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Abstract

In this paper we provide an estimate from above for the value of the relaxed area
functional A(u,Ω) for an R2-valued map u defined on a bounded domain Ω of the plane
and discontinuous on a C2 simple curve Ju ⊂ Ω, with two endpoints. We show that, under
certain assumptions on u, A(u,Ω) does not exceed the area of the regular part of u, with
the addition of a singular term measuring the area of a disk-type solution Σmin of the
Plateau’s problem spanning the two traces of u on Ju. The result is valid also when Σmin

has self-intersections. A key element in our argument is to show the existence of what
we call a semicartesian parametrization of Σmin, namely a conformal parametrization of
Σmin defined on a suitable parameter space, which is the identity in the first component.
To prove our result, various tools of parametric minimal surface theory are used, as well
as some results from Morse theory.

1 Introduction

Given a bounded open set Ω ⊂ R2 = R2
(x,y) and a map v = (v1, v2) : Ω→ R2 = R2

(ξ,η) of class
C1, the area A(v,Ω) of the graph of v in Ω is given by

A(v,Ω) =
∫

Ω
|M(∇v)| dx dy,

where | · | denotes the euclidean norm, ∇v is the Jacobian matrix of v and M(∇v) is the
vector whose components are the determinants of all minors(1) of ∇v, hence

|M(∇v)| =
√

1 + |∇v1|2 + |∇v2|2 + (∂xv1∂yv2 − ∂yv1∂xv2)2.

The polyconvex [3] functional A(v,Ω) measures the area of the graph of v, a smooth two-
codimensional surface in R4 = R2

(x,y)×R2
(ξ,η). When considering the perspective of the direct

method of the calculus of variations, it is important to assign a reasonable notion of area also
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to the graph of a nonsmooth map, namely to extend the functional A(·,Ω) out of C1(Ω; R2) in
a natural way. We agree in defining this extended area as the L1(Ω; R2)-lower semicontinuous
envelope A(·,Ω) (or relaxed functional for short) of A(·,Ω), i.e.,

A(v,Ω) := inf
{

lim inf
ε→0+

A(vε,Ω)
}

(1.1)

where the infimum is taken over all sequences(2) (vε) ⊂ C1(Ω; R2) converging to v in L1(Ω; R2).
The interest of definition (1.1) is clearly seen in the scalar case(3), where this notion of ex-
tended area is useful for solving non-parametric minimal surface problems, under various
type of boundary conditions (see for instance [8], [12], [7]). We recall that in the scalar case
A(·,Ω) happens to be convex, and A(·,Ω) is completely characterized: its domain is the
space BV(Ω) of functions with bounded variation in Ω, and its expression is suitably given
in integral form.
The analysis of the properties of A(v,Ω) for maps v from an open subset of the plane to
the plane is much more difficult [7]; geometrically, the problem is to understand which could
be the most “economic” way, in terms of two-dimensional area in R4, of approximating a
nonsmooth two-codimensional graph of a map v of bounded variation, with graphs of smooth
maps, where the approximation takes place in L1(Ω; R2). It is the aim of the present paper
to address this problem for discontinuous maps v of class BV(Ω; R2), having a C2-curve of
discontinuity and satisfying suitable additional properties.
In [1] Acerbi and Dal Maso studied the relaxation of certain polyconvex functionals in ar-
bitrary dimension and codimension. In particular, they proved that A(·,Ω) = A(·,Ω) on
C1(Ω; R2), and that for p ∈ [2,+∞],

A(v,Ω) =
∫

Ω
|M(∇v)| dx dy, v ∈W 1,p(Ω; R2),

and the exponent p is optimal. They also proved that the domain of A(·,Ω) is contained in
BV(Ω; R2), and

A(v,Ω) ≥
∫

Ω
|M(∇v)| dx dy + |Dsv|(Ω), v ∈ BV(Ω; R2), (1.2)

where ∇v and Dsv denote the absolutely continuous and the singular part of the distri-
butional gradient Dv of v, respectively. In addition, if v ∈ BV(Ω; {α1, . . . , αm}) where
α1, . . . , αm are vectors of R2, and denoting by L2 and H1 the Lebesgue measure and the
one-dimensional Hausdorff measure in R2 respectively,

A(v,Ω) = L2(Ω) +
∑

k, l ∈ {1, . . . ,m}
k < l

|αk − αl|H1(Jkl), (1.3)

provided ∂Ω and the jump curves Jkl forming the jump set Jv of v are smooth enough and
that v takes locally only two vectors around Jkl. Finally, and maybe more interestingly, it

(2)For notational simplicity, we denote a sequence of functions (or functionals, or points) with a continuous
parameter; the notation (vε) denotes a sequence (vεh), where h ∈ N and εh → 0+ as h→ +∞. A subsequence
of (vε) is a subsequence of (vεh).

(3)Namely, for functions v : Ω→ R.

2



is proven in [1, Section 4] that the relaxed area is not subadditive with respect to Ω, thus in
particular it does not admit an integral representation with a density depending locally on v:
in this sense it is non-local. The non-subadditivity of A(v, ·), conjectured by De Giorgi in [4],
concerns the triple junction map utr, which is a map defined on the unit disk of the source
plane, and assumes as values three non-collinear vectors on three circular congruent sectors.
The proof given in [1] does not supply the precise value of A(utr,Ω), however it provides a
nontrivial lower bound and an upper bound. The upper bound was refined in [2], where the
authors exhibited an approximating sequence (conjectured to be optimal(4), at least under
symmetry assumptions) constructed by solving three (similar) Plateau-type problems coupled
at the triple point(5). The singular contribution concentrated over the triple point arising in
this construction, consists of a term penalizing the length of the Steiner-graph connecting the
three values in the target space R2, with weight two. If the construction of [2] were optimal,
it would shed some light on the nonlocality phenomenon addressed in [4] and [1].
The question arises as to whether the non subadditivity is due to the special form of the
triple junction map utr, or whether it can be obtained for other qualitatively different maps
v. We are not yet able to answer this question, which nevertheless can be considered as the
main motivation of the present paper. In this direction, our idea is to study the properties
of A(·,Ω), for maps generalizing those in (1.3), with no triple or multiple junctions. Namely,
we are interested in A(u,Ω), where u is regular enough in Ω \ Ju, and the jump set Ju is a
C2 simple curve compactly contained(6) in Ω. It is worth anticipating that we are concerned
here only with an estimate from above of the value of the relaxed area, and we shall not face
the problem of the estimate from below. Nevertheless, we believe our construction of the
recovery sequence to be optimal, at least for a reasonably large class of maps.
Referring to the next sections for the details, we now briefly sketch the main results and
the ideas of the present paper. Suppose that u ∈ BV(Ω; R2) is a vector valued map regular
enough in Ω \ Ju, and let us parametrize Ju with a map α : t ∈ [a, b] → α(t) ∈ Ju. Denote
by u± the two traces of u on Ju, and let γ±, defined in [a, b], be the composition of u±

with the parametrization α. Let us define Γ as the union of the graphs of γ+ and γ−. Our
assumptions ensure that Γ is a rectifiable, simple and closed space curve, with a special
structure, due to the fact that it is union of graphs of two vector maps defined in the same
interval [a, b] (Definition 2.1). Finally, let us denote by Σmin an area minimizer solution of
the Plateau’s problem for Γ, in the class of surfaces spanning Γ and having the topology of the
disk [5]. Suppose that Σmin admits what we call a semicartesian parametrization (Definition
2.2), namely a global parametrization whose first component coincides with the parameter
t ∈ [a, b]. Our first result reads as follows.

Theorem 1.1. Under the above assumptions, there exists a sequence (uε) of sufficiently

(4)In the sense that equality should hold in (1.2) along the above mentioned sequence.
(5)The construction of [2] is intrinsically four-dimensional and cannot be reduced to a three-dimensional

construction.
(6)As one can deduce from our proofs, the case when Ju ∩ ∂Ω 6= ∅ requires a separate study, leading to

a Plateau-type problem with partial free boundary, and will be investigated elsewhere. Also, the case when
Ju ⊂ Ω is a closed simple curve is out of the scope of the present paper, since it could lead to the study of
minimal immersions in S1 × R2 of a set with the topology of an annulus.
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regular(7) maps converging to u in L1(Ω; R2) such that

lim
ε→0+

A(uε,Ω) =
∫

Ω\Ju

|M(∇u)| dx dy +H2(Σmin).

In particular

A(u,Ω) ≤
∫

Ω\Ju

|M(∇u)| dx dy +H2(Σmin). (1.4)

Under the hypothesis that there exists a semicartesian parametrization

X(t, s) = (t,X2(t, s), X3(t, s))

of Σmin defined on a plane domain D ⊂ R2
(t,s), the key point of the construction stands in the

definition of uε in a suitable neighborhood of the jump Ju. For (x, y) in this neighbourhood
we define the pair of functions (t(x, y), s(x, y)) ∈ D corresponding to the parametrization of
the nearest point on Ju to (x, y), and to the signed distance from Ju, respectively. Next, we
define

uε(x, y) :=
(
X2

(
t(x, y),

s(x, y)
ε

)
, X3

(
t(x, y),

s(x, y)
ε

))
(1.5)

for (x, y) such that
(
t(x, y), s(x,y)

ε

)
∈ D. Note carefully that, in this way, the definition of

uε cannot be reduced to a one-dimensional profile, being intrinsically two-dimensional. The
explicit computation (step 9 of the proof of Theorem 3.1) of the area of the graph of uε
localized in this region is the source of the term

H2(Σmin)

appearing in (1.4).
It is interesting to comment on the role of the term

(∂xuε1∂yuε2 − ∂yuε1∂xuε2)2 (1.6)

in the details of the computation. If X is semicartesian, the area of Σmin is given by∫
D

√
|∂sX2|2 + |∂sX3|2 + (∂tX2∂sX3 − ∂sX2∂tX3)2 dt ds.

The sum of the first two addenda under the square root is obtained, in the limit, from
|∇uε1|2 + |∇uε2|2, while the last addendum is originated in the limit exactly by (1.6).
Various technical difficulties are present in the estimate of A(uε, ·) outside of the above men-
tioned neighbourhood of Ju. Far from Ju we set uε := u, while in a (small) intermediate
neighbourhood the map uε is suitably defined in such a way that the corresponding contribu-
tion of the area is negligible. The technical point behind this construction is to guarantee that
uε is sufficiently smooth. In Theorem 3.1 we study the case in which Σmin is the graph of a
map defined on a two-dimensional convex domain, the so-called non-parametric case; here an
approximating argument leads to the Lipschitz regularity of uε in Ω. In Theorem 4.1, instead,

(7)(uε) ⊂ Lip(Ω; R2) in Theorem 3.1, and (uε) ⊂W 1,2(Ω; R2) in Theorem 4.1.
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we study a more general situation, managing in building a sequence (uε) in W 1,2(Ω; R2). In
this case we need to modify the domain of the semicartesian parametrization, in order to
gain the L1 integrability of the gradients of uε and to make a further regularization near the
crack tips, that is the endpoints of Ju, (see steps 1 and 2 of Theorem 4.1).
Several other comments are in order concerning Theorem 1.1. First of all, and as already
mentioned, our result provides only an estimate from above of the value of A(u,Ω). Only if
Γ is contained in a plane, we are able to prove that inequality (1.4) is actually an equality(8),
so that (uε) becomes a recovery sequence. This case is a slight generalization of the piecewise
constant case (1.3) considered in [1], and seems not enough for answering the nonlocality
question on A.
After this remark, we come back to the important issue of the semicartesian parametrization.
First of all, a semicartesian parametrization represents an intermediate situation between the
non-parametric case, and the general case in which Σmin is just an area-minimizing surface
spanning Γ and having the topology of the disk. We stress that the assumptions on Γ that
ensure the existence of a semicartesian parametrization of Σmin are not so restrictive(9);
for example the analytic curves displayed in Figures 1(a) and (b) satisfy the hypotheses of
Theorem 1.2 below, and thus the corresponding Σmin admit a semicartesian parametrization
and Theorem 4.1 applies. Observe that the surface Σmin in Figure 1(a) (area-minimizing with
the topology of the disk) has self-intersections(10). In this case the map uε defined in (1.5) is
not injective; of course, the source of this phenomenon is due to the the fact that graph(u)
has codimension two, and it does not arise in the scalar case.
Let us now inspect the delicate problem of the existence of a domain D ⊂ R2

(t,s) and a
semicartesian parametrization X : D → R3. Besides the non-parametric case, in this paper
we exhibit other sufficient conditions for the existence of a semicartesian parametrization,
and we refer to Theorem 5.1 for all details.

Theorem 1.2. Suppose that Γ admits a parametrization which is analytic, and nondegenerate
in the sense of (5.1) at the junctions between γ− and γ+. Then Σmin admits a semicartesian
parametrization.

