
TO APPEAR IN Rev. Mat. Iberoam.

CALDERÓN-ZYGMUND ESTIMATES FOR PARABOLIC
p(x, t)-LAPLACIAN SYSTEMS

PAOLO BARONI AND VERENA BÖGELEIN

ABSTRACT. We prove local Calderón-Zygmund estimates for weak solutions of the evo-
lutionary p(x, t)-Laplacian system

∂tu− div
(
a(x, t)|Du|p(x,t)−2Du

)
= div

(
|F |p(x,t)−2F

)
under the classical hypothesis of logarithmic continuity for the variable exponent p(x, t).
More precisely, we show that the spatial gradient Du of the solution is as integrable as the
right-hand side F , i.e.

|F |p(·) ∈ Lq
loc =⇒ |Du|p(·) ∈ Lq

loc for any q > 1

together with quantitative estimates. Thereby, we allow the presence of eventually discon-
tinuous coefficients a(x, t), only requiring a VMO condition with respect to the spatial
variable x.

1. INTRODUCTION

The aim in this paper is to provide a Calderón-Zygmund theory for weak solutions to
the parabolic p(x, t)-Laplacian system

(1.1) ∂tu− div
(
a(z)|Du|p(z)−2

Du
)

= div
(
|F |p(z)−2

F
)

in ΩT := Ω× (0, T ).

Here, Ω is an open set in Rn with n ≥ 2 and ΩT denotes the parabolic cylinder over Ω.
Since we consider the case of systems, the solution is a possibly vector valued function
u : ΩT → RN with N ≥ 1. With respect to the variable exponent p(x, t) we assume loga-
rithmic continuity which is classical in the theory of variable exponent problems, while the
regularity assumption on a(x, t) allows to catch a large class of not necessarily continuous
coefficients, including the ones of the splitting form a(x, t) = b(x)c(t), where b(·) belongs
to the class of VMO functions and c(·) is merely a measurable bounded function. For the
precise assumptions we refer to Section 2 below. As usual we consider weak solutions
u of (1.1), meaning that they belong to a certain parabolic Sobolev space, in particular
|Du|p(·) ∈ L1, see Definition 2.1 below. The existence of such weak solutions is ensured
by a result of Antontsev and Shmarev [7, 8]. Our intention in this paper is to establish
a local Calderón-Zygmund theory for weak solutions to (1.1) and can be summarized as
follows: For any q > 1 we prove the inclusion

|F |p(·) ∈ Lqloc(ΩT ) =⇒ |Du|p(·) ∈ Lqloc(ΩT )

together with quantitative gradient estimates. At this stage we mention that when the ex-
ponent p(·) is constant the result has been obtained in [4]; the stationary case of our result
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has been treated in [3] before. We stress that, apart from the parabolic scaling deficit, our
quantitative gradient estimate is homogeneous in the sense that the constant is independent
of the p(·)-energy of Du. To our knowledge this fact is new even for the stationary elliptic
case.

Parabolic systems of the type considered in (1.1) are simplified versions of systems
arising in the mathematical modeling of certain phenomena in fluid dynamics, such as
models for non-Newtonian fluids, especially electro-rheological fluids. The peculiarity of
these fluids is that their viscosity strongly depends on the external electromagnetic field and
therefore varies in space and time. A mathematical model for electro-rheological fluids has
been developed by Růžička in [31] and admits a p(x, t)-growth structure in the non linear
diffusion term. For simplified versions of this model partial regularity results can be found
in [5, 21] and for the stationary case in [2, 13]. Other applications (in the case of equations)
are models for flows in porous media [6, 25].

Compared to the stationary case there are only a few regularity results for parabolic
problems with non-standard growth. The first one we mention, which in turn is the starting
point for almost any other regularity result in this area, is the self improving property of
higher integrability, i.e. the existence of some ε > 0, depending only on the structural
constants, such that

|Du|p(·) ∈ L1+ε
loc (ΩT ).

This result was first established in the case of the p(x, t)-Laplacian equation by Antontsev
and Zhikov [9], and later for a quite general class of parabolic systems with p(x, t)-growth
independently by Zhikov and Pastukhova [33] and Bögelein and Duzaar [10]. With regard
to Hölder regularity, Chen and Xu [15] proved in the scalar case that weak solutions of the
parabolic p(x, t)-Laplacian equation are locally bounded and Hölder continuous. The local
Hölder continuity of the spatial gradientDu for the parabolic p(x, t)-Laplacian system has
recently been established by Bögelein and Duzaar [11]. As already mentioned before, for
more general parabolic systems with non-standard growth partial regularity results can be
found in [5, 21].

