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Abstract— We consider stochastic differential games with
N players, linear-Gaussian dynamics in arbitrary state-space
dimension, and long-time-average cost with quadratic running
cost. Admissible controls are feedbacks for which the system is
ergodic. We first study the existence of affine Nash equilibria
by means of an associated system of N Hamilton-Jacobi-
Bellman and N Kolmogorov-Fokker-Planck partial differential
equations. We give necessary and sufficient conditions for
the existence and uniqueness of quadratic-Gaussian solutions
in terms of the solvability of suitable algebraic Riccati and
Sylvester equations. Under a symmetry condition on the run-
ning costs and for nearly identical players we study the large
population limit, N tending to infinity, and find a unique
quadratic-Gaussian solution of the pair of Mean Field Game
HJB-KFP equations. This extends some of the classical results
on Mean Field Games by Huang, Caines, and Malhame and
by Lasry and Lions, and the more recent paper by one of the
authors in the 1-dimensional case.

I. INTRODUCTION

We consider a system of N stochastic differential equa-
tions

dXi
t = (AiXi

t − αi
t)dt+ σidW i

t , Xi
0 = xi ∈ Rd , (1)

i = 1, . . . , N , where Ai, σi are given d × d matrices, with
det(σi) 6= 0, (W 1

t , . . . ,W
N
t ) are N independent Brownian

motions, αi
t : [0,+∞[→ Rd is a process adapted to W i

t

such that the corresponding trajectory Xi
t is ergodic, and

it represents the control of the i–th player in the differential
game that we now describe. For each initial positions X =
(x1, . . . , xN ) ∈ RNd we consider for the i–th player the
long–time–average cost functional

J i(X,α1, . . . , αN ) :=

lim inf
T→∞

E
T

[∫ T

0

αiT
t Riαi

t

2
+ (Xt −Xi)

TQi(Xt −Xi)dt

]
(2)

where E[·] denotes the expected value, Ri are positive
definite symmetric d×d matrices, Qi are symmetric Nd×Nd
matrices, and Xi ∈ RNd are given reference positions. For
this N–persons game we are interested in the synthesis
of Nash equilibrium strategies in feedback form from the
solutions of a system of N Hamilton-Jacobi-Bellman and
N Kolmogorov-Fokker-Planck partial differential equations,
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and in the limit behavior of these solutions and strategies
as N → +∞, within the theory of Mean-Field Games as
formulated by Lasry and Lions [18], [19], [20]. In particular,
we produce a solution of the limit pair of Mean-Field Games
HJB-KFP equations and give additional conditions for its
uniqueness. In the case d = 1 of one-dimensional state space,
the problem was solved explicitly in [2] under a condition
that the players be almost identical that we will use here
as well. In the multi-dimensional case d > 1, however, the
solvability of the HJB equations among quadratic functions
and of the KFP equations among Gaussian densities leads to
some nontrivial Algebraic Riccati Equations and Sylvester
equations whose solution is not explicit, in general.

Large population limits for multi-agent systems were stud-
ied by Huang, Caines and Malhame, independently of Lasry-
Lions. They introduced a method named Nash certainty
equivalence principle [14], [15], [16]. We cannot review
here the number of papers inspired by their approach, but
let us mention [22], [5], [4] for LQ problems, [24] for
risk-sensitive games, [23] for recent progress on nonlinear
systems, and the references therein. Some of these papers
also deal with ergodic cost functionals, e.g., [16], [22], but
their assumptions and methods differ from ours.

Concerning the Lasry-Lions approach to MFG let us men-
tion the lecture notes [7] and [13], [1] on numerical methods,
[12] on discrete games, [8] on the long time behaviour of
solutions, and [11] on the large population limit for nonlinear
ergodic control of several populations. A very recent survey
on both approaches is [6].

There is a wide spectrum of applications of Mean-Field
Games that we do not try to list here for lack of space and
refer instead to the quoted literature.