Before commenting on the proof, which represents maybe the most technical part of the
present paper, we want to briefly discuss Figure 1(a), since it is a sort of prototypical example
in our work. The boundary of the represented surface satisfies all hypotheses of Theorem 1.2.
It is built as the union of the graphs of two analytic maps γ± : [a, b] → R2

(ξ,η). We take the
graph of γ− arbitrarily close to the (planar) half-circle starting from the south pole S and
ending at the north pole N . The graph of γ+ is the remaining part of the boundary. We take

(8)We believe the sequence (uε) to be a recovery sequence much more generally, at least when Σmin can be
identified with the support of the “vertical component” of a cartesian current [7] obtained by minimizing the
mass among all cartesian currents coinciding with the graph of u out of the jump. In this respect, we observe
that the precise knowledge of several qualitative properties of Σmin is required in order to prove Theorems
1.1 and 1.2. For this reason generalizing the proof using an area-mininizing cartesian current seems not to be
easy.

(9)Roughly speaking, we can say (as we shall prove) that the special structure of Γ as union of two graphs,
“propagates” into Σmin, ensuring the existence of a semicartesian parametrization.
(10)It is possible to find smooth embedded surfaces spanning the same boundary with non zero-genus and

lower area, see for example [11, Figure 8.1.1 and Figure 8.1.2]. Nevertheless our argument seems to be hardly
generalizable to surfaces not of disk-type.
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Figure 1: (a): an example of Σmin with self-intersections admitting a semicartesian parametrization.
We also plot the intersection of Σmin with the plane {t = 0}: this is a non-simple curve connecting
(0, γ−(0)) and (0, γ+(0)). (b): an other analytic curve Γ leading to a Σmin admitting a semicartesian
parametrization. In this case γ− is approximatively constant in [a+ δ, b− δ] for some small δ > 0, so
that its graph Γ− is almost a segment (we cannot require constancy due to analyticity). The graph Γ+

of γ+ is, instead, an helix around Γ−. It is clear that this situation is very far from the non-parametric
case. The qualitative properties of Γ in correspondence to the points a and b are not arbitrary, and
will be discussed in detail in the next sections (see also the assumptions in Theorem 1.2).

γ− and γ+ so that they join in an analytic way. We stress that for t ∈ (a, b) the intersection
of the plane {t = t} with Γ is just the set of two points {(t, γ−(t)), (t, γ+(t))}, while the
intersection with the surface Σmin is a connected, possibly non-simple, curve(11). Moreover,
near the two poles, Γ is essentially a circumference, and this implies, as we shall see later
(step 4 in the proof of Theorem 6.1) that the nondegeneracy assumption mentioned in the
statement of Theorem 1.2 is satisfied.
The analyticity of Γ in Theorem 1.2 is a strong assumption: indeed it forces u to have a
rather rigid structure, in particular near the crack tips, and it also implies that the traces u−

and u+ cannot be independent. As we shall clarify below, the reason for which we require
analyticity is that we need to exclude branch points and boundary branch points on Σmin.
Finding sufficient conditions on Γ ensuring the existence of a semicartesion parametrization
of Σmin, without assuming analyticity, requires further investigation.
Roughly speaking, the proof of Theorem 1.2 runs as follows. First we need to guarantee that
no plane orthogonal to the t−axis is tangent to Σmin since, under this transversality condition,
a classical result provides a local semicartesian parametrization (Theorems 6.1 and 7.5). Let
us consider a conformal parametrization Y of Σmin defined on the unit disk B; thanks to
the analyticity of Γ, it is possible to extend Σmin to a minimal surface Σext, parametrized on
Bext, an open set containing B, by an analytic map Y ext = (Y ext

1 , Y ext
2 , Y ext

3 ) coinciding with
Y on B. Now, we define a height function h, defined on Bext and returning for each point
(11)The surface in [11, Figure 8.1.2] mentioned in footnote (10) does not satisfy this property.
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(u, v) the t−coordinate of its image through Y ext, that is

h : Bext → Rt,

h(u, v) := Y ext
1 (u, v).

We observe that the tangent plane to Σext at Y ext(u, v) is orthogonal to the t−axis if and
only if (u, v) is a critical point for h. Thus in order to get the desired transversality property,
we need to exclude the presence of critical points of h on B, except for a minimum and
a maximum on ∂B, which exist since h is continuous. Internal maxima and minima are
excluded by a geometric argument, and saddle points are excluded by using a Morse relation
for closed domains (see Section 8). In this step, proven in Theorem 6.1, the analyticity of Γ
is once more crucial, because it prevents Σmin to have boundary and internal branch points;
this regularity and the nondegeneracy hypotheses on the parametrization of Γ imply that h
is a Morse function satisfying the requirements of Theorem 8.1.
In this way we have obtained the existence of a local semicartesian parametrization. Using
the simple connectedness of Σmin, it is finally possible to globalize the argument, and provide
a semicartesian parametrization (Section 6.2). We notice here that several properties of the (a
priori unknown) parameter domain D can be proven, as shown in Section 6.3: in particular,
it turns out that ∂D is union of the graphs of two functions σ±, which are locally Lipschitz
(but not Lipschitz) with a local Lipschitz constant controlled by the Lipschitz constant of
γ±. We refer to Section 6 for the details of the proofs, but it is clear that the analyticity
assumption is fundamental in most of the arguments.

The plan of the paper is the following. In Section 2 we fix some notation and we introduce the
space D(Ω; R2) (some properties of which are given in Section 9). We also give the definition of
semicartesian parametrization. In Section 3 we prove Theorem 1.1 for maps whose associated
Plateau’s problem admits a non-parametric solution. In Section 4 we provide a generalization
of this result for possibly self-intersecting area-minimizing surfaces, underlying that what
is really important is that the solution of the Plateau’s problem admits a semicartesian
parametrization. In Section 5 we give some sufficient conditions on u for the existence of a
semicartesian parametrization of Σmin, see Theorem 5.1, the proof of which is given in Section
6 and is the most technical part of the paper. In Sections 7 and 8 we collect some classical
results of minimal surfaces and Morse Theory needed in our proofs.

2 Notation

If n ≥ 2, we denote by ·, | · | the euclidean scalar product and norm in Rn, respectively, and
by E and int(E) the closure and the interior part of a set E ⊆ Rn. H2 is the two dimensional
Hausdorff measure in Rn and L2 is the Lebesgue measure in R2. B ⊂ R2 = R2

(u,v) is the open
unit disk and ∂B is its boundary. We choose an arc-length parametrization

b : θ ∈ [0, 2π)→ b(θ) ∈ ∂B, (2.1)

and take θs, θn ∈ [0, 2π), with θs < θn, so that

b(θs) = (0,−1), b(θn) = (0, 1).
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For a differentiable map Y : B → R3, the components are denoted by Y = (Y1, Y2, Y3), and
the partial derivatives by Yu = ∂uY = (∂uY1, ∂uY2, ∂uY3) and Yv = ∂vY = (∂vY1, ∂vY2, ∂vY3).
Ω is a bounded open subset of the source space R2

(x,y), while the target space is denoted by
R2

(ξ,η). When no confusion is possible, we often write R2 in place of the source or of the target
space.
As in the introduction, if v ∈ BV(Ω; R2) we denote by ∇v and Dsv the absolutely continuous
and the singular part of the distributional gradient of v, respectively. The symbol Ju denotes
a regular curve inside Ω where the map u jumps (see hypotheses (u1)-(u3) in Section 3.1),
and is defined pointwise everywhere.
With D(Ω; R2) we denote the subset of BV(Ω; R2) on which the relaxed area functional admits
the following integral representation:

A(v,Ω) =
∫

Ω
|M (∇v) | dx dy < +∞. (2.2)

As we have already noticed in the introduction, W 1,p(Ω; R2) is contained in D(Ω; R2) for
every p ∈ [2,+∞]. In Section 9 we report the characterization of D(Ω; R2) given in [1] and
we prove that the functional A can be obtained also by relaxing from D(Ω; R2).
Now, give the useful definition of semicartesian parametrization.

Definition 2.1 (Union of two graphs). A closed simple rectifiable curve Γ ⊂ R3 =
Rt×R2

(ξ,η) is said to be union of two graphs if there exists an interval [a, b] ⊂ Rt such that Γ
is the union of the graphs of two continuous maps γ± ∈ C([a, b]; R2)∩Liploc((a, b); R2). That
is, Γ = Γ+ ∪ Γ− where

Γ± = {(t, ξ, η) : t ∈ [a, b], (ξ, η) = γ±(t)}.

When necessary, we shall say that Γ is union of the graphs of γ±.

Definition 2.2 (Semicartesian parametrization). A disk-type surface Σ in R3 (possibly
with self intersections) is said to admit a semicartesian parametrization if Σ = X(D), where

- D ⊂ R2
(t,s) is given by

D = {(t, s) : t ∈ [a, b], σ−(t) ≤ s ≤ σ+(t)}, (2.3)

with σ± ∈ Liploc((a, b)) satisfying

σ−(a) = 0 = σ+(a),
σ−(b) = σ+(b),
σ− < σ+ in (a, b);

(2.4)

- X ∈W 1,2(D; R3) has the following form:

X(t, s) = (t,X2(t, s), X3(t, s)) a.e. (t, s) ∈ D. (2.5)

Sometimes we refer to a semicartesian parametrization as to a global semicartesian parametriza-
tion; on the other hand, a local semicartesian parametrization is a W 1,2 map of the form (2.5),
defined in a neighourhood of a point.
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3 Non-parametric case: graph over a convex domain

As explained in the introduction, our aim is to estimate from above the area of the graph
of a discontinuous map with a curve discontinuity compactly contained in Ω. In this section
we study a case which leads to consider a non-parametric Plateau’s problem over a convex
domain.

3.1 Hypotheses on u and statement in the non-parametric case

Let Ω ⊂ R2 = R2
(x,y) be a bounded connected open set and assume that

u = (u1, u2) : Ω→ R2 = R2
(ξ,η)

satisfies the following properties (u1)− (u4):

(u1) u ∈ BV(Ω; R2)∩L∞(Ω; R2) and Ju is a non-empty simple curve of class C2 (not reduced
to a point) contained in Ω, that we call the jump of u. We shall write

Ju = α([a, b]),

where a and b are two real numbers with a < b, and

α : t ∈ [a, b] ⊂ R = Rt → α(t) ∈ Ju

is an arc-length parametrization of Ju of class C2. Note that we are assuming that if
t1, t2 ∈ [a, b], t1 6= t2 then α(t1) 6= α(t2), and moreover

Ju ∩ ∂Ω = ∅.

In particular, the two distinct crack tips are Ju \ Ju = {α(a), α(b)} ⊂ Ω (see Figure
2(a)).

(u2) u ∈W 1,∞ (Ω \ Ju; R2
)
.

As a consequence of (u1) and (u2), u is also locally Lipschitz in Ω \ Ju. Moreover, we can
split Ω into two Lipschitz connected open sets Ω+ and Ω− so that Ju ∈ ∂Ω±; thus there exist
the traces of u on Ju on both sides of the jump, denoted by u±, and the maps γ− and γ+,
defined by

γ−(t) = γ−[u](t) = (γ−1 (t), γ−2 (t)) := u−(α(t)) ∈ R2,

γ+(t) = γ+[u](t) = (γ+
1 (t), γ+

2 (t)) := u+(α(t)) ∈ R2,
t ∈ [a, b],

belong to Lip([a, b],R2).
Notice that

γ−(a) = γ+(a), γ−(b) = γ+(b). (3.1)

(u3) There exists a finite set of points t0 := a < t1 < · · · < tm < tm+1 = b of [a, b] such that
γ± ∈ C1([ti, ti+1]) for any i = 0, . . . ,m. Moreover we require

γ−(t) 6= γ+(t), t ∈ (a, b). (3.2)
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Figure 2: (a): the open set Ω, the arc-length parametrization of the jump of the map u. Notice that
the closure of the jump is contained in Ω. (b): the Lipschitz curve Γ, union of the graphs on [a, b] of
the vector valued functions γ− and γ+. K is a closed convex set in R2

(t,ξ), having non empty interior,
and Σmin is the area-minimizing surface spanning Γ. We observe that ∂K is not differentiable at
(a, γ+

1 (a)) and (b, γ+
1 (b)), and Γ is not differentiable at (a, γ+(a)), (b, γ+(b)).

In order to state our last assumption (u4), we denote by Γ± = Γ±[u] the graphs of the maps
γ±,

Γ− = Γ−[u] := {(t, ξ, η) ∈ [a, b]× R2 : (ξ, η) = γ−(t)},
Γ+ = Γ+[u] := {(t, ξ, η) ∈ [a, b]× R2 : (ξ, η) = γ+(t)},

and we set
Γ = Γ[u] := Γ− ∪ Γ+. (3.3)

In view of assumptions (u2) and (u3), Γ ⊂ R3 is a closed, simple, Lipschitz and piecewise
C2 curve obtained as union of two curves; moreover (a, γ+(a)) and (b, γ+(b)) (coinciding
with (a, γ−(a)) and (b, γ−(b)) respectively) are nondifferentiability points of Γ. The next
assumption requires introducing the projection on a plane spanned by t and one of the two
coordinates, say ξ, in the target space R2

(ξ,η). We suppose that:

(u4) the orthogonal projection of Γ on the plane R2
(t,ξ) is the boundary of a closed convex

set K with non-empty interior. In particular, without loss of generality,

γ−1 (t) < γ+
1 (t) , t ∈ (a, b),

and we assume that γ−1 is convex and γ+
1 is concave. Moreover thanks to hypothesis

(u3),
γ±1 ∈ Lip([a, b])

and therefore (a, γ−1 (a)) and (b, γ−1 (b)) are nondifferentiability points of ∂K.

