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Abstract. We show that minimizers of free discontinuity problems with en-
ergy dependent on jump integrals and Dirichlet boundary conditions are smooth
provided a smallness condition is imposed on data.
We examine several examples, including elastic-plastic beam and plate with
free yield lines and deformable body with free damage. In all cases there
is a gap between the condition for solvability (safe load condition) and this
smallness condition (load regularity condition).
Such gap allows the existence of damaged/creased minimizers. Eventually we
provide explicit examples of irregular solutions when the load stays in the gap.

1. Introduction

Free discontinuity problems related to image segmentation achieve minimum regardless to
the size of the data, due to the structural growth of the forcing term ([22],[23],[12],[13]).
Free discontinuity problems in continuum mechanics have minimizers only if the loads are
small, say suitable safe load condition is satisfied ([10],[18],[38],[39],[40],[13],[21]).

Strong solutions of free discontinuity problems without jump integrals over the singular
set were proven to exist under higher integrability assumptions on data in [24],[11],[14],[3].

In this paper we show that some functionals which allow free discontinuity and pay jump
integrals over the singular set do have minimizers, provided the forcing term is sufficiently
small say it fulfils an explicit safe load condition, which appears as a necessary condition for
load with sign; actually we prove that such minimizers have empty discontinuity set when
the load is smaller than required by safe load: e.g. admissible small load deform an elastic-
plastic plate or beam in the elastic range without occurrence of plastic yield (see Sections 4
and 5). We call load regularity condition this more stringent inequality.

In several cases there is a gap between the safe load condition and the load regularity
condition: in this situation the strong inequality in the safe load (sufficient condition for ex-
istence) allows the possibility of non regular (yielded) solutions for suitable load in between:
we show explicit examples of cracked/creased solutions, when the load stays this gap. A
detailed analysis of the structure of irregular solutions is given in 1D model problems (see
Theorem 3.15, Theorem 4.10 and Theorems 4.13, 4.14).

More precisely we focus on four examples of functionals listed below. They are all re-
lated to continuum mechanics (involving deformations of elastic bodies with damage) with
homogeneous or non homogeneous Dirichlet boundary conditions. The boundary condition
is imposed by allowing variations (defined in the whole euclidian space) which are different
from Dirichlet datum only in the reference bounded set.

Key words and phrases. Free discontinuity, bounded hessian, safe load, crack, plastic hinges,
smooth minimizers.
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The main focus of paper is a variational approach for detecting elastic-plastic yielding
of beams and plates (Problems II, III listed below). Nevertheless the tools for the anal-
ysis are inspired by and tested on the simpler first order Problems I and IV: these ones
are toy problems without ambition to grasp all the complexity of real phenomenon (see
[17],[18],[19],[20],[25]-[30],[49],); anyway they try to describe with few macroscopic variables
the effects of mesoscopic damage.
I. First order model problem (elastic rod with free damage under traction):

(1.1) F1(w) =
∫

R

(
1
2
|ẇ|2 − fw

)
dx + α ](Sw) + γ

∑

Sw

|[w]|

to be minimized among scalar functions w such that w ∈ SBV (R) s.t. spt(w−w0) ⊂ [0, L].
Here f ∈ L1(R) with spt f ⊂ [0, L] is the traction load, w0 ∈ SBV (R) with w0 ∈ domF1

is the boundary traction, ] is the counting measure, α > 0, γ > 0, and Sw is the singular
set ([3]) of w. Here and in the following ẇ denotes the absolutely continuous part of the
distributional derivative w′ , [v] denotes the jump v+ − v−.

II Second order model problem (elastic plastic beam under transverse load):

(1.2) F2(w) =
∫

R

(
1
2
|ẅ|2 − fw

)
dx + β ](Sẇ) + γ

∑

Sẇ

|[ẇ]|

to be minimized among scalar functions w such that w ∈ SBH(R) s.t. spt(w−w0) ⊂ [0, L].
Here f ∈M(R) with spt fs ⊂ (0, L) is the transverse load, w0 ∈ SBH(R) with w0 ∈ domF2

provides the boundary condition, β > 0, γ > 0 and Sẇ is the singular set of ẇ (see [38],[40]).

III. Clamped elastic plastic plate
(Kirchhoff-Love plate with plastic yield along free lines):

(1.3)

P(w) =
2
3
µ

∫

R2

(∣∣(D2w)a
∣∣2 +

λ

λ + 2µ
|∆aw|2 − fw

)
dx+

+ βH n−1(SDw) + γ

∫

SDw

|[Dw]|dH1

to be minimized among scalar functions w ∈ SBH(R2) s.t.. spt w ⊂ Σ. In (1.3) Σ ⊂ R2

is a connected C4 open set or an open convex polygon, f ∈ Lp(R2) with spt f ⊂ Σ is the
transverse load, ∇ denotes the absolutely continuous part of the distributional gradient D,
∆aw is the trace of ∇Dw, SDw is the singular set of Dw ([10]), α > 0, γ > 0, µ > 0, λ+µ >
0, p > 1 and H1 is the length (1d Hausdorff measure).
Here Σ is the reference configuration of an elastic thin plate, w the transverse displacement
of the plate. The functional P represents the mechanical energy of the deformed plate,
subject to transverse dead load f, with free plastic yield lines whose pattern (the set SDw)
is ”a priori” unknown ([39],[10],[46]).

IV. Vector-valued deformations with cohesive damage along free surfaces:

(1.4)
F(v) =

∫
R3

(
µ |E(v)|2 + λ

2 |Tr E(v)|2 − f · v
)

dx+

+ αH n−1(Jv) + γ
∫

Jv
|[v]¯ νv|dH n−1



REGULAR MINIMIZERS OF SOME FREE DISCONTINUITY PROBLEMS 3

to be minimized over vector fields v with sptv ⊂ Ω and special bounded deformation (say
v ∈ SBD(Rn)). Here Ω ⊂ Rn is a connected Lipschitz open set and n = 2, 3; f ∈ Lp(Rn ,Rn)
is the given body force, with p ≥ n, spt f ⊂ Ω.
The set Ω represents the un-stressed configuration of an elastic body, v is a vector field with
special bounded deformation in Ω representing the displacement ([4],[18]), λ, µ are the Lamé
coefficients satisfying µ > 0, 2µ + nλ > 0, α, γ are constants related respectively to energy
of crack surface formation and crack opening with α > 0, γ > 0, E(v) is the absolutely
continuous part of the linear strain tensor e(v) = 1

2

(
Dv + (Dv)T

)
, Jv is the jump set

of v, νv is the normal to Jv , [v] is the jump of v in the νv direction, H n−1 denotes the
(n− 1) dimensional Hausdorff measure and ¯ denotes the symmetric tensor product.
The functional F represents a simplified description (inspired by Barenblatt approach [5])
of mechanical energy for a linear elastic body, with natural reference Ω, subject to dead load
f , with free small cohesive crack whose geometry (the set Jv) is not ”a priori” prescribed
([18],[38]).

In all four cases crack (respectively plastic yield) may be located also at the boundary ∂Σ.
Actually in some particular 1-dimensional case we show in [42] that damage may take place
only at the boundary.
For each one of the four problems above we give an explicit safe load condition and prove
that it entails the existence of a finite minimum (Lemmas 3.1, 4.2, 5.1, 6.1); then we prove
an excess estimate (Lemmas 3.4, 4.5, 5.5, 6.5) say a comparison with the energy of the
solutions of the related elastic problems (minimizers of exactly the same functionals among
competing functions which must be regular); hence we deduce regularity conditions which
have an implicit form since they refer to the solution of the associated purely elastic problem
(condition on stress: Theorems 3.5, 6.6; condition on bending moment for beam and plate:
Theorems 4.6, 5.6); eventually we prove a load regularity condition explicitly dependent
only on data (Theorems 3.6, 4.8, 5.7, 6.7). The usual method of calibrations ([2]) do not
apply to the present context which admits dependence on second derivatives: this difficulty
is circumvented by introducing a technique of calibration for minimizer based on comparison
with purely elastic solutions, through suitable excess estimates and compliance identities.

The Euler equations are derived explicitly in 1-dimensional Problems I and II together
with qualitative properties of free discontinuity set of minimizers (Theorems 3.3, 4.4). It
is remarkable that some reminding of Weierstrass-Erdman corner condition hold true for
functionals with free discontinuity: ẇ is continuous in (0, L) for minimizers of F1 (Theorem
3.3) and ẅ,

...
w are continuous in (0, L) for minimizers of F2 (Theorem 4.4).

An interesting issue about the consistence of these models is achieved in the 1D frame
by analysis of minimizers structure: minimizers of F1 may crack not more than at a single
point (Theorems 3.8, 3.15 describe the structure of F1 minimizers); minimizers of F2 may
exhibit no more than two crease points (Theorem 4.10).

Explicit examples of load producing damaged minimizer of F1 and creased minimizers of
F2 are shown when load belongs to the narrow gap between safe load condition and regularity
load condition: Examples 3.17, 3.18, Theorem 4.11. In order to achieve these examples, a
careful estimate of this gap is obtained by showing: first, sharp Poincaré inequalities (see
(3.5), Lemma 4.1), then stress estimate (3.23) for rod and bending estimates (4.28),(5.25)
for beam and plate by mean of Green functions (Theorems 3.12, 4.7) and elliptic regularity
(Theorem 5.4). Suitable compliance identities for minimizers (Lemmas 3.11, 4.9, 5.3, 6.3)
proved very useful in all the computations.
A sufficient condition (5.53) for development of plastic yield lines in a plate (functional P)
is shown by Theorem 5.11.
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Some of the results proven here about plate (Problem III) and beam (Problem II) were
announced in [41],[43].
We refer to [42] for a deeper analysis of the elastic-plastic beam and asymptotic analysis of
Problem II as the parameter β → 0+, in the framework of L∞ load.

We emphasize that the analysis of Problem I in the framework of L∞ load would provide
the same qualitative picture of rod deformation proven here for L1 or measure load, since
the constants in related safe load regularity conditions are the same (except for the different
homogeneity in L) so that they coincide on constant load.
On the contrary the behavior of the beam (Problem II) do change a lot in the framework of
L∞ load since (in addition to different homogeneity in L) optimal constant in the L1−BH
Poincaré inequality (Lemma 2.1 in [42]) is quite different with respect to the one appearing
in L∞−BH Poincaré inequality (Lemma 4.1 in present paper): hence (see [42]) we can show
that there are choices of constant load (fulfilling the appropriate L∞ safe load condition
but not the L∞ regularity load condition (respectively (2.5),(3.13) in [42]) which produce
plastic hinges at both endpoints of the beam. While in the present context we show that
concentrated load with spt ⊂ (0, L) of increasing intensity do not produce symmetric plastic
hinges at endpoints before collapse (Theorem 4.13). Moreover Theorem 4.14 entails that
symmetric load of constant sign and fulfilling the L1 safe load condition (4.11) do not produce
plastic hinges at all. About skew-symmetric load analysis for the elastic plastic beam we
refer to [44].

Outline
1. Introduction.
2. Notation.
3. (Pb I) First order model problem: elastic rod with free damage under traction.
4. (Pb II) Second order model problem:

elastic plastic beam under transverse load.
5. (Pb III) Clamped Kirchhoff-Love plate with plastic yield along free lines.
6. (Pb IV) Vector-valued deformations with cohesive damage along free surfaces.
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2. Notation

We denote by ‖µ‖T the total variation in R of µ and by ‖µ‖T (E) the total variation in E
for any µ ∈ M(R) and any Borel set E ⊂ R. For any f ∈ M(R) with sptfs ⊂⊂ (0, L) and

any v ∈ L1
f (R) we write shortly

∫ L

0

f(x)v(x)dx for
∫

R
v(x)df(x) .

Any µ ∈ M(R) can be split into three parts, say µ = µa + µs = µa + µj + µc where µa is
the absolutely continuous part, µs is the singular part, µj is the purely atomic part and µc

is the diffuse singular one (the Cantor part of µ): the decomposition is unique.
Analogously, if I is an interval, then any w ∈ BV (I) can be represented by w = wa +wj +wc

where wa has an absolutely continuous distributional derivative (wa)′ = (w′)a ∈ L1(I), wj

is a piece-wise constant function and (wj)′ = (w′)j is purely atomic), wc is a Cantor-type
function (i.e. (wc)′ = (w′)c : for any w ∈ BV (I) these three functions are uniquely defined
up to additive constants ([3], Corollary 3.33), the constants are 0 when the support of w is
a compact subset of I. We label ẇ = (wa)′ the absolutely continuous part of distributional
derivative w′, hence we write as follows the unique decomposition of the derivative for a BV
function with compact support: w′ = ẇ + (wj)′ + (wc)′. Approximate discontinuity sets of
w and ẇ (see [3]) are labeled by Sw, Sẇ and are shortly referred to as singular set of w, ẇ.
Symbols ] and ] E respectively denote the counting measure and its restriction to E ⊂ R.
Symbols [ ], ⊗ and ¯ denote respectively jumps, the tensor product and its symmetric part.
About the case of several variables we denote respectively by Dv and ∇v the distributional
gradient and the approximate gradient of v. For any open set Ω ⊂ Rn we denote:

M(Ω) = {µ : real valued Radon measures in Ω} ,
BV (Ω) = {v ∈ L1(Ω) : Dv ∈M},
SBV (Ω) = {v ∈ BV (Ω) : Dv has no Cantor part},
BH(Ω) = {v ∈ W 1,1(Ω) : D2v ∈M},
SBH(Ω) = {v ∈ BH(Ω) : D2v has no Cantor part},
SBD(Ω) = {v : Ω → Rn : sym (Dv) is a matrix-valued Radon measure } .

For any Borel set E ⊂ Ω and µ∈M(Ω) we denote by ‖µ‖T (E) the total variation of µ in E;
we will write shortly ‖µ‖T = ‖µ‖T (Rn) when E = Ω = Rn. The singular set of v (the set of
points in Ω where v is not approximately continuous) is denoted Sv (see [3]).
The set of approximate jump of a vector valued function v∈SBD(Ω) is denoted Jv (see [4]).
For definition and properties of the above function spaces we refer to [3],[4],[14],[18]).

3. (Pb I) Elastic rod with free damage under traction

We study the functional

(3.1) F1(w) =
∫

R

(
1
2
|ẇ|2 − fw

)
dx + α ](Sw) + γ

∑

Sw

|[w]|

to be minimized among scalar functions w such that w ∈ SBV (R) s.t. spt(w−w0) ⊂ [0, L].
Here α, γ are given constants, w0 is a given function and ] is the counting measure.
All along this section we assume

(3.2)
{

α > 0, γ > 0, Σ = (0, L), f ∈ L1(R), spt f ⊂ Σ,
w0 ∈ SBV (R), ](Sw0) < +∞, Sw0 ⊂ Σ, F1(w0) ∈ R .

Functional (3.1) describes the total energy of an elastic rod which may undergo damage at
free locations and is subject to given traction body force f and given boundary traction
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expressed by w0(0−) and w0(L+). The location of damage is a priori unknown and is given
by the singular set of optimal w.
Actually functional (3.1) is a crude simplification of more realistic models involving a concave
interface energy contribution in place of γ

∑
Sẇ
|[ẇ]| ([?],[7],[19],[34]). Nevertheless (3.1)

provides a simple framework in which we are able to describe completely the structure of
minimizers, moreover (3.1) proved very helpful in suggesting the techniques to tackle the
harder and more significant models of elastic plastic beams and plates faced in Sections 4,5.

We introduce a localization of the functional: for any Borel set A ⊂ R we set

F1(w, A) =
∫

A

(
1
2
|ẇ|2 − fw

)
dx + α ](Sw ∩A) + γ

∑

Sw∩A

|[w]|.

At first we prove that a smallness condition (safe load condition) on f entails the existence
of minimizers, while a violation of the safe load may lead to collapse.

Lemma 3.1. Assume (3.2) and

(3.3) ‖f‖L1(Σ) < 2 γ (F1 safe load condition) .

Then F1 achieves a finite minimum among w ∈ SBV (R) s.t. spt(w−w0) ⊂ [0, L]. And any
minimizer z verifies
(3.4)

‖z′‖T (Σ) ≤
1

2γ − ‖f‖L1(Σ)

(
4F1(w0) + Lγ2 + ‖f‖L1(Σ)(|w0(0−)|+ |w0(L+)|)) .

Proof - If ‖f‖L1(Σ) < 2 γ, then we can apply the direct method since F1 is coercive in
BV : in fact by fundamental theorem of calculus

w(x−) =
1
2

(
w0(0−) +

∫

[0,x)

w′
)

+
1
2

(
w0(L+)−

∫

[x,L]

w′
)

w(x+) =
1
2

(
w0(0−) +

∫

[0,x]

w′
)

+
1
2

(
w0(L+)−

∫

(x,L]

w′
)

(3.5) ‖w‖L∞(0,L) ≤ 1
2

(
‖w′‖T (Σ) + |w0(0−)|+ |w0(L+)|

)

∀w ∈ BV (R) : spt(w − w0) ⊂ [0, L] .

