h(t) → ∞ as t→ 0.

As mentioned for the first minimum problem, again we can assumeWdefect =
W1

defect +W2
defect, with, for instance, W2

defect = κG for some κ > 0, whereas a
typical example for W1

defect is the form

W1
defect(Λ) =

∫

L

ψ(θb, τ)dH1, (6.11)

where b, θ, and τ represent the Burgers vector, its multiplicity, and the tangent
vector to the dislocation loop L, respectively. Under suitable hypotheses on
the function ψ, this is proved to be lower semicontinuous in the sense of (W6)
(see [9]). As for the function g, hypothesis (W2) fulfills the requirements.

Since F ′ is not empty, we now solve the minimum problem with these new
assumptions.

Theorem 6.6 (Existence in F ′). Under assumption (W5) and (W6) and as-
suming that there exists an admissible F ∈ F ′ such that W :=

∫

ΩW (F ) < ∞,
there exists a minimizer of problem inf

F ′
W.
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Proof. Let Fn be a minimizing sequence in F ′. We denote the dislocation cur-
rents associated to Fn by L̂n, and their densities by Λn = ΛLn

. Without loss
of generality, if we deal as in the proof of Theorem 6.5, we can assume Fn and
L̂n be defined on the whole Ω̂. By (W5), Fn converges weakly to F in Lp

and Λn converges weakly-* to a Radon measure Λ. Thanks to (3.24) {L̂n} is
equibounded, so that one has by Theorem 2.3 the existence of an integer multi-
plicity current L̂ such that L̂n → L̂, while by Lemma 6.4, Λ = ΛL̂ = −Curl F̂
in the distribution sense. Moreover, by admissibility, one can associate to every
L̂n a continuum Kn ⊂ Ω̂ such that G(L̂n) =

(

H1(Kn) + k(Kn)
)

. By (W5),
Blaschke and Golab theorems, there is convergence in the Gromov-Hausdorff
sense to a continuum K. Now we see that the support L⋆ of L̂ is a subset of
K. Indeed, for all forms ω ∈ D1(Ω̂,R3) whose support is contained in Ω̂ \ K,
it holds limn→∞ L̂n(ω) = 0, thanks to the fact that L̂n has support in Kn
which converges to K in the Gromov-Hausdorff topology. So we find out that
L̂ = (L̂, τ, θ) is admissible since L⋆ := supp Λ ⊂ K. Taking now any ball in
Ω \ K, we conclude as in the proof of Theorem 6.5.

The physical interpretation of G(L) is the following. To create a new loop at
some finite distance d from the current dislocation L, it is worth to nucleate (i.e.,
add a connected component) rather than deforming the existent dislocation, as
soon as d > κ. However it should be recognized that (6.10) is at this stage a
mathematical assumption whose physical meaning remains to be elucidated. It
basicaly means that the continuum dislocation lies in a compact 1-set which
keeps as minimal the balance between the number of its connected subsets (of
the continuum, not of the dislocation cluster) and its length.

6.3 A weak notion of Jacobian for displacements in the

presence of dislocations

Let us firstly introduce some conventions.

Definition 6.7. For every 1-form ω ∈ D1(R3) we identify ω = ωidxi, with
the vector field w = wi ∈ C∞

c (R3,R3) by setting wi := ωi for all i = 1, 2, 3.
Moreover we identify every 2-form ω = ωijdxi ∧ dxj ∈ D2(R3) with another
vector field w ∈ C∞

c (R3,R3) by setting wi := (−1)iωī. In particular we introduce
the curl operator on C∞

c (R3,R3) into itself by mean of these identifications,
i.e.,

curl w := dω, (6.12)

where in the right-hand side we first identificate w with the 1-form ω, then we
compute the external derivative, and identificate the resulting 2-form with the
corrensponding vector field in R3.

Definition 6.8. We can also identify elements v ∈ R3 with 2-vectors v ∈
Λ2(R

3) by Λ2(R
3) ∋ v = (−1)ivieī. Similarly, elements v ∈ R3 are seen as

1-vectors, as v = viei, i = 1, 2, 3. From this correspondence it is possible to
identify a distribution T ∈ D′(R3,R3) with a 2-current in D2(R

3), or with a 1-
current in D1(R

3), respectively. In particular we can define che Curl operator
for distributions, Curl : D′(R3,R3) → D′(R3,R3), by

〈Curl T, ϕ〉 := 〈T, curl ϕ〉, (6.13)
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for all ϕ ∈ C∞
c (R3,R3), where curl in the right-hand side has been defined in

Definition 6.7.

