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Abstract. We discuss the well-posedness of a new nonlinear model for
nematic elastomers. The main novelty in our work is that the Frank energy
penalizes spatial variations of the nematic director in the deformed, rather
than in the reference configuration, as it is natural in the case of large
deformations.

In this paper we discuss a new nonlinear model for nematic elastomers, which contains a
Frank energy term penalizing spatial variations of the nematic director n in the deformed
configuration. Our main result is a theorem on the existence of energy minimizers, which
identifies a class of energy densities for which the model is mathematically well-posed.

In recent years, considerable attention has been devoted to fully nonlinear mechanical
models describing the coupling between elasticity and nematic order (see [16, 1, 2, 6, 7, 10]
and references therein). The Frank term, however, has been typically evaluated in the
reference configuration while, when large deformations are in order, it is more natural to
consider spatial variations in the deformed configuration. Our main result is precisely that
of establishing (under reasonable assumptions) existence of minimal energy states when
the Frank term is written in the deformed configuration.

From the mathematical point of view, the difficulty we face is that our energy functional
has two terms, the Frank one defined on the deformed configuration, and the mechanical
one defined on the reference configuration. Therefore, we need to push-forward the second
one in order to work on the same domain. For this task, it becomes necessary to work with
the inverse of the deformation mapping and establishing sufficient regularity properties of
this inverse map using only the natural energy bounds is problematic.

Let M := {F ∈ R
3×3 : detF = 1} and let W : M → [0,∞) be a function such that

W̃ (F ) := W (FF T ) is polyconvex and W (F ) = 0 if and only if F = I. We follow [1, 10]
and we consider an energy density Wmec : M× S

2 → [0,∞) defined by

Wmec(F,n) := W̃ (V −1
n

F ),

where Vn is the stretch in the direction n ∈ S
2 of a fixed amplitude α > 0:

Vn := αn ⊗ n+ (I − n⊗ n)/
√
α.

Observe that Wmec(F,n) = 0 implies V −1
n

F (V −1
n

F )T = I and so, since V −1
n

is symmetric,
FF T = V 2

n
. In particular, since detF = 1, by polar decomposition it follows that F = VnR

for some R ∈ SO(3). This last equality summarizes in one formula the main features of
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the coupling between deformation F and nematic order n envisaged in [16], showing that
every pair (VnR,n) is a ‘natural’ (or ‘stress-free’) state of the material.

We propose the following type of energy to describe nematic elastomers:

I(u,n) :=
∫

u(Ω)
|∇n(y)|2dy +

∫

Ω
Wmec

(
∇u(x),n(u(x))

)
dx, (1)

where u : Ω → R
3 is a deformation of a body whose reference configuration is Ω (a

bounded, connected, open subset of R3) and n : u(Ω) → S
2 is the director field describing

the nematic order in the elastomer. Note that the gradient operator in the first integral is
meant with respect to the current spatial variable y, while the gradient in the second term is
with respect to the material coordinate x. In what follows, Inem(u,n) =

∫
u(Ω) |∇n|2dy and

Imec(u,n) =
∫
ΩWmec(∇u,n◦u)dx will denote the nematic (or Frank) and the mechanical

term of our energy, respectively. As already highlighted, the main feature (and novelty)
of our model is that it is formulated in the deformed configuration rather than in the
reference one.

Let us introduce the ambient space of our problem, namely, the class of competitors we
allow when minimizing energy (1). We assume that the deformations belong to

W(Ω,R3) :=
{
u ∈ W 1,3(Ω,R3) : det∇u = 1 a.e. in Ω

}
.

A function u ∈ W(Ω,R3) has nice properties (see [12]): firstly, it is continuous and dif-
ferentiable a.e. in Ω. Moreover, it satisfies the N property (|u(D)| = 0 whenever D ⊂ Ω
is a measurable set such that |D| = 0), and the N−1 property (|u−1(D)| = 0 whenever
D ⊂ R

3 is a measurable set such that |D| = 0).
Let Ωu := {x ∈ Ω : u is differentiable in x}. By [11, Theorem 3.1], u is almost locally

invertible in Ωu: for every x0 ∈ Ωu there are r = r(x0) > 0, an open neighborhood O ⊂ Ω
of x0, and a function w ∈ W 1,1(Br(y0),R

3) (with y0 = u(x0)) such that

u(O) = Br(y0) and w ◦ u(x) = x a.e. x ∈ O;

w(Br(y0)) = O a.e. and u ◦ w(y) = y for all y ∈ Br(y0);

∇w(y) = (∇u)−1(w(y)) a.e. y ∈ Br(y0).