Hence for any admissible w

−
∫

Σ

fw ≥ −‖f‖L1(Σ)‖w‖L∞(Σ) ≥ −1
2
‖f‖L1(Σ)

(
‖w′‖T (Σ) + w0(0−) + w0(L+)

)
.

Moreover
F1(w) = F1(w,R) = F1(w0,R \ Σ) + F1(w, Σ)

Then by integrating over Σ the Young inequality |ẇ|2/2 ≥ γ|ẇ| − γ2/2, we have

F1(w0) ≥ F1(w) ≥ α ] (Sw) +
(

γ − 1
2
‖f‖L1(Σ)

)
‖w′‖T (Σ)

− L

2
γ2 − ‖f‖L1(Σ)

2

(
|w0(0−)|+ |w0(L+)|

)
+ F1(w0,R \ Σ).

Due to the inequality 2γ−‖f‖L1 > 0, the functional is bounded from below and, the elements
of any minimizing sequence eventually fulfil the estimate (2.3). By w∗BV compactness and
l.s.c properties ([3]) the existence of minimizers follows. ¤
The safe load (3.3) cannot be improved for generic L1 load as shown by following Remark.
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Remark 3.2. If ‖f‖L1(Σ) > 2 γ , f does not change sign and w0 ≡ 0, then inf F1 = −∞.
For instance, if f ≥ 0 and ‖f‖L1(Σ) ≥ 2γ + ε, ε > 0, set vt(x) = t > 0 if x ∈ Σ, vt(x) = 0

if x 6∈ Σ; then Jvt
= {0, L}, v̇ ≡ 0,

∫

R
f vt dx ≥ (2γ + ε)t and F1(vt) = 2α − εt → −∞ as

t →∞.

Theorem 3.3. (Euler equations for F1) Assume (3.2) and w is a minimizer of F1 among
v s.t. v = w0 on R \ Σ.
Then w′ = ẇ ∈ AC(I) for any interval I contained in Σ \ Sv. Hence w(x±) and ẇ(x±)
are defined for all x ∈ Σ and, by setting w±(x) = w(x±) , ẇ±(x) = ẇ(x±), the following
equalities hold true

(i) − w′′ = f (0, L) \ Sw ,

(ii) ẇ− = γ sign([w]) in Sw ∩ (0, L] ,
(iii) ẇ+ = γ sign([w]) in Sw ∩ [0, L) ,

(iv)
∫ L

0

(ẇ(ż − ẇ)− f(z − w)) dx+γ
∑

Sz−w

|[z−w]| = 0, ∀z ∈ SBV (R) : spt(z−w) ⊂ Σ.

Hence −(ẇ)′ = f in D′(0, L) and ẇ ∈ AC(0, L) even if Sw∩(0, L) is not empty. Nevertheless
the continuity of ẇ may fail at 0 and L.

Proof - By choosing ϕ ∈ C∞(R\Sv)∩SBV (R) with sptϕ ⊂ Σ, and with C∞ limit from
both sides at any point in Sv, we get F1(w) ≤ F1(w + εϕ). By convexity and taking into
account that w ∈ SBV entails ẇ = w′ in (0, L) \ Sw and ϕ̇ = ϕ′ −

∑

Sϕ

[ϕ] ] Sϕ, we get,

for 0 < ε < min
Sw

|[w]|/‖ϕ‖L∞ :

0 ≤ ε

∫

Σ

(ẇϕ̇− fϕ)dx + α
(
](Sw+εϕ)− ](Sw)

)
+

+γ
∑

Sw

(|[w + εϕ]| − |[w]|) + o(ε) =

= ε

(∫

Σ

(−w′′ − f)ϕdx + (ϕ(L−)ẇ(L−)− (ϕ(0+)ẇ(0+))+

+
∑

Sw∩(0,L)

((ϕ−ẇ−)− (ϕ+ẇ+)) + γ
∑

Sw

[ϕ] sign([w])


 + o(ε)

= ε

(∫

Σ

(−w′′ − f)ϕdx + (ϕ(L−)ẇ(L−)− (ϕ(0+)ẇ(0+))+

+
∑

Sw∩(0,L)

((ϕ−ẇ−)− (ϕ+ẇ+)) + γ
∑

Sw

(ϕ+ − ϕ−) sign([w])


 + o(ε)

= ε

(∫

Σ

(−w′′ − f)ϕdx

+ϕ(0+)
(
γ sign([w](0))− ẇ(0+)

)
− ϕ(L−)

(
γ sign([w](L))− ẇ(L−)

)
+

+
∑

Sw∩(0,L)

(
ϕ+(γ sign([w])− ẇ+)− ϕ−(γ sign[w]− ẇ−)

)

 + o(ε) .

By choosing all ϕ with compact support in an interval contained in (0, L) \ Sw we get the
differential identity in −w′′ = f in (0, L) \Sw. Then for any fixed xk ∈ Sw we can choose at
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first (if xk < L) all ϕ with compact support in [xk, xk+1) where xk+1 is the closest singular
point bigger than xk if any or L else, and then (if 0 < xk) all ϕ with compact support in
[xk − 1, xk) where xk−1 is the closest singular point smaller than xk if any or 0 else: this
provides the values of ẇ± in Sw. The derivation of (ii),(iii) at 0, L is analogous.
The statement about continuity of ẇ is straightforward, since ẇ = w′ in open interval where
w is continuous, then in such intervals w is AC w′ ∈ L1 and w minimizes the Dirichlet integral
(hence w is C1), ẇ± exist in these intervals and ẇ± = w′; while ẇ+−ẇ− = (γ−γ) sign[w] = 0
in Sw ∩ (0, L).
Du Bois-Raymond equation (iv) follows in the same way by minimality of w with respect
to variations w + ε(z − w).

Lemma 3.4. Assume (3.2). Let u be the solution of

(3.6) u ∈ H1(Σ), −u′′ = f in Σ, u(0+) = w0(0−), u(L−) = w0(L+)

then u′ = u̇ ∈ C0(Σ) and u has an extension, still denoted by u, s.t. u ∈ SBV (R) ∩ C0(R)
and u ≡ w0 in R\Σ. Boundary values of u are always understood as interior traces Whenever
Moreover
Excess estimate for F1 : If u solves (3.6), then for all v ∈ SBV (R) s.t. spt(v−w0) ⊂ Σ

(3.7) F1(v)−F1(u) ≥ α](Sv) +
∑

Sv

(γ|[v]| − u′[v]) .

Excess identity for minimizers of F1 : If v minimize F1 among v ∈ SBV (R) s.t.
spt(v − w0) ⊂ Σ, and u solves (3.6), then we have

(3.8) F1(v)−F1(u) = α](Sv) +
1
2

∑

Sv

(γ|[v]| − u′[v]) .

Necessary conditions for existence of discontinuous minimizers of F1 : If If v
minimize F1 among v ∈ SBV (R) s.t. spt(v − w0) ⊂ Σ, Sv 6= ∅, and u solves (3.6), then

(3.9) ‖u′‖L∞(Σ) > γ ,

(3.10)
∑

Sv

(γ|[v]| − u′[v]) ≤ −2α ] (Sv) < 0 .

Proof - u is the only minimizer of F1 over w ∈ SBV (R) ∩H1(Σ) s.t. spt(w − w0) ⊂ Σ.
By exploiting u′ ∈ C(Σ) , v̇ = v′ − [v] d] (Sv ∩ (0, L)) in D′(0, L), u − w0 ∈ H1

0 (Σ) ,
−u′′ = f in Σ, convexity of s → s2/2 and

∫ L

0

u′(v − u)′ dx = −
∫ L

0

u′′(v − u) dx − u′(L) [v](L) − u′(0) [v](0)

we have, for every v ∈ SBV (R) s.t. spt(v − w0) ⊂ Σ we have

F1(v) ≥ F1(u) +
∫ L

0

u′(v̇ − u′)dx−
∫ L

0

f(v − u)dx + α](Sv) + γ
∑

Sv

|[v]| =

= F1(u)+
∫ L

0

u′(v′−u′)dx−
∫ L

0

f(v−u)dx + α](Sv) + γ
∑

Sv

|[v]| −
∑

Sv∩(0,L)

u′[v] =

= F1(u) + α](Sv) +
∑

Sv

(γ|[v]| − u′[v])
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Then (3.7) is proven.
If v ∈ argminF1 and u solves (3.6), then v̇ is continuous in (0, L) by Theorem 3.3 and
u = v, and u′ = v′ = v̇ hold true in R \ Σ (assuming Sw ⊂ Σ and v̇ continuous in R is not
restrictive), and Du-Bois Raymond equation for vε = v + ε(u− v) yields

(3.11)
∫

Σ

(v̇ (u′ − v̇)− f(u− v)) dx− γ
∑

Sv

|[v]| = 0 .

Hence

F1(v)−F1(u) =
1
2

∫

Σ

|v̇|2 dx+α](Sv)+γ
∑

Sv

|[v]|−
∫

Σ

fv dx− 1
2

∫

Σ

|u′|2 +
∫

Σ

fu =

=
1
2

∫

Σ

(v̇ + u′) (v̇ − u′) + α](Sv) + γ
∑

Sv

|[v]| −
∫

Σ

fv dx +
∫

Σ

fu =

=
1
2

∫

Σ

f(v − u)−
∫

Σ

f(v − u)− γ

2

∑

Sv

|[v]|+ γ
∑

Sv

|[v]|+ 1
2

∫

Σ

u′(v̇ − u′) + α](Sv)

=
γ

2

∑

Sv

|[v]| − 1
2

∫

Σ

f(v − u) +
1
2

∫

Σ

u′(v̇ − u′) + α ] (Sv) .

Since u′ ∈ C(Σ) , v̇ = v′ − [v] d ]
(
Sv ∩ (0, L)

)
in D′(0, L), u− w0 ∈ H1

0 (0, L) , −u′′ = f
in (0, L), v(0+) = u(0) + [v](0) and v(L−) = u(L)− [v](L) we get

F1(v)−F1(u) =

=
1
2

∫ L

0

u′(v′ − u′)− 1
2

∫ L

0

f(v − u) +
γ

2

∑

Sv

|[v]| − 1
2

∑

Sv∩(0,L)

u′[v] + α](Sv) =

= α](Sv) +
1
2


∑

Sv

γ|[v]| −
∑

Sv∩(0,L)

u′[v]


 − 1

2
u′(0) [v](0) − 1

2
u′(L) [v](L) =

= α](Sv) +
1
2

∑

Sv

(γ|[v]| − u′[v]) .

The necessary conditions (3.9),(3.10) for minimizers with crack follow by substitution of
](Sv) ≥ 1 in (3.8). ¤

We can restate the previous result in the form of a calibration by comparison as follows.

Theorem 3.5. (stress regularity condition for functional F1) If the solution u of
(3.6) verifies

(3.12) ‖u′‖L∞(Σ) ≤ γ

then u ∈ argminF1, u is the unique minimizer and, for all v ∈ SBV (R) s.t. spt(v−w) ⊂ Σ,

F1(v)−F1(u) = αH1(Sv) +
1
2

∑

Sv

(γ|[v]| − u′ · [v]) ≥ 0 .
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Proof - Starting from the excess estimate (3.7) we find for any admissible v

F1(v)−F1(u) ≥ α ] (Sv) +

(∑

Sv

γ|[v]| − u′[v]

)
≥

= α ] (Sv) +

(∑

Sv

(γ − ‖u′‖∞)|[v]|
)
≥ α ] (Sv) ≥ 0.

The last inequality is strict whenever Sv 6= ∅, since α > 0 . Hence the all the minimizer are
regular. But there is only one regular minimizer, say u.

Theorem 3.6. (Load regularity condition for functional F1)
Assume (3.2) and

(3.13) ‖f‖L1(0,L) +
|w0(L+)− w0(0−)|

L
≤ γ

then F1 achieves a unique regular minimizer: the solution u of (3.6), hence Su = ∅.
Proof - By applying Lagrange Theorem and fundamental Theorem of calculus to u′,
where u is the minimizer among H1 functions,

‖u′‖L∞(0,L) ≤ ‖f‖L1(0,L) +
|w0(L+)− w0(0−)|

L
≤ γ

then Theorem 3.5 entails the thesis, since the regularity stress condition is fulfilled by u.

On the other hand we have a non-minimality test.

Theorem 3.7. Assume (3.2), u solves (3.6), v ∈ SBV (R) fulfills spt(v − w0) ⊂ Σ and the
inequality

(3.14)
∑

Sv

(γ|[v]| − u′[v]) > −2α ] (Sv) .

Then v 6∈ argminF1.

Proof - Straightforward consequence of (3.10).

By summarizing: the safe load condition (3.3) entails existence, while the load regularity
condition (3.13) entails existence, regularity and uniqueness of minimizer. Now we analyze
what happen when the safe load condition (3.3) is fulfilled but the regularity load condition
(3.13) fails.

Theorem 3.8. Assume (3.2), w is a minimizer of F1 with Dirichlet datum w0, and

(3.15) γ < ‖f‖L1(0,L) < 2 γ

then there is at most one break-point, say ] (Sw) ≤ 1.
The break point may be placed anywhere in [0, L]: (see Example 3.17 and Theorem 3.15).
Uniqueness of minimizer is not expected in general (in Example 3.17 are shown infinitely
many solutions with exactly 1 crackpoint).

Proof - (Step I) if w ∈ argminF1 and Sw 6= ∅, then all jumps [w] of w have the same
sign. In fact, assuming by contradiction there are two jumps of different sign (we can always
choose them consecutive) at x1, x2 ∈ [0, L] :

x1 < x2, [w](x1) [w](x2) < 0, w ∈ AC(x1, x2),
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then the Euler equations in Theorem 3.3 imply

|ẇ−(x1)| = |ẇ+(x2)| = γ, w+(x1) = −ẇ−(x2)

would entail the following contradiction

2γ = |ẇ−(x2)− ẇ+(x1)| =
∣∣∣∣
∫ x2

x1

ẅ dx

∣∣∣∣ =
∣∣∣∣
∫ x2

x1

f dx

∣∣∣∣ ≤
∫ x2

x1

|f | dx = ‖f‖L1(Σ) < 2γ.

(Step II) if w ∈ argminF1 and Sw 6= ∅, then there is exactly one jump point. In fact,
assuming by contradiction w exhibits more than one, we know that they must have the
same sign. By taking two consecutive jump points, one of the two can be eliminated as
follows, by strictly reducing the functional energy at the same time: set

w̃(x) =





w(x) + [w](x2) χ(x1,x2)(x) if
∫ x2

x1

f ≥ 0, [w](x1) > 0, [w](x2) > 0

w(x) − [w](x1) χ(x1,x2)(x) if
∫ x2

x1

f ≥ 0, [w](x1) < 0, [w](x2) < 0

w(x) + [w](x2) χ(x1,x2)(x) if
∫ x2

x1

f < 0, [w](x1) < 0, [w](x2) < 0

w(x) − [w](x1) χ(x1,x2)(x) if
∫ x2

x1

f < 0, [w](x1) > 0, [w](x2) > 0

then x2 6∈ Sw̃ in first and third case, x1 6∈ Sw̃ in second and fourth one. In any case

F1(w̃) ≤ F1(w)− α < F1(w) .

Remark 3.9. We emphasize that (3.15) does not force minimizers to be discontinuous in
any case. In fact: a constant load f = c γ/L with 1 < c < 2 fulfils (3.15) together with
trivial Dirichlet condition (w0 = 0) and leads to unique continuous minimizer : u(x) =
cγ
2L

(
(x − L/2)2 − L2/4

)
; notice that in this case ‖u′‖L∞ = |u′(0)| = cγ/2, hence stress

regularity condition (3.12) holds true (see also Theorem 3.13).

