
LORENTZ ESTIMATES FOR DEGENERATE AND SINGULAR
EVOLUTIONARY SYSTEMS

PAOLO BARONI

ABSTRACT. We prove estimates of Calderón-Zygmund type for evolutionary p-
Laplacian systems in the setting of Lorentz spaces. We suppose the coefficients
of the system to satisfy only a VMO condition with respect to the space variable.
Our results hold true, mutatis mutandis, also for stationary p-Laplacian systems.
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1. INTRODUCTION

The object of this note is the study of the possibility of Calderón-Zygmund type
estimates in the scale of Lorentz spaces for weak solutions to parabolic systems of
p-Laplacian type:

ut − div
[
a(x, t)|Du|p−2Du

]
= div

[
|F |p−2F

]
, p >

2n

n+ 2
, (1.1)

where (1.1) is considered in the parabolic cylinder ΩT := Ω × (−T, 0), being
Ω ⊂ Rn, n ≥ 2, a bounded connected open set, T > 0 and u : ΩT → RN ,
N ≥ 1. More precisely, we want to study the integrability of the spatial gradient
Du in terms of the integrability of the datum appearing on the right-hand side in
the scale of Lorentz spaces. In particular we shall prove that for equation (1.1) the
implication

|F | ∈ L(γ, q) locally in ΩT =⇒ |Du| ∈ L(γ, q) locally in ΩT

(1.2)

holds for γ > p and q ∈ (0,∞]. We recall that the Lorentz space L(γ, q)(A), for
A ⊂ Rk, k ∈ N, open set and for parameters 1 ≤ γ < ∞ and 0 < q < ∞, is
defined by requiring, for a measurable function g : A→ R, the quantity

‖g‖qL(γ,q)(A) := q

∫ ∞
0

(
λγ
∣∣{ξ ∈ A : |g(ξ)| > λ}

∣∣) qγ dλ
λ

(1.3)

to be finite. For the case q = ∞, the space L(γ,∞)(A), 1 ≤ γ < ∞, is noth-
ing else than the Marcinkiewicz space Mγ(A), that is the space of measurable
functions g such that

‖g‖L(γ,∞)(A) = ‖g‖Mγ(A) := sup
λ>0

(
λγ
∣∣{ξ ∈ A : |g(ξ)| > λ}

∣∣) 1
γ
<∞.

(1.4)

Date: October 8, 2013.
1



2 PAOLO BARONI

The local variant of such spaces is defined in the usual way; see Paragraph 3.2
for some more details about Lorentz spaces. We anticipate here that we are not
necessarily going to consider continuous coefficient, but rather ones having a con-
trolled deviation from their averages on balls; i.e., we shall consider a natural VMO
condition just with respect to the spatial variable x, see (3.3)-(3.4). Note that the
lower bound in (1.1) naturally appears in the regularity theory of the parabolic
p-Laplacian operator (see [18, 41, 30, 8]) and it is unavoidable for the type of reg-
ularity we are considering here.

Even if we refer to the following Section 2 for a more detailed, but at the same
time just partial, description of the history of the problem, we want here to stress
that the starting point of our work is the paper [2] by Acerbi & Mingione, where
the (Lebesgue) case q = γ has been settled: the authors proved the estimate

F ∈ Lγloc(ΩT ,RN ) =⇒ Du ∈ Lγloc(ΩT ,RN ), (1.5)

for solution to (1.1), with γ > p. This (quite recent) paper has earned several
extensions in the last years, and more in general estimates of this kind (which we
call of Calderón-Zygmund type) have gained a very strong interest: for instance
see the results in elliptic domains with rough boundaries [12, 14, 15], the global
estimates in parabolic domains done in [10, 11, 13], and also the results related to
the obstacle problem [8, 9].

Surprisingly enough, the very natural extension to the Lorentz spaces setting
of (1.5) has remained unproved up to now, we think essentially due to technical
reasons. We settle here this natural fragment of the theory by exploiting the tools
we developed in [3, 4, 6]; we stress our approach also allows to treat parabolic
obstacle problems of p-Laplacian type, see the forthcoming [5].

Elliptic estimates. The approach we are developing here gives as a byproduct also
the elliptic version of (1.2), where the objects in play are the ones one expects. In
particular we consider here the elliptic system

div
[
c(x)|Du|p−2Du

]
= div

[
|G|p−2G

]
in Ω, (1.6)

where Ω is again a bounded connected open set of Rn and u maps Ω into RN ; we
can consider here the full range p > 1, since in the elliptic case the restriction in
(1.1) is not anymore necessary. Implication (1.2) reads here as

|G| ∈ L(γ, q) locally in Ω =⇒ |Du| ∈ L(γ, q) locally in Ω.

We preferred to focus our approach on the parabolic problem mainly since tech-
niques we employ here were born as parabolic ones, see the forthcoming Section
2; hence we opt to present in a more detailed way the proof in the time-dependent
setting, in order to show the basic points of the argument, and then show how to
modify such proof to get the (simpler) elliptic one.

2. A SKETCHY HISTORY OF THE PROBLEM

The starting point of the so-called nonlinear Calderón-Zygmund theory is the
paper [24] of Iwaniec where it is proved that for solutions to the equation (1.6) (i.e.
we take N = 1 here), for Ω = Rn, the implication

G ∈ Lγ(Rn) =⇒ Du ∈ Lγ(Rn) (2.1)
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holds true for γ > p. DiBenedetto & Manfredi in [19] extended this result to
systems and also caught the borderline case

|G|p−2G ∈ BMO(Rn,RN ) =⇒ Du ∈ BMO(Rn,RN ).

In the same [19] can also be found a localized version of the first implication, valid
also for systems: for Ω bounded open set,

G ∈ Lγ(Ω,RN ) =⇒ Du ∈ Lγ(Ω,RN ) (2.2)

for γ > p, see also [1], where more general structures are considered. This last re-
sult can also be recovered using the elliptic theorem of this paper, since by Fubini’s
Theorem there holds L(γ, γ) ≡ Lγ .

The parabolic analogue of (2.2), for solutions to (1.1),

F ∈ Lγ(ΩT ,RN ) =⇒ Du ∈ Lγ(ΩT ,RN ) (2.3)

for all γ > p was settled, as we already said, in [2] by Acerbi & Mingione. Their
technique of proof, which we shall follow, had to be necessarily different from
both these of Iwaniec and DiBenedetto & Manfredi, since the lack of homogeneity
of evolutionary p-Laplacian rules out approaches based on maximal functions and
Harmonic Analysis tools. Indeed, estimates for solution to p-Laplacian type equa-
tions and systems have a non-homogeneous character when considered on standard
parabolic cylindersQR(x0, t0) = BR(x0)×(t0−R2, t0); therefore, usual iteration
and covering arguments do not apply. Following DiBenedetto’s approach, in the
case of parabolic p-Laplacian problems one has to work with cylinders of the form

QλR(x0, t0) = BR(x0)× (t0 − λ2−pR2, t0)

(when p ≥ 2) for λ ≥ 1 and R > 0, where the average of the gradient of the
solution considered is approximatively λ, i.e.∫

QλR

|Du|p dz ≈ λp.

On such cylinders parabolic p-Laplacian problems behave heuristically as non-
degenerate ones and therefore estimates show homogeneity, allowing for (appro-
priate) covering and iteration arguments. Following [2, 25, 26], the next estimate
for the measure of the super-level set of the gradient holds true:∣∣QR ∩ {|Du| > Tλ}

∣∣ . c(T )
ε

λp

∫
Q2R∩{|Du|>λ}

|Du|p dz

+ c(T )
1

ελpγ

∫
Q2R∩{|F |>λ}

|F |pγ dz, (2.4)

where T is an a priori defined constant and ε ∈ (0, 1) is to be chosen. Having this
estimate at hand and using Fubini’s Theorem leads quickly to local estimates on
cylinders of the Lpγ norm of Du and therefore to (2.3). The presence of the weight
ε in the last display follows from the appropriate choice of intrinsic cylinders asso-
ciated to the problem (1.1):∫

QλR

|Du|p dz +
1

ε

(∫
QλR

|F |pγ dz
)1/γ

≈ λp.