The paper is organised as follows. In Section II, we
define admissible strategies, introduce the system of HJB
and KFP equations associated to the N–persons game and
recall some known facts about algebraic Riccati equations.
In Section III, we define almost identical players, and give a
characterization for existence and uniqueness of solutions to
the system of HJB-KFP equations, in the class of quadratic
value functions and multivariate Gaussian invariant mea-
sures, in terms of Algebraic Riccati and Sylvester equations.
An analogous result holds also without assuming that players
are almost identical, but due to lack of space we refer to our
forthcoming paper [3] for the general case.
Section IV is devoted to the analysis of the limit when the
number of players tends to infinity, under natural rescal-
ing assumptions on the matrix coefficients of the game.



Uniqueness for the limit pair of MFG HJB-KFP equations is
also discussed. Finally, in Section V we show some simple
sufficient conditions for existence and uniqueness of a Nash
equilibrium strategy in the N–player game, as well as for its
convergence. In these examples the solutions are explicit.

II. PRELIMINARIES

We consider strategies whose corresponding solution to
(1) is ergodic.

Definition 2.1: A strategy αi is said to be admissible (for
the i–th player) if it is a bounded process adapted to the
Brownian motion W i

t such that the corresponding solution
Xi

t to (1) satisfies
• E[(Xi

t)(X
i
t)

T ] is bounded,
• Xi

t is ergodic in the following sense: there exists a
probability measure mi = mi(αi) on Rd such that∫

Rd

|x|2 dmi(x) <∞

and

lim
T→+∞

1

T
E
[∫

Rd

g(Xi
t) dt

]
=

∫
Rd

g(x) dmi(x) ,

locally uniformly w.r.t. the initial state of Xi
t , for all

functions g which are polynomials of degree at most 2.
One can prove that affine strategies are admissible. Namely,
the following proposition follows by standard arguments in
stochastic differential equations, see [9], [17].

Proposition 2.1: For the affine feedback

αi(x) = Kix+ ci , x ∈ Rd , (3)

with Ki ∈ Matd×d(R) such that the matrix Ai−Ki has only
eigenvalues with negative real part, and ci ∈ Rd, consider
the process αi

t := αi(Xi
t) where Xi

t solves

dXi
t = [(Ai −Ki)Xi

t − ci]dt+ σidW i
t . (4)

Then, αi
t is admissible. Namely, the process Xi

t has a unique
invariant measure mi given by a multivariate Gaussian
N (µ, V ) with mean µ = −(Ai − Ki)−1ci and variance
matrix V which satisfies the algebraic relation

(Ai −Ki)V + V (Ai −Ki)T + σi(σi)T = 0 , (5)

and such a measure mi is exactly the one which makes Xi
t

ergodic.

Next we write the system of HJB–KFP equations associ-
ated to the game (1)–(2), as in [2], [18], [20]. We start by
remarking that the part of the cost depending on the state of
the game can be also written as

F i(X1, . . . , XN ) := (X −Xi)
TQi(X −Xi)

=

N∑
j,k=1

(Xj −Xi
j
)TQi

jk(Xk −Xi
k
) (6)

where the matrices Qi
jk are d×d blocks of Qi. The standing

assumptions on the game are summed up in the following
condition.

(H) Assume that σi in (1) are invertible matrices, that Ri

in (2) are symmetric positive definite matrices and that
Qi in (2) are symmetric matrices. Moreover, assume
that blocks Qi

ii are symmetric positive definite.
For the game (1)–(2) under consideration, we observe that

the i-th Hamiltonian takes the form

Hi(x, p) := min
ω

{
−ωT Ri

2
ω − pT

(
Aix− ω

)}

= −pTAix+ min
ω

{
−ωT Ri

2
ω − pT · ω

}
.