Summarizing, ∂K = graph(γ−1 )∪ graph(γ+
1 ) is of class C1 up to a finite set of points containing

(a, γ−1 (a)) and (b, γ−1 (b)). In particular, ∂K is not of class C2.
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Remark 3.1. The hypothesis that Γ has corners in (a, γ−(a)) and (b, γ−(b)) is related to
the regularity assumptions made on u in (u2): requiring that Γ is differentiable at (a, γ−(a))
and (b, γ−(b)) would prevent u to belong to W 1,∞ (Ω \ Ju; R2

)
. On the other hand, it is

useful to require u ∈ W 1,∞ (Ω \ Ju; R2
)
: indeed, in this case, we can infer (see the proof of

Theorem 3.1, for example step 8) that the approximating maps uε are Lipschitz and thus in
particular that they can be used to estimate A(u,Ω). In Section 4 we manage in weakening
this requirement (compare condition (ũ2)).

Before stating our first result, we need the following definition (for further details, see Section
7).

Definition 3.1. We denote by Σmin ⊂ R3 = Rt × R2
(ξ,η) an area-minimizing surface of disk-

type spanning Γ, that is the image of the unit disk through a solution of the Plateau’s problem
(7.1) for Γ.

Now we are in a position to state our first theorem.

Theorem 3.1. Suppose that u satisfies assumptions (u1)-(u4). Then there exists a sequence

(uε)ε ⊂ Lip(Ω; R2) (3.4)

converging to u in L1(Ω; R2) as ε→ 0+ such that

lim
ε→0+

A(uε,Ω) = A(u,Ω \ Ju) +H2(Σmin) =
∫

Ω
|M(∇u)| dx dy +H2(Σmin). (3.5)

In particular

A(u,Ω) ≤
∫

Ω
|M(∇u)| dx dy +H2(Σmin). (3.6)

3.2 Proof of Theorem 3.1

The proof of Theorem 3.1 is rather long, and we split it into several steps.
Step 1. Definition of the function z and representation of the surface Σmin.
Since Γ in (3.3) admits a convex one-to-one parallel projection, we can apply Theorem 7.7.
In particular, there exists a scalar function z ∈ Cω(int(K)) ∩ C(K) such that

Σmin =
{

(t, ξ, η) ∈ Rt × R2
(ξ,η) : (t, ξ) ∈ K, η = z(t, ξ)

}
= graph(z),

where z solves div

(
∇z√

1 + |∇z|2

)
= 0 in int(K),

z = φ on ∂K,

(3.7)

and
φ(t, γ±1 (t)) = γ±2 (t), t ∈ [a, b].

Remark 3.2. It is worthwhile to stress the different role played in (3.7) by the two com-
ponents of the traces γ± : the first components γ±1 determine the boundary of the domain
K where we solve the non-parametric Plateau’s problem, the Dirichlet condition of which is
given by the second components γ±2 (see Figure 2(b)).
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Remark 3.3. Σmin is the unique area-minimizing surface among all graph-like surfaces on
int(K) satisfying the Dirichlet condition in (3.7)

Due to the presence of nondifferentiability points in ∂K (corners of K) and to the fact that
the boundary datum φ is just Lipschitz, we cannot directly infer from Theorem 7.8 that
z ∈ Lip(K). Since the Lipschitz regularity of z is strictly related to the Lipschitz regularity
of uε, in order to ensure inclusion (3.4) a smoothing argument is required (see Figure 3).
Step 2. Smoothing of ∂K and γ±2 : definition of the function zµ and of the surface Σµ

min.
For a suitable µ > 0 small enough, let us define a sequence (Kµ)µ∈(0,µ) of sets with the
following properties:

- each Kµ is convex, closed, with non-empty interior and is contained in int(K);

-
⋃
µ∈(0,µ)Kµ = int(K);

- µ1 < µ2 implies Kµ1 ⊃ Kµ2 ;

- ∂Kµ ∈ C2;

see Figure 3(a).
In order to apply Theorem 7.8, we need not only to smoothen the set K, but also the Dirichlet
condition γ±2 at the same time. Firstly we observe that since both K and Kµ are convex sets
and Kµ ⊂ K, there exist a point O ∈ Kµ and a projection πµ acting as follows:

πµ : ∂Kµ → ∂K

p→ πµ(p),

where πµ(p) is the unique point of ∂K lying on the half-line rising from O and passing through
p.
Now, using this projection and again the fact that γ±2 are Lipschitz and piecewise C2, for
every µ ∈ (0, µ) we can define a function φµ with the following properties:

- φµ : ∂Kµ → R is of class C2;

- the Hausdorff distance between the graph of φµ and Γ is less than µ;

- there holds ∣∣φµ(p)− γ±2 (πµ(p))
∣∣

|p− πµ(p)|
≤ C, p ∈ ∂Kµ, (3.8)

where C is a positive constant independent of µ.

For any µ ∈ (0, µ) let us denote by zµ the solution todiv

(
∇zµ√

1 + |∇zµ|2

)
= 0 in int(Kµ),

zµ = φµ on ∂Kµ.

Theorem 7.8 yields
zµ ∈ Lip(Kµ) ∩ Cω(int(Kµ)).

12



We denote by Σµ
min the graph of zµ. Applying [14, §305] it follows(12)

lim
µ→0+

H2(Σµ
min) = H2(Σmin). (3.9)

In order to assert that the maps uε in step 6 are Lipschitz continuous, in particular close to
the crack tips of Ju, we need to extend zµ to K.

O

p
πµ(p)

Kµ

(a)

η

ξ

Kµ

a

b

t

(b)

Figure 3: (a): the domain Kµ approximating K and the action of the projection map πµ. (b): the
graph of the boundary value function φµ, approximating the space curve Γ.

Step 3. Extension of zµ on K: definition of the extended surface Σ̂µ.
We consider again the projection πµ defined in the previous step and we observe that for
every point (t, ξ) ∈ K \Kµ there exist a unique p ∈ ∂Kµ and ρ ∈ (0, 1] such that

(t, ξ) = ρp+ (1− ρ)πµ(p).

Thus we extend zµ to K defining

ẑµ(t, ξ) :=

{
ρφµ(p) + (1− ρ)φ(πµ(p)), (t, ξ) ∈ K \Kµ,

zµ(t, ξ), (t, ξ) ∈ Kµ.

Notice that
ẑµ = z on ∂K. (3.10)

We denote by Σ̂µ the graph of ẑµ on K. Inequality (3.8) gives a uniform control of the
gradient of ẑµ on K \Kµ, which implies that

lim
µ→0+

H2(ẑµ(K \Kµ)) = 0.

(12)An argument leading to an equality of the type (3.9) in a nonsmooth situation was proved in [2].
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Thus from (3.9)
lim
µ→0+

H2(Σ̂µ) = H2(Σmin). (3.11)

Remark 3.4. By construction, we have that ẑµ is Lipschitz continuous.

Step 4. Definition of the parameter space D.
For our goals, it is convenient to choose a parameter space D different from K, for parametriz-
ing Σmin and Σ̂µ. Set

σ(t) :=
γ+

1 (t)− γ−1 (t)
2

, t ∈ [a, b].

Let D ⊂ R2
(t,s) be defined as follows:

D := {(t, s) : t ∈ [a, b], |s| ≤ σ(t)} ,

which has the same qualitative properties of K. In particular ∂D = graph(σ) ∪ graph(−σ),
and D has two angles in correspondence of t = a and t = b (same angles as the corresponding
ones of K). We notice that the segment (a, b)× {0} is contained in int(D), see Figure 4.
Step 5. Definition of the maps X and Xµ.
The construction of the function uε in the statement of the theorem is mainly based on the
maps

X : D → R3, Xµ : D → R3,

defined as follows: for any (t, s) ∈ D

X(t, s) :=
(
t, s+

γ+
1 (t) + γ−1 (t)

2
, z

(
t, s+

γ+
1 (t) + γ−1 (t)

2

))
=(t,X2(t, s), X3(t, s)),

Xµ(t, s) :=
(
t, s+

γ+
1 (t) + γ−1 (t)

2
, ẑµ

(
t, s+

γ+
1 (t) + γ−1 (t)

2

))
=(t,Xµ2(t, s), Xµ3(t, s)).

(3.12)

Remark 3.5. We stress that the maps X and Xµ are semicartesian. In particular, where
they are differentiable, their gradient never vanishes on D. Observe also that, from Remark
3.4, it follows

Xµ ∈ Lip(D; R3). (3.13)

Step 6. Definition of the map uε.
For the definition of uε we need some preparation. Denote by ⊥ the counterclockwise rotation
of π/2 in R2

(x,y). Hypothesis (u1) implies that there exists δ > 0 and a closed set contained
in Ω and containing Ju of the form Λ(R), where R := [a, b]× [−δ, δ] and

Λ(t, s) := α(t) + sα̇(t)⊥, (t, s) ∈ R,

is a diffeomorphism of class C1(R; Λ(R)), see Figure 4. If Λ−1 : Λ(R) → R is the inverse of
Λ, we have

Λ−1(x, y) = (t(x, y), s(x, y)),

where
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K

D+

D−

R+

R−

a b

δ

−δ

Λ

Ω

JuΛ(t, s)

s

s

α(t)

t t

Figure 4: We display the domain D = D+ ∪D− obtained by symmetrizing K. It is contained in
the rectangle R = [a, b]× [−δ, δ] on which it is defined the diffeomorphism Λ; Λ([a, b]×{0}) is exactly
the closure Ju of the discontinuity curve.

- s(x, y) = d(x, y) is the distance of (x, y) from Ju on the side of Ju corresponding to the
trace u+, and minus the distance of (x, y) from Ju on the other side,

- t(x, y) is so that α(t(x, y)) = (x, y)− d(x, y)∇d(x, y) is the unique point on Ju nearest
to (x, y).

Since Ju is of class C2, we have that d is of class C2 on Λ(R)(13) and t is of class C1 on Λ(R).
We can always suppose

D \ ((a, 0) ∪ (b, 0)) ⊂ int(R), (3.14)

since, if not, we choose c ∈ (0, 1) so that Dc := {(t, s) ∈ R2 : (t, s/c) ∈ D} ⊂ R, and we
prove the result with Dc in place of D and Xc(t, s) := X(t, s/c) in place of X(t, s).
Set R+ := [a, b]× (0, δ], R− := [a, b]× [−δ, 0), and

D+ := D ∩R+, D− := D ∩R−.

For any ε ∈ (0, 1) let
Dε := {(t, s) ∈ R2 : (t, s/ε) ∈ D},

and
D±ε := {(t, s) ∈ R2 : (t, s/ε) ∈ D±},

so that
int(Dε) ⊃ (a, b)× {0}.

We set Rε := [a, b]× (−εδ, εδ) and R+
ε := [a, b]× (0, εδ], R−ε := [a, b]× [−εδ, 0). From (3.14),

we have Dε ⊂ Rε.
We are now in a position to define the sequence (uε) ⊂ Lip(Ω; R2). We do this in three steps
as follows:
(13)It is sufficient to slightly extend Ju and consider d on a small enough tubolar neighborhood of the extension.
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- outer region. If (x, y) ∈ Ω \ Λ(Rε)

uε(x, y) := u(x, y); (3.15)

- opening the fracture: intermediate region. If (x, y) ∈ Λ(R±ε \D±ε )

uε(x, y) := u(T±ε (x, y)), (3.16)

where T±ε := Λ ◦ Φ±ε ◦ Λ−1 with

Φ+
ε : R+

ε \D+
ε → R+

ε , Φ+
ε (t, s) :=

(
t,
s− εσ(t)
δ − σ(t)

δ

)
,

Φ−ε : R−ε \D−ε → R−ε , Φ−ε (t, s) :=
(
t,
s+ εσ(t)
δ − σ(t)

δ

)
.

Notice that T±ε is the identity on ∂R±ε \ ([a, b]× {0}), see Figure 5.

- opening the fracture: inner region. If (x, y) ∈ Λ(Dε)

uε(x, y) :=
(
Xµε2

(
t(x, y),

d(x, y)
ε

)
, Xµε3

(
t(x, y),

d(x, y)
ε

))
, (3.17)

for a suitable choice of the sequence (µε)ε converging to 0 as ε → 0+, that will be
selected later(14).

Λ−1 Λ

T+
ε

R+
ε

R−ε
D−ε

D+
ε

R+
ε

R−ε

Φ+
ε

Figure 5: The action of the map T+
ε . Any oblique small segment on the top left is mapped in the

parallel longer segment reaching the fracture, on the top right.