With this convention we can see the Curl operator defined so far, if applied
to R3-fields, turns out to coincide with the classical definition of curl. For
instance, if curl denotes the classical operator and F is a vector field in R3,
then (Curl F )i = ( curl F )i, where in the right-hand side we make use of the
previous identification.

As a consequence of this identification, if L is a 1-current with finite mass,
then it is a measure in Mb(Ω,R

3). The same holds true for 1-dimensional
currents S, that are measures in Mb(Ω,R

3). In particular the boundary of a
current corresponds to the Curl of the correspondent measure, since

∂S(ω) = S(dω) = 〈S, curl w〉 = 〈Curl S, w〉. (6.14)

We now collect two classic results.

Theorem 6.9. Let Ω be a bounded and simply connected open set. Let λ ∈
Mb(Ω,R

3) be a Radon measure such that Curl λ = 0 as a distribution. Then
there exists a function with bounded variation u ∈ BV (Ω) such that Du = λ.

This Theorem can be found in [18]. The following one provides a chain
rule to compute the derivative of the composition of a smooth function with a
function with bounded variation (see [3] or [28]).

Theorem 6.10. Let u ∈ BV (Ω) with Ω ⊂ R3 a bounded open set, and let
f ∈ C1(Ω). Then the distributional derivative of f ◦ u is given by

D(f ◦ u) = Df(u)DauLn +Df(ũ)Dcu+ (f(u+)− f(u−))νJu
H2

xJu
, (6.15)

where ũ is the Lebesgue representative of u, i.e., ũ(x) is the Lebesgue value of
u at x.

We can now prove the following result. This states that each strain F in the
presence of dislocations can be written by mean of the gradient of a Sobolev
map with value in (S1)3.

Theorem 6.11. Let Ω be a bounded and simply-connected open set. Let L ∈
D1(Ω) be a closed 1-integer multiplicity current and suppose F ∈ L1(Ω,R3)
is such that Curl F = L (with the identification (6.14)). Then there exists
u ∈W 1,1(Ω, S1) such that −u2Du1 + u1Du2 = F on Ω.

Proof. Since L is a closed 1-integer multiplicity current, there exists a 2-integer
multiplicity current S with finite mass and such that −∂S = L. Let us now
define the distribution µ ∈ D′(Ω,R3) as follows

λ(ϕ) := S(ϕ) + 〈F, ϕ〉,

for all ϕ ∈ C∞
c (Ω,R3), where we have identified the map ϕ with the 2-form

∑n
i=1 ϕidxī as in Definition 6.7. The distribution λ is easily seen to be a Radon

measure with finite mass. We compute the curl of λ, that is

〈Curl λ, ϕ〉 = S( curl ϕ) + 〈F, curl ϕ〉 = ∂S(ϕ) + L(ϕ) = 0,
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for all ϕ ∈ C∞
c (Ω,R3), by definition of S. Then Theorem 6.9 implies that then

exists v ∈ SBV (Ω) such that Dv = µ = S+F . Since S is an integer multiplicity
current, there exist a 2-rectifiable set S with unit normal the vector ν and an
integer-valued function θ ∈ L1(S,H2) such that S = (S, ν, θ). In particular we
see that the jump of v is given by the measure θν · H2

xS , while the absolutely
continuous part of the gradient Dv is F . We then set

u(x) = (u1(x), u2(x)) := (cos(2πv(x)), sin(2πv(x))).

The map t → 2πt is of class C1 on R, so formula (6.15) applies and we obtain
Dju1 = (cos(2πv+(x))−cos(2πv−(x)))νHn−1

xS= 0, since v+−v− = θ ∈ Z, and
we conclude that u1 has not jump part, and then it belongs to W 1,1(Ω). The
same being true for u2, we get u ∈ W 1,1(Ω, S1). Moreover Du1 = − sin(2πv)F
andDu2 = cos(2πv)F so that−u2Du1+u1Du2 = F and we have concluded.

This result shows that if F ∈ Lp(Ω,M3) is a map such that −Curl F = L̂
for some integral closed current L̂ with coefficients in Z3, then there is a map
u := (u1, u2, u3) ∈W 1,1(Ω, (S1)3) such that −ui2Dju

i
1+u

i
1Dju

i
2 = Fij on Ω, for

i = 1, 2, 3. The statement and the proof is in the simpler one dimensional case,
but it can be generalized since it can be apply for every row of F .