Since the minimum is attained at (Ri)−1p, we conclude

Hi(x, p) = −((Ri)−1p)T
Ri

2
((Ri)−1p)−pT

(
Aix−(Ri)−1p

)
Introducing the notations

f i(x;m1, . . . ,mN ) :=∫
Rd(N−1)

F i(ξ1, . . . , ξi−1, x, ξi+1, . . . ξN )
∏
j 6=i

dmj(ξj) ,

(7)

for any N–vector of probability measures (m1, . . . ,mN ), and

νi :=
(σi)(σi)T

2
∈ Matd×d(R) ,

the system of HJB–KFP equations associated to the game is
given by

−tr(νi D2vi) +Hi(x,∇vi) + λi = f i(x;m1, . . . ,mN )

−tr(νi D2mi)− div
(
mi ∂H

i

∂p
(x,∇vi)

)
= 0

∫
Rd m

i(x) dx = 1 , mi > 0
(8)

i = 1, . . . , N , where tr denotes the trace of the matrix in
brackets. The unknowns of the PDE system are the scalar
functions vi, the real numbers λi, and the measures mi,
where we have slightly abused the notation and denoted with
mi the density of the measure as well.

In the forthcoming paper [3] we study the solvability of
this system among quadratic vi and Gaussian mi. We give
necessary and sufficient conditions for existence in terms of
solvability of some algebraic Riccati equations (ARE in the
following) and Sylvester equations. We also prove that the
invertibility of a suitable matrix constructed from the data is
necessary and sufficient for uniqueness. In the next section
we describe only the special case of nearly identical players
that is the relevant one for the large population limit N →∞.
Our main tool are some basic facts about algebraic Riccati
equations that we recall next, referring to [10], [21] and its
bibliography for the proof of the results.

Proposition 2.2: Consider the ARE

XRX −Q = 0 (9)



with R,Q ∈ Matd×d(R) symmetric and positive definite.
Let X be a d × d real matrix and denote by Ξ and H the
following real matrices

Ξ :=

[
Id
X

]
∈ Mat2d×d(R) , (10)

H :=

(
0 R
Q 0

)
∈ Mat2d×2d(R) .

Then the following facts hold.
(i) X is a solution of (9) if and only if the d–dimensional

linear subspace Im Ξ is H–invariant, i.e. if and only if
Hξ ∈ Im Ξ for all ξ ∈ Im Ξ.

(ii) If the matrix H has no purely imaginary nonzero
eigenvalues, then equation (9) has solutions X such
that X = XT .

(iii) If equation (9) has symmetric solutions, then there ex-
ists a unique symmetric solution which is also positive
definite.

III. NEARLY IDENTICAL PLAYERS

Our main assumption, as in [2], is the following Symmetry
Condition
(S) every player is influenced in the same way by pair of

other players, i.e. for each i ∈ {1, . . . , N} and each
j, k 6= i

F i(X1, . . . , Xj , . . . , Xk, . . . , XN ) =

F i(X1, . . . , Xk, . . . , Xj , . . . , XN ) (11)

We can easily prove the following lemma.
Lemma 3.1: Assumption (S) holds if and only if there

exist matrices Bi, Ci, Di and vectors ∆i such that

Qi
ij =

Bi

2
, Qi

jj = Ci , Xi
j

= ∆i , ∀ j 6= i ,

Qi
jk = Di , ∀ j, k 6= i , j 6= k .

Under assumption (S), the quadratic costs F i take the
following form

F i(X1, . . . , XN ) =

(Xi−Xi
i
)TQi

ii(X
i−Xi

i
)+(Xi−Xi

i
)T
Bi

2

(∑
k 6=i

(Xk−∆i)
)

+
(∑

j 6=i

(Xj −∆i)
T
)Bi

2
(Xi −Xi

i
)

+
∑
j 6=i

(Xj −∆i)
TCi(X

j −∆i)

+
∑

j,k 6=i ,j 6=k

(Xj −∆i)
TDi(X

k −∆i) (12)

In particular, they can be written in the form arising in the
Lasry-Lions formulation of mean field games, namely