Remark 3.10. Statements analogous to the ones of Lemma 3.4 and Theorems 3.5, 3.6 hold
true (with the same proof) when

∫ |v̇|2 is substituted by
∫

W (v̇)dx with W convex, proper
and coercive with super-linear growth at ±∞.
Precisely: if

∫
Σ
|v̇|2dx is replaced in F1 by

∫
Σ

W (v) dx where W is any strictly convex C2

function with W (s) = W (|s|) ≥ c1 + c2 |s|p, c2 > 0, p > 1, by setting

T1(v) =
∫

R
(W (v̇)− fw) dx + α ](Sv) + γ

∑

Sv

|[v]|

we get the excess estimate (3.17) and identity (3.18) below (that are analogous to (3.7),
(3.8) and are proven exactly in the same way).
Under assumptions (2.1), let u be the solution of

(3.16) u ∈ H1(Σ), − d

dx
W ′(u′) = f in Σ, u(0+) = w0(0−), u(L−) = w0(L+)

then u′ = u̇ ∈ C0(Σ) and u has an extension, still denoted by u, s.t. u ∈ SBV (R) ∩ C0(R)
and u ≡ w0 in R \ Σ. Then
(Excess estimate for T1) For all v ∈ SBV (R) with spt(v − w0) ⊂ Σ we have

(3.17) T1(v)− T1(u) ≥ α](Sv) +
∑

Sv

(γ|[v]| −W ′(u′)[v]) .
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(Excess identity for T1) If v minimize T1 among v ∈ SBV (R) s.t. spt(v − w0) ⊂ Σ, then

(3.18) T1(v)− T1(u) = α](Sv) +
1
2

∑

Sv

(γ|[v]| −W ′(u′)[v]) .

(Stress regularity condition for functional T1) If the solution u of (3.16) fulfils

(3.19) ‖W ′(u′) ‖L∞(Σ) ≤ γ

then u ∈ argmin T1, u is the unique minimizer and, for all v ∈ SBV (R) s.t. spt(v−w) ⊂ Σ,

T1(v)− T1(u) = αH1(Sv) +
1
2

∑

Sv

(γ|[v]| −W ′(u′) · [v]) ≥ 0

(Load regularity condition for T1) If

(3.20) W ′
(
‖f‖L1 +

|w0(L+)− w0(0−)|
L

)
≤ γ

then T1 achieves a unique regular minimizer: the solution u of (3.16), hence Su = ∅.

We prove a very helpful energy identity which simplifies the computations when test-
ing wether an admissible function is a minimizer or when looking for examples of cracked
minimizers.

Lemma 3.11. (Compliance identity for F1 ) Assume w fulfils Euler equations (i), (ii)
and (iii) in theorem 3.3. Then

F1(w) = −1/2
∫ L

0

|ẇ|2 + α ] (Sv) − ẇ(0+)w0(0−) + ẇ(L−)w0(L+) .

Proof - By Euler equations (ẇ)′ = −f in D′(0, L), then by taking into account the
identity w′ = ẇ +

∑
Sw

[w] d ] Sw in D′(0, L), we get
∫

R
fw =

∫ L

0

fw = −
∫ L

0

(ẇ)′w =
∫ L

0

(ẇ)w′ + ẇ(0+)w(0+)− ẇ(L−)w(L−) =

=
∫ L

0

|ẇ|2dx + ẇ(0+)w(0+)− ẇ(L−)w(L−) +
∑

Sw∩(0,L)

ẇ[w] .

By recalling ẇ = γ sign[w] in Sw ∩ (0, L) , ẇ(0+) = γ sign([w](0)) , ẇ(L−) = γ sign([w](L)) ,
w(0+) = [w](0) + w0(0−), w(L−) = −[w](L) + w0(L+) and (by Sw0 ⊂ [0, L]) Sw ⊂ [0, L]
we get

∫ L

0

fw =
∫ L

0

|ẇ|2 + γ
∑

Sw

|[w]|+ ẇ(0+)w0(0−)− ẇ(L−)w0(L+)

and thesis follows by the definition of F1.

Lemma 3.12. Let G be the Green function for the operator + d 2/d x2 with homogeneous
Dirichlet boundary condition in the open set Σ = (0, L) , say
G : (0, L)× (0, L) → R s.t Gxx(x, y) = δ(x− y) , G(0, y) = G(L, y) = 0. Then

(3.21) G(x, y) =





(y − L)x

L
if 0 ≤ x ≤ y ≤ L, .

(x− L) y

L
if 0 ≤ y ≤ x ≤ L,
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and, if −v′′ = f on Σ, and v(0) = v(L) = 0, then

(3.22) v(x) = −
∫ L

0

G(x, y)f(y) dy

(3.23) v′(x) = −
∫ L

0

Gx(x, y)f(y) dy = − 1
L

∫ L

0

yf(y)dy +
∫ L

x

f(y) dy

By the representation formula (3.23) of Green function we deduce that there are no cracked
minimizers if the load has vanishing resultant and/or moment (with respect to mid point
L/2), say the presence of suitable symmetries weaken the regularity load condition (3.13).

Theorem 3.13. Assume (3.2),

(3.24) ‖f‖L1 ≤ 2 γ − 2
|w0(L+)− w0(0−)|

L

and either ∫ L

0

f(y) dy = 0 or
∫ L

0

(y − L/2) f(y) dy = 0 ,

then F1 has a unique regular minimizer: the solution u of (3.6).
Notice that (3.24) in general entails the safe load (3.3) (a weaker condition then the regularity
load condition (3.13) ), and (3.24) coincides with the safe load when w0(L+) = w0(0−).

Proof - Let v be such that −v′′ = f in (0, L) and v(0+) = v(L−) = 0, then, for x ∈ (0, L),

u(x) = v(x) + w0(0−) +
1
L

(w0(L+)− w0(0−)) x,

u′(x) = v′(x) + (w0(L+)− w0(0−))/L .

If
∫ L

0

(y − L/2)f(y) dy = 0 then by (3.23),(3.24) we get

|u′(x)| ≤
∣∣∣∣∣−

1
2

∫ L

0

f +
∫ L

x

f

∣∣∣∣∣ + |w0(L+)− w0(0−)|/L ≤

≤ 1
2
‖f‖L1 + |w0(L+)− w0(0−)|/L ≤ γ

and the stress regularity condition (3.12) is fulfilled and u minimizes F1.

If
∫ L

0

f(y) dy = 0 set F (x) =
∫ x

0

f(y)dy , then F (0) = F (L) = 0 and by (3.23)

v′(x) = − 1
L

∫ L

0

yf(y)dy +
∫ L

x

f(y)dy =
1
L

∫ L

0

F (y)dy − F (x)

hence, by taking into account (3.24) we get

|u′(x)| ≤ |v′(x)|+ |w0(L+)− w0(0−)|/L ≤

≤
∥∥∥∥∥F − 1

L

∫ L

0

F

∥∥∥∥∥
L∞

+ |w0(L+)− w0(0−)|/L ≤

1
2
‖f‖L1 + |w0(L+)− w0(0−)|/L ≤ γ

and the stress regularity condition (3.12) is fulfilled and u minimizes F1.

In the last inequality of the proof we used the following statement.
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Lemma 3.14. If F ∈ AC(0, L) and F (0) = F (L) = 0 then
∥∥∥∥∥F −

∫ L

0

F

∥∥∥∥∥
L∞(0,L)

≤ 1
2

∫ L

0

|F ′| .

Proof - Without loss of generality we can assume
∫ L

0
F ≥ 0 ; the other case can be dealt

in the same way.
Then A0 = {x ∈ (0, L) : 0 < F (x) <

∫ L

0
F} contains at least one pair of disjoint intervals

El where oscEl
(F ) >

∫ L

0
F, l = 1, 2, hence |∫ L

0
F | < (1/2)

∫
A0
|F ′| .

Set A+ = {x ∈ (0, L) : F (x) >
∫ L

0
F}, A− = {x ∈ (0, L) : F (x) < 0}. Then A+ = ∪Ik,

A− = ∪Jh, with Ik, Jh, El disjoint intervals and F =
∫ L

0
F on ∂Ik, F = 0 on ∂Jh,

0 ≤ max
Ik

F ≤
∫ L

0

F +
1
2

∫

Ik

|F ′| ∀k , 0 ≤ −min
Jh

F ≤ 1
2

∫

Jh

|F ′| ∀l,
∣∣∣∣∣ F (x) −

∫ L

0

F

∣∣∣∣∣ ≤
∫ L

0

F + max
k

max
Ik

|F | + max
h

min
Jh

|F | ≤ 1
2

∫ L

0

|F ′| .

Now we show a general explicit method to construct cracked minimizers of F1 whenever
the regularity stress condition (3.12) for functional F1 is violated

Theorem 3.15. Structure of F1 minimizers Assume (3.2),(3.3),(3.6) and

(3.25) ‖u′‖L∞(0,L) > γ .

If

(3.26) α >
L

2
(
γ − ‖u′‖L∞

)2

hold true then

(3.27) argmin
spt(·−w0)⊂[0,L]

F1 = {u} , min
spt(v−w0)⊂[0,L]

F1(v) = F1(u) .

If

(3.28) α <
L

2
(
γ − ‖u′‖L∞

)2

hold true, then

(3.29) min
spt(v−w0)⊂[0,L]

F1(v) = F1(u) +
(

α− L

2
(
γ − ‖u′‖L∞)2

)

and

(3.30) argmin
spt(·−w0)⊂[0,L]

F1 = {u + zt : |u′(t)| = ‖u′‖L∞ > γ }

where the function zt ∈ SBV (R) is defined by

(3.31) zt(x) =





(γ sign(u′(t))− u′(t)) x 0 ≤ x < t ,

(γ sign(u′(t))− u′(t)) (x− L) t < x ≤ L ,

0 x 6∈ [0, L] .
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More explicitly: (3.2),(3.3),(3.6), (3.25) and (3.28) together imply that all the minimizers
have exactly one crack. Both uniqueness and non uniqueness of minimizers are possible,
depending on the cardinality of the set {t ∈ [0, L] : |u′(t)| = ‖u‖L∞ > γ}.

Eventually

(3.32) α =
L

2
(
γ − ‖u′‖L∞

)2

together with (3.2),(3.3),(3.6) and (3.25) entail that both u and all the vt = u + zt with
|u′(t)| = ‖u′‖L∞ = γ are minimizers with min

spt(v−w0)⊂[0,L]
F1(v) = F1(vt) = F1(u). The

coexistence of continuous and cracked solutions is not a contradiction with the excess identity
(3.8) since |u′(t)| > γ say the regularity load condition (3.13) fails.
Notice that (3.32) is the exact evaluation of the excess identity in this case, since ](Svt

) = 1
and [vt] = [zt] = L(u′(t)− γ).
The weak inequality

(3.33) α ≤ L

2
(
γ − ‖u′‖L∞

)2

is a necessary condition for the existence of minimizers with crack.

Proof - Define J = { t ∈ [0, L] : |u′(t)| > γ } and, for every t ∈ J , the function
zt ∈ SBV (R) as in (3.31).
Let S be the set of all v ∈ SBV (R) that have at most one crack and fulfill the Euler
conditions (i),(ii),(iii) of Theorem 3.3. We claim that

(3.34) S = {u + zt : t ∈ J} ∪ {u} .

Indeed it is obvious that u ∈ S and u + zt ∈ S, ∀t ∈ J.
Conversely let v ∈ S, then either v ≡ u or, by Theorem 3.8, Sv = {t} for some t ∈ [0, L]. By
Euler equations we get

(3.35)





v̇ − u′ ∈ AC(0, L), (v̇ − u′)′ = 0 in (0,L), hence:
v̇ − u′ ≡ const ≡ v̇(t±)− u′(t) = γ sign([v])(t)− u′(t) in (0, L)

Sv−u = Sv = {t}
and taking into account that v = u = w0 in R \ [0, L] we get

(3.36) v(x)− u(x) =





(γ sign([v](t))− u′(t)) x x ∈ [0, t)
(γ sign([v](t))− u′(t)) (x− L) x ∈ (t, L]

0 x 6∈ [0, L]

Since [v](t) = [v − u](t) = −L (γ sign([v])(t)− u′(t)) we have

(3.37)
[v](t) > 0 ⇔ u′(t) > γ > 0

[v](t) < 0 ⇔ u′(t) < −γ < 0

hence t ∈ J and sign(u′(t)) = sign([v](t)). Then

(3.38) v(x)− u(x) =





(γ sign(u′(t))− u′(t)) x x ∈ [0, t)
(γ sign(u′(t))− u′(t)) (x− L) x ∈ (t, L]

0 x 6∈ [0, L]

say: v(x) = u(x) + zt(x) and

(3.39) min
spt(v−w0)⊂[0,L]

F1 = min
S
F1 = F1(u)

∧{
min
t∈J

F1(u + zt)
}
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Now, by taking into account that, for all t ∈ J , u + zt satisfies the Euler equations,
żt = (γ sign(u′(t))− u′(t))= constant in (0,L), by compliance identity (Theorem 3.11)

F1(u + zt) = α− 1
2

∫ L

0

|u′ + żt|2 dx + (u′ + żt)(L−)w0(L+)−(u′ + żt)(0+)w0(0−)

= α− 1
2

∫ L

0

|u′|2 dx + (u′)(L−)w0(L+)−(u′)(0+)w0(0−)− 1
2

∫ L

0

|żt|2 dx

= F1(u) + α− L

2
(
γ sign(u′(t))− u′(t))2

= F1(u) + α− L

2
(
γ − |u′(t)|)2

hence (3.26) entails (3.27), and, if |u′(t)| = ‖u′‖L∞ > γ, then both (3.28),(3.32) entail (3.29):

(3.40)
minF1 = minS F1(v) = F1(u) ∧minτ∈J F1(u + zτ ) =

= F1(u) ∧ F1(u + zt) = F1(u) ∧
(
F1(u) + α− L

2
(
γ − ‖u′‖L∞)2

)

Moreover, when α <
L

2
(
γ − ‖u′‖L∞)2 the above construction shows that v ∈ argminF1 if

and only if: t ∈ J , v = u + zt and |u′(t)| = ‖u′‖L∞ . Then (3.28) entail also (3.30).
If (3.26) holds true then u is the unique minimizer by (3.40).

With additional information on the load the location of cracks has less freedom.

Corollary 3.16. Assume (3.2), (3.15), (3.28) and f does not change sign, then there are
solutions with crack at the boundary. Interior cracks are not excluded in general. If in
addition f(x) 6= 0 a.e. (0, L) then the crack can be located only at the boundary and the
solution is unique.
In fact in this last case u′ is strictly monotone and the statement follows by Theorem 3.15

We end this section by showing simple explicit examples of minimizers with cracks (co-
herent with structure Theorem 3.15), when the load regularity condition (3.13) fails. The
first one with non-homogeneous Dirichlet datum and vanishing load, the second one with
homogeneous Dirichlet datum and non trivial load. In the first one (Example 3.17) there
are infinitely many cracked minimizers with one single discontinuity (which can be located
anywhere in [0,L]). In the second one (Example 3.18) there is uniqueness of minimizer, and
the discontinuity is at the boundary.

Example 3.17. Existence of infinitely many cracked minimizers of F1, all of them
with one single crack, with null load and non-homogeneous Dirichlet datum.
Assume f ≡ 0, w0(x) = 0 if x < 0 w0(x) = h > 0 if x > L. Then (ż)′ = z̈ = 0, z̈ = 0 in
(0, L), for any z ∈ argminF1 . Since Sz is at most a singleton then z′′ = 0 in (0, L)\Sz say
z is affine linear in [0, L] and has at most one jump. If there is a minimizer z s.t Sz 6= ∅,
then Euler conditions (Theorem 3.3) entail the graph of u has slope ±γ : hence z = γx in
(0, L), and γ 6= h/L . By direct computation we get

F1(z) =
1
2

L γ2 + α + γ |h− γL| ,

F1(u) =
1
2

h2

L
,

where u is the continuous solution of (3.6), say u(x) = (L/h)x. By comparison of the two
energies we get the complete description of minimizers as long as traction h at L increases:
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• if h ≤ γ L , then the only solution is the continuous one, u(x) = (L/h)x,

• if γ L < h < 2 γ L and 0 <
1

2L
(h−γL)2 < α , again there is the unique

solution u,

• if γ L < h < 2 γ L and 0 < α <
1

2L
(h− γL)2 , then there are infinitely

many solutions, all of them with a single crack-point and of the following
type zt, for t ∈ [0, L] and

zt(x) =





0 if x < 0 ,
γx + (h− γL)χ[t,L](x) if 0 < x < L ,
h if L < x .

• if γ L < h < 2 γ L and 0 < α =
1

2L
(h − γL)2 , then the continuous

solution u and all functions zt above with a crack at t are minimizers.

Eventually we notice that in this example (since f ≡ 0) the safe load condition (3.3) is
always (for any h) fulfilled, while the load regularity condition (3.13) reads h ≤ γL.