Remark 3.6. We have
uε ∈ Lip(Ω; R2). (3.18)

Indeed
(14)See the conclusion of step 9.
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- by assumption (u2) it follows u ∈W 1,∞(Ω\Λ(Rε); R2), hence uε ∈W 1,∞(Ω\Λ(Rε); R2);

- in Λ(Dε) the regularity of uε is the same as the Lipschitz regularity of Xµε , see (3.13);

- in Λ(Rε\Dε), uε is defined as the composition of u ∈W 1,∞ (Ω \ Ju; R2
)

and a Lipschitz
deformation.

Since by construction uε is continuous (remember (3.10)), inclusion (3.18) follows.

Remark 3.7. We have
sup
ε∈(0,1]

‖uε‖L∞(Ω;R2) < +∞,

since u ∈ L∞(Ω; R2) by assumption (u1) and, for some µ > 0, supµ∈(0,µ) ‖Xµ‖L∞(D) < +∞.
Therefore uε → u in L1(Ω; R2). Indeed∫

Ω
|uε − u| dx dy =

∫
Λ(Rε)

|uε − u| dx dy → 0

as ε→ 0+, because the Lebesgue measure of Λ(Rε) tends to 0.

Step 7. We have
lim
ε→0+

A(uε,Ω \ Λ(Rε)) = A(u,Ω \ Ju).

Indeed by (3.15),
A(uε,Ω \ Λ(Rε)) = A(u,Ω \ Λ(Rε)).

Now, let us show that the contribution to the area in the intermediate region Λ(Rε \ Dε)
(definition (3.16)) is negligible as ε→ 0+.
Step 8. We have

lim
ε→0+

A(uε,Λ(R±ε \D±ε )) = 0.

We make the computation in Λ(R+
ε \D+

ε ), the case in Λ(R−ε \D−ε ) being similar. To simplify
notation, we write Tε instead of T+

ε , and set Tε = (Tε1, Tε2).
Take a constant C > 0 independent of ε ∈ (0, 1) so that

A(uε,Λ(R+
ε \D+

ε )) =
∫

Λ(R+
ε \D+

ε )
|M(∇uε)| dx dy

≤ C
∫

Λ(R+
ε \D+

ε )

[
1 + |∂xuε1|+ |∂xuε2|+ |∂yuε1|+ |∂yuε2|+ |∂xuε1∂yuε2 − ∂yuε1∂xuε2|

]
dx dy

(3.19)
where for i = 1, 2

∂xuεi = ∂xui∂xTε1 + ∂yui∂xTε2, ∂yuεi = ∂xui∂yTε1 + ∂yui∂yTε2.

From the definition of Tε

∇Tε(x, y) = ∇Λ (Φε(t(x, y), s(x, y)))T ∇Φ+
ε (t(x, y), s(x, y))∇Λ−1(x, y).
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Λ is a C1 diffeomorphism, thus all components of its Jacobian matrix are bounded; on the
other hand the Jacobian matrix of the transformation Φ+

ε is, for almost every (t, s) ∈ R+
ε \D+

ε ,

∇Φ+
ε (t, s) =

 1 0
−δσ̇(t)[δε− s]

[δ − σ(t)]2
δ

δ − σ(t)

 .
The denominator (δ − σ(t)) is strictly positive; moreover σ ∈ Lip([a, b]) and thus all terms of
∇Φ+

ε are uniformly bounded with respect to ε.
Then, since both ∇Tε and ∇u are bounded in the region considered, we obtain that also the
integrand on the right hand side of (3.19) can be controlled by a constant independent of ε
and

lim
ε→0+

A(uε,Λ(R+
ε \D+

ε )) = 0.

The main point is to show that the definition given in (3.17) in the relevant region Λ(Dε) is
such that the corresponding area gives origin to the term H2(Σmin) in the limit ε→ 0+, and
it is done in the next step.
Step 9. We have

lim
ε→0+

A(uε,Λ(Dε)) = H2(Σmin). (3.20)

Let us fix µ > 0; we denote by uµε the function defined on Λ(Dε) as

uµε (x, y) := (Xµ2(t(x, y), d(x, y)/ε), Xµ3(t(x, y), d(x, y)/ε)) = (uµε1(x, y), uµε2(x, y)).

In Λ(int(Dε)) we have

∇uµε1 =


∂tXµ2 ∂xt+

1
ε
∂sXµ2 ∂xd

∂tXµ2 ∂yt+
1
ε
∂sXµ2 ∂yd

 , ∇uµε2 =


∂tXµ3 ∂xt+

1
ε
∂sXµ3 ∂xd

∂tXµ3 ∂yt+
1
ε
∂sXµ3 ∂yd

 ,

where the left hand sides and t and d are evaluated at (x, y), while Xµ2 and Xµ3 are evaluated
at (t(x, y), d(x, y)/ε).
Therefore ∣∣∇uµε1

∣∣2 +
∣∣∇uµε2

∣∣2 =
1
ε2
G1 +

2
ε
G2 +G3 in Λ(int(Dε)), (3.21)

with 
G1 :=

(
(∂sXµ2)2 + (∂sXµ3)2

)
|∇d|2 = (∂sXµ2)2 + (∂sXµ3)2,

G2 :=
(
∂tXµ2∂sXµ2 + ∂tXµ3∂sXµ3

)
∇t · ∇d,

G3 :=
(

(∂tXµ2)2 + (∂tXµ3)2
)
|∇t|2,

where we have used the eikonal equation for the signed distance function

|∇d|2 = 1 in int(Λ(R)).

Notice that |∇t|2 is uniformly bounded with respect to ε on Dε, by the assumption that Ju

is of class C2.
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A direct computation shows that

∂xuµε1∂yu
µ
ε2 − ∂xuµε2∂yu

µ
ε1 =

1
ε2
E1 +

1
ε
Ẽ2 + E3, (3.22)

with 

E1 :=∂sXµ2∂xd∂sXµ3∂yd− ∂sXµ2∂yd∂sXµ3∂xd = 0,

Ẽ2 :=∂tXµ2∂sXµ3

(
∂xt∂yd− ∂yt∂xd

)
+ ∂tXµ3∂sXµ2

(
∂xd∂yt− ∂yd∂xt

)
=
(
∂tXµ2∂sXµ3 − ∂tXµ3∂sXµ2

)
∇t · ∇d⊥,

E3 :=∂tXµ2∂xt∂tXµ3∂yt− ∂tXµ2∂yt∂tXµ3∂xt = 0,

(3.23)

Set
E2 := ∂tXµ2∂sXµ3 − ∂tXµ3∂sXµ2. (3.24)

From (3.22), (3.23) and (3.24) we have(
∂xuµε1∂yu

µ
ε2 − ∂xuµε2∂yu

µ
ε1

)2 =
1
ε2

(E2)2 |∇t · ∇d⊥|2, (3.25)

where again Xµ2 and Xµ3 are evaluated at (t(x, y), d(x, y)/ε).
Notice that if (x, y) ∈ Λ(Dε) then the vector ∇d⊥(x, y) = ∇d⊥(π(x, y)) is tangent to Ju at
π(x, y), and has unit length. In addition, t is constant along the normal direction to Ju, so
that if (x, y) ∈ Λ(Dε) then ∇t(x, y) = ∇t(π(x, y)) +O(ε), and ∇t(π(x, y)) is also tangent to
Ju, where

|O(ε)| ≤ c‖κ‖L∞(Ju) max
t∈[a,b]

(σ+(t)− σ−(t)),

κ being the curvature of Ju, for a positive constant c independent of ε.
Since α is an arc-length parametrization of Ju, it follows that |∇t| = 1 on Ju. Therefore

|∇t · ∇d⊥| = 1 +O(ε) on Λ(Dε), (3.26)

and hence from (3.25)(
∂xuµε1∂yu

µ
ε2 − ∂xuµε2∂yu

µ
ε1

)2 =
1
ε2

(E2)2(1 +O(ε)).

Whence, from (3.21) and (3.25),

A(uµε ,Λ(Dε))

=
∫

Λ(Dε)

√
1 + |∇uµε1|2 + |∇uµε2|2 + (∂xuµε1∂yu

µ
ε2 − ∂xuµε2∂yu

µ
ε1)2

dxdy

=
∫

Λ(Dε)

√
1 +G3 +

2
ε
G2 +

1
ε2

[
G1 + (E2)2(1 +O(ε))

]
dxdy.
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The area formula implies that

A(uµε ,Λ(Dε)) =
∫
Dε

√
1 + Ĝ3 +

2
ε
Ĝ2 +

1
ε2

[
Ĝ1 + (Ê2)2(1 +O(ε))

]
|det(Λ)| dtds.

Here, for i = 1, 2, 3, Ĝi (respectively Ê2) equals Gi (respectively E2) with (x, y) replaced by
Λ−1(x, y) = (t, s), where we have α(t) = π(x, y) and s = d(x, y); in particular Xµ2 and Xµ3

are evaluated at (t, s/ε). Remember also that |det(Λ)| = |1 − κs|, κ being the curvature of
Ju at α(t). Making the change of variable s/ε→ s we get

A(uµε ,Λ(Dε)) =
∫
D

√
ε2 + ε2Ĝ3 + 2εĜ2 +

[
Ĝ1 + (Ê2)2(1 +O(ε))

]
|1− εκs| dtds,

where now Xµ2 and Xµ3 are evaluated at (t, s), and we notice that the term O(ε) is unaffected
by the variable change.
Hence, by our regularity assumption on Ju and (3.26), we deduce

lim
ε→0+

A(uµε ,Λ(Dε)) =
∫
D

√
Ĝ1 + (Ê2)2 dtds. (3.27)

From (3.12) it follows

DX =

 1 0
∂tXµ2 ∂sXµ2

∂tXµ3 ∂sXµ3

 ,
so that using the area formula

H2(Σ̂µ) =
∫
D

√
det(DXT

µDXµ) dt ds

=
∫
D

√
(∂sXµ2)2 + (∂sXµ3)2 + (∂tXµ2∂sXµ3 − ∂tXµ3∂sXµ2)2 dt ds,

which coincides with the right hand side of (3.27). This shows that for any µ ∈ (0, µ)

lim
ε→0+

A(uµε ,Λ(Dε)) = H2(Σ̂µ).

Recalling (3.11), by a diagonalization process we can choose a sequence (µε)ε such that,
defining

uε(x, y) := uµεε (x, y), (x, y) ∈ Λ(Dε),

we get
lim
ε→0+

A(uε,Λ(Dε)) = H2(Σmin).

This concludes the proof of (3.20) and hence of (3.5). Inequality (3.6) follows by observing
that Lip(Ω; R2) ⊂ D(Ω; R2) (see (2.2)) and applying Lemma 9.1.

4 Parametric case

In this section we relax the hypotheses of Theorem 3.1, in order to allow area-minimizing
surfaces not of graph-type and possibly self-intersecting.
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4.1 Hypotheses on u and statement in the parametric case

We consider a map u = (u1,u2) satisfying condition (u1) and:

(ũ2) - u1 ∈ C1
(
Ω \ Ju

)
, u2 ∈W 1,2

(
Ω \ Ju

)
;

- M(∇u) ∈ L1
(
Ω \ Ju; R6

)
;

- for ζ > 0 small enough, denoting by Ba
ζ (respectively Bb

ζ) the open disk centered

at α(a) (respectively α(b)) with radius ζ, we have u1 ∈W 1,∞
(

Ω \ Ju ∪Ba
ζ ∪Bb

ζ

)
,

and the following holds: if, for almost every ζ, we consider the restriction of u1

to ∂Ba
ζ , then the L∞-norm of the derivative of such a restriction blows up of the

order of 1/ζ (and similarly at Bb
ζ).

(ũ3) The two traces γ± belong to C
(
[a, b]; R2

)
∩BV

(
[a, b]; R2

)
and (3.1) and (3.2) hold.

(ũ4) Γ = Γ[u], defined in (3.3), is such that the image Σmin of an area-minimizing disk-type
solution of the Plateau’s problem spanning Γ admits a semicartesian parametrization
X, with a domain D (Definition 2.2) satisfying the following two conditions:

- (a, b)× {0} ⊂ int(D),

- if σ+ (respectively σ−) is not Lipschitz(15) in [a, b], then it is strictly convex (re-
spectively strictly concave) in a (right) neighbourhood of a. Similar conditions are
required at b.

Sufficient conditions on Γ ensuring that Σmin admits a semicartesian parametrization are
given in Section 5.

Remark 4.1. Theorem 4.1 remains valid if we exchange the hypotheses on the two compo-
nents of u.

An example of map satisfying (u1), (ũ2)-(ũ4) is given in Example 5.1 below.

Remark 4.2. Condition (u1) and the first two items of hypothesis (ũ2) guarantee that
u ∈ D

(
Ω \ Ju; R2

)
. We also observe that assuming in (ũ2) the weaker condition u1 ∈

W 1,2
loc

(
Ω \ Ju

)
is not enough for our proof to work, since we need uµε to be, in the intermediate

region, of class W 1,2
(
Λ(Rε \Dµ

ε ); R2
)
, see the expression in step 2 below.