F i(X1, . . . , XN ) = Vi

 1

N − 1

∑
j 6=i

δXj

 (Xi) ,

where δXj is the Dirac measure on Rd centered in the point
Xj and Vi is the operator, mapping probability measures on
Rd into quadratic polynomials, defined by the expression

Vi[m](X) := (X −Xi
i
)TQi

ii(X −Xi
i
)

+ (N − 1)

∫
Rd

((X −Xi
i
)T
Bi

2
(ξ −∆i)

+ (ξ −∆i)
T Bi

2
(X −Xi

i
)) dm(ξ)

+ (N − 1)

∫
Rd

(ξ −∆i)
T (Ci −Di)(ξ −∆i) dm(ξ)

+

(
(N − 1)

∫
Rd

(ξ −∆i) dm(ξ)

)T

Di

(
(N − 1)

∫
Rd

(ξ −∆i) dm(ξ)

)
(13)

Definition 3.1: We say that the players are almost iden-
tical if the costs F i satisfy (S) and if all players have the
same:
• control systems, i.e. Ai = A and σi = σ (and therefore
νi = ν) for all i,

• costs of the control, i.e. Ri = R for all i,
• reference positions, i.e. Xi

i
= H (own reference posi-

tion, or happy place) and ∆i = ∆ (reference position
of the other players) for all i,

• primary costs of displacement, i.e. Qi
ii = Q and Bi =

B for all i.
As in [2], we say that players are almost identical because
the secondary costs of displacement, i.e. the matrices Ci and
Di, can still be different among the players.

Since we are interested in solutions to (8) among functions
vi that are quadratic and measures mi that are Gaussian, we
specialize the system of HJB–KFP equations to this case.
Focusing our attention to identically distributed solutions for
the various players, i.e. considering measures of the form
m1 = . . . = mN = N (µ,Σ−1) for some common variance
matrix Σ−1 and mean vector µ, we obtain from (12) and (7)
that

f i(Xi;m1, . . . ,mN ) = (Xi −H)TQ(Xi −H)

+ (N − 1) (Xi −H)T
B

2
(µ−∆)

+ (N − 1) (µ−∆)T
B

2
(Xi −H)

+
∑
j 6=i

∫
Rd

(ξj −∆i)
TCi(ξ

j −∆i) dm
j(ξj)

+ (N − 1) tr((Ci−Di) Σ) + (N − 1) (µ−∆)TCi(µ−∆)

+ (N − 1)(N − 2) (µ−∆)TDi(µ−∆) (14)

Hence, searching for explicit solutions given by the following
expressions

mi(x) = γ exp

{
−1

2
(x− µ)T Σ(x− µ)

}
(15)

vi(x) = xT
Λ

2
x+ ρx , (16)



for suitable symmetric matrices Λ,Σ, with Σ positive defi-
nite, and suitable vectors µ, ρ and γ given by

γ =
1

(2π)d/2(det Σ−1)1/2
,

the system (8) of 2N partial differential equation in Rd

reduces to an algebraic system. Namely, one finds that (8)
rewrites as

g(x; Σ, µ,Λ, ρ) + λi = f i(x;m1, . . . ,mN ) (17)

mi(x) · h(x; Σ, µ,Λ, ρ) = 0 (18)

where equalities must hold for all x ∈ Rd and g, h are
quadratic functions of the variable x. Since mi > 0 in Rd,
the second equation implies that h must vanish identically,
and this results in the following matrix relations

Λ = R
(
νΣ +A

)
, ρ = −RνΣµ (19)

among coefficients of (15) and (16). Hence, the first equation
can be rewritten as

g̃(x; Σ, µ) + λi = f i(x;m1, . . . ,mN ) ∀ x ∈ Rd

and, by interpreting it as an equality between quadratic
forms, we find the conditions

Σ
νRν

2
Σ− ATRA

2
= Q (20)

B µ = −QH − (N − 1)
B

2
∆ (21)

µT ΣνRνΣ

2
µ− tr(νRνΣ + νRA) + λi = F̃ i

o (22)

with

B := Q+
ATRA

2
+ (N − 1)

B

2
(23)

and

F̃ i
o := HTQH + (N − 1)(N − 2) (µ−∆)TDi(µ−∆)

− (N − 1)

(
HT B

2
(µ−∆) + (µ−∆)T

B

2
H

)
+(N−1) tr((Ci−Di)Σ)+(N−1) (µ−∆)TCi(µ−∆).