Example 3.18. - A cracked minimizer of F1 with non trivial f verifying the safe
load (3.3) and homogeneous Dirichlet datum.
We choose the load f(x) = 2cx, c > 0, s.t. 3γ/2 < cL2 < 2γ, and choose w0 ≡ 0.
In particular the safe load condition (3.3), which reads cL2 ≤ 2γ, holds true while the
regularity load condition (3.13) (which reads cL2 ≤ γ in this case) fails to be true.
Then (by Euler equations, Theorem 3.15 and Corollary 3.16) the unique candidate regular
minimizer and the unique candidate minimizer with crack for F1 with support contained in
[0, L] are respectively u and u + zL, say:

u(x) =
c

3
x (L2 − x2) , x ∈ (0, L), u(x) = 0 elsewhere,

v(x) = (cL2 − γ)x− c

3
x3 = u(x) +

(
2
3
cL2 − γ

)
x, x ∈ (0, L), v(x) = 0 elsewhere,

‖u′‖∞ = |u′(L)| = 2
3
cL2 > γ

and L is the only point t where |u′(t)| = ‖u′‖L∞ ,

Sv = {L}, [v](L) = − v(L−) =
(

γ − 2
3
cL2

)
L < 0, v̇(L) = −γ

v′ = v̇ = (cL2 − γ)− cx2 in (0, L) and v̇ vanishes at x =
√

L2 − γ/c ∈ (0, L),

both v and u are strictly concave in (0, L).
By using the compliance identity we evaluate the energy of both candidates

F1(u) = − 2
45

c2L5

F1(v) = α − 4
15

c2L5 − γ2L

2
+

2
3
cγL3 .

By summarizing:
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• (i) if 0 < α <
2
9

c2L5 +
γ2L

2
− 2

3
cγL3 =

L

2

(
γ − 2

3
cL2

)2

then F1(v) < F1(u) and, by Theorem 3.15, v is the unique minimizer .

• (ii) if α =
L

2

(
γ − 2

3
cL2

)2

then both v and u are minimizers and, by Theorem 3.15, there are no more.

• (iii) if α >
L

2

(
γ − 2

3
cL2

)2

then u is the unique minimizer by Theorems 3.3, 3.15.

w0 w0

0 L  

v

u

Figure - F1 minimizer v with damage under non trivial load:
case (i) of Example 3.18, ‖u′‖L∞ > γ.

4. (Pb II) Elastic plastic beam under transverse load

In this section we study the functional

(4.1) F2(w) =
∫

R

(
1
2
|ẅ|2 − fw

)
dx + β ](Sẇ) + γ

∑

Sẇ

|[ẇ]|

to be minimized among scalar functions w such that w ∈ SBH(R) s.t. spt w ⊂ Σ. α, γ are
given constants, ] is the counting measure.
All along this section we assume

(4.2) β > 0, γ > 0, Σ = (0, L), f ∈M(R), spt f ⊂ Σ, spt fs ⊂⊂ Σ,

Functional (4.1) describes the total energy associated to deformation of an elastic-plastic
beam which is clamped at both endpoints; w is the vertical displacement of the beam under
the action of the transverse load f.

The crease points set Sẇ of a minimizer w may be interpreted as location of plastic hinges
in the beam at equilibrium: functional (4.1) takes into account that the energy released in
the deformation of an elastic plastic beam is the sum of elastic bending energy and of energy
concentrated at plastic hinges. Jump points are not allowed (say Sw = ∅) for admissible
displacements w which must be continuous since SBH(R) ⊂ C0(R).

We introduce a localization of the functional: for any Borel set A ⊂ R we set

F2(w,A) =
∫

A

(
1
2
|ẅ|2 − fw

)
dx + β ](Sẇ ∩A) + γ

∑

Sw∩A

|[ẇ]|.
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Lemma 4.1. (L∞−BH Poincarè Inequality) Let v ∈ BH(R) with spt v ⊂ [0, L]. Then

(4.3) ‖v‖L∞(0,L) ≤ L

8
‖v′′‖T ([0,L]) .

The equality in (4.3) holds true iff v = rs (roof-function), for some s ∈ R:

(4.4) rs(x) = s

(
L

2
−

∣∣∣∣ x− L

2

∣∣∣∣
)+

.

Proof - Fix v ∈ K∗ = {v ∈ BH(R) s.t. spt v ⊂ [0, L]}. Without loss of generality we
assume v 6≡ 0. Then define

ṽ(x) =





convex envelope of − |v| evaluated at x if x ∈ [0, L]

0 if x 6∈ [0, L] .

We claim that ṽ fulfils

(4.5)





ṽ ∈ BH(R) , spt ṽ ⊂ [0, L] , v ≤ 0 , ṽ convex in [0, L] ,

‖ṽ‖L∞ = ‖v‖L∞ , ‖ṽ ′′‖T ≤ ‖v′′‖T .

Since [45] entail ṽ ∈ BH(R), the only non trivial point in (4.5) is the estimate of total
variation: ‖ṽ ′′‖T ≤ ‖v′′‖T , which we prove below.
Set ψ(s) = −|s|, z(x) = −|v(x)| = ψ ◦ v, so that v ∈ BH(R), ψ ∈ BH(R), ψ is Lipschitz
and ψ(0) = 0. Hence, by Theorems 1 and 4 and Lemma 3.1 of [45], −|v| = ψ ◦ v belongs to
BH(R), and we can evaluate its second derivative by suitable chain-rule for superposition
of BH functions (in the following sign(0) = 0, sign(s) = s/|s|, s 6= 0):

(4.6) (−|v|)¨ = − sign(v) v̈

(4.7) ((−|v|)′′)j = − sign(v) (v′′)j −
∑

t : v(t)=0

( |v̇+(t)|+ |v̇−(t)| ) δt

(4.8) ((−|v|)′′)c = − sign(v) (v′′)c

The three measures in (4.6)-(4.8) are mutually singular. Moreover the absolutely continuous
(4.6) and Cantor part (4.8) obviously do not increase their total variation with respect to
the corresponding part of v′′, and the respective inequalities still hold true after taking the
convex envelope:

‖(ṽ ′′)¨‖T ≤ ‖v̈‖T ,

‖(ṽ ′′)c‖T ≤ ‖(v)c‖T .

On the other hand, total variation of (4.7) could be bigger than total variation of (v′′)j

due to sign changes of v. Nevertheless, since ṽ is strictly negative in (0, L), the terms
( |v̇+(t)|+ |v̇−(t)| ) δt disappear in the convex envelope for any t 6= 0 and any t 6= L. So

‖(ṽ ′′)j‖T ≤ ‖(v′′)j‖T + |v̇+(0)| + |v̇−(L)| ,
‖ṽ ′′‖T (J) ≤ ‖v′′‖T (J) ∀ open interval J ⊂⊂ (0, L) .

In order to keep under control the total variation at the boundary of the interval we set
z(x) = −|v(x)| and we observe that, either
• ˙̃v+(0) = ż+(0) , hence ‖ṽ′′‖T ({0}) = ‖v′′‖T ({0}) , ‖ṽ′′‖T ([0,L)) ≤ ‖v′′‖T ([0,L)) ;
or
• ˙̃v+(0) 6= ż+(0) , hence ˙̃v+(0) < ż+(0) , ṽ is strictly less than z in an open interval (0, x̄)
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(where x̄ is chosen such that the interval is the maximal one fulfilling this property), so
ṽ(x̄) = z(x̄); then by convexity ż−(x̄) ≤ ˙̃v−(x̄) ≤ ˙̃v+(x̄) ≤ ż+(x̄), 0 ≤ [ ˙̃v](x̄) ≤ [ż](x̄) so that

‖ṽ ′′‖T ({x̄}) ≤ ‖v′′‖T ({x̄}) ,

moreover, by taking into account that ż±(x̄) = − sign(v(x̄)) v̇± , spt v′′ ⊂ [0, L] and [ ˙̃v](0) is
the slope of ṽ in the interval (0, x̄) we deduce

0 > −|ṽ ′′|T ({0}) = [ ˙̃v](0) = ˙̃v+(0) = ˙̃v−(x̄) ≥ ż−(x̄) = − sign(v(x̄)) v̇−(x̄) =

= − sign(v(x̄)) (v′′)
(
[0, x̄)

) ≥ −|v′′|([0, x̄)
)
,

and since ṽ is affine linear in (0, x̄)

‖ṽ ′′‖T ([0,x̄)) < ‖v′′‖T ([0,x̄)) .

The behavior around L can be dealt exactly as the one around 0, so we achieve the inequality
‖ṽ′′‖T ([0,L]) < ‖v′′‖T ([0,L]) involving total variations in second case too.
Then claim (4.5) is proven in any case. By (4.5) we get

(4.9) inf
{ ‖v′′‖T

‖v‖L∞
: v ∈ K∗

}
= inf

{ ‖v′′‖T

‖v‖L∞
: v ∈ K∗, v convex in [0, L]

}
.

If we take v ∈ K∗, v convex in [0, L] and v 6≡ 0 , then

−∞ < v′+(0) ≤ 0 , 0 ≤ v′−(L) < +∞
and we can define

v̌(x) = (v′+(0)x) ∨ (
(v′−(L)(x− L)

)
if x ∈ [0, L] and v̌(x) ≡ 0 otherwise .

Then v̌ ≤ v , ‖v̌‖L∞ ≥ ‖v‖L∞ and ‖v̌ ′′‖T (R) = 2(v−(L)−v′+(0)) = ‖v′′‖T ([0,L]) by convexity.

(4.10)

inf { ‖v′′‖T / ‖v‖L∞ : v ∈ SBH, spt v ⊂ [0, L], v convex in [0, L] } ≥

≥ inf { ‖v′′‖T / ‖v‖L∞ : v(x) = (−ax) ∨ (b(x− L)), a > 0, b > 0 } =

= min
a>0, b>0

2(a + b)2

abL
= 8/L

Actually the infimum in (4.10) is a minimum since it is achieved at a = b say when v is
a roof function. By summarizing (4.9),(4.10) prove (4.3). About the fact that only roof
functions (4.4) achieve the equality in (4.3) we emphasize that: the map v → ṽ strictly
reduces the relevant quotient ‖v′′‖T / ‖v‖L∞ whenever |v| 6≡ |ṽ|, since in such case ‖(·)′′‖T

strictly decreases, while also the map v → v̌ strictly reduces the relevant quotient for v
convex in [0, L] and |v| 6≡ |v̌|, since in such case ‖ · ‖L∞ strictly increases. ¤
For a different proof of (4.3) see [37].
Now we can prove that a smallness condition (safe load condition) on f entails existence of
minimizers (for any boundary datum), while a violation of the safe load may lead to collapse.

Lemma 4.2. Assume (4.2), w0 ∈ SBH(R) with F2(w0) < +∞ and

(4.11) ‖f‖T (Σ) <
8 γ

L
(F2 safe load condition)
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then F2 achieves a finite minimum among w ∈ SBH(R2) with spt(w − w0) ⊂ Σ and any
minimizer z fulfils

(4.12)

‖z′′‖T (Σ) ≤

1
γ − L

8 ‖f‖T (Σ)

(
1
2
Lγ2 + F2(w0,Σ) +

∣∣∣∣
∫

R
fw0 dx

∣∣∣∣+
L

8
‖f‖T (Σ)‖w′′0‖T (Σ)

)

Proof - We use the direct method. First we show that F1 is coercive: by Lemma 4.1 ,

(4.13) ‖z‖L∞ ≤ L

8
|z′′|T (Σ) ∀z ∈ SBH(R) s.t. spt ⊂ Σ

(4.14)

∣∣∣∣
∫

Σ

fw dx

∣∣∣∣ ≤
∣∣∣∣∣
∫ L

0

f(w − w0) dx

∣∣∣∣∣ +

∣∣∣∣∣
∫ L

0

fw0 dx

∣∣∣∣∣ ≤

≤ ‖f‖T (Σ) ‖w − w0‖L∞ +

∣∣∣∣∣
∫ L

0

fw0 dx

∣∣∣∣∣ ≤

≤ L

8
‖f‖T (Σ)

(
‖w′′‖T (Σ) + ‖w′′0‖T (Σ)

)
+

∣∣∣∣
∫

Σ

fw0 dx

∣∣∣∣ =

=
L

8
‖f‖T (Σ)

(∑

Sẇ

[ẇ] +
∫ L

0

|ẅ| dx + ‖w′′0‖T (Σ)

)
+

∣∣∣∣∣
∫ L

0

fw0 dx

∣∣∣∣∣
∀w s.t. spt(w − w0) ⊂ [0, L],

and by Young inequality

1
2

∫ L

0

|ẅ|2 dx ≥ γ

∫ L

0

|ẅ| dx− L

2
γ2

hence, for w in a minimizing sequence for F2, we have ultimately

F2(w0, Σ) + F2(w0,R\Σ) = F2(w0) ≥
≥ F2(w) = F2(w, Σ) + F2(w0,R\Σ) ≥
≥ β](Sẇ) +

(
γ − L

8
‖f‖T (Σ)

)
‖w′′‖T (Σ)+

−L

2
γ2 −

∣∣∣∣
∫

R
fw0 dx

∣∣∣∣−
L

8
‖f‖T (Σ)‖w′′0‖T (Σ) + F2(w0,R \ Σ).

Hence by (4.11) the functional is bounded from below and (4.12) holds true. The existence
of minimizers for F2 follows by sequential compactness of minimizing sequences and BH∗

sequential lower semicontinuity of F2 ([38],[10],[11]). Moreover, by cancellation on both
sides of F2(w0,R \ Σ) we get (4.12) holds true, for any z ∈ argminF2. ¤

For sake of simplicity we study only the homogeneous case (w0 ≡ 0) in the following.
The safe load (4.11) cannot improved for generic M or L1 load as shown by the following

Remark. Nevertheless for L∞ load we refer to [42] where we prove a safe load condition
which turns out to be less stringent on uniform load.

Remark 4.3. There are examples with ‖f‖T (Σ) > 8 γ/L , s.t. inf F2 = −∞ .

For instance, choose f =
(
8 γ

L + ε
)

δL/2(x), ε > 0, set wt(x) = t
(

L
2 −

∣∣x− L
2

∣∣)+
. Then

Jẇt = {0, L/2, L}, ẅt ≡ 0, 〈f wt〉 = t

(
4γ +

L

2
ε

)
and F2(wt) = 3β − εL

2 t → −∞ as

t → +∞.
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Theorem 4.4. (F2 Euler equations) Assume (4.1),(4.2) and w minimizes F2 among v
belongs to SBH(R) s.t. spt v ⊂ Σ.
Then

....
w = (ẅ)′′ = f ∈M in (0, L) ,

...
w = (ẅ)′ belongs to AC(I) for any interval I ⊂ Σ\Sẇ,

so that ẇ±(x) = ẇ(x±) ẅ±(x) = ẅ(x±),
...
w±(x) =

...
w(x±) are defined for all x ∈ Σ and

(i) w′′′′ = f (0, L) \ Sẇ

(ii) ẅ− = γ sign([ẇ]) in Sẇ ∩ (0, L]

(iii) ẅ+ = γ sign([ẇ]) in Sẇ ∩ [0, L)

(iv)
...
w− =

...
w+ in (0, L).

(v)
∫ L

0

(
ẅ (z̈−ẅ)−f(z−w)

)
dx = γ

∑

Sż−ẇ

|[ż−ẇ]| ∀z ∈ SBH(R) : spt(z−w) ⊂ Σ.

In particular ẅ ∈ BH(0, L), hence ẅ and
...
w = (ẅ)′ are continuous in (0, L) but may be

discontinuous at 0 and L, even if these points do not belong to Sẇ.

Proof - The inequality F2(v) ≤ F2(v + εϕ) holds true for any ε ∈ R and ϕ ∈ SBH(R).
We choose ϕ with spt ϕ ⊂ Σ and ϕ ∈ C∞(J) on the closure of every interval J ⊂ Σ \Sẇ, so
that Sϕ̇ ⊂ Sẇ, Sϕ = ∅, ϕ̈ = ϕ′′ − [ϕ̇]] Sϕ̇ in D′(R).
Then taking into account that w ∈ SBH entails ẅ = w′′ in (0, L)\Sẇ, by convexity property
we get, for any ε s.t. 0 < ε < minSẇ [ẇ]/‖ϕ̇‖L∞ .

0 ≤ ε

∫

R
(ẅϕ̈− fϕ) dx + β

(
](Sẇ+εϕ̇)− ](Sẇ)

)
+ γ

∑

Sẇ

(|[ẇ + εϕ′]| − |[ẇ]|)+o(ε)=

= ε

(∫

Σ\Sẇ

(−w′′′ϕ′ − fϕ) dx + (ϕ′(L−)ẅ(L−)− (ϕ′(0+)ẅ(0+))+

+
∑

Sẇ∩(0,L)

(
(ϕ′−ẅ−)− (ϕ′+ẅ+)

)
+ γ

∑

Sẇ

(ϕ′+ − ϕ′−) sign([ẇ])


+o(ε)

= ε

{∫

Σ\Sẇ

(w′′′′ − f)ϕ dx+

+


(ϕ′(L−)ẅ(L−)− ϕ′(0+)ẅ(0+)) +

∑

Sẇ∩(0,L)

(
(ϕ′−ẅ−)− (ϕ′+ẅ+)

)
+

+ γ
∑

Sẇ

[ϕ′] sign([ẇ])

)
+

+


(ϕ(L−)

...
w(L−)− (ϕ(0+)

...
w(0+)) +

∑

Sẇ∩(0,L)

((ϕ−
...
w−)− (ϕ+

...
w+))






+o(ε).