This technique - which allows to re-prove the elliptic results without use of Har-
monic Analysis-based arguments - shows to be particularly flexible and has been
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applied also to both elliptic and parabolic measure data problems [31, 34, 3]. In-
deed estimates as (2.4) allow to deal with almost every kind of rearrangement in-
variant function spaces, see also [32, 6, 7], and in this paper we show the implemen-
tation of this technique to the setting of Lorentz spaces; see also the forthcoming
[4] for an application of this machinery to the setting of (parabolic and degenerate)
measure data problems.

2.1. Introducing coefficients. In the elliptic linear case

div
[
A(x)Du

]
= divF, (2.5)

if the matrix A(x) ≡ A is constant, Calderón-Zygmund estimates follow from
the classic work of Stampacchia [35, 36]. Similar linear interpolation techniques
apply when the x-dependence of the matrix is continuous, via perturbation tech-
niques, see Campanato [16]. This Functional Analysis approach has been pursuit
on the other hand, for the p-Laplacian operator, by Kinnunen & Zhou in [27],
where they prove (2.2), for N = 1, under the assumption that the coefficient ma-
trix is (bounded and) VMO continuous, that is

lim
R↘0

ωA(R) = 0, where ωA(R) = sup
Bρ(x)⊂Ω

0<ρ≤R

∫
Bρ(x)

∣∣A− (A)Bρ(x)

∣∣ dy;

(A)Bρ denotes here the average of A over the ball Bρ, see Paragraph 3.1. Note that
a continuous function is VMO continuous, but the converse implication does not
in general hold true. In a sense, VMO condition prescribes that the oscillation of
A goes to zero not pointwise, but in an integral sense.

One now can expect that for parabolic equations the correct condition to impose
on the coefficients is the global VMO regularity, as done in [2], in the sense that
one would require that the excess of the coefficients over parabolic cylinders goes
to zero: referring to (1.1)

lim
R↘0

ωa(R) = 0 where ωa(R) = sup
Qρ(z)⊂ΩT
0<ρ≤R

∫
Qρ(z)

∣∣a− (a)Qρ(z)

∣∣ dz.
As noticed by Krylov in [28], however, since we are dealing with spatial gradient
regularity, only VMO regularity with respect to the spatial variable is sufficient:
this is to say that if we consider product coefficients a(x, t) = d(x)h(t) in (1.1),
we need to require boundedness and VMO regularity of d but just boundedness
and measurability of h, see the next Section 3.

2.2. General vectorial structures. Note that in the case N = 1 (2.1) together
with its local variants (2.2) and (2.3) can be extended to general structures of p-
Laplacian type, that is vector fields a(·) satisfying

〈∂a(ξ)λ, λ〉 ≥ ν
(
s2 + |ξ|2)

p−2
2 |λ|2,

|a(ξ)|+
(
s2 + |ξ|2

) 1
2 |∂a(ξ)| ≤ L

(
s2 + |ξ|2

) p−1
2 ,

(2.6)

for all λ, ξ ∈ Rn, with s ∈ [0, 1] the degeneracy parameter and for 0 < ν ≤ 1 ≤
L <∞.

Such a generalization for systems is not anymore possible, and the reason in
clear once looking at the elliptic case: ifDu would belong to Lγ , with γ � 1, then
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this would imply the boundedness of u by Sobolev’s embedding. However, for the
case 0 ≡ F ∈ Lγ(ΩT ,RN ) for all γ, the counterexample of Šverák and Yan [38]
shows that solution to

div a(Du) = 0, u : B1 ⊂ R5 → R14

and a(·) satisfying (2.6) for p = 2, adapted to the vectorial case, are not necessar-
ily bounded. An analog of implications (2.2) and (2.3) would on the other hand
hold for systems enjoying a peculiar structure, and this is called quasi-diagonal
p-Laplacian (or Uhlenbeck) structure:

a
(
Du
)

= g
(
|Du|2

)
Du where g

(
|Du|2

)
≈ |Du|p−2.

In other words, in order to prove (2.3) in the full range γ > p (and here one could
spend some words why should this be the full range, and not γ > p − 1, as in
the case of linear operators as (2.5), but this would go far beyond the purposes of
this short introduction), additional structure must be imposed on the vector field,
see for instance the last part of [2]; that is, asking that the gradient non-linearity
depends on Du via its modulus |Du|, or |Du|2. This allows to prove that the func-
tion v = |Du|2 is a non-negative sub-solution of a certain PDE, and it is precisely
such a property, which for elliptic systems is called “quasi-subharmonicity”, that
makes possible to prove gradient boundedness (again here Šverák and Yan coun-
terexample shows that it is not to be expected in the general case) and everywhere
C1,α regularity, see the basic work of Uhlenbeck [40] and the one of Tolksdorf
[39]. A generalization of our work for these structures, also encoding in a genuine
non-linear way VMO regularity as done in [13, 29], is possible, but shall not be
considered here, where we focus on the genuine p-Laplacian structure.

Finally we mention that the way to match (2.3) with general p-Laplacian struc-
tures, keeping into account the previous counterexample, is to consider exponents
γ 6� 1, that is, when considering general vector fields satisfying (2.6), to prove
(2.3) for the range

p ≤ γ ≤ p+
4

n
+ ε,

with ε a small constant, depending on n, p, ν, L.

3. ASSUMPTIONS, STATEMENT OF THE RESULTS, NOTATION, TOOLS

For the parabolic coefficient a : ΩT → R we assume that it is measurable and
that

ν ≤ a(x, t) ≤ L (3.1)

holds for any (x, t) ∈ ΩT and for constants 0 < ν ≤ 1 ≤ L < ∞. With regard
to its regularity, we will assume that it satisfies a VMO condition with respect the
spatial variable. More precisely, denoting

(a)Bρ(x)(t) :=

∫
Bρ(x)

a(x, t) dx for Bρ(x) ⊂ Ω, (3.2)

we define ωa : [0,∞)→ [0, 1] in the following way:

ωa(R) :=
1

2L
sup

t∈(−T,0)
sup

Bρ(x)⊂Ω

0<ρ≤R

∫
Bρ(x)

∣∣a(·, t)− (a)Bρ(x)(t)
∣∣ dy (3.3)
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for any R > 0 and we suppose that

lim
R↘0

ωa(R) = 0. (3.4)

Here, we stress that we assume not more than measurability and boundedness with
respect to the time variable; moreover, our assumptions on a allow product co-
efficients of the type a(x, t) = d(x)h(t), with d ∈ VMO(Ω) ∩ L∞(Ω) and
h ∈ L∞(0, T ). Note moreover that here we are considering “something closer”
to VMOloc than to the classic definition of VMO, that would involve also balls
intersecting ∂Ω. However, since here we are interested in interior regularity, this
definition is sufficiently general for our purposes, which are encoded in the follow-
ing

Theorem 3.1. Let u be a weak solution to (1.1), with a(·) satisfying (3.1) and
(3.4) and with |F | ∈ L(γ, q) locally in ΩT , for γ > p and 0 < q ≤ ∞; then
|Du| ∈ L(γ, q) locally in ΩT . Moreover there exists a radius R0, depending
on n,N, p, ν, L, γ, q such that the following local estimate holds, for cylinders
Q2R(z0) ≡ Q2R ⊂ ΩT with R ≤ R0:

|QR|−
1
γ ‖Du‖L(γ,q)(QR) ≤ c

(∫
Q2R

|Du|p dz
) d
p

+ c |Q2R|−
d
γ
∥∥|F | + 1

∥∥d
L(γ,q)(Q2R)

, (3.5)

for a constant depending on n,N, p, ν, L, γ, q (except in the case q = ∞, where
the constant and R0 depend only on n,N, p, ν, L, γ) and where the scaling deficit
d ≥ 1 is defined by

d ≡ d(p) :=


p

2
if p ≥ 2,

2p

p(n+ 2)− 2n
if

2n

n+ 2
< p < 2.

(3.6)

We remark here that the constant depends critically on γ − p, as it blows up
when γ → p. The same will happen for the elliptic problem. Here, referring to
(1.6), we shall suppose c : Ω→ R bounded and VMO regular:

ν ≤ c(x) ≤ L, for x ∈ Ω and lim
R↘0

ωc(R) = 0, (3.7)

where now, with (c)Bρ(x) :=

∫
Bρ(x)

c(y) dy,

ωc(R) :=
1

2L
sup

Bρ(x)⊂Ω

0<ρ≤R

∫
Bρ(x)

∣∣c(·)− (c)Bρ(x)

∣∣ dy. (3.8)

In this case the Calderón-Zygmund result takes the following form; note that here
the deficit scaling d is not anymore present.