(24)

Under hypotheses (H), equation (20) is an ARE of the form
(9), with R := νRν/2 and Q := Q+ATRA/2 both positive
definite. In the notations of Proposition 2.2, if we prove that
the corresponding matrixH has no purely imaginary nonzero
eigenvalues, then the proposition ensures that (20) admits a
unique symmetric and positive definite solution Σ. But ` is an
eigenvalue of H if and only if ` is a solution of the equation

0 = det (H− ` I2d) = det (`2 Id −RQ) ,

i.e. if and only if `2 is an eigenvalue of the matrix RQ.
Since the eigenvalues of RQ are positive, all eigenvalues of
H are real. This implies the existence and uniqueness of the
symmetric and positive definite matrix Σ.
Moreover, the second equation is just a linear system which
admits a unique solution µ if and only if the matrix B is

invertible. Finally, once Σ and µ have been found, they can
be used in the third equation and in (19) to obtain uniquely
the values λi, the matrix Λ and the vector ρ. Hence, it
remains to verify whether the matrix Λ obtained in (19) is
symmetric as requested in our ansatz (16). Owing to (19),
we observe that Λ is symmetric if an only if

R
(
νΣ +A

)
=
(
νΣ +A

)T
R (25)

which in turn can be interpreted as a Sylvester equation for
the matrix Σ.
Therefore, it is possible to collect in the next condi-
tion the required properties for the existence of solutions
(Σ, µ, λ1, . . . , λN ) to (20)–(22).

(EN) Every symmetric and positive definite solution X of the
algebraic Riccati equation

X
νRν

2
X =

ATRA

2
+Q , (26)

provides also a solution to the following Sylvester
equation

XνR−RνX = RA−ATR . (27)

Moreover, the matrices B ∈ Matd×d(R) and [B, P ] ∈
Matd×(d+1)(R) have the same rank, where B is the
matrix defined in (23), P := −QH+(1−N) B

2 ∆ and
[B, P ] is the matrix whose columns are the columns of
B and the vector P , i.e.

[B, P ] :=
(
B1, . . . ,Bd, P

)
, (28)

being Bj the columns of the matrix B.
In view of the previous analysis, we have proved the follow-
ing theorem about games with nearly identical players.

Theorem 1: Assume that the N–player game having dy-
namics (1) and costs (2) satisfies assumption (H) and that the
players are almost identical in the sense of Definition 3.1.
Then, the associated system of 2N HJB–KFP equations (8)
admits solutions (v,m, λ1, . . . , λN ) of the form v quadratic
function with v(0) = 0 and m multivariate Gaussians
N (µ,Σ−1), i.e. of the form (15)–(16), if and only if (EN)
is satisfied. Moreover, such solutions are also unique if and
only if the matrix B defined in (23) is invertible and, if this
is the case, the affine feedbacks

αi(x) = α(x) := R−1∇v(x) , x ∈ Rd, i = 1, . . . , N

provide a Nash equilibrium strategy for all initial posi-
tions X0 ∈ RNd, among the admissible strategies, and
J i(X0, α) = λi for all X0 and all i.