By choosing all ϕ with compact support in an interval contained in (0, L) \ Sẇ we get (i),
hence

...
w ∈ AC(J) for all interval J ⊂ Σ \ SDw say

...
w± is defined .

Then for any fixed xk ∈ Sẇ we can choose at first (if xk < L) all ϕ with compact support
in [xk, xk+1) where xk+1 is the closest singular point bigger than xk if any or L else, and
then (if 0 < xk) all ϕ with compact support in [xk−1, xk) where xk−1 is the closest singular
point smaller than xk if any or 0 else. Both ϕ and ϕ′ can be chosen independently on the
singular set. Hence the four identities in Sw ∪{0, L} follow. The last statement summarizes
identities (i)− (iv).
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Du Bois-Raymond identity (v) is achieved by starting from minimality of w with respect
to variations w + ε(z − w) and repeating the above computation. ¤

Lemma 4.5. Assume (4.1),(4.2). Let u be the unique solution of

(4.15)
{

u ∈ H2
0 (0, L)

u′′′′ = f in (0, L) .

Then u′′′ =
...
u ∈ C0(Σ) and there is a unique extension still denoted by u s.t. u ∈ SBH(R)

and u ≡ 0 in R \ Σ.
Moreover
Excess estimate for F2 : If u solves (4.15) then for all v ∈ SBH(R) s.t. spt v ⊂ Σ

(4.16) F2(v)−F2(u) ≥ β ] (Sv̇) +

(∑

Sv̇

γ |[v̇]| − u′′ [v̇]

)
.

Excess identity for minimizers of F2 : If v minimize F2 among v ∈ SBH(R), s.t.
spt v ⊂ Σ and u solves (4.15) then

(4.17) F2(v)−F2(u) = β ] (Sv̇) +
1
2

(∑

Sv̇

γ |[v̇]| − u′′ [v̇]

)
.

Necessary conditions for existence of creased minimizers of F2 : If v minimize F2

among v ∈ SBH(R) s.t. spt v ⊂ Σ, Sv̇ 6= ∅, and u solves (4.15), then

(4.18) ‖u′′‖L∞(Σ) > γ ,

(4.19)
∑

Sv̇

[v̇] (γ sign[v̇]− u′′) =
∑

Sv̇

(γ |[v̇]| − u′′ [v̇]) ≤ −2β ] (Sv̇) < 0 ,

(4.20) β ≤ 1
2

Lγ2 .

By (4.19), if Sv̇ consists exactly in one point x then |u′′(x)| > γ .

Proof - u is the only minimizer of F2 over w ∈ SBH(R) ∩H2(Σ) s.t. spt w ⊂ Σ, hence
w ∈ H2

0 (Σ).
By exploiting u′′ ∈ C(Σ) , v̈ = v′′ − [v̇] d] Sv̇ ∩ (0, L) in D′(0, L), u ∈ H2

0 (Σ) , u′′′′ = f in
Σ and u = 0 on R \ Σ , convexity of s → s2/2, and

∫ L

0

u′′(v − u)′′ dx =
∫ L

0

u′′′′(v − u) dx − u′′(L) [v̇](L) − u′′(0) [v̇](0)

we have, for every v ∈ SBH(R) s.t. spt v ⊂ Σ ,

F2(v) ≥ F2(u) +
∫ L

0

u′′(v̈ − u′′)dx−
∫ L

0

f(v − u)dx + β](Sv̇) + γ
∑

Sv̇

|[v̇]| =

= F2(u)+
∫ L

0

u′′(v′′−u′′)dx−
∫ L

0

f(v−u)dx+β](Sv̇)+γ
∑

Sv̇

|[v̇]|−
∑

Sv̇∩(0,L)

u′′[v̇] =

= F2(u) + β](Sv̇) +
∑

Sv̇

(γ|[v̇]| − u′′[v̇])

Then (4.16) is proved.
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If v ∈ argminF2 and u solves (4.15), then v̈ is continuous in (0, L) by Theorem 4.4 and
u = v, and u′′ = v′′ = v̈ hold true in R \Σ while Du-Bois Raymond equation (v) relative to
variations vε = v + ε(u− v) yields

(4.21)
∫

Σ

(v̈ (u′′ − v̈)− f(u− v)) dx− γ
∑

Sv̇

|[v̇]| = 0 .

Hence

F2(v)−F2(u) =
1
2

∫

Σ

|v̈|2 dx+β ](Sv̇)+γ
∑

Sv̇

|[v̇]|−
∫

Σ

fv dx− 1
2

∫

Σ

|u′′|2 +
∫

Σ

fu =

=
1
2

∫

Σ

(v̈ + u′′) (v̈ − u′′) + β ](Sv̇) + γ
∑

Sv̇

|[v̇]| −
∫

Σ

fv dx +
∫

Σ

fu =

=
1
2

∫

Σ

f(v−u)−
∫

Σ

f(v−u)−γ

2

∑

Sv̇

|[v̇]|+γ
∑

Sv̇

|[v̇]|+1
2

∫

Σ

u′′(v̈−u′′)+β ](Sv̇) =

=
γ

2

∑

Sv̇

|[v̇]| − 1
2

∫

Σ

f(v − u) +
1
2

∫

Σ

u′′(v̈ − u′′) + β ] (Sv̇) .

Since u′′ ∈ C(Σ) , v̈ = v′′ − [v̇] d ]
(
Sv̇ ∩ (0, L)

)
in D′(0, L), u ∈ H2

0 (Σ) , u′′′′ = f in Σ
and u = v, on ∂Σ, v̇+(0)− u′(0) = [v̇(0)], v̇−(L)− u′(L) = −[v̇(L)], we get

F2(v)−F2(u) =

=
1
2

∫

Σ

u′′(v′′ − u′′)− 1
2

∫

Sv̇

f(v − u) +
γ

2

∑

Sv̇

|[v̇]| − 1
2

∑

Sv̇∩(0,L)

u′′[v̇] + β](Sv̇) =

= β ](Sv̇) +
1
2


∑

Sv̇

γ|[v̇]| −
∑

Sv̇∩(0,L)

u′′[v̇]


 − 1

2
u′′(0) [v̇](0) − 1

2
u′′(L) [v̇](L)

= β ](Sv̇) +
1
2

∑

Sv̇

(γ|[v̇]| − u′′[v̇]) .

The necessary conditions for creased minimizers (4.19),(4.18) follows by substituting ](Sv) ≥
1 in (4.17).
By F2(v) ≤ F2(0) = 0 , L∞−BV Poincaré inequality (4.3), safe load (4.11) and Young
inequality

(4.22)

1
2

∫ L

0

|v̈|2dx + γ
∑

Sv̇

|[v̇]|+ β](Sv̇) ≤
∫ L

0

fvdx ≤ ‖f‖L1‖v‖L∞ ≤

≤ L

8
‖f‖L1

(∫ L

0

|v̈|+
∑

Sv̇

|[v̇]|
)
≤ γ

(∫ L

0

|v̈|+
∑

Sv̇

|[v̇]|
)
≤

≤ 1
2

∫ L

0

|v̈|2dx +
1
2
Lγ2dx + γ

∑

Sv̇

|[v̇]|

if ](Sv̇) ≥ 1 then β ≤ β ](Sv̇) ≤ 1
2 Lγ2 say (4.20) . ¤

Theorem 4.6. (L∞ bending moment regularity condition for clamped beam)
Assume (4.1),(4.2) and the unique solution u of (4.15) fulfils

(4.23) ‖u′′‖L∞(0,L) ≤ γ .

Then u is also a minimizer of F2 . Moreover u is the unique minimizer of F2.
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Proof - By excess estimate (4.16) and (4.23) we get

(4.24) F(v) ≥ F(u) + β](Sv̇) +
∑

Sv̇

(γ|[v̇]| − u′′[v̇]) ≥ F(u) + β](Sv̇) ≥ F(u) ,

hence u is a minimizer. If in addition ](Sv̇) > 0 then the last inequality is strict, so that no
minimizer can have creases.

Lemma 4.7. (Green representation formulae) Assume u solves (4.15). Then

(4.25) u′′(x) =
∫ L

0

K(x, y) f(y) dy

where

(4.26) K(x, y) =
1

2 L3
(2x− L) y2 (3L− 2y) − 1

2 L
y2 + (y − x)+ .

Moreover

(4.27) max
x,y∈[0,L]

|K(x, y)| =
4
27

L ,

hence

(4.28) ‖u′′‖L∞ ≤ 4
27

L ‖f‖T (Σ)

and the equality in (4.28) can be achieved, hence the constant 4L/27 is the best possible. ¤

Proof - We perform the computations by assuming f ∈ L1; the general case can be
handled exctly in the same way, since spt fs ⊂⊂ Σ.
The classical Green formula provides the standard representation

(4.29) u(x) =
∫ L

0

G(x, y) f(y) dy

where we denote by G(x, y) the Green function associated to the operator (d/dx)4 in(0, L)
with homogeneous boundary conditions:

Gxxxx(x, y) = δ(x− y) (0, L), G(0, y) = Gx(0, y) = G(L, y) = Gx(L, y) = 0

Moreover, by setting P3(y) = 1
L3 (3L− 2y) y2, P1(y) = y/L, we get

(4.30) P3(y) + P3(L− y) = 1

(4.31) J3(x, y) =
{

P3(y) if 0 ≤ y ≤ x ≤ L,
−P3(L− y) if 0 ≤ x < y ≤ L,

(4.32) J1(x, y) =
{

P1(y) if 0 ≤ y ≤ x ≤ L,
−P1(L− y) if 0 ≤ x < y ≤ L,

(4.33) u′′′(x) =
∫ L

0

J3(x, y) df(y) =
∫ x

0

P3(τ) df(τ)−
∫ L

x

P3(L− τ) f(τ) dτ
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(4.34)

u′′(x) =
∫ L

0

J1(x, y)u′′′(y) dy =

=
∫ L

0

J1(x, y)

(∫ y

0

P3(τ) f(τ) dτ −
∫ L

y

P3(L− τ) f(τ) dτ

)
dy =

=
∫ L

0

K(x, y) f(y) dy

Hence (4.25). Moreover the Green function G for the operator (d/dx)2 fulfils

(4.35) G(x, y) =
∫ x

0

(∫ L

0

G(s, τ) J3(τ, y) dτ

)
dy .

Then G(0, y) = 0 and

(4.36) Gx(x, y) =
∫ L

0

G(x, τ) J3(τ, y) dτ

hence 



Gxxx(x, y) = J3(x, y)

Gx(0, y) = Gx(L, y) = 0

Gxxxx(x, y) = δ(x− y) .

Eventually

G(L, y) =
∫ L

0

∫ L

0

G(s, τ)J3(τ, y)ds dτ =

=
∫ L

0

J3(τ, y) dτ

∫ L

0

G(s, τ) ds =
∫ L

0

J3(τ, y) dτ

(∫ τ

0

s(τ − L)
L

ds +
∫ L

τ

τ(s− L)
L

)

=
∫ L

0

τ (τ−L) J3(τ, y) dτ = −1
2
P3(L−y)

∫ y

0

τ (τ−L) dτ+
1
2
P3(y)

∫ L

y

τ (τ−L) dτ = 0 .

By (4.26)

Kx =
y2

L3
(3L− 2y) − 1{y>x} , Ky =

3y

L3
(2x− L) (L− y) − y

L
+ 1{y>x}

hence Kx 6= 0 if y < x , if y > x then Kx < 0 since Kx(L, 0) = 0 and Kx is increasing in y.
So ∇K 6= (0, 0) in (0, L)2 \ {y = x}. Since K(x, 0) = K(x, L) = 0 we get

max
x,y∈[0,L]2

|K| = max {max
y
|K(y, y)| , max

y
|K(0, y)| , max

y
|K(L, y)| } .

By computations:

K(y, y) = − 2 y2

L3
(L− y)2

K(0, y) = y
(
1 − y

L

)2

K(L, y) =
y2

L
− y3

L2

max
y
|K(y, y)| =

L

8
, max

y
|K(0, y)| = max

y
|K(L, y)| =

4
27

L
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and (4.27) follows. Estimate (4.28) follows by (4.34),(4.27). The equality is achieved in
(4.28) since f(y) = δ(y − 2L/3) entails ‖u′′‖ = 4L/27. ¤

Theorem 4.8. (Load regularity condition for functional F2)
Assume (4.1),(4.2) and

(4.37) ‖f‖T (Σ) ≤ 27
4

γ

L
.

Then F2 has unique regular minimizer among w s.t. sptw ⊂ Σ: the solution u of (4.15).

Proof - Assume u is the minimizer among H2 functions assuming the boundary data.
Hence by (4.28)

‖u′′‖L∞ ≤ 4 L

27
‖f‖T (Σ) ≤ γ

and Theorem 4.6 give the conclusion, since the bending moment condition is fulfilled by u.

Lemma 4.9. (Compliance identity F2) Assume (4.1),(4.2), w satisfies Euler conditions
(i),(ii),(iii) of Theorem 4.4 and sptw ⊂ Σ. Then

(4.38) F2(w) = −1
2

∫ L

0

|ẅ|2 dx + β ] (Sẇ).

Proof - By (i) we have (ẅ)′′ = f in D′(0, L). Then, by w(0) = w(L) = 0 and

w′′ = ẅ +
∑

Sẇ∩(0,L)

[ẇ] d ] Sẇ in D′(0, L) ,

we get ∫

R
fw dx =

∫ L

0

fw dx =
∫ L

0

(ẅ)′′w dx = −
∫ L

0

(ẅ)′w′ dx =

=
∫ L

0

ẅ d(w′′)− ẅ−(L) ẇ−(L) + ẅ+(0) ẇ+(0) =

=
∫ L

0

|ẅ|2 dx +
∑

Sẇ∩(0,L)

ẅ[ẇ] + ẅ−(L) [ẇ](L) + ẅ+(0) [ẇ](0) .

By substitution of (ii),(iii):
∫ L

0

fw dx =
∫ L

0

|ẅ|2 + γ
∑

Sẇ

|[ẇ]|

and thesis follows by the definition of F2. ¤

Theorem 4.10. Assume (4.1),(4.2) and v minimizes F2 among function with spt ⊂ Σ.
Then ](Sv̇) ≤ 2 .

Proof - See Theorem 4.1 in [41].

We show an example of creased minimizer of F2 with homogeneous boundary condition
(spt contained in Σ) and load f fulfilling (4.11).

Theorem 4.11. (Example of load which produces creased minimizers)
It is possible to choose the parameters δ, k and the load f such that

(4.39) f =
k γ

δ L
χ[2L/3−δ,2L/3+δ] , 0 < δ < L/3 , 27 < k < 28 ,
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f ∈ L1, fulfills the safe load condition (4.11), violates the stress regularity condition (e.g
‖u′′‖L∞ > γ) for the related non creased solution and the the minimizers of F2 among
functions with spt ⊂ Σ, have a crease whenever

0 < β <
L

4
(ü(L)− γ)2 .

Proof - We show that the solution u of (4.15) verifies u′′(L) > γ , and we construct w
with a crease at L, fulfilling all Euler conditions in Theorem 4.4 and F2(w) < F2(u).
Let v be solution of{

v′′′′ = 0 in (0, L)
v(0) = v′(0) = v(L) = 0, v′′(L) = γ − u′′(L),

explicitly

v(x) =
γ − u′′(L)

4L
x2(x− L) , v′(L) =

L

4
(γ − u′′(L)).

Then w = u + v is a solution of{
w′′′′ = f (0, L)
w(0) = w′(0) = w(L) = w′(L) = 0,

If we show that u′′(L) > γ for a suitable choice of f, then

Sẇ = {L}, ẇ(L) =
L

4
(γ − u′′(L)), [ẇ](L) =

L

4
(γ − u′′(L)) > 0, ẅ(L) = γ = γ sign([w](L)).