In some sense, also the opposite of Theorem 6.11 holds true.

Theorem 6.12. Let u ∈ W 1,1(Ω, S1) and assume that u satisfies

Curl (−u2Du1 + u1Du2) ∈ Mb(Ω,R
3). (6.16)

Then there exists a closed integral 1-current L such that Curl (−u2Du1 +
u1Du2) = 2πL.

This Theorem is a particular case of [2, Theorem 3.8]. In general, without
hipothesis (6.16), Curl (−u2Du1 + u1Du2) = 2πL is a closed 1-current L, pos-
sibly with nonfinite mass. A constructive proof of Theorem 6.12 can be found
in [22, Theorem 2.3.9].

In the theory of functions of bounded higher variation, introduced by Jer-
rard and Soner ( [17]), the distributional jacobian [Ju] of a sobolev map u ∈
W 1,1(Ω, S1) is defined as the external derivative of the pull-back by u of the stan-
dard volume form ω0 on S1, that is ω0 = x1dx2 − x2dx1. Noting j(u) := u♯ω0,
then

[J(u)] := dj(u), (6.17)

that is a 2-form on Ω. Using identification 6.7 and 6.8, it turns out that [Ju]
is exactly Curl (−u2Du1 + u1Du2). Hence, standing to the notations of [17],
condition (6.16) is equivalent to require that the map u has bounded higher
variation, and we write u ∈ B2V (Ω, S1).

As a consequence we see that the class of admissible displacements in the
presence of dislocations, defined as

U := {u ∈ W 1,1(Ω, (S1)3) : Curl (−u2Du1 + u1Du2) is an integral

1-current with coefficients in Z3}, (6.18)

33



is exactly the space B2V (Ω, (S1))3.
Let

Uc := {u ∈ B2V (Ω, (S1))3 : [Ju] belongs to CD,

and u ∈ Cartp(B, (S1)3) whenever B ∩ L = Ø}, (6.19)

where we recall L := spt[Ju]. We can therefore restate our existence result in
the following form.

Theorem 6.13. Let W satisfies (W6) with Wdefect = W1
defect+W2

defect, W
2
defect =

κ1G, and

W1
defect([Ju]) = κ2|[Ju]|(Ω), (6.20)

for some κ1, κ2 > 0. Then there exists a minimizer u ∈ Uc of W(F ), where
Fij = ui1Dju

i
2 − ui2Dju

i
1.

In the previous result, it can be tacitely assumed that also a boundary
condition is fixed.

6.4 An example

Let Ω ⊂ R3 be the open set defined, in cylindrical coordinates, by

Ω := {0 < ρ < R, z ∈ (−h, h)}.

Let Ω̂ be a ǫ-neighborhood of Ω and set U := Ω̂ \Ω.
With this example we would like to show that provided a boundary condition

for the dislocation density, the dislocation of a minimizer will not be in U but
will stay inside Ω.

Then we consider the map F̄ : Ω̂ → M3 defined as

F̄ (ρ, θ, z) = ζ(θ)





1 0 0
0 1 0

− sin θ
ρ β cos θ

ρ β 1



 , (6.21)

for some suitable smooth functions ζ, so that it turns out that

−Curl F̄ = b⊗ ezH
1
xẑ∩U ,

that is F̄ shows a screw dislocation on the z-axis ẑ with Burgers vector b =
(0, 0, β). We want to minimize the energy (6.1) satisfying (W1)-(W4)

W(F,ΛL) :=

∫

Ω

We(F )dx +Wdefect(ΛL),

among all the deformations F belonging to the class (5.1) with F̄ as boundary
condition. Let us suppose that the defect part of the energy takes the form

Wdefect(ΛL) = γ

∫ 1

0

‖ϕ̇(s)‖ds+
∑

1≤i<kL

γ

∫

S1

‖ϕ̇i(s)‖ds+ µ|ΛL(Ω)|, (6.22)

where the mesoscopic dislocation L is the image of kL closed loops ϕi with
Burgers vector bi and of ϕ which is a dislocation with endpoints P := (0, 0, h)
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and Q := (0, 0,−h) and Burgers vector b. Then let us consider an admissi-
ble deformation which shows only one dislocation path ϕ0 coinciding with the
segment PQ. In this case kL = 1 and the energy is

W(F 0) =

∫

Ω

We(F
0)dx+ γ

∫ 1

0

‖ϕ̇0(s)‖ds+ µ|ΛL0(Ω)| =

=

∫

Ω

We(F
0)dx+ 2hγ + 2hµβ. (6.23)