Theorem 4.1. Suppose that u satisfies assumptions (u1), (ũ2)-(ũ4). Then there exists a
sequence

(uε)ε ⊂W 1,2(Ω; R2)

converging to u in L1(Ω; R2) as ε→ 0+ satisfying (3.5). Moreover (3.6) holds.

(15)Recall that σ± ∈ Liploc(a, b).
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4.2 Proof of Theorem 4.1

As we have already remarked, hypothesis (ũ2) guarantees that u ∈ D(Ω \ Ju; R2) and hence
the expression A(u,Ω \ Ju) in (3.5) is meaningful.
To prove the theorem, we follow the line of reasoning of the proof of Theorem 3.1. However
we now have to overcome two different problems. More precisely,

- the derivative of σ±, whose graphs form the boundary of the D, could be unbounded
at t = a and t = b; this implies that also |∇Tε| could be unbounded;

- near the crack tips the map u is not regular enough to guarantee straightforwardly that
uε is sufficiently regular.

Also in this case, we split the proof into various steps. In the first step we construct a family
of surfaces Σµ approximating Σmin and parametrized on suitable domains Dµ ⊆ D bounded
by the graphs of σ±µ ∈ Lip([a, b]).

step 1. If σ± ∈ Lip([a, b]), we do not need to approximate Σ, thus we can pass directly to
the next step with Xµ = X and Dµ = D. Hence we can assume σ± ∈ Liploc([a, b])\Lip([a, b]).
Let us suppose for example that the graph of σ+ near the point (a, 0) is locally concave,
with (right) derivative σ̇+(a) = +∞, while the derivative of σ+ near b is bounded and
σ− ∈ Lip([a, b])(16), see Figure 6. Then we modify the set D and the map X near the point
(a, 0) as follows.
For a small positive constant c we adopt the following notation:

- `c is the portion of the line over [a, b] passing through (a, 0) with angular coefficient
c−1, that is:

`c(t) =
t− a
c

, t ∈ [a, b];

- Pc is the first intersection point of `c with ∂D and its coordinates are denoted by
(tc, σ+(tc)) (tc > a thanks to our assumptions on σ+).

For every µ > 0 small enough, we define

σ+
µ :=

{
`µ in [a, tµ),
σ+ in [tµ, b],

and
Dµ := {(t, s) : t ∈ [a, b], σ−(t) ≤ s ≤ σ+

µ (t)}.

In order to define the map Xµ on Dµ, we need to consider also the line `2µ and the corre-
sponding intersection point P2µ with ∂D. For any t ∈ [a, t2µ], we denote by p(t) (respectively
r(t), q(t)) the point having first coordinate t, on the segment joining (a, 0) and P2µ (respec-
tively joining (a, 0) and ∂Dµ, (a, 0) and ∂D); of course, r(t) = q(t) for t ∈ [tµ, t2µ] (see Figure
6).
Thus we define

Xµ : Dµ → R3

(16)If also the other derivatives blow up, the construction of Xµ and Dµ is similar.
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a tµ
t

t t2µ

`µ `2µ

Dµ

p(t)

r(t)

q(t)

τ

p(τ)

r(τ) = q(τ)

b

Figure 6: Modification of the domain D when the gradient of σ+ blows up (in this case only near
t = a).

as follows: for (t, s) ∈ Dµ,

Xµ(t, s) :=

{
φµ(t, s) if t ∈ [a, t2µ), s ≥ `2µ(t),
X(t, s) otherwise,

where φµ is linear along the vertical lines (i.e., parallel to the s-direction), φµ(p(t)) := X(p(t))
and φµ(r(t)) := X(q(t)). We observe that Xµ is still a semicartesian parametrization.
Denoting by Σµ the image of Dµ through Xµ, we have H2(Σµ) → H2(Σ) as µ → 0+ ([14,
§305]).

step 2.
For every µ > 0 small enough, let us define the sequence (uµε ) as follows:

uµε1 :=



u1 in Ω \
(

Λ(Rε) ∪Ba
δε/2 ∪B

b
δε/2

)
,

u(Tµε )1 in Λ(Rε \Dµ
ε ) \

(
Ba
δε/2 ∪B

b
δε/2

)
,

Xµ2(t, s/ε) in Λ(Dµ
ε ) \

(
Ba
δε/2 ∪B

b
δε/2

)
,

ψµε in Ba
δε/2 ∪B

b
δε/2,

and

uµε2 :=


u2 in Ω \ Λ(Rε),
u(Tµε )2 in Λ(Rε \Dµ

ε ),
Xµ3(t, s/ε) in Λ(Dµ

ε ),

where:

- Λ, R, t = t(x, y), s = s(x, y) are defined as in step 6 of the proof of Theorem 3.1, and
Dµ
ε := {(t, s) ∈ R2 : (t, s/ε) ∈ Dµ};

- Tµε is defined in (3.16), with Dµ in place of D and σ±µ instead of ±σ, and corresponds
to T+

ε in Figure 6;
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- Ba
δε/2 (respectively Bb

δε/2) is the open disk centered at α(a) (respectively α(b)) with
radius δε/2;

- the function ψµε is linear along the radii and is equal to u1(α(a)) and to the trace
v of uµε1 on ∂Ba

δε/2 from the complement of Ba
δε/2; namely, if z ∈ Ba

δε/2, we have

ψµε (z) = 2|z−α(a)|
δε v

(
δε(z−α(a))
2|z−α(a)| + α(a)

)
+ δε/2−|z−α(a)|

δε/2 γ+
1 (a) (and similarly in Bb

δε/2).

By construction and thanks to hypotheses (u1), (ũ2)-(ũ4), the sequence (uµε ) is inW 1,2(Ω; R2).
We have:

- A
(
uµε ,Ω \

(
Λ(Rε) ∪Ba

δε/2 ∪B
b
δε/2

))
= A

(
u,Ω \

(
Λ(Rε) ∪Ba

δε/2 ∪B
b
δε/2

))
by defini-

tion;

- A
(
uµε ,Λ(Rε \Dµ

ε ) \ (Ba
δε/2 ∪B

b
δε/2)

)
→ 0 as ε → 0+ for fixed µ, because of the esti-

mates done in step 8 of the proof of Theorem 3.1, since |∇Tµε | is bounded;

- A
(
uµε ,Λ(Dµ

ε ) \ (Ba
δε/2 ∪B

b
δε/2)

)
→ H2(Σµ) as ε → 0+: indeed the computations done

in step 9 of Theorem 3.1 are still valid, since they depend only on the fact that the
parametrization is in semicartesian form.

Thus

lim
ε→0+

A
(
uµε ,Ω \

(
Ju ∪

(
(Ba

δε/2 ∪B
b
δε/2) \ Λ(Rε)

)))
= A

(
u,Ω \ Ju

)
+H2(Σµ).

In order to compute A(uµε , Ba
δε/2) we observe that

|∇ψµε | ≤
C

ε
(4.1)

for some constant C > 0 independent of ε and µ. Indeed, for z := (x, y) and |z − α(a)| ≤
δε/2, writing z−α(a)

|z−α(a)| = (cos θ, sin θ) and v
(
δε(z−α(a))
2|z−α(a)| + α(a)

)
= v̂(θ), we have ∇ψµε (z) =

2(z−α(a))
δε|z−α(a)|

(
v
(
δε(z−α(a))
2|z−α(a)| + α(a)

)
− γ+

1 (a)
)

+2v̂′(θ) |z−α(a)|
δε ∇θ(z) almost everywhere, and∇θ(z)

is −1-homogeneous. Hence ‖∇ψµε ‖∞ is bounded by the L∞-norm of the radial part, which
is of the order of ‖v‖∞/ε, plus the L∞-norm of the angular part, which is of the order of
‖v̂′‖∞/ε. See Example 5.1 for related comments.
Thus, for a possibly different value of the constant C (still independent of ε and µ),

A(uµε , B
a
δε/2 \ Ju)

≤ C
∫
Ba
δε/2
\Ju

[1 + |∇ψµε |+ |∇u
µ
ε2|+ |∂xψ

µ
ε ∂yu

µ
ε2 − ∂yψ

µ
ε ∂xu

µ
ε2|] dx dy

≤ C
[
O(ε2) +O(ε)

]
+ (1 + C)

∫
Ba
δε/2
\Ju

|∇uµε2| dx dy,

where we have used (4.1). Recalling that on Λ(Dµ
ε ) we have uε2(x, y) = Xµ3(t, s/ε), the term∫

“
Ba
δε/2
∩Λ(Dµε )

”
\Ju

|∇uµε2| dx dy
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is negligible as ε→ 0+. On the other hand on Ba
δε/2 \ Λ(Rε) we have uµε2 = u2, and thus∫

Ba
δε/2
\Λ(Rε)

|∇uµε2|dx dy = O(ε2).

Finally we get an analogous result also on Ba
δε/2 ∩ Λ(Rε \ Dµ

ε ) since here uµε2 is defined as
(u(Tµε ))2 and Tµε has bounded gradient and tends to the identity.
Thus the area contribution on Ba

δε/2 is asymptotically negligible (and similarly on Bb
δε/2).

Finally, since H2(Σµ) tends to H2(Σmin) as µ → 0+, we can choose uε as uµεε for a suitable
sequence (µε) of positive numbers converging to zero, so that we get (3.5). Recalling that
W 1,2(Ω; R3) ⊂ D(Ω; R2) and applying Lemma 9.1, we obtain (3.6).

Remark 4.3. If u satisfies (u1), (ũ2), (ũ3) and Γ[u], defined in (3.3), is contained in a plane
Π, then

A(u,Ω) = A(u,Ω \ Ju) +H2(Σmin).

Indeed Σmin is of course the portion of Π bounded by Γ; moreover, thanks to the definition of
Γ, the plane Π cannot be orthogonal to the unit vector (1, 0, 0). Thus, either the projection
of Σmin on the plane R2

(t,ξ), or its projection on R2
(t,η), has non-empty interior. On the

symmetrized of this domain we can define a semicartesian parametrization of Σmin and,
applying Theorem 4.1, we find

A(u,Ω) ≤ A(u,Ω \ Ju) +H2(Σmin).

On the other hand, in this case H2(Σmin) = |Dsu|(Ω) thus, using relation (1.2), we have also

A(u,Ω) ≥ A(u,Ω \ Ju) +H2(Σmin).

5 On the existence of semicartesian parametrizations

Our goal is to state some conditions on Γ which allow to construct a semicartesian parametriza-
tion for the corresponding area-minimizing surface, in order to apply Theorem 4.1 for suitable
maps u. Theorem 5.1 provides some sufficient conditions for this purpose: roughly, we shall
assume that Γ is the union of the graphs of two analytic curves, joining in an analytic way
and satisfying a further assumption of non degeneracy. We stress that the analyticity forces
the gradient of u to blow up near the crack tips.
The proof of Theorem 5.1 is quite involved and it is postponed to section 6.

We start with the following definition.

Definition 5.1 (Condition (A)). We say that a curve Γ union of two graphs satisfies
condition (A) if there exists an injective analytic map

g = (g1, g2, g3) : ∂B → Rt × R2
(ξ,η)

such that
Γ = g(∂B)
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where, still denoting for simplicity by g the composition g ◦b (see (2.1)), and using the prime
for differentiation with respect to θ, the following properties are satisfied:

|g′(θ)| 6= 0, θ ∈ [0, 2π),
g ′1 < 0 in (θn, θs),
g ′1 > 0 in (θs, θn),
g ′′1 (θs) > 0, g ′′1 (θn) < 0.

(5.1)

Note carefully that the last three conditions involve the first component of g only.
Our result is the following.

Theorem 5.1 (Existence of semicartesian parametrizations). Let Γ ⊂ R3 be a curve
union of the two graphs of γ± and satisfying condition (A). Then there exist an analytic,
connected, simply connected and bounded set D, and a disk-type semicartesian (Definition
2.2) area-minimizing solution X ∈ Cω

(
D; R3

)
of the Plateau’s problem spanning Γ, with X

free of interior branch points and of boundary branch points. Moreover,

(i) near the point (a, 0), the curve ∂D is of the form {(τ(s), s)}, for |s| small enough, with

τ(s) = a+ λ2s
2 + o(s2), (5.2)

for λ2 > 0, and similarly near the point (b, 0);

(ii) the Lipschitz constant of σ± on a relatively compact subinterval of (a, b) is bounded by
the Lipschitz constant of the restriction of γ± on the same subinterval.

Remark 5.1. The semicartesian parametrization provided by Theorem 5.1 could not satisfy
the condition

(a, b)× {0} ⊂ int(D).

We can obtain a semicartesian parametrization fulfilling condition (ũ4) of Theorem 4.1 by
symmetrizing the domain, as in step 4 of the proof of Theorem 3.1

From Remark 5.1 and Theorems 4.1 and 5.1 we get the following result.

Corollary 5.1. Suppose that u satisfies (u1), (ũ2), (ũ3) and that Γ[u] satisfies condition
(A). Then there exists a sequence

(uε)ε ⊂W 1,2
(
Ω; R2

)
converging to u in L1(Ω; R2) as ε→ 0+ satisfying (3.5). Hence (3.6) holds.