Theorem 3.2. Let u be a solution to (1.6), with c(·) satisfying (3.7) and |G| ∈
L(γ, q) locally in Ω, for γ > p and 0 < q ≤ ∞; then |Du| ∈ L(γ, q) locally in Ω.
Moreover there exists a radiusR0 and a constant c such that the following estimate
holds, for balls B2R(x0) ≡ B2R ⊂ Ω with R ≤ R0:

|BR|−
1
γ ‖Du‖L(γ,q)(BR)
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≤ c

(∫
B2R

|Du|p dx
) 1
p

+ c |B2R|−
1
γ ‖G‖L(γ,q)(B2R).

The constant and R0 have the same dependencies as in Theorem 3.1, except from
the fact that they depend on ν, L only through the ellipticity ratio L/ν.

3.1. Notation. By weak solution to (1.1), following [18], we mean a map

u ∈ C(−T, 0;L2(Ω,RN )) ∩ Lp(−T, 0;W 1,p(Ω,RN ))

such that for any −T ≤ t1 < t2 ≤ 0 the integral formulation

−
∫

Ω
u ·ϕ(·, τ) dx

∣∣∣∣t2
τ=t1

+

∫
Ω×(t1,t2)

[
u ·ϕt−

〈
a(·)|Du|p−2Du,Dϕ

〉]
dz

=

∫
Ω×(t1,t2)

〈
|F |p−2F,Dϕ

〉
dz (3.9)

holds for every test function ϕ ∈ C∞c (ΩT ,RN ); here · denotes the scalar product
in RN while 〈·, ·〉 denotes that in RnN . Usually one is lead to consider a slicewise
reformulation of (3.9) in terms of the so-called Steklov averages, in order to over-
come the problems that could appear once using the solution itself as test function,
due to its lack of regularity with respect to the time variable. However, this is quite
standard and here we will proceed formally, referring to appropriate papers for the
rigorous computations.

Analogously with weak solution to (1.6) we mean a function u ∈W 1,p(Ω,RN )
such that∫

Ω

〈
c(·)|Du|p−2Du,Dφ

〉
dx =

∫
Ω

〈
|G|p−2G,Dφ

〉
dx

holds for every test function φ ∈ C∞c (Ω,RN ).

In the parabolic setting Rn+1 will always be thought as Rn × R, so a point
z ∈ Rn+1 will be often also denoted as (x, t), z0 as (x0, t0) and so on. Being
BR(x0) the ball {x ∈ Rn : |x − x0| < R}, we shall consider parabolic cylinders
of the form

QR(z0) := BR(x0)× (t0 −R2, t0),

but we shall also deal with scaled cylinders of the form

QλR(z0) :=

{
BR(x0)×

(
t0 − λ2−pR2, t0) if p ≥ 2,

B
λ
p−2

2 R
(x0)×

(
t0 −R2, t0) if p < 2,

where the stretching parameter will be always greater than one: λ ≥ 1; hence
in both cases QλR(z0) ⊂ Q1

R(z0) = QR(z0). We shall denote ΛλR(t0) =:
(
t0 −

λ2−pR2, t0) and Bλ
R(x0) := B

λ
p−2

2 R
(x0), and we shall drop the λ when it will be

one: ΛR(t0) =:
(
t0 −R2, t0) and Bλ

R(x0) := BR(x0).

With χBR(x0), for a constant χ > 1, we will denote the χ-times enlarged ball,
i.e. χBR(x0) := BχR(x0), and the same for cylinders: χQλR(z0) := QλχR(z0).
By parabolic boundary of a cylinder K := C × I in Rn+1, we mean ∂PK :=
C × {inf I} ∪ ∂C × I . Being A ∈ Rk a measurable set with positive measure and
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f : A→ Rm an integrable map, with k,m ≥ 1, we denote with (f)A the averaged
integral

(f)A :=

∫
A
f(ξ) dξ :=

1

|A|

∫
A
f(ξ) dξ.

We will denote with c a generic constant always greater than one, possibly varying
from line to line; however, the ones we shall need to recall will be denoted with
special symbols, such as cDiB, c̃, c∗, c`. We finally remark that by sup we shall
always mean essential supremum.

3.2. Lorentz spaces. The reader might recall the definition of Lorentz spaces in
(1.3)-(1.4). Since here we assume A to have finite measure, the spaces L(γ, q)
decrease in the first parameter γ; this means that for 1 ≤ γ1 ≤ γ2 < ∞ and
0 < q ≤ ∞ we have a continuous embedding L(γ2, q)(A) ↪→ L(γ1, q)(A) with

‖g‖L(γ1,q)(A) ≤ |A|
1
γ1
− 1
γ2 ‖g‖L(γ2,q)(A).

On the other hand the Lorentz-spaces increase in the second parameter q, i.e.
we have for 0 < q1 ≤ q2 ≤ ∞ the continuous embedding L(γ, q1)(A) ↪→
L(γ, q2)(A) with

‖g‖L(γ,q2)(A) ≤ c(γ, q1, q2)‖g‖L(γ,q1)(A)

when q2 < ∞, while the constant clearly does not depend on q2 when q2 = ∞;
see, essentially, Lemma 3.5 for λ = 0 and an appropriate choice of the quantities
involved. Note moreover that by Fubini’s theorem we have

‖g‖γLγ(A) = γ

∫ ∞
0

λγ
∣∣{ξ ∈ A : |g(ξ)| > λ}

∣∣ dλ
λ

= ‖g‖γL(γ,γ)(A) ,

so that Lγ(A) = L(γ, γ)(A). Note moreover that L(γ, q)(A) ⊂ Lp(A) for any
γ > p and all 0 < q ≤ ∞, see for instance (5.19).

Remark 3.3. Note that the notation we use might be misleading, since, due to the
lack of sub-additivity, the quantity ‖ · ‖L(γ,q)(A) is just a quasi-norm. Neverthe-
less, the mapping g 7→ ‖g‖L(γ,q)(A) is lower semi-continuous with respect to a.e.
convergence, see [32, Remark 3] or [7, Section 3].

3.3. Technical tools. The first inequality we shall need is a variant of the classic
Hardy’s inequality; see [22, Theorem 330] or also [23].

Lemma 3.4. Let f : [0,+∞)→ [0,+∞) be a measurable function such that∫ ∞
0

f(λ) dλ <∞; (3.10)

then for any α ≥ 1 and for any r > 0 there holds∫ ∞
0

λr
(∫ ∞

λ
f(µ) dµ

)αdλ
λ
≤
(α
r

)α ∫ ∞
0

λr
[
λf(λ)

]αdλ
λ
.

The following reverse-Hölder inequality is also classic; we propose it in a suit-
able form.

Lemma 3.5. Let h : [0,+∞) → [0,+∞) be a non-increasing, measurable func-
tion and let α1 ≤ α2 ≤ ∞ and r > 0. Then, if p2 <∞
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λ

[
µrh(µ)

]α2 dµ

µ

]1/α2

≤ ελrh(λ)

+
c

εα2/α1−1

[∫ ∞
λ

[
µrh(µ)

]α1 dµ

µ

]1/α1

(3.11)

for every ε ∈ (0, 1] and for any λ ≥ 0; if α2 =∞ then

sup
µ>λ

[
µrh(µ)

]
≤ c λrh(λ) + c

(∫ ∞
λ

[
µrh(µ)

]α1 dµ

µ

)1/α1

. (3.12)

The constant c depends only on α1, α2, r except in the case α2 = ∞. In this case
c ≡ c(α1, r).

Proof. We sketch the very simple proof, which is a variant of that in [37, Appendix
B.3], given for λ = 0. Clearly we can suppose the right-hand side quantities finite.
We first face the case α2 = ∞: for µ̃ > λ fixed, being µ → h(µ) non-increasing,
we have∫ ∞

λ

[
µrh(µ)

]α1 dµ

µ
≥
∫ µ̃

λ

[
µrh(µ)

]α1 dµ

µ
≥ [h(µ̃)]α1

∫ µ̃

λ
µrα1

dµ

µ

=
1

rα1
[h(µ̃)]α1

[
µ̃rα1 − λrα1

]
.