Note that, if [u(Ω)] denotes the interior of u(Ω), then u(Ωu) ⊂ [u(Ω)] and therefore, by
the N property, |u(Ω) \ [u(Ω)]| = 0.

Remark. In general a map u ∈ W(Ω,R3) could be not open, as shown in [5, Example 1]
by considering the cylinder Ω := {x ∈ R

3 : 0 ≤ R < 1 , |x3| < 1}, with R := (x21 + x22)
1/2,

and the deformation u(x) := 21/3(R−1/2x1, R
−1/2x2, Rx3). Since u maps the axis of the

cylinder into the origin, u(Ω) is not open.

Regarding the director field n, we assume that, given a deformation u, it belongs to
H1([u(Ω)],S2). Note that, since n is measurable and u is continuous, the composition n◦u
is measurable. Moreover, since u has the N−1 property, this composition does not depend
on the particular representative of n. Therefore, the mechanical part of our energy is well
defined.
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Let us make some comments about our ambient space. The stored energy density we
have in mind is the standard one describing incompressible Ogden materials [10, 1]:

W̃ (F ) :=
∑

i

a1 (v
αi

1 + vαi

2 + vαi

3 − 3) +
∑

j

b1

(
(v1v2)

βj + (v1v3)
βj + (v2v3)

βj − 3
)
,

where vk = vk(F ) are the singular values of F , ai > 0, αi ≥ 1, bj > 0, βj ≥ 1, and

the normalizing constant 3 = trI is added so that W̃ vanishes when FF T = I. By [8,
Theorem 4.9-2], we know that on M such energy is polyconvex and satisfies a coerciveness
inequality of the form

W̃ (F ) ≥ a|F |α + b|cofF |β − c,

for suitable a, b, c > 0 and with α = maxi{αi}, β = maxj{βj}. At the moment our
existence result is limited to the case α = 3, so that the right ambient space is W(Ω,R3).
Indeed we need a certain regularity not only on the deformation u, but also on its “inverse”
u−1. Of course it should be desirable to extend the result to weaker coercivity assumptions
already considered in nonlinear elasticity, such as α = 2 and β = 3/2 (see [4, 15]), but
this goal seems hard to achieve. It would also be interesting to formulate our model in
the setting introduced in [13, 14], namely, a variational model that allows for cavitation,
through a functional that measures in the deformed configuration the surface area of the
cavities opened by the deformation.

In order to prove the existence of minimizers in our model, we need a couple of ingre-
dients. The first one is a stability result about invertibilty in the space W(Ω,R3).

Lemma 1. Let u, uk ∈ W(Ω,R3) be such that uk ⇀ u in W 1,3 and let Ω′ be an open
set compactly included in Ω. Then there exists a subsequence of {uk} (not relabeled) such

that uk converges to u uniformly in Ω
′

. Moreover, for any x0 ∈ Ω′

u there exist open
neighborhoods O,Ok ⊂ Ω′ of x0, k0 ∈ N, r = r(x0) > 0, and w,wk : Br(y0) → R

3 with
y0 = u(x0) such that for k ≥ k0

• u(O) = Br(y0) and w ◦ u(x) = x a.e. x ∈ O;
• uk(Ok) = Br(y0) and wk ◦ uk(x) = x a.e. x ∈ Ok;
• u ◦ w(y) = y and ∇w(y) = (∇u)−1(w(y)) a.e. y ∈ Br(y0);
• uk ◦ wk(y) = y and ∇wk(y) = (∇uk)

−1(wk(y)) a.e. y ∈ Br(y0);
• inf{diam(w(Bs(y0))) : s ≤ r} = 0;
• χOk

→ χO pointwise a.e.;

• w,wk ∈ W 1, 3
2 (Br(y0),R

3) and wk ⇀ w in W 1, 3
2 ;

• cof∇w, cof∇wk ∈ L3(Br(y0),R
3×3) and cof∇wk ⇀ cof∇w in L3.