Remark 5.2. Before proving Theorem 5.1, the following comments are in order.

- Note the special structure of the curve Γ[u] in Corollary 5.1: it is not the graph of an
R2-valued function over Ju, but it is instead the union of two analytic graphs, joining
together in an analytic way, of the two R2-valued functions u±. Since globally the map
g is required to be analytic, it results that u± are not independent.
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- The nondegeneracy requirement (5.1) of g at the south and north poles are necesssary
in order for the proof of Theorem 6.1 to work. In particular, it is needed to ensure that
the restriction of the height function h to ∂B is a Morse function (step 4 of the proof
of Theorem 6.1).

- As we shall see, the analyticity requirement in hypothesis (ũ4) is needeed in order to
prevent the existence of boundary branch points in a disk-type area-minimizing solution
of the Plateau’s problem with boundary Γ.

Example 5.1 (Maps satisfying the hypotheses of Theorem 5.1). In this example we
present a map u satisfying (u1), (ũ2) and (ũ3) and whose Γ = Γ[u] satisfies condition (A)
and hence, from Theorem 5.1, also condition (ũ4). The map u is defined so that Γ is a
perturbation of the circle: indeed Γ is exactly the boundary of the unit disk contained in
the plane R2

(t,ξ) whenever u2 is identically zero, and the nondegeneracy condition (5.1) holds.
It is clear that, starting from u, several other maps satisfying the same conditions can be
constructed.
Let Ω be a bounded open connected subset of R2

(x,y) containing the square [−1, 1]2. Let us
consider the map ũ = (ũ1,u2) : Ω→ R2 defined by

ũ1(x, y) :=

{√
1− x2 + y2 if |x| ≤ 1, y ≥ 0,
−
√

1− x2 + y2 if |x| ≤ 1, y < 0,

ũ1(x, y) :=y, (x, y) ∈ Ω \ ([−1, 1]× R),

(5.3)

and with u2 ∈ C1(Ω)∩W 1,∞(Ω), such that condition (A) holds (the simplest example being of
course u2 ≡ 0). We notice that J ũ = [−1, 1]×{0}, and ũ1 ∈W 1,∞(Ω\(J ũ∪B−∪B+)

)
, where

B− (respectively B+) is a sufficiently small ball centered at (−1, 0) (respectively at (1, 0)). In
addition, ũ1 ∈W 1,1

(
Ω \ J ũ

)
, but ũ1 /∈W 1,2

(
Ω \ J ũ

)
, as it can be checked directly (compare

Remark 4.2). Since the gradient of u2 is bounded, we get M(∇ũ) ∈ L1
(
Ω \ J ũ; R6

)
.

Observe that ∇ũ1 = (0, 1) in Ω \ ([−1, 1] × R), while the limit of ∇ũ1 from the side of
Ω ∩ ((−1, 1)× R), as (x, y)→ (−1, y) with y 6= 0, is (1/y, 1); hence the x-component of ∇ũ1

is discontinuous along {(x, y) ∈ Ω : x = −1, y 6= 0}, and blows up at (−1, 0), of the order of
magnitude given by 1/|y|. A similar behaviour holds along {(x, y) ∈ Ω : x = 1, y 6= 0}.
In this example we have D = {(t, s) : t2 + s2 ≤ 1} and, identifying t with x, γ±[ũ](t) =(
±
√

1− x2,u2(x, 0)
)

for |t| ≤ 1, and λ2 = 1
2 in (5.2). Γ is a closed simple analytic curve lying

on the cylinder (in the space Rt ×R2
(ξ,η)) with base the unit disk in R2

(t,ξ), thus the existence
of a semicartesian parametrization is obvious since the area-minimizing surface spanning Γ
can be described as a graph on the tξ-plane (Theorem 7.7). Notice that it is possible(17) to
modify ũ1 in Ω− := {(x, y) ∈ Ω : x < −1} (respectively in Ω+ := {(x, y) ∈ Ω : x > 1}) into

(17)The construction of u, for instance in Ω− and for positive values of s, can be done as follows: take ȳ > 0
and consider the curve obtained as the intersection of the graph of ũ1 with the plane {y = ȳ}. This curve is a
Lipschitz graph over the x-axis: locally around x = −1 it is constantly equal to ȳ for x < −1, and increases,
for increasing values of x > −1, with a concave part making an angle smaller than π/2 at x = −1. It is enough
to smoothen such an angle from the side where x < −1, continuing in a C1 way the concave part for x < −1,
and pasting it (therefore, forming a local minimum) with the value of ȳ in a sufficiently short interval, keeping
the extension positive and keeping the bound of the order of 1/|ȳ| for the derivative.
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a function u, so that the function u1 defined as u1 := ũ1 in Ω \ (Ω− ∪ Ω+), and u1 := u in
Ω− ∪Ω+, satisfies u1 ∈ C1(Ω \ Ju)∩W 1,1

(
Ω \ Ju

)
. Moreover u := (u1,u2) satisfies Ju = Jũ,

u± = ũ± on Ju, M(∇u) ∈ L1
(
Ω \ Ju; R6

)
and u ∈ D(Ω \ Ju).

We stress that Γ satisfies (A) and thus we could apply the argument in the proof of Theorem
5.1. However, it is easy to modify this example keeping the same behaviour near the poles
but losing the convexity of the region enclosed by the projection of Γ.
We observe that similar examples can be constructed replacing in (5.3) the square root
with a function which is (a branch of) the inverse of a smooth function t = f(ξ), with
f(0) = f ′(0) = 0 and f ′′(0) > 0 (with the obvious definition in Ω \ ([−1, 1]× R)).

Example 5.2. Two other interesting examples of curves Γ satisfying condition (A) have
already been discussed in the introduction and plotted in Figure 1.

6 Proof of Theorem 5.1

In this section we prove Theorem 5.1. The proof is involved, and we split it into various
points.
Let Σmin be an area-minimizing surface spanning Γ and having the topology of the disk. Let

Y : (u, v) ∈ B ⊂ R2
(u,v) → (Y1(u, v), Y2(u, v), Y3(u, v)) ∈ R3 = Rt × R2

(ξ,η) (6.1)

be a conformal parametrization of Σmin (see Theorem 7.1).
Since we can assume the three points condition (Remark 7.1), we suppose that

Y (0,−1) = (a, γ+(a)) = (a, γ−(a)) =: S
Y (0, 1) = (b, γ+(b)) = (b, γ−(b)) =: N,

(6.2)

and we fix a third condition as we wish (respecting the monotonicity on the boundary
parametrization), for definitiveness

Y (1, 0) = ((a+ b)/2, γ+((a+ b)/2)).

In Section 6.1 we show a transversality property. We will make use of Morse relations for
manifolds with boundary, in order to exclude, for a suitable Morse function, the presence of
critical points of index one. The absence of boundary branch points for Y will be used in the
proof.
In Section 6.2 we explain how this transversality property ensures the existence of a local
semicartesian parametrization and, using some compactness argument and the simply con-
nectedness of Σmin, also of a global semicartesian parametrization.
Finally in Section 6.3 we provide the regularity and the shape of the domain of this semi-
cartesian parametrization.

6.1 A transversality result

Let P be the family of parallel planes orthogonal to the unit vector et = (1, 0, 0), that is the
planes in the form {

(t, ξ, η) ∈ Rt × R2
(ξ,η) : t = const

}
.

The next result is one of the most delicate parts of the proof of Theorem 5.1.
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Theorem 6.1 (Transversality). In the same hypotheses on Γ of Theorem 5.1, none of the
planes of P is tangent to Σmin.

Proof. We have to show that the normal direction to Σmin at a point of Σmin is never parallel
to (1, 0, 0); at self-intersection points of Σmin, the statement refers to all normal directions.
Our strategy is to introduce a height function having the planes of the family P as level
sets, namely the function given by the first coordinate t in R3 = Rt × R2

(ξ,η), restricted to
an extension of Σmin. The proof consists then in proving that the only critical points of the
height function are the minimum and the maximum corresponding to points S and N (see
(6.2)).
Since ∂Σmin = Γ is non-empty, in order to deal with boundary critical points, it is convenient
to extend Σmin across Γ.
By condition (A) the curve Γ is analytic; therefore (Theorem 7.4) we can extend Σmin to
an analytic minimal surface Σext across Γ; Σext can be parametrized on a bounded smooth
simply connected open set Bext ⊃ B through an analytic map Y ext = (Y ext

1 , Y ext
2 , Y ext

3 ) which
coincides with Y on B, is harmonic, i.e. ∆Y ext = 0 in Bext, and satisfies the conformality
relations |Y ext

u |2 = |Y ext
v |2, Y ext

u · Y ext
v = 0 in Bext. In addition, from Theorems 7.2 and 7.3,

Y ext has no interior (i.e., in B) and no boundary (i.e., on ∂B) branch points. Hence, possibly
reducing Bext, we can suppose that Y ext has no branch points in Bext.
Therefore, the Gauss map

N : (u, v) ∈ Bext → N (u, v) :=
Y ext
u (u, v) ∧ Y ext

v (u, v)
|Y ext
u (u, v) ∧ Y ext

v (u, v)|
(6.3)

is well-defined in Bext(18).
Let us define

h : (u, v) ∈ Bext → h(u, v) := Y ext
1 (u, v) ∈ Rt.

Observe that (u0, v0) ∈ Bext is a critical point for h if and only if the plane {(t, ξ, η) ∈ R3 : t =
Y ext

1 (u0, v0)} is tangent to Σext at Y ext(u0, v0). Indeed, criticality implies ∂uY ext
1 (u0, v0) =

∂vY
ext

1 (u0, v0) = 0, and one checks from (6.3) that

N (u0, v0) = (1, 0, 0). (6.4)

On the other hand, if N (u0, v0) = (1, 0, 0), the image of any vector of R2
(u,v) through the

differential of Y at (u0, v0) is orthogonal to (1, 0, 0). In particular, if we consider the image
of eu = (1, 0) and ev = (0, 1), we obtain Y1u(u0, v0) = 0 = Y1v(u0, v0).
From the above observation, it follows that the thesis of the theorem reduces to show that the
function h has no critical points in B, except for (0,±1), for which we shall prove separately
that N (0,±1) 6= (1, 0, 0).

At first, we shall show that the thesis of the theorem holds true up to a small rotation of Σext

around a line in the orthogonal space to (1, 0, 0) that takes a direction in a suitable set to
become (1, 0, 0); moreover this set of directions is dense in a small neighborhood of (1, 0, 0).
In the last step we will show that the statements holds true without applying this rotation.
(18)N is also harmonic and satisfies the conformality relations, see [5, Chapter 1.2].
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step 1. Up to a suitable rotation in R3, the function h has no degenerate critical points.

We notice that any degenerate critical point of h is a critical point also for the Gauss map.
Indeed let (u0, v0) ∈ Bext be critical: using (6.4) we have, for the coefficients of the second
fundamental form,

Y ext
uu · N = Y ext

1uu = huu, Y ext
uv · N = Y ext

1uv = huv, Y ext
vv · N = Y ext

1vv = hvv.

If in addition (u0, v0) is degenerate, then the determinant of the Hessian of h at (u0, v0)
vanishes, and this implies that also the determinant of the second fundamental form is zero.
That is, (u0, v0) is a critical point for the Gauss map.
From Sard’s lemma, it follows that we can find a rotation around a line in the orthogonal
space to (1, 0, 0), as close as we want to the identity, so that the t-direction does not belong
to the set of critical values of the Gauss map. Moreover such a rotation can be freely chosen
in a set that is dense in a neighborhood of the identity. We also remark that for a sufficiently
small rotation condition (A) remains valid although the values θn and θs of the parameter
leading to maximal and minimal value of the t-component are perturbed of a small amount.
Therefore, from now on we assume that

all critical points of h in Bext are nondegenerate.

step 2. The height function h has no critical points on ∂B.

Suppose first by contradiction that there exists (u, v) ∈ ∂B\{(0,±1)} such that ∇h(u, v) = 0,
namely (u, v) is a critical point of h different from (0,±1). We claim that if τ∂B ∈ R2,
|τ∂B| = 1, τ∂B tangent to ∂B at (u, v), then for some λ 6= 0

Yτ∂B (u, v) = λτΓ(u, v),

where τΓ(u, v) is a tangent unit vector to Γ at Y (u, v) and Yτ∂B is the derivative of Y along
τ∂B. Indeed, since Y is smooth up to ∂B, it follows that Yτ∂B (u, v) is tangent to Γ at Y (u, v).
Now write τ∂B = αeu + βev, α2 + β2 = 1 and eu = (1, 0), ev = (0, 1). Since

Yτ∂B (u, v) = αYu(u, v) + βYv(u, v),

the conformality relations imply

|Yτ∂B (u, v)|2 = (α2 + β2)|Yu(u, v)|2.