Taking the supremum with respect to µ̃ > λ and relabeling variable give

sup
µ>λ

[µrh(µ)]α1 ≤ [λrh(λ)]α1 + c(α1, r)

∫ ∞
λ

[
µrh(µ)

]α1 dµ

µ

since, again, µ→ h(µ) is non-increasing. Now, using the previous estimate∫ ∞
λ

[
µrh(µ)

]α2 dµ

µ
≤ sup

µ>λ

[
µrh(µ)

]α2−α1

∫ ∞
λ

[
µrh(µ)

]α1 dµ

µ

≤ [λrh(λ)]α2−α1

∫ ∞
λ

[
µrh(µ)

]α1 dµ

µ

+ c(α1, α2, r)

[∫ ∞
λ

[
µrh(µ)

]α1 dµ

µ

]α2−α1
α1

+1

.

At this point, given ε ∈ (0, 1] as in the statement, an appropriate use of Young’s
inequality with conjugate exponents α2/(α2 − α1) and α2/α1 yields (3.11). �

Note that the previous Lemma gives the proof of the second embedding in Para-
graph 3.2. Finally, the following Lemma can be deduced from [17, Lemma 2.2].

Lemma 3.6. Let p > 1. Then there exists a constant c` ≡ c`(n,N, p) such that for
any A, B ∈ RNn, not both zero, there holds

|A|p ≤ c`|B|p + c`
(
|A|2 + |B|2

) p−2
2 |A−B|2.

4. THE SETTING OF THE PROOF

In the first part of this section we shall describe the setting of the proof of The-
orem 3.1 and we shall also collect several results, stated directly in the form we
need. For more general statements, one can refer to the papers we shall mention.
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First we state the higher integrability result of Kinnunen & Lewis [25] in a form
fitting our aims.

Theorem 4.1. Let K = C × I ⊂ ΩT and let ũ ∈ Lploc(I;W 1,p
loc (C)) be a local

weak solution to

ũt − div
[
a(x, t)|Dũ|p−2Dũ

]
= −div

[
|H|p−2H

]
in K, (4.1)

with H ∈ L(1+σ)p
loc (K) for some σ > 0. Then there exist two constants ε0 ∈ (0, σ]

and c ≥ 1, both depending on n,N, p, ν, L, σ, such that Dũ ∈ Lp(1+ε0)
loc (K) and∫

Q̃
|Dũ|p(1+ε) dz ≤ cRpε

p−2
2

(∫
2Q̃
|Dũ|p dz

)1+ pε
2

+ cR−p(1+ε) + c

∫
2Q̃
|H|p(1+ε) dz (4.2)

for any ε ∈ [0, ε0] and for all 2Q̃ ≡ B2R(x0)× (t0 − (2R)p, t0) ⊂ K.

The reader should pay attention here to the particular form of the cylinders Q̃.
Notice, moreover, that in the case p = 2 estimate (4.2) has the homogeneous
character on the standard parabolic cylinders QR one could expect, except for the
term cR−2(1+ε) which, on the other hand, is required in the proof for the general
case p 6= 2. However, once considered on intrinsic cylinders, this estimate shows
back the homogeneous form it has in the elliptic case also in the case p 6= 2:

Corollary 4.2. Let K ⊂ ΩT and ũ as in the Theorem above. Then if Qλ2R ≡
Qλ2R(z0) ⊂ K for some λ ≥ 1 and moreover

λ

κ
≤
(∫

Qλ2R

|Dũ|p dz
)1/p

+

(
M̃

∫
Qλ2R

|H|p(1+ε) dz

)1/[p(1+ε)]

≤ κλ

(4.3)

holds for some constant κ ≥ 1 and M̃ ≥ 1, then∫
QλR

|Dũ|p(1+ε) dz ≤ c λp(1+ε) (4.4)

for any ε ∈ [0, ε0], ε0 as above and the constant c depending on n,N, p, ν, L, σ, κ.

Proof. The proof follows in the case p ≥ 2 from [2, Lemma 3] and in the case
p < 2 from [2, Lemma 4], once considered also the stronger, in our case, bound
from above in (4.3), which allows to deduce plainly (4.4). �

4.1. Comparisons. We start with a solution to equation (1.1) and a cylinderQλR(z0)

such that Qλ20R(z0) ⊂ ΩT and

λp

κ
≤
∫
Qλ20R(z0)

|Du|p dz ≤ λp, M

∫
Qλ20R(z0)

|F |p dz ≤ λp (4.5)

for M ≥ 1 to be chosen and for a constant κ depending on n, p; we shall show
later how to deduce the existence of such a cylinder. Next, on the same cylinder
we define the comparison function

v ∈ u+ Lp(Λλ20R(t0);W 1,p
0 (B20R(x0),RN )) if p ≥ 2
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(v+Lp(Λ20R(t0);W 1,p
0 (Bλ

20R(x0),RN )) in the case p < 2) solution to the Cauchy-
Dirichlet problem∂tv − div

[
a(x, t)|Dv|p−2Dv

]
= 0 in Qλ20R(z0),

v = u on ∂PQλ20R(z0).
(4.6)

Existence of such a function is a classic fact since u belongs to the energy space.
Taking as a test function u − v, eventually smoothened, and subtracting the weak
formulation of (4.6)1 to that of (3.9), after some simple algebraic manipulations
(essentially, Young’s inequality; see [2, Section 4, Step 4] or [6, Section 7]), dis-
carding the term coming from the parabolic part, averaging, we get the comparison
estimate∫

Qλ20R(z0)

(
|Du|2 + |Dv|2

) p−2
2 |Du−Dv|2 dz ≤ c1

λp

Mp−1
(4.7)

with c1 ≡ c1(n,N, p, ν, L). As a byproduct of the proof of the previous inequality,
we also get the energy estimate∫

Qλ20R(z0)
|Dv|p dz ≤ c2 λ

p (4.8)

for a constant having the same dependencies of c1. Note now that, using Lemma
3.6, we have∫

Qλ20R(z0)
|Dv|p dz ≥ 1

c`

∫
Qλ20R(z0)

|Du|p dz

−
∫
Qλ20R(z0)

(
|Du|2 + |Dv|2

) p−2
2 |Du−Dv|2 dz

≥ λp

c`κ
− c1

λp

Mp−1
≥ λp

2c`κ
,

provided we choose M ≡M(n,N, p, ν, L, κ) big enough, that is

Mp−1 ≥ 2c`c1κ. (4.9)

Therefore we have
λp

κ1
≤
∫
Qλ20R(z0)

|Dv|p dz ≤ κ1λ
p (4.10)

with κ1 ≡ κ1(n,N, p, ν, L) := max {c2, 2c`κ}.

Now we call ã(t) := (a)B10R(x)(t) for a.e. t ∈ Λλ10R(t0) (or for a.e. t ∈
Λ10R(t0), in the case p < 2), where we defined the averaged coefficient in (3.2),
and we define the second comparison function

w ∈ v + Lp(Λλ10R(t0);W 1,p
0 (B10R(x0),RN ))

(respectively in v + Lp(Λ10R(t0);W 1,p
0 (Bλ

10R(x0),RN ))) as the solution to∂tw − div
[
ã(t)|Dw|p−2Dw

]
= 0 in Qλ10R(z0),

w = v on ∂PQλ10R(z0).
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Again taking as test function v − w and again subtracting, the first inequality we
get is the following correspondent to (4.7):∫

Qλ10R(z0)
|Dw|p dz ≤ c λp, (4.11)

c ≡ c(n,N, p, ν, L, κ). Then we have to focus our attention to the inequality, see
[6, Display (7.17)] (we suppress the point z0 in the notation from here on)∫

Qλ10R

(
|Dv|2 + |Dw|2

) p−2
2 |Dv −Dw|2 dz (4.12)

≤ c
∫
Qλ10R

∣∣ã(t)− a(·)
∣∣|Dv|p−1|Dv −Dw| dz;

we estimate, using Hölder’s inequality twice and (4.8)-(4.11)

≤ c
(∫

Qλ10R

∣∣ã(t)− a(·)
∣∣ p
p−1 |Dv|p dz

) p−1
p
(∫

Qλ10R

(
|Dv|p + |Dw|p

)
dz

) 1
p

≤ c
(∫

Qλ10R

∣∣ã(t)− a(·)
∣∣ p(1+ε1)