IV. THE LIMIT AS N → +∞
Next we study the convergence of Nash equilibria when

the population of players becomes very large, i.e., when
N → +∞. Assume for simplicity that the control system,
the costs of the control and the reference positions are always
the same, i.e. that A, σ,R,H and ∆ are all independent from
the number of players N . We denote with

QN , BN , CN
i , DN

i ,



the primary and secondary costs of displacement, respec-
tively, which are assumed to depend on N . We assume that
these quantities, when N → +∞, tend to suitable matrices
Q̂, B̂, Ĉ, D̂ with their natural scaling, i.e. as N → +∞ there
holds

QN → Q̂ , BN (N − 1)→ B̂ ,

CN
i (N − 1)→ Ĉ , DN

i (N − 1)2 → D̂ , ∀ i . (29)

If we define an operator acting on probability measures of
Rd by setting for all m ∈ P(Rd)

V̂ [m](X) := (X −H)T Q̂(X −H)+∫
Rd

((X −H)T
B̂

2
(ξ −∆) + (ξ −∆)T

B̂

2
(X −H)) dm(ξ)

+

∫
Rd

(ξ −∆)T Ĉ(ξ −∆) dm(ξ)

+

(∫
Rd

(ξ −∆) dm(ξ)

)T

D̂

(∫
Rd

(ξ −∆) dm(ξ)

)
(30)

then it is easy to verify that, as N → +∞, for all i and all
m ∈ P(Rd)

V N
i [m](X)→ V̂ [m](X) , locally uniformly in X .

By denoting with λNi , vN and mN the solutions found
in Section III, we expect that the limits of these solutions
satisfy, like in [2], [18], [20], the system of two mean field
equations

−tr(νD2v) +∇vT R−1

2 ∇v −∇v
TAx+ λ = V̂ [m](x)

−tr(νD2m)− div
(
m · (R−1∇v −Ax)

)
= 0

∫
Rd m(x) dx = 1 , m > 0

(31)
As before, we look for solutions such that

v(x) = xT
Λ

2
x+ ρx ,

m(x) = γ exp

{
− 1

2
(x− µ)T Σ(x− µ)

}
, (32)

for suitable symmetric matrices Λ,Σ, with Σ positive def-
inite, suitable vectors µ, ρ and a normalization constant γ
depending only on the matrix Σ and on the dimension of
the space. By computations similar to those of Section III we
verify that the equation for the measure reduces, as before,
to the matrix relations

Λ = R
(
νΣ +A

)
, ρ = −RνΣµ. (33)

Concerning the equation for the value function, we proceed
as in the previous sections and obtain the conditions

Σ
νRν

2
Σ− ATRA

2
= Q̂ (34)

− ΣνRνΣ

2
µ = −Q̂H +

B̂

2
(µ−∆) (35)

µT ΣνRνΣ

2
µ− tr(νRνΣ + νRA) + λ = F̂o (36)

with

F̂o = HT Q̂H −

(
HT B̂

2
(µ−∆) + (µ−∆)T

B̂

2
H

)
+ tr(ĈΣ) + (µ−∆)T (Ĉ + D̂)(µ−∆)

In particular, the first equation has exactly the same form
as (20), and it hence admits a unique symmetric and positive
definite solution Σ. Also, we can rewrite the second equality
in the form

−

(
Q̂+

ATRA

2
+
B̂

2

)
µ = −Q̂H − B̂

2
∆ ,

which admits a unique solution µ whenever the matrix

B∞ := Q̂+
ATRA

2
+
B̂

2
(37)

is invertible. Finally, once Σ and µ have been found, one
can insert them into the third equation and (33) to obtain the
value λ, the matrix Λ and the vector ρ required by (32).

Based on the previous analysis, we can pass to the limit as
N → ∞ in (19), (20), (21), and (22); the argument for the
Riccati equation (20) is nontrivial and it is given in detail in
[3]. The result we get is the following.