Let us now take another admissible deformation F 1 with the dislocation path ϕ1

connecting P and Q which has an intermediate point at ϕ(t) = (xt, yt, zt) ∈ Ω
with Rt := (x2t + y2t )

1/2 > 0. In this case we have

Wdefect(L
1) ≥ γ

∫ 1

0

‖ϕ̇1(s)‖ds+ µ|ΛL1(Ω)|

≥ 2γ(R2
t + h2)1/2 + 2hµβ, (6.24)

so that, if 2γ(R2
t + h2)1/2 >

∫

Ω
We(F

0)dx + 2hγ it turns out that W(F 0) <
W(F 1). This may happen if

R > Rt > R̄ :=
1

2γ

(

(

∫

Ω

We(F
0)dx+ 2hγ)2 − h2

)1/2

so that in this case we see that the minimizer of the energy must have the
dislocation path connecting P and Q inside the cylinder {x2 + y2 < R̄, z ∈
(−h, h)} ( Ω. In the contrary, if R < R̄ then the dislocation of the minimizer
could lie outside Ω. In particular we see that with our choice of boundary
datum dislocations tends to remain inside the body Ω and not to escape from
the boundary.

7 Concluding remarks

In this paper we have shown that the theory of currents is rather well suited to
describe elastic deformations induced by the presence of dislocation loops and
clusters. Let us emphasize that dislocations in single crystals can form com-
plex structures since there are no internal boundaries known to be preferential
regions of concentration. After a detailed description of the dislocations as cur-
rents, a variational problem is studied with two optimization variables, namely
the deformation gradient F and the dislocation density Λ, together bound by
relation −Curl F = ΛT .

Two approaches coexist in this paper. On the one hand there is the theory
of integer-multiplicity 1-currents which is a sharp tool to describe a single dislo-
cation together with complex geometries such as dislocation clusters, including
their possible evolution in time. Thus it would allow one to model mesoscopic
plasticity, which is due to the motion of dislocations and their mutual interac-
tion. On the other hand there is a variational setting where the model variables
are deformation internal variable F and the defect internal variable Λ. From this
point of view the individuality of the lines is replaced by a measure and hence
all geometrically unnecessary dislocation are effectless in the model. These two
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approaches are connected since the mass of a current is finite as soon as the
density is bounded, at least as long as the Burgers vectors are crystallographic,
that is, when canonical dislocation are chosen to represent dislocation currents.

Since Cartesian maps are considered to represent the deformation F , its ad-
junct and determinant are only locally defined away from a continuum, that
is CofF = cofF ∈ Lploc(Ω \ K) and DetF = detF ∈ Lploc(Ω \ K). Moreover,
the fact that the adjunct and the determinant might be concentrated distribu-
tions on K means that the continuum (thus not only the support of the density
but also the geometrically unnecessary parts) represents a singular set where
spurious effects might take place, such as cavitation, and hence nucleation of el-
ementary dislocation loops. This makes sense from a physical standpoint, since
dislocations at the mesoscale are by essence the location of field singularities.
From a mathematical point of view it is due to the fact that the currents of
the minimizing sequence might have a dense limit, though of bounded length,
whereas this pathological behaviour is precluded by the presence of the embed-
ding continuum.

It is yet an open question to elucidate the structure of the distributional
determinant, which one would like for physical reasons to be a Radon measure
(i.e., an extensive field) on K. To the knowledge of the authors few results exist
about this issue, without the too restrictive assumptions of field boundedness,
high space dimension and with the current range of p between 1 and 2. Let us
mention a partial answer in a companion paper [24].

The described mathematical framework will be considered for future work in
order to describe evolution problems involving the dissipation due to dislocation
motion. Here a preliminary step before the complete dynamics will be the quasi-
static problem, that is, dynamics under the assumption that optimality (i.e.,
global minimization) is reached within any time step. The role of higher-order
strains acting as constrain reactions to the geometrical condition−Curl F = ΛT

will also be studied in forthcomming publications.
Two other extensions of this work are the analysis of the distributional deter-

minant at the continuum K, in particular to address the open question wether
it is a measure, and homogenization of a countable family to the continuum to
the macroscale (see, eg., [10]). About the latter problem let us mention that
our setting at the continuum scale, allowing for countable many dislocations
was thought with a view to homogenization, since limit passage from finite to
countable families must unavoidably be faced.
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