(p−1)ε1 dz

) (p−1)ε1
p(1+ε1)

(∫
Qλ10R

|Dv|p(1+ε1) dz

) p−1
p(1+ε1)

λ,

for c ≡ c(n,N, p, ν, L) and ε1 > 0 being the higher integrability exponent from
Corollary 4.2. Indeed v is a solution to (4.1), with H ≡ 0, in K = Qλ20R(z0). The
first term is estimate using the fact a, ã ≤ L and the definition of ωa in (3.3), in the
case p ≥ 2:

(∫
Λλ10R

∫
B10R

∣∣ã(t)− a(·)
∣∣ p(1+ε1)

(p−1)ε1 dx dt

) (p−1)ε1
p(1+ε1)

≤ c(p, L, ε1)
[
ωa(R)

]ε̄
,

(4.13)

where ε̄ = (p−1)ε1
p(1+ε1) is a constant depending only upon n,N, p, ν, L and c ultimately

depends on these parameters. A completely analogously estimate holds in the case
p < 2, since Bλ(p−2)/2R ⊂ BR. Taking into account (4.10), we have by (4.4) of
Corollary 4.2(∫

Qλ10R

|Dv|p(1+ε1) dz

) p−1
p(1+ε1)

≤ c λp−1;

these two last estimates lead to∫
Qλ10R

(
|Dv|2 + |Dw|2

) p−2
2 |Dv −Dw|2 dz ≤ c

[
ωa(R)

]ε̄
λp, (4.14)

c ≡ c(n,N, p, ν, L). This is the last comparison estimate we were looking for.

5. THE PROOF IN THE PARABOLIC CASE

In this Section we give the proof of Theorem 3.1.
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5.1. The exit time. Here we show how to build intrinsic cylinders in the sense of
(4.5). Consider a standard cylinder as in the statement of Theorem 3.1 and recall
that, due to Paragraph 3.2, F ∈ Lγ−ε locally, for ε > 0. Define, for M ≥ 1 which
will be defined later but only depending on n,N, p, ν, L, γ, q, the quantities

λ0 :=

(∫
Q2R

|Du|p dz
) d
p

+

(
Mη/p

∫
Q2R

(
|F |+ 1

)η
dz

) d
η

≥ 1, (5.1)

where d is given by (3.6), η = p(1 + ε0), where ε0 is the higher integrability
exponent appearing in Theorem 4.1 for the choice σ := (p + γ)/2 and B1/d :=

40(n+2)/p · 21−1/d. Note that in particular η ∈ (p, γ). Again here we will be quite
sloppy, since this technique is by-now standard and we refer to [2, 3, 6] for its
detailed description in different contexts. Define moreover the Calderón-Zygmund
operator

CZ
(
Qλr (z̄)

)
:=

(∫
Qλr (z̄)

|Du|p dz
) 1
p

+

(
Mη/p

∫
Qλr (z̄)

|F |η dz
) 1
η

for cylinders Qλr (z̄) ⊂ Q2R and with z̄ ∈ QR. We stress here that we choose the
exponent for M just in order to make the computations of the previous Paragraph
as similar as possible to those in [6].

For fixed λ > Bλ0 and for radii R/20 ≤ r ≤ R/2, enlarging the domain of
integration from Qλr (z̄) to Q2R (note that this is possible since r ≤ R/2), we have

CZ
(
Qλr (z̄)

)
< 21−1/d

[
|Q2R|
|Qλr (z̄)|

]1/p

λ
1/d
0 .

In the case p ≥ 2 we estimate the ratio of volumes in the following way:[
|Q2R|
|Qλr (z̄)|

]1/p

λ
1/d
0 < 40(n+2)/pλ1−2/pλ1/dB−1/d = 21/d−1λ,

by the definition of d (3.6) and the bound on r. If p < 2 on the other hand[
|Q2R|
|Qλr (z̄)|

]1/p

λ
1/d
0 < 40(n+2)/pλ[(p−2)n]/(2p)λ1/dB−1/d = 21/d−1λ,

for the same reason. Hence in both cases

CZ
(
Qλr (z̄)

)
< λ for

R

20
≤ r ≤ R

2
and λ > Bλ0. (5.2)

Now for points z̄ of the super-level

E(λ,QR) := {z ∈ QR : |Du(z)| > λ},

by Lebesgue’s Theorem, we have CZ(Qλr (z̄)) > λ for small radii 0 < r � 1.
Therefore, once fixed λ > Bλ0, for any point z̄ ∈ E(λ,QR), due to the absolutely
continuity of the integral, we can pick the maximal radius rz̄ such that

CZ
(
Qλrz̄(z̄)

)
=

(∫
Qλr (z̄)

|Du|p dz
) 1
p

+

(
Mη/p

∫
Qλr (z̄)

|F |η dz
) 1
η

= λ,
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in the sense that for any r ∈ (rz̄, R/2], CZ(Qλr (z̄)) < λ. Note that by (5.2) we
have rz̄ < R/20 and therefore Qλ20rz̄(z̄) ⊂ Q2R. Moreover, we have

λ

20(n+2)/p
≤
(∫

Qλ20rz̄
(z̄)
|Du|p dz

) 1
p

+

(
Mη/p

∫
Qλ20rz̄

(z̄)
|F |η dz

) 1
η

≤ λ

(5.3)

the left-hand side inequality following from the reduction of the domain of inte-
gration from Qλ20rz̄(z̄) to Qλrz̄(z̄), the right-hand side from the maximality of rz̄ , as
previously explained. The reader can see here which is the choice of κ performed
in (4.5), i.e. κ = 20(n+2)/p; at this point we have (4.7) and (4.14) for R = rz̄ , and
the constants depending on n, p instead of κ. The task of the following Paragraph
5.2 will be to show how to match this Paragraph and the previous one in order to
get a level-set estimate similar to (2.4).

First, however, a density estimate which will be fundamental in what follows.
Single out one of the previously defined cylinders, say Q ≡ Qλrz̄(z̄), for fixed λ,
such that CZ(Q) = λ. We then have that one of the following alternatives must
hold: (λ

2

)p
≤
∫
Q
|Du|p dz or

(λ
2

)η
≤Mη/p

∫
Q
|F |η dz. (5.4)

Suppose we are in the first case; we split the average as follows:∫
Q
|Du|p dz

≤ |Qr E(λ/4, Q2R)|
|Q|

(λ
4

)p
+

1

|Q|

∫
Q∩E(λ/4,Q2R)

|Du|p dz

≤
(λ

4

)p
+ c

(
|Q ∩ E(λ/4, Q2R)|

|Q|

)1− 1
1+ε2

(∫
Q
|Du|p(1+ε2) dz

) 1
1+ε2

,

for ε2 > 0 being, this time, the exponent ε0 from Corollary 4.2 for the choices
ũ = u, H ≡ F , K = ΩT , σ = η/p− 1. Thus, taking into account (5.3), we have a
constant depending on n,N, p, ν, L, γ but not on M such that∫

Q
|Du|p(1+ε1) dx ≤ c λp(1+ε1). (5.5)

Therefore using (5.4)1 and reabsorbing(λ
4

)p
≤ c

(
|Q ∩ E(λ/4, Q2R)|

|Q|

)1− 1
1+ε2

λp;

now dividing by λp and recalling that Q = Qλrz̄(z̄) we infer

|Qλrz̄(z̄)| ≤ c
∣∣Qλrz̄(z̄) ∩ E(λ/4, Q2R)

∣∣ (5.6)

with the constant depending on n,N, p, ν, L, γ.

If on the other hand (5.4)2 holds, take

ς =
1

4M1/p
; (5.7)
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then using Fubini’s Theorem and splitting the integral(λ
2

)η 1

Mη/p
≤
∫
Q
|F |η dz =

η

|Q|

∫ ∞
0

µη
∣∣{z ∈ Q : |F (z)| > µ}

∣∣dµ
µ

≤ (ςλ)η +
η

|Q|

∫ ∞
ςλ

µη
∣∣{z ∈ Q : |F (z)| > µ}

∣∣dµ
µ
.