Hence all the Euler conditions of Th. 4.4 are fulfilled and we can evaluate both energies of
w and u by mean of compliance identity (Lemma 4.9):

F2(w) = β − 1
2

∫ L

0

|ẅ|2 = β − 1
2

∫ L

0

|ü|2 −
∫ L

0

ü v̈ − 1
2

∫ L

0

|v̈|2 =

= β − 1
2

∫ L

0

|ü|2 − (u̇ v̈)
∣∣L
0

+
∫ L

0

u̇
...
v − 1

2
(v̇ v̈)

∣∣L
0

+
1
2

∫ L

0

v̇
...
v =

= β − 1
2

∫ L

0

|ü|2 − 1
2
v̇(L) v̈(L) =

= −1
2

∫ L

0

|ü|2 + β − L

4
(ü(L)− γ)2 < −1

2

∫ L

0

|ü|2 = F2(u)

if 0 < β < L
4 (ü(L) − γ)2. In the above computation of the energy we took into account

u(0) = u(L) = u̇(0) = u̇(L) = 0 = v(0) = v̇(0) = v(L) and
...
v ≡ to a constant.

We show that (4.39) entails u′′(L) > γ. By the explicit representation in term of Green
function (Lemma 4.7), taking into account P3(τ) + P3(L− τ) = 1, we get

ü(L) =
∫ L

0

K(L, y) f(y) dy =
1
L2

∫ L

0

(L− y) y2 f(y) dy =
1
L2

∫ L

0

h(y) f(y) dy

where we set h(τ) = τ2(L− τ); hence max[0,L] h(τ) = h(2L/3) = 4L3/27.

We are left only to show that it is possible to choose δ ∈ (0, L/3) and f ∈ L1 s.t. the safe
load condition (4.11) is fulfilled and the regularity stress condition (|u′′| ≤ γ)) is violated:

‖f‖L1 = 2kγ/L < 8γ/L

ü(L) =
1
L2

∫ L

0

h(τ) f(τ) dτ ≥ 1
L2

7
54

L3 k γ

δ L
2 δ =

7 k

27
γ > γ

the last one, by the continuity of γ is achieved as soon as h(τ) ≥ 7
54

L3 for τ ∈ [
2
3
L−δ,

2
3
L+δ].
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Remark 4.12. Referring to previous example (Thm 4.11), notice that the necessary condi-
tion (4.20) (say 2 β ≤ Lγ2 ) for the existence of a crease is fulfilled if 0 < β < (ü(L)− γ)2.
In fact:

γ < ü(L) =
1
L2

∫ L

0

h(τ)f(τ)dτ <
1
L2

‖h‖L∞‖f‖L1 <
1
L2

4
27

L3 2kγ

L
=

8 k γ

27
<

32
27

γ .

hence ü(L)− γ <
5
27

γ so that β <
L

4
(ü(L)− γ)2 entails

β <
25
729

L

4
γ2 <

1
2

Lγ2 .

We emphasize also that Theorem 4.11 do not prove that w is a minimizer, but shows only
that any minimizer must have a crease and energy not bigger than w.

Theorem 4.13. Assume (4.1),(4.2),(4.11), v minimizes F2 among functions with spt ⊂ Σ
and either f ≥ 0 or f ≤ 0 . Then Sv̇ 6= {0, L}
Proof - Assume by contradiction Sv̇ = {0, L}. Then by Euler equations




(v̈)′′ = f (0, L)
v̈(0+) = γ sign[v̇(0)]
v̈(L−) = γ sign[v̇(L)]
v(0) = v(L) = 0

and (up to interchanging boundary vaues at 0 and L, or changing sign in both boundary
values) only two cases may occur: either

(4.40)





(v̈)′′ = f (0, L)
v̈(0+) = +γ , v̇(0+) > 0
v̈(L−) = −γ , v̇(L−) > 0

v(0) = v(L) = 0
or

(4.41)





(v̈)′′ = f (0, L)
v̈(0+) = v̈(L−) = +γ , v̇(0+) > 0 , v̇(L−) < 0

v(0) = v(L) = 0 .

We show that both cases lead to a contradiction.
In case (4.40), we claim

(4.42) [v̇](0) [v̇](L) < 0 ⇒
{

[v̇](0)
(
γ sign[v̇](0)− u′′(0)

)
< 0

[v̇](L)
(
γ sign[v̇](L)− u′′(L)

)
< 0

We set s0 = [v̇](0), sL = [v̇](L). Since
(
v̈ − u′′

)′′ ≡ 0 (0, L) and v′′ = v̈ + s0δ0 + sLδL, there
exist c, d s.t.

(4.43) v̈(x)− u′′(x) = (cx + d)χ[0,L](x).

By integration over R we get

(4.44)
c

2
L2 + dL + s0 + sL = 0

by integrating (4.43) twice we get

(4.45) c
L3

6
+ d

L2

2
+ Ls0 = 0 .

Euler equations

(4.46) v̈(0) = γ sign s0 v′′(L)v̈(L) = γ sign sL
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entail

(4.47) v̈(0)− u′′(0) = γ sign s0 − u′′(0) = d

(4.48) v̈(L)− u′′(L) = γ sign sL − u′′(L) = cL + d .

By solving (4.44),(4.45) we get

(4.49)





c =
6
L2

(s0 − sL)

d =
2
L

(sL − 2 s0) .

By setting a = [v̇](0)
(
γ sign[v̇](0)− u′′(0)

)
= s0(γ sign s0 − u′′(0)),

b = [v̇](L)
(
γ sign[v̇](L)− u′′(L)

)
= sL(γ sign sL − u′′(L)) ,

the thesis of claim (4.42) reads

(4.50) a = s0d < 0 , b = sL(cL + d) < 0 ,

and since (4.40) entails sL < 0 < s0 we get

(4.51) a = 2s0(sL − 2s0) /L < 0 , b = 2sL(s0 − 2sL) / L < 0

(notice that also in the other case with s0sL < 0, e.g. s0 < 0 < sL, we get (4.51))
hence (4.50) and the claim (4.42) is proven. By using claim (4.42) we get

(4.52) u′′(L)− u′′(0) < γ (sL − s0) = − 2 γ,

notice that also in the other case with s0sL < 0, e.g. s0 < 0 < sL, we get

(4.53) u′′(L)− u′′(0) > γ (sL − s0) = + 2 γ.

In any case by (4.25),(4.26)

(4.54) 2γ < |u′′(L)− u′′(0)| <

∣∣∣∣∣
∫ L

0

(K(L, y)−K(0, y)) f(y) dy

∣∣∣∣∣

(4.55) K(L, y)−K(0, y) =
1
L2

(
3Ly2 − 2y3 − L2y

)

(4.56)
|K(L, y)−K(0, y)| ≤ |K(L,L(1− 1/

√
3)−K(0, L(1− 1/

√
3)| =

=
L

3

(
3−

√
3− 2/

√
3
)

By (4.54),(4.56),(4.11) we get the contradiction

2γ < |u′′(L)− u′′(0)| < L

3

(
3−

√
3− 2/

√
3
)
‖f‖L1 <

8
3

(
3−

√
3− 2/

√
3
)

γ < 2γ .

In case (4.41), by using Green function G for d2/dx2 with homogeneous boundary conditions
(3.21), we get v̈(x) = γ +

∫ L

0
G(x, y)f(y) dy. Hence v̇(L)− v̇(0) = γL +

∫ L

0

∫ L

0
G(x, y)dy dx .

Since

(4.57) max
y∈[0,L]

∣∣∣∣∣
∫ L

0

G(x, y) dx

∣∣∣∣∣ =
L2

8

by Fubini-Toneli and (4.11) we get

(4.58)

∣∣∣∣∣
∫ L

0

∫ L

0

G(x, y) f(y) dy dx

∣∣∣∣∣ ≤
L2

8
‖f‖L1 <

L2

8
8γ
L

< γ L
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hence the contradiction v̇(L−)− v̇(0+) > 0. ¤
Theorem 4.14. Assume (4.1),(4.2),(4.11), f does not change sign and is symmetric:

(4.59) f(x) = f(L− x) x ∈ (0, L) and either f ≥ 0 or f ≤ 0 .

Then there is a unique minimizer of F1 among v s.t. spt v ⊂ [0, L], moreover such minimizer
is the regular regular solution of (4.15).

Proof - By taking into account the symmetry of f and K

(4.60) f(y) = f(L− y) K(x, y) = K(L− x, L− y)

in the Green representation (4.33) we get, for x ∈ (0, L) ,

(4.61)

u′′(x) =
∫ L

0

K(x, y) f(y) dy =

=
∫ L

0

K(L− x, L− y) f(y) dy =

=
∫ L

0

K(L− x, y) f(y) dy = u′′(L− x) .

then u′′ is even with respect to L/2.
Therefore ‖u′′‖L∞ = max{|u′′(L)|, |u′′(L/2)|} and by (4.25),(4.26),(4.11) we get
(4.62)

|u′′(L) | =

∣∣∣∣∣
∫ L

0

K(L, y) f(y) dy

∣∣∣∣∣ =

=

∣∣∣∣∣
1
L2

∫ L

0

y2(L− y)f(y), dy

∣∣∣∣∣ =

=

∣∣∣∣∣
1
L2

∫ L/2

0

y2(L− y)f(y) dy +
1
L2

∫ L

L/2

y(L− y)2f(y) dy

∣∣∣∣∣ =

=
1
L

∣∣∣∣∣
∫ L/2

0

y(L− y)f(y) dy

∣∣∣∣∣ ≤

≤ 1
L

L2

4
1
2
‖f‖L1(0,L) =

L

8
‖f‖L1(0,L) < γ .

(4.63)

∣∣∣∣u′′
(

L

2

)∣∣∣∣ =

=

∣∣∣∣∣
∫ L

0

(
(y − L/2)+ − y2

2L

)∣∣∣∣∣ =

=
1

2L

∣∣∣∣∣
∫ L/2

0

y2 f(y) dy +
∫ L

L/2

(L− y)2 f(y) dy

∣∣∣∣∣

=
1
L

∣∣∣∣∣
∫ L/2

0

y2 f(y) dy

∣∣∣∣∣ =

= ≤ 1
L

L2

4
1
2
‖f‖L1(0,L) =

L

8
‖f‖L1(0,L) < γ .

hence

(4.64) ‖u′′‖L∞ < γ

and the thesis follows by Theorem 4.6.
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5. (Pb III) Clamped Kirchhoff-Love plate with plastic yield along free lines

In this Section we look for minimizers of functional
PKL(w) =

=
2
3
µ

∫

Σ

(|∇2w|2+
λ

λ + 2µ
|∆aw|2)dx + βH 1(S∇w) + γ

∫

SDw

|[Dw]| dH 1−
∫

Σ

fwdx

among scalar functions w ∈ SBH(R2) s.t. spt w ⊂ Σ.
Here ∆a denotes the absolutely continuous part of the distributional Laplace operator, say
∆aw = Tr

(∇Dw
)

= (∆w)a, β, γ are given constants, H 1 is the 1dimensional Hausdorff
measure and f is a given transverse load.
All along this section we assume

(5.1) Σ ⊂ R2 connected Lipschitz open set ,

(5.2) β > 0, γ > 0,

(5.3) µ > 0, 2µ + 3λ > 0, .

(5.4) f ∈M(R), spt f ⊂ Σ,

Notice that for any w ∈ SBH we have (see [10],[29],[3]):

(5.5) ∇w = Dw , S∇v = SDv ,

(5.6) SDv is a countably H1 rectifiable set

(5.7)
{

SDv has an approximate normal vector νSDv H1a.e. in SDv and
νSDv is unique up to the orientation at any point where it is defined,

(5.8) [Dv] = [∇v] =
[

∂v

∂νSDv

]
νSDv

, |[Dv]| =
∣∣∣∣
[

∂v

∂νSDv

]∣∣∣∣ ,

(5.9) both D2w and ∇2w are symmetric .

We recall the following statement for the quadratic form associated to the Kirchhoff-Love
plate energy.

Lemma 5.1. Assume (5.1),(5.2),(5.3),(5.4) and

(5.10) ‖f‖T (Σ) < 4 γ (safe load condition for clamped plate)

Then PKL achieves a finite minimum over w ∈ SBH(R2) with sptw ⊂ Σ .

Proof - It is a particular case of Theorem 8.3 in [13]. ¤
Obviously the above existence result holds true not only for the quadratic form

(5.11) QKL(M) =
2
3

(
µ|M|2 +

µλ

λ + 2µ
|TrM|2

)

associated to Kirchhoff-Love plate energy PKL, but also for any other positive definite
quadratic Q form evaluated on ∇2v ([13]). For this reason we study the whole class of
functionals P (including PKL)

(5.12) P(w) =
∫

Σ

(
Q

(∇2w
) − fw

)
dx + βH 1(S∇w) + γ

∫

SDw

|[Dw]| dH 1 ,
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to be minimized among w ∈ SBH(R2) s.t. spt w ⊂ Σ .
We assume that the quadratic form Q fulfils

(5.13)




∃ q i j h k ∈ R, q i j h k = qh k i j : Q(M) =

2∑

i,j,h,k= 1

q i j h kMi j Mh k ∀M ,

∃ a, A , 0 < a ≤ A < +∞ : a ‖M‖22 ≤ Q(M) ≤ A ‖M‖22 ∀M ,

here and in the following the summation convention over repeated indexes is understood,
M,A,B are 2× 2 real symmetric matrices, A :B = Aij :Bij and ‖ · ‖p denotes the lp norm.
We denote Q′ = ∂Q/∂M so that, by (5.13) we get

(5.14) (Q′(M))hk = 2
2∑

i j = 1

q i j h kMi j ,
‖Q′(M)‖∞
‖M‖∞ ≤ 2A ∀M .

In the particular case of Q = QKL we have

(5.15) Q′KL(M) =
4
3

(
µM +

µλ

λ + 2µ
(TrM)I

)
.

We are not able to prove (and even to write) the complete system of Euler equations or
even Du Bois-Raymond equation for functional (5.12) since we cannot hope to have enough
regularity of minimizers v to give meaning to the product (∇2v : µ) when µ is a measure;
moreover for a general minimizer v the set SDv is not smooth enough to perform integration
by parts. The difference with respect to beam problem faced in Section 3 is that weak and
strong formulation of free gradient discontinuity problems coincide only in dimension n = 1 .
Nevertheless we can prove something similar to Du Bois-Raymond equation, by considering
particular variations ε(w − v), where w ∈ C2(Σ) ∩ SBH(R2), sptw ⊂ Σ, v ∈ argminP and
ε ∈ R , as stated by the following Lemma 5.2. So we get Euler equation (5.48) only in
the set Σ \ SDv and the compliance identity as stated in Lemma 5.3. Moreover additional
assumptions on f allow proof of basic relationship: a sufficiently small load f in Lp(Σ) with
p > 1 entails excess identity (5.31) and the regularity Theorem 5.7. In a different perspective
any f ∈ Lp(Σ) with p > 2 leads to partial regularity result stated in Theorem 5.9.

Lemma 5.2. Assume (5.1),(5.2),(5.4),(5.12),(5.13). Then, for any w ∈ C2(Σ)∩ SBH(R2)
with spt w ⊂ Σ, and v ∈ argminP
(5.16)

∫

Σ

(
Q′(∇2v) :

(
D2w −∇2v

) − f(w − v)
)

dx − γ

∫

SDv

|[Dv]| dH 1 = 0 .

Proof - By exploiting minimality of v , convexity of Q , S∇(w−v) = S∇(v) , small positive
and negative ε , we get the thesis.

Lemma 5.3. (Compliance identity for elastic-plastic plate)
Assume (5.1),(5.2),(5.4),(5.12),(5.13). Then for any v ∈ argminP

(5.17)
∫

Σ

(
Q′(∇2v) : ∇2v − f v

)
dx + γ

∫

SDv

|[Dv]| dH 1 = 0 ,

say

(5.18) 2
∫

Σ

Q(∇2v) dx =
∫

Σ

f v dx − γ

∫

SDv

|[Dv]| dH 1 .

Hence the following compliance identity holds true

(5.19) P(v) = −
∫

Σ

Q(∇2v) dx + βH1(SDv) ∀v ∈ argminP .

Proof - Choose w = 0 in (5.16). ¤
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From now on, in order to perform a deeper analysis of P, we enforce regularity assumptions
(5.1),(5.4) about load and plate boundary.

Lemma 5.4. (Elliptic regularity) Assume (5.13) and

(5.20) f ∈ Lp , 1 < p < +∞ ,

(5.21) ∂Σ is either a convex polygonal or a C4 simple curve.

Then the elliptic problem of fourth order

(5.22) u ∈ H2
0 (Σ) , div div Q′(D2u) = f in Σ ,

has unique solution u which is also the unique minimizer of
∫
Σ

(
Q(D2v)− fv

)
dx over

v ∈ H2
0 (Σ) and fulfils the associate compliance inequality

(5.23)
∫

Σ

Q(D2u) dx =
1
2

∫

Σ

fu dx ,

moreover u belongs to W 4,p(Σ) and there are two constants C1, C2, with C1 = C1(Σ, p, a, A)
and C2 = C2(Σ, p, a, A) s.t.