Proof. With the exception of the last point, this lemma can be obtained from [11, Lemmata
4.3 and 4.5]. Remember that if F ∈ M, then cofF T = F−1. By a change of variables (see
[11, Lemmata 2.4 and 3.5]) we have

∫

Br(y0)
|cof∇wk|3dy =

∫

Br(y0)
|(∇wk)

−1|3dy =

∫

Ok

|∇uk|3dx,

so that {cof∇wk} is bounded in L3. Similar arguments show that cof∇w belongs to L3.
In order to prove weak convergence, we still make use of a change of variables. Indeed,
because of the low integrability of ∇wk, we cannot appeal to the usual continuity of the
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cofactor ([9, Theorem 8.20]). Let φ ∈ C∞

0 (Br(y0)). Note that χOk
φ ◦ uk converges to

χOφ◦u pointwise a.e. and therefore in Lp for any p finite (by Vitali convergence theorem,
being bounded in L∞). We have

lim
k

∫

Br(y0)
φ(y)cof∇wk(y)dy = lim

k

∫

Ok

φ(uk(x))(∇uk(x))
T dx

=

∫

O
φ(u(x))(∇u(x))T dx =

∫

Br(y0)
φ(y)cof∇w(y)dy.

�

The second ingredient is the continuity of the cofactor of the “perturbed” gradient
∇wVn with respect to weak convergence.

Lemma 2. Let B be a bounded open subset of R
3, and let {wk} ⊂ W 1, 3

2 (B,R3) and

{nk} ⊂ L∞(B,S2) be two sequences such that wk ⇀ w weakly in W 1, 3
2 , cof∇wk ⇀ cof∇w

weakly in L3, and nk → n pointwise a.e.. Then ∇wkVnk
⇀ ∇wVn weakly in L

3

2 and
cof(∇wkVnk

) ⇀ cof(∇wVn) weakly in L3.

Proof. First of all, note that n ∈ L∞(B,S2). Moreover Vnk
→ Vn and V −1

nk
→ V −1

n

pointwise a.e.. On the other hand, since {Vnk
} and {V −1

nk
} are both bonded in L∞, Vitali

convergence theorem leads to Vnk
→ Vn and V −1

nk
→ V −1

n
strongly in any Lp, p finite.

This directly implies that ∇wkVnk
⇀ ∇wVn weakly in L1, and then in L

3

2 because there
{∇wkVnk

} is bounded. Similarly

cof(∇wkVnk
) = (Vnk

)−1(cof∇wk) ⇀ (Vn)
−1(cof∇w) = cof(∇wVn) weakly in L3.

�

We are now ready to prove our main result.

Theorem. Assume that W̃ satisfies the following coercivity condition:

W̃ (F ) ≥ c1|F |3 − c2 ∀F ∈ M (2)

for some constants c1, c2 > 0. Assume also that Ω has smooth boundary and let Γ 6=
Ø be an open (in the relative topology) subset of ∂Ω. Given (u0,n0) ∈ W(Ω,R3) ×
H1([u0(Ω)],S

2) such that I(u0,n0) is finite, define WΓ,u0
(Ω,R3) := {u ∈ W(Ω,R3) : u =

u0 on Γ} (the equality is intended in the sense of traces). Then, there exists (u,n) ∈
WΓ,u0

(Ω,R3)×H1([u(Ω)],S2) minimizing I.
Proof. We are going to use the direct method of the calculus of variations. Let {(uk,nk)} ⊂
WΓ,u0

(Ω,R3) ×H1([uk(Ω)],S
2) be a minimizing sequence. Since F (uk,nk) ≤ F (u0,n0),

and {(Vnk
)−1} is bounded in L∞, assumption (2) implies that {∇uk} is bounded in L3.

Moreover, thanks to the boundary condition and the Poincaré inequality, {uk} is bounded
in L3. Therefore, by refining the sequence if necessary, we have that uk converges weakly
in W 1,3 to a certain u. The continuity of the determinant (see [9, Theorem 8.20]) ensures
that det∇uk → det∇u in distribution and then that det∇u = 1 a.e. in Ω. Since the
boundary condition is preserved in the limit, we conclude that u belongs to WΓ,u0

(Ω,R3).
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We now extend by zero nk and ∇nk to the whole R
3. Since the sequence {nk} is

bounded in L∞ and the sequence {∇nk} is bounded in L2, by refining if necessary, we
can assume that for certain l, l′

lim
k

nk = l weakly* in L∞ and lim
k

∇nk = l′ weakly in L2.