The choice of ς allows to reabsorb the first term of the right-hand side and to infer,
dividing by λη and recalling the expression for ς

|Q| ≤ η

(ςλ)η

∫ ∞
ςλ

µη
∣∣{z ∈ Q : |F (z)| > µ}

∣∣dµ
µ
.

Putting together the estimate in the last display with that in (5.6) we get

|Qλrz̄(z̄)| ≤ c
∣∣Qλrz̄(z̄) ∩ E(λ/4, Q2R)

∣∣
+

c

(ςλ)η

∫ ∞
ςλ

µη
∣∣{z ∈ Qλrz̄(z̄) : |F (z)| > µ}

∣∣dµ
µ
. (5.8)

5.2. Level-set estimates. We move here toward the end of the proof.

Take a point z̄ ∈ E(Aλ,QR), for A ≥ 1 to be chosen; hence |Du(z̄)| > Aλ
and in particular z̄ ∈ E(λ,QR). Therefore we can consider the cylinder Qλrz̄(z̄)
previously defined, whereCZ(Qλrz̄(z̄)) = λ and (5.3) hold. Define the comparison
functions v and w, respectively, over the cylinders Qλ20rz̄(z̄) and Qλ10rz̄(z̄), as done
in Paragraph 4.1. One of the focal points of the proof is that, sincew is solution to a
systems with just time-dependent coefficients, Dw turns out to be locally bounded
inQλ10rz̄(z̄), see [18, Chapter VIII], and moreover, since estimate (4.11) holds with
a constant c depending on n,N, p, ν, L, we also have the explicit formula

sup
Qλ5rz̄ (z̄)

|Dw| ≤ cDiBλ, (5.9)

with cDiB just depending on n,N, p, ν, L but not on the cylinder, neither on λ.
This will be here used to prove that

|Dw(z)|p ≤
(
|Du(z)|2 + |Dv(z)|2

) p−2
2 |Du(z)−Dv(z)|2

+
(
|Dv(z)|2 + |Dw(z)|2

) p−2
2 |Dv(z)−Dw(z)|2 (5.10)

holds for any z ∈ Qλ5rz̄(z̄) ∩ E(Aλ,Q2R), for an appropriate choice of A. Indeed
applying Lemma 3.6 twice yields

|Du(z)|p ≤ c2
` |Dw(z)|p + c2

`

(
|Dv(z)|2 + |Dw(z)|2

) p−2
2 |Dv(z)−Dw(z)|2

+ c`
(
|Du(z)|2 + |Dv(z)|2

) p−2
2 |Du(z)−Dv(z)|2. (5.11)

Suppose now that (5.10) fails: then also by (5.9) and the fact that |Du(z)| > Aλ

|Dw(z)|p ≤ cpDiB λ
p < cpDiB

|Du(z)|p

Ap
<

2c2
`c
p
DiB

Ap
|Dw(z)|p,

which is clearly a contradiction for the choice of

A ≡ A(n,N, p, ν, L), Ap := 2c2
`c
p
DiB ≥ 1.
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Therefore, combining (5.11) and (5.10), we get

|Du(z)|p ≤ 2c2
`

(
|Du(z)|2 + |Dv(z)|2

) p−2
2 |Du(z)−Dv(z)|2

+ 2c2
`

(
|Dv(z)|2 + |Dw(z)|2

) p−2
2 |Dv(z)−Dw(z)|2

for z ∈ Qλ5rz̄(z̄) ∩ E(Aλ,Q2R). Hence∣∣{z ∈Qλ5rz̄(z̄) : |Du(z)| > Aλ}
∣∣

≤
∣∣{z ∈ Qλ5rz̄(z̄) :(

|Du(z)|2 + |Dv(z)|2
) p−2

2 |Du(z)−Dv(z)|2 > (Aλ)p

4c2
`

}
∣∣

+
∣∣{z ∈ Qλ5rz̄(z̄) :(

|Dv(z)|2 + |Dw(z)|2
) p−2

2 |Dv(z)−Dw(z)|2 > (Aλ)p

4c2
`

}
∣∣

≤ c

λp

∫
Qλ20rz̄

(z̄)

(
|Du|2 + |Dv|2

) p−2
2 |Du−Dv|2 dz

+
c

λp

∫
Qλ10rz̄

(z̄)

(
|Dv|2 + |Dw|2

) p−2
2 |Dv −Dw|2 dz

≤ c
[ 1

Mp−1
+ [ωa(rz̄)]

ε̄
]
|Qλrz̄(z̄)|

≤ c
[ 1

Mp−1
+ [ωa(rz̄)]

ε̄
][∣∣Qλrz̄(z̄) ∩ E(λ/4, Q2R)

∣∣
+

1

(ςλ)η

∫ ∞
ςλ

µη
∣∣{z ∈ Qλrz̄(z̄) : |F (z)| > µ}

∣∣dµ
µ

]
, (5.12)

first by (4.7) and (4.14), then by (5.8).

Now consider the collection Eλ of cylindersQλrz̄(z̄), when z̄ varies inE(Aλ,QR).
By a Vitali-type argument, we extract a countable sub-collectionFλ ⊂ Eλ such that
the 5-times enlarged cylinders cover almost all E(Aλ,QR) and the cylinders are
pairwise disjoints. I.e., if we denote the cylinders of Fλ by Q0

i := Qλrz̄i
(z̄i), for

i ∈ Iλ, being eventually Iλ = N, with their “vertices” z̄i ∈ E(Aλ,QR), we have

Q0
i ∩Q0

j = ∅ whenever i 6= j and E(Aλ,QR) ⊂
⋃
i∈Iλ

Q1
i ∪Nλ,

with |Nλ| = 0 and where we denotedQ1
i := 5Q0

i = Qλ5rz̄i
(z̄i). Using the two facts

in the previous display we can extend (5.12) to the full level set: indeed considering
(5.12) just over the cylinders Qλ5rz̄ = Q1

i and summing over Iλ (recall that now
λ > Bλ0 is fixed and that the Qλrz̄ = Q0

i are disjoint) we get∣∣E(Aλ,QR)
∣∣ ≤ cG(R,M)

[∣∣E(λ/4, Q2R)
∣∣

+
1

(ςλ)η

∫ ∞
ςλ

µη
∣∣{z ∈ Q2R : |F (z)| > µ}

∣∣dµ
µ

]
, (5.13)

where G(R,M) := M1−p + [ωa(R)]ε̄, since rz̄i ≤ R and R→ ωa(R) is increas-
ing.
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5.3. Conclusion, case q <∞. Multiply inequality (5.13), for γ > p and q <∞
as in the statement of Theorem 3.1, by (Aλ)γ , then raise both sides to the power
q/γ and integrate with respect to the measure dλ/(Aλ) overBλ0; recall indeed that
inequality (5.13) holds true just for λ varying in this range. This yields, recalling
that A ≥ 1 is a constant depending on n,N, p, ν, L and ς depends on p,M∫ ∞

Bλ0

(
(Aλ)γ

∣∣{z ∈ QR : |Du(z)| > Aλ}
∣∣) qγ dλ

Aλ

≤ c [G(R,M)]
q
γ

[∫ ∞
0

(
λγ
∣∣{z ∈ Q2R : |Du(z)| > λ/4}

∣∣) qγ dλ
λ

+ c(p, γ, q,M)×

×
∫ ∞

0
λ
q(1− η

γ
)
(∫ ∞

ςλ
µη
∣∣{z ∈ Q2R : |F (z)| > µ}

∣∣dµ
µ

) q
γ dλ

λ

]
=: c [G(R,M)]

q
γ
[
I + II

]
, (5.14)

where c depends on n,N, p, ν, L, γ, q. At this point a simple change of variable
yields

I = c(q)‖Du‖qL(γ,q)(Q2R).

For II the situation is a bit more involved. First we examine the case q ≥ γ;
here we make the change of variables λ̃ = ςλ, recalling the definition of ς in
(5.7), and then we use Lemma 3.4 with f(µ) = µη−1

∣∣{z ∈ Q2R : |F (z)| > µ}
∣∣,

α = q/γ ≥ 1 and r = q(1− η/γ) > 0 to infer

II = c(M)

∫ ∞
0

λ̃
q(1− η

γ
)
(∫ ∞

λ̃
µη
∣∣{z ∈ Q2R : |F (z)| > µ}

∣∣dµ
µ

) q
γ dλ̃

λ̃

≤ c

γ − p

∫ ∞
0
λ̃
q(1− η

γ
)+η q

γ
∣∣{z ∈ Q2R : |F (z)| > λ̃}

∣∣ qγ dλ̃
λ̃

= c‖F‖qL(γ,q)(Q2R)

with c ≡ c(p, γ, q,M). Note that (3.10) is satisfied since F ∈ Lη(Q2R).