(5.24) ‖u‖W 4,p(Σ) ≤ C1 ‖f‖Lp(Σ) ,

(5.25) ‖D2u‖C0(Σ) ≤ C2 ‖f‖Lp(Σ) .

If Q = QKL (Kirchhoff-Love elastic plate) then problem (5.22) reads as follows:

(5.26) u ∈ H2
0 (Σ) , ∆2u =

3 (λ + 2µ)
8 µ (λ + µ)

f in Σ .

Proof - Since Lp(Σ) ⊂ H−2(Σ), by denoting C3 the related embedding constant and
applying standard Hilbert technique for elliptic equations, we get existence and uniqueness of
solution for (5.22), minimizing the purely elastic energy

∫
Σ

(
Q(D2v)− fv

)
dx and fulfilling

(5.23) together with the following estimates (due to (5.13), Σ ⊂ R2, sptu ⊂ Σ):

‖u‖L∞(Σ) ≤
1
4
‖Du2‖T (Σ) ≤

1
4
|Σ|1/2‖D2u‖L2(Σ) ≤

≤ |Σ|1/2

4
√

a

(∫

Σ

Q(D2u) dx
)1/2

=
|Σ|1/2

4
√

a

(
1
2

∫

Σ

fu dx
)1/2

≤

≤ |Σ|1/2

4
√

2a
‖f‖1/2

Lp(Σ) ‖u‖
1/2

Lp′ (Σ)
≤ |Σ| 12+ 1

2p′

4
√

2a
‖f‖1/2

Lp(Σ) ‖u‖
1/2
L∞(Σ) ,

hence, by H2
0 (Σ) ⊂ L∞(Σ),

‖u‖L∞(Σ) ≤
|Σ|2−1/p

32 a
‖f‖Lp(Σ) ,

(5.27) ‖u‖Lp(Σ) ≤ |Σ|1/p ‖u‖L∞(Σ) ≤
|Σ|2
32 a

‖f‖Lp(Σ) .

The fact that the solution u of (5.22) belongs to W 4,p follows by standard interior regularity
and use of Lemma 4.2 p.414 of [1] (with m = j = 2) on a finite atlas of the boundary ∂Σ in
the convex polygon case, and by Theorem 8.1 p.443 of [1] in the C4 boundary case: hence
in both cases:

(5.28) ‖u‖W 4,p(Σ) ≤ C0

(‖f‖Lp(Σ) + ‖u‖Lp(Σ)

)
.
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Then (5.27), (5.28) entail (5.24) with C1 =
(
1 + |Σ|2/(32a)

)
C0.

Estimate (5.24) together with Sobolev inequality entail estimate (5.25) with C2 = C1C3 =(
1 + |Σ|2/(32a)

)
C0C3 where C3 is the embedding constant: ‖D2u‖C0(Σ) ≤ C3‖u‖W 4,p(Σ). ¤

Lemma 5.5. Assume (5.2),(5.12),(5.13),(5.20),(5.21) and u is the unique solution of

(5.29) u ∈ H2
0 (Σ) , spt w ⊂ Σ , div div Q′(D2u) = f in Σ ,

Then trivial extension of u belongs to C2(Σ)∩C1(Rn)and the following statements hold true.
Excess estimate for P : If u solves (5.29) then for all v ∈ SBH(R2) s.t. spt v ⊂ Σ

(5.30)

P(v)−P(u) ≥ βH1 (SDv)+

+
∫

SDv

(
γ |[Dv]| −Q′(D2u) : ([Dv]⊗ νSDv )

)
dH1 .

Excess identity for minimizers of P : If v minimize P among v ∈ SBH(R2), s.t. spt v ⊂
Σ and u solves (5.29) then

(5.31) P(v)−P(u) = β ] (Sv̇)+
1
2

∫

SDv

(
γ |[Dv]|−Q′(D2u) : ([Dv]⊗ νSDv )

)
dH1.

Necessary conditions for existence of creased minimizers of P : If v minimize P
among v ∈ SBH(R2) s.t. spt v ⊂ Σ, SDv 6= ∅, and u solves (5.29), then

(5.32) ‖Q′(D2u)‖L∞(Σ,L(R2,R2)) > γ ,

(5.33)
∫

SDv

(
γ |[Dv]| − Q′(D2u) : ([Dv]⊗ νSDv )

)
dH1 ≤ −2βH 1 (SDv) < 0 .

We emphasize that the excess estimate (5.30) holds true under weaker assumptions: Q convex
and C2 ; while the excess identity (5.31) and its consequence, say the fact that (5.32),(5.33)
are necessary conditions for creased minimizers, require the quadratic structure (5.13) of Q.

Proof - By (5.20),(5.21),(5.29) and Lemma 5.4 we know: D2u ∈ C(Σ), u ∈ H2
0 (Σ); hence

u ∈ C2(Σ) ∩ C1(Rn). For simplicity, we will write shortly ν instead of νSDv
in the proof.

By convexity of Q we get

(5.34)

P(v)− P(u) =

= βH 1(S∇v) +
∫

Σ

Q(∇2v) dx + γ

∫

SDv

∣∣∣∣
[
∂v

∂ν

]∣∣∣∣ dH 1+

−
∫

Σ

fv dx−
∫

Σ

Q(D2u) +
∫

Σ

fu ≥

≥ βH1(SDv) + γ

∫

S∇v

∣∣∣∣
[
∂v

∂ν

]∣∣∣∣ dH 1 −
∫

Σ

f(v − u)+

+
∫

Σ

Q′(D2u) : (∇2v −D2u)dx .

Thanks to Lemma 5.4

(5.35) D2u ∈ C0(Σ)

so that we can apply Lemma 5.2 with w = u and v ∈ argminP.
By (5.8),(5.22),(5.29),(5.35) and Theorems 2.15, 6.3, 6.4 of [10] we have:

(5.36)
∇2v = D2v − [Dv]⊗ ν dH 1 SDv ∩ Σ =

= D2v −
[
∂v

∂ν

]
⊗ ν dH 1 SDv ∩ Σ in D′(Σ),
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(5.37) [Dv]⊗ ν dH 1 SDv ∩ Σ =
[

∂v

∂ν

]
⊗ ν dH 1 SDv ∩ Σ

f = div div Q′(D2u) say f =
8µ(λ + µ)
3(λ + 2µ)

∆2u if Q = QKL .

Hence, integrating by parts twice and taking into account u = v = 0 on ∂Σ, we get

(5.38)

∫

Σ

Q′(D2u) : (D2v −D2u) dx =

= −
∫

Σ

div Q′(D2u) ·D(v − u) dx +
∫

∂Σ

Q′(D2u) :
(

∂v

∂νΣ
νΣ ⊗ νΣ

)
=

=
∫

Σ

div div Q′(D2u) · (v − u) dx +
∫

∂Σ

Q′(D2u) :
(

∂v

∂νΣ
νΣ ⊗ νΣ

)
=

=
∫

Σ

f(v − u) dx +
∫

∂Σ

Q′(D2u) :
(

∂v

∂νΣ
νΣ ⊗ νΣ

)

where νΣ is the outward normal to ∂Σ. We choose ν = νSDv
= νΣ on ∂Σ ∩ SDv and, abusing

notation we define
(

∂v
∂ν ν ⊗ ν

)
= O on ∂Σ \ SDv; with this convention, by denoting |out and

|in respectively the outer and inner traces at ∂Ω and taking into account that ∂/∂νΣ stands
for the inner trace of the derivative in the direction of outer normal, we get

(5.39)
[

∂v

∂ν

]
=

∂v

∂ν

∣∣∣∣
out

− ∂v

∂ν

∣∣∣∣
in

= − ∂v

∂ν

∣∣∣∣
in

= − ∂v

∂νΣ

(5.40)
∂v

∂νΣ
νΣ ⊗ νΣ = −

[
∂v

∂ν

]
ν ⊗ ν

so that (5.38) reads as follows

(5.41)

∫

Σ

Q′(D2u) : (D2v −D2u) dx =

= +
∫

Σ

f(v − u) dx−
∫

∂Σ

Q′(D2u) :
([

∂v

∂ν

]
ν ⊗ ν

)

by substituting (5.36) in (5.34) and taking into account (5.37),(5.41) and Dv = ∇v we get

(5.42)

P(v)− P(u) ≥ βH 1(SDv) +
∫

Σ

Q′(D2u) : (D2v −D2u)+

−
∫

Σ

f(v − u) + γ

∫

SDv∩Σ

∣∣∣∣
[
∂v

∂ν

]∣∣∣∣ dH 1 −
∫

SDv∩Σ

Q′(D2u) : [∇v]⊗νdH 1 =

= βH1(SDv) +
∫

Σ

f(v − u) dx−
∫

∂Σ

Q′(D2u) :
([

∂v

∂ν

]
ν ⊗ ν

)
+

−
∫

Σ

f(v − u) + γ

∫

SDv∩Σ

∣∣∣∣
[
∂v

∂ν

]∣∣∣∣ dH 1 −
∫

SDv∩Σ

Q′(D2u) : [∇v]⊗ νdH 1 =

= βH 1(SDv) +
(∫

SDv

γ

∣∣∣∣
[
∂v

∂ν

]∣∣∣∣ dH 1 −
∫

SDv

Q′(D2u) : [∇v]⊗ ν dH 1

)

= βH 1(SDv) +
(∫

SDv

γ

∣∣∣∣
[
∂v

∂ν

]∣∣∣∣−Q′(D2u) :
[

∂v

∂ν

]
ν ⊗ ν dH 1

)
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so that (5.30) follows by(5.37). Since Q is a symmetric quadratic form we get

(5.43) Q(A)−Q(B) =
1
2
(Q′(A) + Q′(B)) : (A− B)

hence by using (5.36),(5.37),(5.41),(5.43) and eventually (5.16) we get (5.31) as follows:

(5.44)

P(v)− P(u) =

=
∫

Σ

(Q(∇2v)−Q(D2u)) dx−
∫

Σ

f(v − u) dx+

+γ

∫

SDv

∣∣∣∣
[

∂v

∂ν

]∣∣∣∣ dH 1 + βH 1(SDv) =

1
2

∫

Σ

(Q′(∇2v) + Q′(D2u)) : (∇2v −D2u)+

−
∫

Σ

f(v − u) dx + γ

∫

SDv

∣∣∣∣
[

∂v

∂ν

]∣∣∣∣ dH 1 + βH 1(SDv) =

=
1
2
γ

∫

SDv

∣∣∣∣
[
∂v

∂ν

]∣∣∣∣ dH 1 − 1
2

∫

Σ

f(v − u) dx+

βH 1(SDv) +
1
2

∫

Σ

Q′(D2u) : (D2v −D2u)+

−1
2

∫

SDv∩Σ

Q′(D2u) : ([Dv]⊗ ν) dH 1 =

= βH 1(SDv) +
1
2

∫

SDv

{
γ

∣∣∣∣
[
∂v

∂ν

]∣∣∣∣−Q′(D2u) : ([Dv]⊗ ν)
}

dH 1 .

Thesis (5.32) follows by (5.2),(5.31) and minimality of v.
Thesis (5.33) follow from (5.31) and (5.32). ¤
As a consequence of Lemma 5.5 we can prove the following result (which was announced
in [41], Th.2.2) which states that the minimizers of (5.12) do not exhibit any plastic yield
whenever the purely elastic solution has small second derivatives .

Theorem 5.6. (Bending moment regularity condition for clamped plate)
Assume (5.1),(5.2),(5.12),(5.13),(5.20),(5.21) and the solution u of purely elastic problem
(5.22) fulfils

(5.45) ‖Q′(D2u)‖L∞(Σ) ≤ γ .

Then u ∈ argminP(w) and u is the unique minimizer of P .
More explicitly, in the case of Kirchhoff-Love plate (say Q = QKL) condition (5.45) reads

(5.46)
∥∥∥∥ µD2u +

µλ

λ + 2µ
(TrD2u) I

∥∥∥∥
L∞(Σ)

≤ 3
4

γ .
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Proof - By (5.30) and (5.45) we get

P(v)− P(u) ≥ βH 1(SDv) +
(∫

SDv

(
γ |[Dv]| −Q′(D2u) : ([Dv]⊗ νSDv

)
)
dH 1

)
≥

= βH 1(SDv) +
(∫

SDv

(γ − ‖Q′(D2u)‖∞) |[Dv]| dH 1

)
≥ βH 1(SDv) ≥ 0 .

and the last inequality is strict if H1(SDv) > 0 . ¤

Theorem 5.7. Load regularity condition for clamped plate P
Assume (5.2),(5.12),(5.13),(5.20),(5.21) and

(5.47) ‖f‖Lp ≤ γ

2 AC2

where C2 = C2(Σ, p, a, A) is the constant appearing in the estimate (5.25).
Then u minimizes energy P among scalar functions in SBH(R2) with support in Σ.
Moreover u is the unique minimizer of P in this class.

Proof - Inequalities (5.14),(5.25),(5.47) entail (5.45), hence thesis follows by Theorem5.6.

Theorem 5.8. ( Euler equation for P ) Assume (5.2),(5.12),(5.13),(5.20),(5.21) and w
minimizes P among v in SBH(R2) s.t. spt v ⊂ Σ. Then

(5.48) div div Q′(D2w) = f Σ \ SDw .

Proof - Perform smooth variations with support in Σ \ SDw . ¤

Theorem 5.9. (Partial regularity for elastic-plastic clamped plate)
Assume (5.1),(5.2),(5.10),(5.12), Q(M) = M : M and f ∈ Lp(Σ) with p > 2.
Then the set of w minimizing P among v ∈ SBH(R2) s.t. spt v ⊂ Σ is not empty and any
w among these minimizers is a strong solution, say:

(5.49) w ∈ C0(Σ) ∩ C2(Σ \ SDw) ,

(5.50) H 1
(
SDw \ SDw

)
= 0

and the pair (SDw, w) minimizes the functional

(5.51) P (K, v) =
∫

Σ\K

(|D2v|2 − fv
)

dx + βH 1(K ∩Σ) + γ

∫

K∩Σ

|[Dv]| dH 1

among pairs (K, v) such that K ⊂ R2 is a closed sets and v ∈ C0(Σ) ∩ C2(Σ \K) .

Proof - Safe load condition (5.10) together with Lemma 5.1 entail the existence of min-
imizers for P.
So we can apply Corollary 4.14 and Theorem 4.15 in [11] to any minimizer of P and get
interior regularity in Σ, then repeat the technique of [15] in this simpler case (homogeneous
Dirichlet datum, free discontinuity allowed only for derivatives) to prove partial regularity
up to the boundary ∂Σ. ¤

Remark 5.10. About analysis of plastic yield lines (regularity and geometric properties
of crease set, squared-hessian jump, stress concentration and asymptotic expansion around
crease-tip of a minimizer) we refer to a forthcoming research. We emphasize the analogy of
properties between yield lines and free discontinuity set in Blake & Zisserman functional for
optimal segmentation of an image ([14],[16]).
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Theorem 5.11. Sufficient conditions for existence of creased minimizers of P :
Assume structural assumptions (5.2),(5.10),(5.12),(5.13),(5.20),(5.21) and u solves (5.29).
If there exists v ∈ SBH(R2) s.t. spt v ⊂ Σ, and v fulfils

(5.52)
∫

Σ

(
Q′(∇2v) :

(
D2u−∇2v

) − f(u− v)
)

dx − γ

∫

SDv

|[Dv]| dH 1 = 0 ,

(5.53)
∫

SDv

(
γ|[Dv]| − Q′(D2u) : ([Dv]⊗ νSDv

)
)

dH 1 < − 2 β H 1(SDv) .

Then v has non empty crease set and lower energy than u:

(5.54) H 1 (SDv) > 0; P(v) ≤ P(u).

Hence the set of minimizers is non empty, all minimizer z exhibits a non empty crease set
and lower energy than v : say P(z) ≤ P(v) (the inequality may be strict).

Proof - Inequality (5.53) entails H 1 (SDv) > 0. Assumption (5.52) allows to repeat
exactly the same computations in (5.44), so that v fulfills the excess identity (5.31) too.
Then (5.53),(5.31) together entail the thesis. ¤

Remark 5.12. Notice that Theorem 5.11 does not state neither that v itself is a minimizer
nor the existence of creased minimizers.