Theorem 2: Assume (H), almost identical players, (EN)
for all N , the convergence of the data (29), and the invert-
ibility of the matrix B∞ defined in (37). Then the solutions
(vN ,mN , λN1 , . . . , λ

N
N ) found in Theorem 1 converge to a

solution (v,m, λ) of the Mean-Field system of HJB–KFP
equations (31) as N → ∞ in the following sense: vN → v
in C1

loc(Rd) with second derivative converging uniformly in
Rd, mN → m in Ck(Rd) for all k, and λNi → λ for all i.
Moreover such solution has v quadratic and m multivariate
Gaussian, i.e. it is of the form (32) with parameters satisfying
(33), (34), (35), (36). Finally, the solution is unique among
functions of the form (32).

A natural question is whether the PDE system (31) has
other solutions that are not quadratic-Gaussian. We add a
normalization condition on v, to avoid addition of constants,
and make a simple assumption that ensures the monotonicity
of V̂ with respect to the scalar product in the Lebesgue space
L2. Then an argument of Lasry and Lions implies uniqueness
[18], [20].

Theorem 3: The integral operator V̂ satisfies∫
Rd

(
V̂ [m]− V̂ [n]

)
(x) d(m − n)(x) ≥ 0 for all probability

measures m, n on Rd if and only if the matrix B̂ is positive
semidefinite. Then, under the assumptions of Theorem 2
and for B̂ ≥ 0, (v,m, λ) is the unique solution of (31) such
that v(0) = 0.

V. EXPLICIT SUFFICIENT CONDITIONS

We have already stressed that condition (EN) has the im-
portant role to translate the existence of quadratic–Gaussian
solutions to the system (8) into algebraic matrix relations. In



this section we show that such conditions can also be easily
verified in some special cases.

Consider a N–player game with dynamics (1) and costs
(2) and assume that (H) holds, that players are almost
identical in the sense of Definition 3.1, and also that
(a) dynamics (1) are given by a drift matrix A which is

symmetric and a diffusion matrix σ = sId with s ∈
R \ {0},

(b) costs (2) are given by a diagonal matrix R = rId, with
r > 0, and by matrices Qi such that, in the notations
of Lemma 3.1, the d × d square blocks Bi = B are
null and only the blocks Qi

ii = Q, Ci and Di can be
nonzero.

Then, it is easy to see that the relation in (EN) about
solutions of (26) and (27) is automatically satisfied. Indeed,
both matrices ν = s2Id/2 =: ν̄ and R commute with any
other matrix and thus (27) reduces to

r
(
A−AT

)
= r

s2

2
(X −X) = 0 ,

which is always satisfied under the symmetry assumption on
A. Moreover we can calculate the explicit expression of the
matrix Σ. Indeed, the matrix 2

r Q + A2 is symmetric and
positive definite and thus admits a positive definite square
root in Matd×d(R), that we denote with E. If we now
consider the ARE (20), we find

r
ν̄2

2
Σ2 = Q+

r

2
A2 =

r

2
E2 ,

which implies

Σ =
1

ν̄
E .

To verify the part of condition (EN) dealing with the matrix
B, we can rewrite (23) as

B = Q+
r

2
A2 =

r

2
E2

because now B = 0. Hence, B is invertible and the linear
system (21) admits a unique solution, explicitly given by

µ = − 2

r
(E2)−1QH ,

where H is the reference position (happy state) for the play-
ers. In turn, the expressions found for Σ and µ can be used
in (19) and (22) to obtain Λ, ρ and λ1, . . . λN , completing
the construction of the unique solution of quadratic–Gaussian
type.
In conclusion, for games with N nearly identical players
which satisfy (H), conditions (a) and (b) are sufficient to
guarantee the conclusions of Theorems 1, 2 and 3, and also
the following formula for the unique affine Nash equilibrium
strategy

α(x) = (E +A)x+
2

r
E−1QH .

Remark 5.1: In [3] we give some more general sufficient
conditions for the validity of Theorems 1, 2 and 3. In partic-
ular, the symmetry of A can be replaced by the assumption
that it is non-defective (i.e., each eigenvalue has multiplicity
equal to the dimension of the corresponding eigenspace).
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