Then the absence of boundary branch points guarantees that |Yτ∂B (u, v)|2 6= 0. Hence
Yτ∂B (u, v) is a non-zero vector parallel to τΓ(u, v) and the claim follows. Observe now that,
by assumption, τΓ(u, v) has non-zero t-component, so that

αY 1
u (u, v) + βY 1

v (u, v) 6= 0, (6.5)

which contradicts the criticality of (u, v) for h. Thus (6.5) shows that h has no critical points
on ∂B \ {(0,±1)}. In order to exclude that S (and similarly N) is a critical point for h, we
observe that condition (A) implies that the convex hull of Γ, and hence the convex hull of
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Σmin
(19), is contained in a wedge having the tangent to Γ at its lowest point as ridge and the

two slopes are strictly increasing starting from the ridge. Thus the normal vector to Σext in
S cannot be parallel to (1, 0, 0).

As a consequence of step 2 we can suppose that all critical points of h are contained in B.

Step 3. The function h has neither local maxima nor local minima in B.

Indeed, assume by contradiction that p = Y (u0, v0) ∈ Σmin, where (u0, v0) ∈ B is a local
minimum point for h. Then locally the surface Σmin is contained in a half-space delimited by
the tangent plane {(t, ξ, η) : t = Y1(u0, v0)}, the intersection with this tangent plane being
locally only the point p. We now construct a competitor surface Σ′ as follows: we remove
from Σmin a small portion locally around p, obtained by cutting Σmin locally with a plane at
a level slightly higher than the minimal value. We fill the removed portion with a portion of
plane, and this givs Σ′(20). Then the area of Σ′ is strictly smaller than the area of Σmin, a
contradiction. A similar argument holds for a local maximum point and therefore the proof
of step 3 is concluded.

Employing the notation of Section 8, we have therefore

m0(h,B) = m2(h,B) = 0.

The next step is a consequence of the monotonicity and nondegeneracy assumptions expressed
in (5.1), and of the conformality and analyticity of Σmin.

Step 4. The restriction h|∂B of h to ∂B is a Morse function; moreover m−0 (h|∂−h B) = 1 and

m−1 (h|∂−h B) = 0 (Section 8).

We observe that condition (A) implies that there exists a parametrization of Γ on ∂B whose
first components is a Morse function. We have to show that also the parametrization induced
by the area-minimizing surface Y has the same property.
As already done for the function g , we denote by Y ext

|∂B and by h|∂B the composition Y ext ◦ b
and h ◦ b respectively (see (2.1)) and we use the prime for differentiation with respect to θ.
At first, we observe that out of branch points, all the directional derivatives of Y ext are non
zero. Thus in particular, from the absence of boundary branch points on ∂B, we deduce that

|(Y ext
|∂B)′(θ)| 6= 0, θ ∈ [0, 2π).

On the other hand, since g is analytic with differentiable inverse, there exists a C1 function
ψ from [0, 2π] in itself such that ψ(2π) = ψ(0) + 2π and

Y ext
|∂B(θ) = g(ψ(θ)), θ ∈ [0, 2π).

Differentiating the last expression and remembering from (5.1) that |g′| 6= 0, we get that also
ψ′ never vanishes, indeed:

0 6= |(Y ext
|∂B)′(θ)| = |g′(ψ(θ))||ψ′(θ)|.

(19)Any connected minimal surface X with a parameter domain D is contained in the convex hull of X|∂D.
See [6, Theorem 1, chapter 4.1].
(20)If the cut level is close enough to the critical level, Σ′ is the image of a map in C(Γ) (see Appendix 7).
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From the semicartesian form of Γ, h|∂B has just a minimum and a maximum in correspondence
of N = (0, 1) and S = (0,−1). From the properties of g we infer that ψ(θs) is the value of θ
corresponding to S, and similarly for N . Since

h′′|∂B(θ) = g ′′1 (ψ(θ))(ψ(θ))2 + g′1(ψ(θ))ψ′′(θ),

computing for the values corresponding to S and N we get that the first addendum is non-
zero, while the second vanishes. We have thus proven that h|∂B is a Morse function, with a
maximum in (0, 1) and a minimum in (0,−1).

Following once more Section 8 (see (8.1)), we now set

∂−h B := {(u, v) ∈ ∂B : ∇h(u, v) · νB(u, v) < 0},

where νB(u, v) denotes the outward unit normal to ∂B at (u, v) ∈ ∂B.
We prove that

(0,−1) ∈ ∂−h B and (0, 1) /∈ ∂−h B.
Indeed if ∇h(0,−1) · νB(0,−1) ≥ 0, we get a contradiction from the same argument used in
step 2 to prove that (0,−1) is not critical for h. Similarly (0, 1) /∈ ∂−h B.

We have thus obtained that

m−0 (h|∂−h B) = 1, m−1 (h|∂−h B) = 0.

Step 5. The function h has no saddle points in B.

The Morse function h (step 1) has no points of index zero (minima) in B and no points of
index two (maxima) in B by step 3: again following the notation of Section 8 (see (8.2)),
we have

M0(h,B ∪ ∂B) = 1, M2(h,B ∪ ∂B) = 0.

In addition, using steps 2 and 4, we can apply Theorem 8.1, and obtain, being χ(B) = 1,

M1(h) = M0(h,B ∪ ∂B) +M2(h,B ∪ ∂B)− χ(B) = 0.

step 6. It is not necessary to apply any rotation.

It is sufficient to show that the direction given by (1, 0, 0) is actually not critical for the Gauss
map. At first we can assume that Γ is not contained in a plane. Indeed if it were planar,
necessarily

N (u, v) = ν0, (u, v) ∈ B
for some constant unit vector ν0 6= (1, 0, 0), since Γ is union of two graphs.
Assuming that Γ is non planar, we reason by contradiction and suppose that there is a
degenerate critical point p = Y (u0, v0) for the height function h in the relative interior of
Σmin. This means that (u0, v0) is a critical point for the Gauss map, that is the product
κ1κ2 of the two principal curvatures is 0; because of the minimality of Σmin we get that p
is an umbilical point, with κ1 = 0 = κ2. Recalling that in a non-planar minimal surface
the umbilical points are isolated (see for example [5, Remark 2, chapter 5.2]), we can find a
direction in a small neighborhood of (1, 0, 0) that is normal to Σmin in a neighborhood of the
degenerate critical point p and is not a critical value for the Gauss map. If we rotate Σmin

taking this direction to become vertical, we have a nondegenerate critical point for the height
function, which is a contradiction in view of the previous steps.
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6.2 The semicartesian parametrization

We can apply Theorem 7.5 to Σext with the family of planes of Theorem 6.1, obtaining a local
semicartesian parametrization. More precisely, for any point p ∈ Σext there exists an open
domain Dp ⊂ R2

(t,s) and an analytic(21), conformal semicartesian map Xp parametrizing an
open neighbourhood of p on Σext:

Xp : Dp → Σext,

(t, sp)→ (t,Xp2(t, sp), Xp3(t, sp)).
(6.6)

Proposition 6.1 (Global semicartesian parametrization). In the same hypotheses on
Γ of Theorem 5.1, Σmin = X(D) admits an analytic parametrization of the form (2.5).

Proof. The local parametrization in (6.6) is unique up to an additive constant: sp 7→ sp + ρ.
Indeed, if tp is the t-coordinate of p, the direction of ∂spXp is given by the intersection of the
tangent plane to Σext and the plane {t = tp}, since its t-component is zero. The vector ∂tXp

is then uniquely determined by being in the tangent plane to Σext, orthogonal to ∂spXp and
having 1 as t-component. This in turn determines the norm of ∂spXp and hence ∂spXp itself
(up to a choice of the orientation of Σext)(22). Functions Xp2(t, sp) and Xp3(t, sp) can now be
obtained by integrating the vector field ∂spXp along the curve {t = tp}∩Σext and transported
as constant along the curves {s = const}. Now we can cover Σmin ∪ Γ with a finite number
of such neighbourhoods (local charts) having connected pairwise intersection, and we can
choose the constant in such a way that on the intersection of two neighborhoods the different
parametrizations coincide. In this way we can “transport” the parametrization from a fixed
chart along a chain of pairwise intersecting charts. This definition is well-posed if we can
prove that the transported parametrization is independent of the actual chain, or equivalently
that transporting the parametrization along a closed chain of charts produces the original
parametrization. This is a consequence of the simple connectedness of the surface(23), indeed
we can take a closed curve that traverses the original chain of charts and let it shrink until
it is contained in a single chart.
Thus we can construct a global semicartesian parametrization X defined on a open domain
Dext ⊂ R2 as required in hypothesis (ũ4). Eventually

D := X−1(Σmin ∪ Γ) (6.7)

is a closed bounded (connected and simply connected) set such that the intersection with the
line {t = k}, for k ∈ (a, b), is an interval (not reduced to a point); indeed if the intersection
were composed by two (or more) connected components, there would be at least 4 points on
the intersection of Γ with the plane {t = k}, and this is impossible since Γ is union of two
graphs on t.

Before proving that D satisfies the local Lipschitz conditions required by Definition 2.2, we
need the following regularity result.
(21)From the proof of Theorem 7.5 one infers that the regularity of the local semicartesian map is the same

as the surface.
(22)Incidentally, we note here that |∂spXp| = |∂tXp| ≥ 1 (which excludes branch points).
(23)This is one of the points where it is important to consider disk-type area-minimizing surfaces.
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Lemma 6.1. The domain D defined in (6.7) has analytic boundary.

Proof. The boundary of D is the image of an analytic map defined on ∂B. This latter fact
follows directly from the analyticity of the map Y : B → Σmin (see (6.1)) and of the map
X : D → Σmin. The fact that Σmin can have self-intersections is not a problem here because
the preimages of points (in either B or D) in a self-intersection are well separated, so that
we can restrict to small patches of the surface and reason locally.

We are now in a position to specify a further property of ∂D(24).

Proposition 6.2. In the hypotheses and with the notation of Proposition 6.1, D has the form
in (2.3), where the two functions σ± : [a, b]→ R satisfy (2.4) and condition (ii) of Theorem
5.1.

Proof. Since, as noticed in Lemma 6.1, D∩{t = k} is an interval, not reduced to a point, for
any k ∈ (a, b), D is in the form (2.3) with σ− < σ+ in (a, b); up to traslation we can suppose
also σ+(a) = 0 = σ−(a).
Let (t, s) ∈ ∂D and let p = X(t, s) ∈ Γ. Let us suppose that s = σ−(t) (the case s = σ+(t)
being similar) and let us write σ in place of σ− for simplicity. We have to show that

|σ′(t)| ≤ |γ′(t)|. (6.8)

Let ϑ(t, s) ∈ [−π/2, π/2] be the angle between the tangent line to Γ at p (spanned by Γ′(t)
|Γ′(t)|)

and the direction of Xt(t, s). Note that if ϑ(t, s) ∈ (−π/2, π/2) we have

tg(ϑ(t, s)) = σ′(t). (6.9)

Indeed, take a vector ` generating the tangent line to ∂D at (t, s), for instance ` = (σ′(t), 1).
Using also the conformality of X, the derivative X` of X along the direction of ` is given by
X`(t, s) = σ′(t)Xs(t, s) + Xt(t, s), and is a vector generating the tangent line to Γ at p, and
(6.9) follows.
Let now Θ(t, s) ∈ [0, π/2] be the angle between the tangent line to Γ at p and the line
generated by et = (1, 0, 0). If Θ(t, s) ∈ [0, π/2) we have, writing γ in place of γ−,

tg(Θ(t, s)) = |γ′(t)|.

Hence, to show (6.8), it is sufficient to show that ϑ(t, s) ≤ Θ(t, s), or equivalently
π

2
− ϑ(t, s) ≥ π

2
−Θ(t, s). (6.10)

Consider Γ′(t)
|Γ′(t)| as a point on S2 ⊂ R3 and think of et as the vertical direction (Figure 7(b)).

We have that π
2 − Θ(t, s) is the latitude of Γ′(t)

|Γ′(t)| . On the other hand, remembering that

Xs(t, s) is orthogonal to et, we have that π
2 − ϑ(t, s) (the angle between Γ′(t)

|Γ′(t)| and Xs(t, s)

by conformality) is the geodesic distance (on S2) between Γ′(t)
|Γ′(t)| and the point obtained as

the intersection between Tp(Σmin) and the equatorial plane. Hence inequality (6.10) holds
true.

(24)The analyticity of ∂D in particular implies that we cannot have a global Lipschitz constant for σ±, so
that the result in Proposition 6.2 is optimal.
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Figure 7: (a): The dotted vector et is perpendicular to the plane {t = t} on which we have
represented a part of the curve {X(t, s) : s ∈ [σ−(t), σ+(t)]}. Γ is also drawn, and passes through the
plane {t = t} transversally. The other plane is the tangent plane to Σmin at p = X(t, σ−(t)) and the
three vectors are the conformal basis of the tangent plane span{∂tX, ∂sX} and the vector Γ′(t). The
angles θ and Θ are also displayed. (b): the same vectors normalized and represented on the sphere
S2.

6.3 Shape of the parameter domain

In order to conclude the proof of Theorem 5.1, we need to study the behaviour of ∂D near
(a, 0) and (b, 0).

Proposition 6.3. Assertion (i) of Theorem 5.1 holds.