We have to prove that there exists n ∈ H1([u(Ω)],S2) such that l = n and l′ = ∇n

on [u(Ω)]. By locality, it is sufficient to prove this in an open neighborhood of each
point of [u(Ω)]. Given Ω′ ⊂⊂ Ω, let x0 ∈ Ω′

u and O,Ok, r, y0 as in Lemma 1. Since
Br(y0) = uk(Ok) ⊂ [uk(Ω)], we have {nk|Br(y0)} ⊂ H1(Br(y0),R

3). Therefore n := l|Br(y0)

belongs to H1(Br(y0),R
3) and ∇n = l′|Br(y0). By the compact embedding of H1 in L2,

we can also assume that nk → n pointwise a.e. in Br(y0). In particular n ∈ S
2 a.e..

By lower semicontinuity of convex functionals with respect to weak convergence, we
have

lim inf
k

Inem(uk,nk) = lim inf
k

∫

R3

|∇nk|2dy ≥
∫

R3

|l′|2dy ≥ Inem(u,n).

It remains to show that lim infk Imec(uk,nk) ≥ Imec(u,n). Refining the sequence
{(uk,nk)} we can assume that the liminf is actually a limit: in this way, if necessary,
we can further refine the sequence keeping the estimates. In order to avoid the difficulty
related to the convergence of the composition nk ◦ uk, we operate a change of variables
and work on the deformed configuration.

We start with a localization argument. Using the same notation of Lemma 1, given
Ω′ ⊂⊂ Ω, x0 ∈ Ω′

u and s ≤ r, we set U := w(Bs(y0)) and Uk := wk(Bs(y0)). For k ≥ k0 we
have ∫

Uk

Wmec

(
∇uk(x),nk(uk(x))

)
dx =

∫

Uk

W̃
(
V −1
nk

(uk(x))∇uk(x)
)
dx

=

∫

Bs(y0)
W̃

(
V −1
nk

(y)(∇wk)
−1(y)

)
dy =

∫

Bs(y0)
W̃

(
(∇wkVnk

)−1(y)
)
dy

and similarly
∫

U
Wmec

(
∇u(x),n(u(x))

)
dx =

∫

Bs(y0)
W̃

(
(∇wVn)

−1(y)
)
dy.

Since (∇wkVnk
)−1 = cof(∇wkVnk

)T and cof(∇wkVnk
)−1 = (∇wkVnk

)T , by using Lemma 2,

the polyconvexity of W̃ , and the semicontinuity of convex functionals, we obtain

lim inf
k

∫

Uk

Wmec

(
∇uk(x),nk(uk(x))

)
dx ≥

∫

U
Wmec

(
∇u(x),n(u(x))

)
dx.

We then use a covering argument. For any x ∈ Ω′

u, let wx, wx
k : Br(x)(u(x)) → R

3 be
the inverse functions of u, uk in a neighborhood of u(x) given by Lemma 1. Since

{
wx(Bs(u(x))) : x ∈ Ω′

u and s ≤ r(x)
}

is a covering of Ω′

u and inf{diam(wx(Bs(u(x)))) : s ≤ r(x)} = 0, by Vitali covering
theorem (see [3, Theorem 2.2.2]), there exists {(xj , sj)}j∈N such that, setting U j :=
wxj (Bsj(u(xj))), the family {U j}j∈N is a covering of Ω′ (up to a set of zero measure)



6 M. BARCHIESI & A. DESIMONE

and U
j ∩ U

i
= Ø if j 6= i. For ε ∈ (0, r(xj)− sj), let U

j,ε := wxj (Bsj+ε(u(xj))). For fixed

h ∈ N, i, j ∈ {1, . . . , h} , and choosing ε small enough we have U j,ε ∩ U i,ε = Ø if j 6= i.
Observe now that, since uk converges to u uniformly in Ω′, for k large enough (depending

on ε) one has U j
k := w

xj

k (Bsj (u(xj))) ⊂ U j,ε so that U j
k ∩ U i

k = Ø if j 6= i. Indeed, if

z ∈ U j
k , then

|u(z)− u(xj)| ≤ |u(z)− uk(z)|+ |uk(z) − u(xj)| < sj + ε

as soon as ‖u− uk‖∞ ≤ ε. By the previous localization argument, we have

lim
k

Imec(uk,nk) ≥ lim inf
k

∫
⋃h

j=1
Uj

k

Wmec

(
∇uk(x),nk(uk(x))

)
dx

≥
∫
⋃h

j=1
Uj

Wmec

(
∇u(x),n(u(x))

)
dx.

By letting h go to infinity and by invading Ω with Ω′ we conclude the proof. �
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