In the case 0 < q < γ, on the other hand, we use Lemma 3.5 with h(µ) =∣∣{z ∈ Q2R : |F (z)| > µ}
∣∣ qγ , r = ηq/γ, α1 = 1 < γ/q = α2 and ε = 1:[∫ ∞

λ
µη
∣∣{z ∈ Q2R : |F (z)| > µ}

∣∣dµ
µ

] q
γ

≤ λη
q
γ
∣∣{z ∈ Q2R : |F (z)| > λ}

∣∣ qγ
+ c

∫ ∞
λ

µ
η q
γ
∣∣{z ∈ Q2R : |F (z)| > µ}

∣∣ qγ dµ
µ
.

Therefore in this case, again after changing variable ςλ↔ λ

II ≤ c
∫ ∞

0
λ
q(1− η

γ
)
[
λ
η q
γ
∣∣{z ∈ Q2R : |F (z)| > λ}

∣∣ qγ
+ c

∫ ∞
λ

µ
η q
γ
−1∣∣{z ∈ Q2R : |F (z)| > µ}

∣∣ qγ dµ] dλ
λ

≤ c ‖F‖qL(γ,q)(Q2R)
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+ c

∫ ∞
0

λ
q(1− η

γ
)
[∫ ∞

λ
µ
η q
γ
−1∣∣{z ∈ Q2R : |F (z)| > µ}

∣∣ qγ dµ]dλ
λ

≤ c ‖F‖qL(γ,q)(Q2R),

by Fubini’s Theorem, c ≡ c(p, γ, q,M). Therefore, all in all, putting all these
estimates in (5.14), after simple manipulations, we have that for all γ > p and
0 < q <∞,

‖Du‖L(γ,q)(QR) ≤ c̃ [G(R,M)]
1
γ

[
‖Du‖L(γ,q)(Q2R)

+ c(p, γ, q,M)‖F‖L(γ,q)(Q2R)

]
+ cBλ0|Q2R|

1
γ (5.15)

with c̃ depending on n,N, p, ν, L, γ, q. Recall the definition of G(R,M): it is
now enough to choose first M big enough, also satisfying (4.9), and then R0 small
enough so that c̃[G(R,M)]

1
γ ≤ 1

2 for all R ≤ R0. Note that it is possible to do
this just making M and R0 depend on n,N, p, ν, L, γ, q since the constant c̃ de-
pends on the same parameters. M is now a constant depending on these quantities.
Therefore we have

‖Du‖L(γ,q)(QR) ≤
1

2
‖Du‖L(γ,q)(Q2R)

+ c ‖F‖L(γ,q)(Q2R) + cBλ0|Q2R|
1
γ . (5.16)

At this point, if we knew ‖Du‖qL(γ,q)(Q2R) < ∞, a standard iteration argument
would be enough to get an estimate similar to (3.5) in the case γ > p and 0 <
q < ∞. However, this boundedness is what we want to prove here: therefore we
shall need to be a bit more careful in estimating the terms containing Du. We
however preferred to not overcharge the proof of technicalities in order to focus
our attention on the treatment of the Lorentz norms, which is the main point of this
paper together with the estimates of Paragraph 5.1.

Here we then show how to refine estimates about Du. Consider the truncated
gradients

|Du(z)|k := min
{
|Du(z)|, k

}
for z ∈ ΩT and k ∈ N ∩ [Bλ0,∞)

and note that from (5.13) we have, callingEk(λ,Qρ) := {z ∈ Qρ : |Du(z)|k > λ}∣∣Ek(Aλ,QR)
∣∣ ≤ cG(R,M)

[∣∣Ek(λ/4, Q2R)
∣∣

+
1

(ςλ)η

∫ ∞
ςλ

µη
∣∣{z ∈ Q2R : |F (z)| > µ}

∣∣dµ
µ

]
,

for k ∈ N ∩ [Bλ0,∞). Indeed in the case k ≤ Aλ we have Ek(Aλ,QR) = ∅ and
therefore the previous estimate holds trivially. In the case k > Aλ on the other hand
it follows since Ek(Aλ,QR) = E(Aλ,QR) = {z ∈ QR : |Du(z)| > Aλ} and
Ek(λ/4, Q2R) = E(λ/4, Q2R). At this point, working exactly as in the previous
lines, we get that (5.16) holds with |Du|k in place of Du. Now finally we can
finally use a well-know iteration argument (see [31] for the rigorous computations;
we should, instead of QR and Q2R, consider Qρ1 and Qρ2 for R ≤ ρ1 < ρ2 ≤ 2R
and change accordingly B and the radii involved) since ‖|Du|k‖L(γ,q)(Q2R) < ∞
and, recalling the definition of B and λ0, we get
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|QR|−
1
γ ‖|Du|k‖L(γ,q)(QR) ≤ c

(∫
Q2R

|Du|p dz +

∫
Q2R

(
|F |+ 1

)p
dz

) d
p

+ c |Q2R|−
1
γ ‖F‖L(γ,q)(Q2R). (5.17)

A standard Hölder’s inequality in Marcinkiewicz spaces, see [31, Lemma 2.8],
yields ∫

Q2R

(
|F |+ 1

)p
dz ≤ γ

γ − p
|Q2R|1−

p
γ
∥∥|F |+ 1

∥∥p
Mγ(Q2R)

; (5.18)

therefore using (3.12) we finally get(∫
Q2R

(
|F |+ 1

)p
dz

) 1
p

≤ c(p, γ, q)

(γ − p)1/p
|Q2R|−

1
γ
∥∥|F |+ 1

∥∥
L(γ,q)(Q2R)

.

(5.19)

Keeping in mind that d ≥ 1, from (5.17) we then infer (3.5) in the case q <∞,
after taking the limit k → ∞ and using the lower semi-continuity of the Lorentz
quasi-norm with respect to almost everywhere convergence, see Remark 3.3. For
the case q =∞ only minor modifications have to be done, see the following step.

5.4. Conclusion, case q =∞. We come back to the second alternative in (5.4).
This time we split, for τ small to be chosen(λ

2

)η
≤Mη/p

∫
Q
|F |η dz

≤Mη/p(τλ)η +
Mη/p

|Q|

∫
{z∈Q:|F (z)|>τλ}

|F |η dz.

Hence, using a Hölder’s inequality similar to (5.18), we have, calling for shortness
F (τλ,Q) the set {z ∈ Q : |F (z)| > τλ} and F (µ,Q) := {z ∈ Q : |F (z)| > µ}(λ

2

)η
−Mη/p(τλ)η ≤ Mη/p

|Q|

∫
F (τλ,Q)

|F |η dz

≤ γMη/p

γ − η
|F (τλ,Q)|1−

η
γ

|Q|
sup
µ>0

µη
∣∣{z ∈ F (τλ,Q) : |F (z)| > µ}

∣∣ ηγ
≤ γMη/p

γ − η
|F (τλ,Q)|1−

η
γ

|Q|

[
(τλ)η|F (τλ,Q)|

η
γ + sup

µ>τλ
µη|F (µ,Q)|

η
γ

]
≤ γMη/p

γ − p

[
|F (τλ,Q)|
|Q|

(τλ)η +
|F (τλ,Q)|1−

η
γ

|Q|
sup
µ>τλ

µη|F (µ,Q)|
η
γ

]
.

Now choosing τ appropriate, such that

1

2η
−Mη/pτη

2γ − p
γ − p

≥ 1

4η
, i.e. τ =

c(γ, p)

M1/p
,

we have

|Q| ≤ c

γ − p
|F (τλ,Q)|1−

η
γ

(τλ)η

[
sup
µ>τλ

µγ |F (µ,Q)|
] η
γ
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≤ c (τλ)−γ
[
(τλ)γ |F (τλ,Q)|

]1− η
γ
[

sup
µ>τλ

µγ |F (µ,Q)|
] η
γ

≤ c

γ − p
(τλ)−γ sup

µ>τλ
µγ |F (µ,Q)|.