Proof. Let us consider the point (a, 0). From the analyticity of ∂D (Lemma 6.1) and the fact
that (a, 0) minimizes the t-component in ∂D, we can express it locally in a neighborhood of
(a, 0) as the graph (τ(s), s) of a function τ : (s−, s+)→ R defined in a neighborhood (s−, s+)
of the origin that can be Taylor expanded as

τ(s) = a+ λ2s
2 + α3s

3 + α4s
4 + o(s4), s ∈ (s−, s+),

with λ2 ≥ 0.
Assume by contradiction that (5.2) does not hold, and therefore

λ2 = 0.

Since D is contained in the half-plane {t ≥ a} it follows that

α3 = 0 and α4 ≥ 0.

We shall now compute the area A(ε) of

Σε
min := Σmin ∩ {t < a+ ε} = X(D ∩ Sε)
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{t = a+ ε}
Σ1

Σ2
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Σ4

Figure 8: The competitor surface Σ. Σ1, Σ2 and Σ3 are the light gray, black and dark gray surface
respectively.

for small positive values of ε, where Sε := {(t, s) : a ≤ t < a+ ε}. Using the conformal map
X we need to integrate the area element over the set D ∩ Sε. However the integrand is the
modulus of the external product of the two derivatives of X with respect to t and to s, which
is always greater than or equal to 1, so that, integrating, we get

A(ε) ≥ L2(D ∩ Sε) ≥ cε1+1/4 (6.11)

for some positive constant c independent of ε.
We now want to show that the minimality of Σmin entails that H2(Σε

min) ≤ cε1+1/2, which is
in contradiction with (6.11). Indeed we can compare the area of Σmin with the competitor
surface

Σ := Σ1 ∪ Σ2 ∪ Σ3 ∪ Σ4,

where (see Figure 8):

- Σ1 is the parabolic sector delimited by the osculating parabola to Γ in the minimum
point and by the plane {t = a+ ε};

- Σ2 is the portion of the plane {t = a+ ε} between the curve Σmin ∩{t = a+ ε} and the
boundary of Σ1;

- Σ3 is obtained by connecting linearly each point of the osculating parabola with the
point of Γ having the same t-coordinate;

- Σ4 := Σmin ∩ {a+ ε ≤ t ≤ b}.

Notice that Σ is a Lipschitz surface and ∂Σ = Γ. Moreover Σmin = Σε
min∪Σ4 with Σε

min∩Σ4 =
∅. Thus, using also the minimality of Σmin, we get

H2(Σmin) = A(ε) +H2(Σ4) ≤ H2(Σ) ≤
4∑
i=1

H2(Σi),

which implies A(ε) ≤ H2(Σ1) + H2(Σ2) + H2(Σ3). Now, we notice that, for a constant c
independent of ε:
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- H2(Σ1) ≤ cε1+1/2, since it is a parabolic sector,

- H2(Σ2) ≤ cε1+1/2 because Σmin is bounded by the two planes of the wedge,

- H2(Σ3) = o(ε1+1/2) because Σε
min is contained in the inside of a cylindrical shape

obtained by translation of Γ in the direction orthogonal to both the tangent vector to
Γ in its minimum point and the vector (1, 0, 0).

Thus we get the contradicting relation:

c1ε
1+1/2 ≥ A(ε) ≥ c2ε

1+1/4,

where c1 and c2 are two positive constants independent of ε.

7 Appendix 1: some useful results on Plateau’s problem

In this appendix we briefly collect all definitions and results on Plateau’s problem, with the
related references, needed in the proofs of Theorems 3.1, 4.1, 5.1 and 6.1.

7.1 Parametric approach

Let B ⊂ R2
(u,v) be the unit open disk and Γ be an oriented(25) rectifiable closed simple curve

in R3. We are interested in minimizing the area functional∫
B
|Yu ∧ Yv| du dv

in the class(26)

C(Γ) =
{
Y ∈W 1,2(B; R3) : Y|∂B ∈ C(∂B; R3) weakly monotonic parametrization of Γ

}
.

The set Y (B) for Y ∈ C(Γ) is called a disk-type surface spanning Γ.

Definition 7.1 (Disk-type area-minimizing solution). We refer to a solution of the
minimum problem

inf
Y ∈C(Γ)

∫
B
|Yu ∧ Yv| du dv (7.1)

as disk-type area-minimizing solution of Plateau’s problem for the contour Γ. Its image
Y (B) ⊂ R3 is called area-minimizing surface spanning Γ, but sometimes, with a small abuse
of language, also area-minimizing solution, identifying the image and the parametrization.
We usually denote such a Y (B) by Σmin.

For further details about the formulation of Plateau’s problem we refer to [5, chapter 4, p.
270].
Concerning the existence of a solution of (7.1) the following holds.

(25)The orientation is provided by fixing a homeomorphism from ∂B onto Γ.
(26)Since Γ is rectifiable, we have C(Γ) 6= ∅.
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Theorem 7.1 (Existence of minimizers and interior regularity). Problem (7.1) admits
a solution Y ∈ C2(B) ∩ C(B), such that

∆Y = 0 in B (7.2)

and the conformality relations hold:

|Yu|2 = |Yv|2 and Yu · Yv = 0 in B. (7.3)

Moreover the restriction Y|∂B is a (continuous) strictly monotonic map onto Γ.

Proof. See for instance [5, Main Theorem 1, chapter 4, p. 270].

Remark 7.1 (Three points condition). One can impose on a minimizer Y the so-called
three points condition: this means that we can fix three points ω1, ω2 and ω3 on ∂B and
three points P1, P2 and P3 on Γ (in such a way that the orientation of Γ is respected) and
find a solution Y of (7.1) such that Y (ωj) = Pj for any j = 1, 2, 3.

Definition 7.2 (Minimal surface). A map Y ∈ C2(B) ∩ C(B) satisfying (7.2) and (7.3)
mapping ∂B onto Γ in a weakly monotonic way is called a minimal surface spanning Γ.

Concerning the regularity of a map Y : B → R3 parametrizing a minimal surface, we cannot
a priori avoid singular points, called branch points.

Definition 7.3 (Branch point). A point ω0 ∈ B is called an interior branch point for a
map Y satisfying (7.1) and (7.3) if

|Yu(ω0) ∧ Yv(ω0)| = 0. (7.4)

If Y is differentiable on ∂B, and ω0 ∈ ∂B is such that (7.4) holds, then ω0 is called a boundary
branch point.

Observe that if ω0 is a branch point then Yu(ω0) = Yv(ω0) = 0. It is known that interior
branch points can be excluded.

Theorem 7.2 (Absence of interior branch points). Let Y be as in Theorem 7.1. Then
Y has no interior branch points.

Proof. See [15, Main Theorem].

Under the stronger assumption that Γ is analytic the classical Lewy’s regularity theorem [10]
guarantees that our solution of (7.1) is analytic on B .

Theorem 7.3 (Absence of boundary branch points). Let Γ be analytic and Y be as in
Theorem 7.1. Then Y is analytic up to Γ and has no boundary branch points.

Proof. See [9].

Theorem 7.4 (Analytic extension). Let Γ be analytic and Y be a minimal surface span-
ning Γ. Then Y can be extended as a minimal surface across Γ, that is there exist an open set
Bext ⊃ B and an analytic map Y ext : Bext → R3 such that Y ext = Y in B and Y ext satisfies
(7.2) and (7.3) in Bext.
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Proof. From [6, Theorem 1, chapter 2.3] one can extend a minimal surface across an analytic
subarc of Γ. We apply this result twice to two overlapping subarcs covering Γ. Where the
two extensions overlap, they have to coincide due to analyticity.

The following classical result can be found in [5, p. 66].

Theorem 7.5 (Local semicartesian parametrization). If a minimal surface Y is inter-
sected by a family of parallel planes P none of which is tangent to the given surface and if each
point of the surface belongs to some plane Π ∈ P, then the intersection lines of these planes
with the minimal surface form a family of curves which locally belong to a net of conformal
parameters on the surface.

7.2 Non-parametric approach

Concerning the so-called non-parametric problem and the minimal surface equation, we give
the following definition and we refer to [8] for more.

Definition 7.4 (Non-parametric solution). Let U ⊂ R2 be a connected, bounded, open
set and let φ ∈ C(∂U ; R2). A solution of the minimal surface equation for the boundary datum
φ is a solution z ∈ C2(U) ∩ C(U) ofdiv

(
∇z√

1+|∇z|2

)
= 0 in U

z = φ on ∂U.
(7.5)

The existence of a solution of (7.5) is given by the following result.

Theorem 7.6 (Existence of non-parametric solutions). Suppose that ∂U is C2 and has
non negative curvature. Then (7.5) admits a solution.

Proof. See [8, Theorem 13.6].

If Γ can be described as the graph of a continuous function defined on the boundary of a
bounded convex open set, then the following representation result holds.

Theorem 7.7. If Γ admits a one-to-one parallel projection onto a plane Jordan curve bound-
ing a convex domain U , then (7.1) has a unique solution X, up to conformal C1 diffeomor-
phisms of B. Moreover X(B) can be represented as the graph of a solution z : U → R of
(7.5) with boundary datum a function φ whose graph is Γ.

Proof. See [5, Theorem 1, chapter 4.9].

We conclude this appendix with a regularity result for a solution of (7.5).

Theorem 7.8. Let U ⊂ R2 be bounded open convex set with ∂U of class C2 and let z be a
solution of (7.5) with boundary datum φ ∈ C1,λ(∂U) for some λ ∈ (0, 1]. Then z ∈ C0,1(U).

Proof. See [8, Theorem 13.7].
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8 Appendix 2: a result from Morse theory

In this short section we report a result from [13, Theorem 10] on critical points of Morse
functions. The result holds in any dimension, but we need and state it only for n = 2.
Let U be a bounded open subset of R2 and let B be an open subset of U of class C3 with
B ⊂ U . Suppose that

- f : U → R is a Morse function;

- B contains all critical points of f ;

- all critical points of the restriction f|∂B of f to ∂B are non degenerate (i.e., f|∂B is a
Morse function).

Define
∂−f B := {b ∈ ∂B : ∇f(b) · νB(b) < 0}, (8.1)

where νB(b) denotes the outward unit normal to ∂B at b ∈ ∂B.
For i = 0, 1, 2, denote by mi(f,B) the number of critical points of index i of f in B and
by mi(f|∂−f B) the number of critical points of index i of f|∂B on ∂−f B, with m2(f|∂−f B) := 0.
Define

Mi(f,B ∪ ∂B) := mi(f,B) +mi(f|∂−f B), i = 0, 1 , 2. (8.2)

The following result holds.

Theorem 8.1. We have

M0(f,B ∪ ∂B)−M1(f,B ∪ ∂B) +M2(f,B ∪ ∂B) = χ(B),

where χ(B) is the Euler-Poincaré characteristic of B.

9 Appendix 3: the space D(Ω; R2)

In this section we discuss a property of the space D(Ω; R2) introduced at the beginning of
Section 2.
In [1] the following result is proven.

Theorem 9.1. Let v ∈ BV(Ω; R2). The following conditions are equivalent:

- A(v,Ω) =
∫

Ω
|M (∇v(x)) | dx dy < +∞;

- v ∈ W 1,1(Ω; R2), M(∇v) ∈ L1(Ω; R6) and there exists a sequence (vµ) ⊂ C1(Ω; R2)
converging to v in L1(Ω; R2) such that the sequence (M(∇vµ)) converges to M(∇v)
in L1(Ω; R6).

The following lemma shows that A can be obtained also by relaxing A in D(Ω; R2).

Lemma 9.1. Let u ∈ BV(Ω; R2). Then

A(u,Ω) = inf
{

lim inf
ε→0+

A(uε,Ω), (uε)ε ⊂ D(Ω; R2), uε → u in L1(Ω; R2)
}
. (9.1)
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Proof. TriviallyA(u,Ω) is larger than or equal to the right hand side of (9.1), since C1(Ω; R2) ⊂
D(Ω; R2) and A = A on C1(Ω; R2).
In order to prove the opposite inequality, let (vε) be a sequence in D(Ω; R2) such that

lim
ε→0+

A(vε,Ω) = inf
{

lim inf
ε→0+

A(uε,Ω), (uε) ⊂ D(Ω; R2), uε → u in L1(Ω; R2)
}
.

Thanks to Theorem 9.1, for each ε > 0 we can find a sequence (vµε )µ in C1(Ω; R2) converging
to vε in L1(Ω; R2) as µ→ 0+ such that

A(vµε ,Ω) =
∫

Ω
|M (∇vµε (x)) | dx µ→0+

−→
∫

Ω
|M (∇vε(x)) | dx = A(vε,Ω).

Thus by a diagonal process we obtain a sequence (vµ(ε)
ε ) ⊂ C1(Ω; R2) converging to u in

L1(Ω; R2) as ε→ 0+ such that the right hand side of (9.1) equals

lim
ε→0+

A(uµ(ε)
ε ,Ω) = lim

ε→0+
A(vε,Ω),

and this concludes the proof.
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