6. (Pb.IV)Vector-valued deformations with cohesive damage along free surfaces

In this Section we study the functional

(6.1)
F(v) =

∫

Ω

(
µ |E(v)|2 +

λ

2
|Tr E(v)|2 − f · v

)
dx +

+ αH n−1(Jv) + γ

∫

Jv

|[v]¯ νv|dH n−1

to be minimized among displacement vector fields v such that v ∈ SBD(Rn) such that
spt(v) ⊂ Ω. Here α, γ, λ, µ are given constants, ¯ denotes the symmetric tensor product,
Hn−1 is the n − 1 dimensional Hausdorff measure. E(v) is the absolutely continuous part
of the linear strain tensor e(v) = 1

2

(
Dv + (Dv)T

)
, Jv is the jump set of v, νv is the

normal to Jv and [v] is the jump of v in the direction of νv .
The non convex stored energy functional F is a näıf description of mechanical energy for
a deformable body with natural reference Ω, subject to prescribed volume dead load f ,
homogeneous Dirichlet boundary conditions and free small cohesive damage whose geometry
(the set Jv) is not ”a priori” prescribed.
The space of vector fields with bounded deformation BD is the natural framework for the
study of functionals with linear growth in the symmetrized gradient and its subspace SBD
allows only jump-type discontinuity ([4],[6],[18]).
All along this section we assume

(6.2)





µ > 0, 2µ + nλ > 0, α > 0, γ > 0,
Ω ⊂ Rn connected lipschitz open set, n=2,3,
f ∈ Lp(Rn,Rn), p > n , spt f ⊂ Ω .

If Y is a finite dimensional space and A ⊂ Rn is an open set, we denote by Lp(A, Y ) the space
of Y valued, p integrable functions with respect to the Lebesgue measure Ln. Let M(A, Y )
be the space of the bounded measures on A with values in Y (M(A) when Y = R) and let
| · |T (A) be the total variation of a measure in M(A, Y ), i.e.
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|µ|T (A) =
∫

A

|µ| = sup
{ ∫

A

∑

ij

φijdµij : φij ∈ C0
0 (A),

∑

ij

φ2
ij ≤ 1, in A

}
.

We define a Borel measure |µ|, by setting for every Borel set B ⊂ Rn

|µ|(B) = |µ|T (B) = inf
{|µ|T (A); B ⊂ A, A open

}
.

For any v ∈ L1(Rn,Rn) the set of Lebesgue points is the set of x ∈ Rn s.t. there is
ṽ(x) ∈ Rn with lim%→0+

∫
B%(x)

|v(y)− ṽ(y)|dy / |B%| = 0.

The Lebesgue discontinuity set Sv is the complement of Lebesgue points.
We say that v has one-sided limits v+(x),v−(x) at x ∈ Ω with respect to a suitable direction
νv(x) ∈ {x ∈ Rn : |x| = 1} if

lim
ρ→0+

ρ−n

∫

{y∈Bρ(x); (y−x)·νv>0}
|v(y)− v+(x)| dy = 0,

lim
ρ→0+

ρ−n

∫

{y∈Bρ(x); (y−x)·νv<0}
|v(y)− v−(x)| dy = 0.

The jump set Jv of v is the subset of points x in Sv where v has one-sided limits v+(x),v+(x)
with respect to νv(x) and v+(x) 6= v+(x).
We emphasize that sptv ⊂ Ω entails: Jv ∩ ∂Ω may be nonempty, while Jv \ Ω = ∅.
We denote by v, E(v), and E(v), respectively, the admissible displacement vector field, the
linearized strain tensor and its absolutely continuous part:

v : Rn → Rn , sptv ⊂ Ω , e(v) =
1
2
(Dv + (Dv)T ),

E(v) =
dE(v)
dLn

, Ea(v) = E(v)dLn, div v = Tr E(v) = ∇ · v ,

here Dv = {Djvi}, (i = 1, ..., k, j = 1, ..., m) denotes the distributional derivatives of v;
∇v = dDv

dLn denotes its absolutely continuous part and [v]¯νv = sym(v⊗νv) ; the absolutely
continuous part diva of distributional divergence is defined as follows

diva v := (d/dLn) div v = Tr E(v) = ∇·v .

We set |E(v)|2 = E(v)ijE(v)ij and

(6.3) Q(E) = µ|E|2 +
λ

2
(TrE)2 , for any n× n symmetric matrix E ,

Q(E(v)
)

= µ |E(v)|2+λ

2
(Tr E(v))2= µeij(v) δihδjk Ehk(v)+

λ

2
δij δhk Eij(v) Ehk(v).

Hence

(6.4) Q′(E) = 2µE+ λ(TrE)I for any n× n symmetric matrix E.

(6.5) F(v) =
∫

Ωn

(Q (E(v))− f · v) dx + αH n−1(Jv) + γ

∫

Jv

|[v]¯ νv|dH n−1

Space BDΩ of functions with bounded deformation and support contained in Ω : we define

(6.6) BDΩ =
{
v ∈ L1(Rn,Rn) : e(v) ∈M(Rn, Mn,n) , sptv ⊂ Ω

}
,

the space BDΩ is endowed with the norm

‖v‖BDΩ := ‖v‖L1(Rn,Rn) +
∫

Rn

|e(v)| = ‖v‖L1(Rn,Rn) + |e(v)|T (Ω) .
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We list the main properties of functions with bounded deformation (see [4],[6],[18]).
The linear strain tensor e(v) has the following decomposition

(6.7) e(v) = ea(v) + es(v) = ea(v) + ej(v) + ec(v),

where ea(v) = E(v)dx and es(v) are, respectively, the absolutely continuous and the sin-
gular part of e(v) with respect to Ln, while ej(v) and ec(v) are respectively the restriction
of es(v) to Jv and to its complement; ej(v) and ec(v) are called the jump part and the
Cantor part of es(v).
For any v ∈ BDΩ, the jump set Jv is Ln negligible, countably (Hn−1 , n− 1) rectifiable, and

(6.8) ej(v) = (v+(x)− v−(x))¯ νvHn−1 Jv Hn−1a.e. in Jv .

For every connected Lipschitz open set Ω there is a constant CΩ, dependent only on Ω s.t.
([47]) a Korn-Poincaré inequality holds:

(6.9) ‖v‖Ln/(n−1)(Ω) ≤ CΩ |e(v)|T (Ω) ∀v ∈ BD(Rn) : sptv ⊂ Ω.

The Space SBDΩ of functions with special bounded deformation and support contained in
Ω is defined as follows:

(6.10) SBDΩ =
{
v ∈ BDΩ : es(v) = ej(v)

}
.

Lemma 6.1. (safe load condition for free cohesive damage)
Assume (6.1),(6.2),(6.3) and

(6.11) ‖f‖Lp(Ω) <
γ

CΩ |Ω|
1
n− 1

p

(safe load) ,

where CΩ is the constant in the Korn-Poincaré inequality (6.9).
Then the functional F achieves a finite minimum over the space SBDΩ (see (6.6),(6.10)).

Proof - See Theorem 3.1 in [18]. ¤
So far we have existence of minimizers. Studying regularity of F minimizers is even more
delicate than the minimizers of Problem II about plates: here not only we cannot achieve a
complete system of Euler equations analogous to the ones in Theorem 3.3 about 1d model
problem (besides the standard PDE system of linear elasticity outside the jump set, say:
−µ∆u−(λ+µ)D(div u) = f in Ω\Jv), but also we lack a partial regularity result analogous
to Theorem 5.9. Nevertheless we can show again of Du Bois-Raymond equation (see (6.12))
and an excess estimate (see (6.21)) which allows the proof of regularity for minimizers under
an explicit smallness condition of Lp norm of load (Theorem 6.7).

Lemma 6.2. Assume (6.1),(6.2),(6.3)(6.11). Then, for any w ∈ C1(Ω) ∩ SBD(Rn) with
sptw ⊂ Ω and v ∈ argminF

(6.12)
∫

Ω

(Q′(E(v)) : (e(w)− E(v))− f ·(w − v)) dx−γ

∫

Jv

|[v]¯ νv| dH n−1 = 0 .

Proof - By exploiting representation (6.5) of F , minimality of v , convexity of Q , jump
sets coincidence Jw−v = Jv , small positive and negative ε , we get the thesis. ¤

Lemma 6.3. (Compliance identity for cohesive damage)
Assume (6.1),(6.2),(6.3)(6.11). Then for any v ∈ argminF

(6.13)
∫

Ω

(Q′(E(v)) : E(v) − f · v ) dx + γ

∫

Jv

|[v]¯ νv| dH n−1 = 0 ,



42 DANILO PERCIVALE & FRANCO TOMARELLI

say, by (6.4),

(6.14) 2
∫

Σ

Q(E(v)) dx =
∫

Σ

f · v dx − γ

∫

Jv

|[v]¯ νv| dH n−1 .

Hence the following compliance identity holds true

(6.15) P(v) = −
∫

Σ

Q(E(v)) dx + αHn−1(Sv) ∀v ∈ argminF .

Proof - Choose w = 0 in (6.12). ¤
Lemma 6.4. (Elliptic regularity) Assume (6.2) and

(6.16) Ω bilipschitz-homeomeorphic to (0, 1)n with boundary ∂Ω of class C2.

Then the system of elasticity with constant coefficients

(6.17) u ∈ H1
0 (Ω), L(u) := −µ∆u− (λ + µ)D(div u) = f in Ω,

has unique solution u which is also the unique minimizer over v ∈ H1
0 (Ω) of purely elastic

energy
∫
Ω

(Q(ev)− f · v) dx . Such u fulfils the associate compliance inequality:

(6.18)
∫

Ω

Q(e(u)) dx =
1
2

∫

Ω

f · u dx . ,

Moreover u belongs to W 2,p(Ω) and and there are constants K1, K2, with K1 = K1(Ω, p, λ, µ)
and K2 = K2(Ω, p, λ, µ) s.t.

(6.19) ‖u‖W 2,p(Ω) ≤ K1 ‖f‖Lp(Ω) ,

(6.20) ‖Du‖C0(Ω) ≤ K2 ‖f‖Lp(Σ) .

Proof - The system of elasticity (6.17) is a Dirichlet problem with null boundary data
for an equation of the type aij

αβDiju
β = fα with constant coefficients satisfying Legendre-

Hadamard condition ((10.60) in [31] pag.381). Hence (by estimates (10.62),(10.63) in [31],
page 381) we get the existence of K1 = K1(Ω, p, λ, µ) > 0 such that

‖D2u‖Lp(Ω) ≤ K1‖f‖Lp(Ω) .

Hence u ∈ H1
0 ,

∫
Ω

Du dx = 0 entail (6.19). Inequality (6.20) follows by Sobolev embedding.

Lemma 6.5. Assume (6.2) (5.21) and u is the trivial extension of the unique solution of
(6.17). Then u admits a trivial extension (still denoted u) in C0(Rn) ∩ C1(Ω) and the
following statements hold true.
Excess estimate for minimizers of F : for all v ∈ SBDΩ

(6.21)

F(v)−F(u) ≥ αHn−1(Jv) +
∫

Jv

(
γ|[v]¯ νv| − Q′(e(u)) : ([v]¯ νv)

)
dH n−1 .

Excess identity for minimizers of F : for all v minimizinf F over SBDΩ

(6.22)

F(v)−F(u) = αHn−1(Jv) +
1
2

∫

Jv

(
γ|[v]¯ νv| −Q′(e(u)) : ([v]¯ νv)

)
dH n−1 .

Proof - We write shortly ν instead of νv and we omit dx and dH n−1 in the proof.
Lemma (6.4) entails that trivial extension of u belongs to H1

0 (Ω,R3) ∩ C1(Ω), hence

(6.23) Du ∈ C0(Ω) , u ∈ C0(Rn)
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By convexity, for every v ∈ SBDΩ we have

(6.24)

F(v)−F(u) ≥
≥

∫

R

(Q′(e(u)) :
(E(v)− e(u)

)− f · (v − u)
)
+

+ γ

∫

Jv

|[v]¯ νv|+ αH n−1(Jv) .

By (6.23) we can apply Lemma 6.2 with w = u and v minimizer of F over SBDΩ.
By (6.8),(6.17) and (6.24) we have:

(6.25) E(v) = e(v)− [v]¯ ν dH n−1 Jv ∩ Ω in D′(Ω) .

Hence, via integration by parts and taking into account (6.17), sptv ⊂ Ω and u = 0 on ∂Ω,
we get

(6.26)

∫

Ω

Q′(e(u)) : (e(v)− e(u)) =

=
∫

Ω

L(u) · (v − u) +
∫

∂Ω

Q′(e(u)) :
(
vin ¯ νΩ

)
=

=
∫

Ω

f(v − u) +
∫

∂Ω

Q′(e(u)) :
(
vin ¯ νΩ

)

where νΩ is the outward normal to ∂Ω and vin, vout denote the inner and outer traces of v
in Ω. We choose ν = νJv = νΩ on ∂Ω ∩ Jv and, abusing notation we define

(
vin¯ ν

)
= O

on ∂Ω \ Jv; with this convention we get

(6.27) [v] = vout −vin = −vin

(6.28) vin ¯ νΩ = − [v]¯ ν

so that (6.26) reads as follows

(6.29)

∫

Ω

Q′(e(u)) : (e(v)− e(u)) =

= +
∫

Ω

f(v − u) −
∫

∂Ω

Q′(e(u)) : ([v]¯ ν)

by substituting (6.25) in (6.24) and taking into account (6.29) we get

(6.30)

F(v)−F(u) ≥ αH n−1(Jv) +
∫

Ω

Q′(e(u)) : (e(v)− e(u))+

−
∫

Σ

f(v − u) + γ

∫

Jv∩Ω

|[v]¯ ν| −
∫

Jv∩Ω

Q′(e(u)) : ([v]¯ ν)=

= αH1(Jv) +
∫

Ω

f(v − u) −
∫

∂Ω

Q′(e(u)) : ([v]¯ ν)+

−
∫

Σ

f(v − u) + γ

∫

Jv∩Ω

|[v]¯ ν|−
∫

Jv∩Ω

Q′(e(u)) : ([v]¯ ν) =

= αH n−1(Jv) +
(∫

Jv

γ |[v]¯ ν| −
∫

Jv

Q′(e(u)) : ([v]¯ ν)
)

=

= αH n−1(Jv) +
∫

Jv

(
γ |[v]¯ ν| − Q′(e(u)) :

(
[v]¯ ν

) )
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hence (6.21). Since Q is a symmetric quadratic form we get

(6.31) Q(A)−Q(B) =
1
2
(Q′(A) +Q′(B)) : (A− B)

hence by using (6.25),(6.29),(6.31) and eventually (6.12) we get (6.22) as follows:

(6.32)

F(v)−F(u) =

=
∫

Ω

((Q(E(v))−Q(e(u))
)− f(v − u)

)
dx+

+γ

∫

Jv

|[v]¯ ν| dH n−1 + αH n−1(Jv) =

1
2

∫

Ω

(Q′(E(v)) +Q′(e(u))
)

:
(E(v)− e(u)) dx+

−
∫

Ω

f(v − u) dx + γ

∫

Jv

|[v]¯ ν| dH n−1 + αH n−1(Jv) =

=
1
2
γ

∫

Jv

|[v]¯ ν| dH n−1 − 1
2

∫

Ω

f(v − u) dx+

αH n−1(Jv) +
1
2

∫

Ω

Q′(e(u)) : (e(v)− e(u)) dx+

−1
2

∫

Jv∩Ω

Q′(e(u)) : ([v]¯ ν) dH n−1 =

= αH n−1(Jv) +
1
2

∫

Jv

(
|[v]¯ ν| − Q′(e(u)) : ([v]¯ ν)

)
dH n−1 . ¤

We can restate excess estimate (6.21) in the form of a calibration by comparison as follows.

Theorem 6.6. (stress regularity condition in elasticity with free damage)
Assume (6.2) (6.16) and u is the trivial extension of the unique solution of (6.17) and

(6.33)
∥∥Q′(e(u)

) ∥∥
L∞(Ω,M3)

≤ γ

Then u is the unique minimizer of F in SBDΩ.
Explicitly the above stress regularity condition (6.33) reads:

(6.34) ‖ 2 µe(u) + λ (Tre(u)) I ‖L∞(Ω,M3) ≤ γ .

Proof - By excess estimate (6.21) we get, for any v ∈ SBDΩ,

F(v)−F(u) ≥ αH1(Jv) +
∫

Jv

(
γ |[v]¯ νv| − Q′(E(u)

)
: [v]¯ νv

) ≥ 0 .

The last inequality is strict if Jv 6= ∅, hence the all the minimizer of F H1 are regular. But
there is only one H1 regular minimizer: the solution u of (6.17).
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Theorem 6.7. Load regularity condition in elasticity with damage
Assume (6.2),(6.16) and

(6.35) ‖f‖Lp ≤ γ

(2µ + 3λ)K2

where K2 = K2(Ω, p, a, A) is the constant appearing in the estimate (6.20).
Then u minimizes F in SBDΩ. Moreover u is the unique minimizer of F in this class.

Proof - Inequalities (6.4),(6.20),(6.35) entail (6.33), hence thesis follows by Theorem6.6.
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