Now taking into account the previous estimate, which follows if we suppose (5.4)2,
together with (5.6), which follows from (5.4)1 exactly as in the case q < ∞, esti-
mating as in (5.12) and then summing up as in Paragraph 5.2 we get∣∣E(Aλ,QR)

∣∣
≤ cG(R,M)

[∣∣E(λ/4, Q2R)
∣∣+ (τλ)−γ sup

µ>τλ
µγ |F (µ,Q2R)|

]
.

At this point, we multiply inequality (5.13) by (Aλ)γ and then we take the supre-
mum with respect to λ over (Bλ0,∞); this gives, after changing variable again,

sup
λ>Bλ0

(Aλ)γ
∣∣{z ∈ QR : |Du(z)| > Aλ}

∣∣
≤ cG(R,M)

[
sup
λ>Bλ0

λγ
∣∣{z ∈ Q2R : |Du(z)| > λ/4}

∣∣
+ c(p, γ, q,M) sup

λ>Bτλ0

sup
µ>λ

µγ |F (µ,Q2R)|
]
.

Since supλ>Bτλ0
supµ>λ µ

γ |F (µ,Q2R)| ≤ ‖F‖γMγ(Q2R) similarly as in (5.15),
using also (5.18) we get, after some simple algebraic manipulations and recalling
the definition of Bλ0 in (5.1)

‖Du‖Mγ(QR) ≤ c̃
[
G(R,M)

]1/γ[‖Du‖Mγ(Q2R)

+ c(p, γ, q,M)‖F‖Mγ(Q2R)

]
+ τ |Q2R|

1
γBλ0

≤ 1

2
‖Du‖Mγ(Q2R) + c ‖F‖Mγ(Q2R)

+ c(p, γ,M) |Q2R|
1
γ

[(∫
Q2R

|Du|p dz
) 1
p

+
(∫

Q2R

(|F |+ 1)η dz
) 1
η

]d
where we chose again M big and then R0 small enough to satisfy (4.9) and to
ensure that G(R,M) ≤ 1/(2c̃)γ . As in (5.18) we have(∫

Q2R

(
|F |+ 1

)η
dz

) 1
η

≤ c(p, γ)

(γ − p)1/η
|Q2R|−

1
γ
∥∥|F |+ 1

∥∥
Mγ(Q2R)

and this finally leads, up to the truncation argument of the previous section, to (3.5)
in the case q =∞.

6. THE ELLIPTIC PROOF

The proof in the elliptic case is much easier, since estimates already have the ho-
mogeneous character needed and therefore there is no need for intrinsic arguments.
We shall sketch just the first part, since the modifications to be done with respect
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to the parabolic argument are quite straightforward. Take B2R(x0) ≡ B2R ⊂ Ω
and subsequently define

λ0 :=

(∫
B2R

|Du|p dx
) 1
p

+

(
Mη/p

∫
B2R

|F |η dx
) 1
η

for η defined similarly as after (5.1), taking this time into account the elliptic higher
integrability exponent (see the following (6.5)); take a point x̄ ∈ BR(x0) and
consider, for radii 0 < r < R/2

CZ
(
Br(x̄)

)
:=

(∫
Br(x̄)

|Du|p dx
) 1
p

+

(
Mη/p

∫
Br(x̄)

|F |η dx
) 1
η

.

Simply enlarging the domain of integration we get CZ
(
Br(x̄)

)
≤ (2R/r)n/pλ0.

Hence if we consider points in the super-levels

E(λ,B2R) :=
{
x ∈ B2R : |Du(z)| > λ

}
for λ > Bλ0 and radii R/40 ≤ r ≤ R/2, then we have CZ(Br(x̄)) < λ; at
the same time, by Lebesgue’s differentiation Theorem we get that for small radii
0 < r � 1

CZ
(
Br(x̄)

)
> λ.

Hence we get the existence of a maximal radius rx̄ such that CZ(Brx̄(x̄)) = λ and

λ

20n/p
≤
(∫

B20rx̄ (x̄)
|Du|p dx

) 1
p

+

(
Mη/p

∫
B20rx̄ (x̄)

|F |η dx
) 1
η

≤ λ.

(6.1)

Call B the ball Brx̄(x̄). Next, we build the function v ∈ u + W 1,p
0 (20B,RN ) as

the unique solution to the Dirichlet problemdiv
[
a(x, t)|Dv|p−2Dv

]
= 0 in 20B,

v = u on ∂(20B).
(6.2)

Again taking u − v as test function and subtracting the weak formulations, as
suggested for (4.7) – recall this estimate is inferred essentially from the elliptic
part – we get∫

20B

(
|Du|2 + |Dv|2

) p−2
2 |Du−Dv|2 dx ≤ c λp

Mp−1

and ∫
20B
|Dv|p dx ≤ c λp

with c ≡ c(n,N, p, L/ν). Now we build the second comparison function w ∈
v +W 1,p

0 (10B,RN ) as the unique solution ofdiv
[
|Dw|p−2Dw

]
= 0 in 10B,

w = v on ∂(10B).
(6.3)



22 PAOLO BARONI

Using the test function v − w, multiplying (6.3)1 by ã :=
∫

10B c(x) dx and sub-
tracting the weak formulations for v and w we first get∫

10B
|Dw|p dx ≤ c λp (6.4)

and then, as in (4.12), for a constant depending on n,N, p, L/ν∫
10B

(
|Dv|2 + |Dw|2

) p−2
2 |Dv −Dw|2 dx

≤ c
(∫

10B

∣∣a(·)−ã
∣∣ p(1+ε3)

(p−1)ε3 dx

) (p−1)ε3
p(1+ε3)

(∫
10B
|Dv|p(1+ε3) dx

) p−1
p(1+ε3)

λ,

for ε3 > 0 the elliptic higher integrability; indeed from classic elliptic theory, see
[21], a solution to (6.2)1 belongs to Lp(1+ε3)(10B), for some ε3 ≡ ε3(n, p, L/ν)
and moreover there holds(∫

10B
|Dv|p(1+ε3) dx

) 1
1+ε3

≤ c
∫

20B
|Dv|p dx ≤ c λp

by (6.1), with the constant c depending on n,N, p, L/ν. Hence we have∫
Qλ10R

(
|Dv|2 + |Dw|2

) p−2
2 |Dv −Dw|2 dz ≤ c

[
ωc(R)

]ε̄
λp,

c ≡ c(n,N, p, L/ν), where ε̄ is as after (4.13), starting from the elliptic higher
integrability exponent ε3 instead of ε1 and ωc is the elliptic modulus of integral
oscillation defined in (3.8).

Now the proof goes on as in the parabolic case, except for some slight modifi-
cations. In particular the stationary analogue of (5.5) can for instance be found in
[20]: (∫

B
|Du|p(1+ε4) dx

) 1
1+ε4

≤ c
∫

2B
|Du|p dx+ c

(∫
2B
|F |p(1+ε4) dx

) 1
1+ε4

≤ c λp (6.5)

for some ε4(n, p, L/ν, γ) ≤ η/p−1 and for a constant depending on n,N, p, L/ν, γ.
Moreover, the sup bound for w takes the form (see [19, 33, 39, 40])

sup
5B
|Dw| ≤ c(n, p, L/ν)

(∫
10B
|Dw|p dx

) 1
p

≤ c λ

keeping into account also (6.4); in this case the estimate is more neat than (5.9),
since it does not anymore involve intrinsic cylinders.
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1, SE-751 06, UPPSALA, SWEDEN

E-mail address: paolo.baroni@math.uu.se


	1. Introduction
	Elliptic estimates

	2. A sketchy history of the problem
	2.1. Introducing coefficients
	2.2. General vectorial structures

	3. Assumptions, statement of the results, notation, tools
	3.1. Notation
	3.2. Lorentz spaces
	3.3. Technical tools

	4. The setting of the proof
	4.1. Comparisons

	5. The proof in the parabolic case
	5.1. The exit time
	5.2. Level-set estimates
	5.3. Conclusion, case bold0mu mumu q<q<q<q<q<q<
	5.4. Conclusion, case bold0mu mumu q=q=q=q=q=q=

	6. The elliptic proof
	Acknowledgements

	References