The history of Calderón-Zygmund estimates for non linear problems starts in the ellip-
tic setting. The result for the p-Laplacian equation, i.e. the scalar case N = 1, has been
obtained by Iwaniec [26], while the vectorial case N > 1 has been treated by DiBenedetto
and Manfredi [20]. The extension to elliptic equations with VMO coefficients has been
achieved by Kinnunen and Zhou [29]. General elliptic equations, also involving non-
standard growth conditions, have been treated by Acerbi and Mingione [3] who built on
previous ideas of Caffarelli and Peral [14] valid for homogeneous equations with highly
oscillating coefficients. For the case of higher order systems with non-standard growth
conditions we refer to Habermann [24]. The anisotropic character of the evolutionary p-
Laplacian system makes impossible to use the elliptic techniques in the parabolic setting.
Indeed it was initially not clear how to transfer such results to the parabolic setting. The
result has finally been achieved by Acerbi and Mingione [4] who introduced the necessary
new tools for developing a local Calderón-Zygmund theory for the time dependent, para-
bolic case (see also Misawa [30] for the special case F ∈ BMO). Later on, extensions to
general parabolic systems have been obtained by Duzaar, Mingione and Steffen [22] while
a Calderón-Zygmund theory for evolutionary obstacle problems can be found in [12, 32].

The main difficulty when considering the time dependent parabolic case comes from the
non homogeneous scaling behavior of the system, in the sense that the solution multiplied
by a constant is in general not anymore a solution. Note that this problem appears already
in the standard growth case when p(·) ≡ p with p 6= 2. As a consequence, all local
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estimates for the solution (such as energy estimates or reverse Hölder inequalities) become
inhomogeneous and the use of maximal operators, which are typically used in the proof
of Calderón-Zygmund estimates, becomes delicate. The technique how to overcome this
problem goes back to the pioneering work of DiBenedetto and Friedman [19]. The idea
is to choose a system of parabolic cylinders different from the standard one, whose space-
time scaling depends on the local behavior of the solution itself. In a certain sense this
allows to rebalance the non homogeneous scaling of the parabolic p-Laplacian system.
This technique is by now classical and the core of the proof of almost any regularity result
for degenerate parabolic problems. The strategy is to find parabolic cylinders of the form

(1.2) Q(λ)
% (zo) := B%(xo)×

(
to − λ2−p%2, to + λ2−p%2

)
, zo = (xo, to)

such that the scaling parameter λ > 0 and the average of |Du|p over Q(λ)
% (zo) are coupled

in the following way:∫
Q

(λ)
% (zo)

|Du|p dz ≈ λp.

Such cylinders are called intrinsic cylinders or cylinders with intrinsic coupling. The del-
icate aspect in this coupling clearly relies in the fact that the value of the integral average
must be comparable to the scaling factor λ, which itself is involved in the construction of its
support. On such intrinsic cylinders, i.e. when |Du| is comparable to λ in the above sense,
the parabolic p-Laplacian system ∂tu = div(|Du|p−2Du) behaves in a certain sense like
∂tu = λp−2∆u. Therefore, using intrinsic cylinders of the type Q(λ)

% (zo) we can rebal-
ance the occurring multiplicative factor λp−2 for instance by rescaling u in time by a factor
λ2−p.

When dealing with the case of non-standard growth the construction of such a uniform
system of intrinsic cylinders is not anymore possible, since the exponent p appears in the
scaling parameter λ2−p and therefore the scaling will depend on the particular point zo.
This means that the scaling of the intrinsic cylinder will in fact depend on space and time,
so that we have to deal with a non uniform intrinsic geometry. More precisely, we consider
cylinders of the type

(1.3) Q(λ)
% (zo) := B%(xo)×

(
to − λ

2−po
po %2, to + λ

2−po
po %2

)
, po := p(zo),

with an intrinsic coupling of the form (where for simplicity we omit the role of the right-
hand side F ):∫

Q
(λ)
% (zo)

|Du|p(z) dz ≈ λ.

Note that compared to (1.2) we performed a change of parameter λpo ↔ λ, so that the
right-hand side is independent of po and hence independent of zo. The main difficulty
now comes from the fact that the heuristics we described above for the standard growth
case do not apply for the case of non-standard growth, i.e. on Q

(λ)
% (zo) the parabolic

p(x, t)-Laplacian system behaves like ∂tu = λ
p(z)−2
p(z) ∆u such that the multiplicative factor

λ
p(z)−2
p(z) does not cancel out with the scaling factor λ

2−po
po . This problem will be solved by

a parabolic localization argument which has its origin in [10], see Section 4.
Now, we briefly describe the strategy of proof of our main result. Since we have to

work on a system of non uniform intrinsic cylinders of the type (1.3) there is no uniform
maximal function available. For this reason we remove the use of any maximal operator in
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the proof by a technique which goes back to [4]. Instead of maximal operators we construct
a covering of the super level sets{

|Du(z)|p(z) > λ
}
, λ� 1

by exit cylinders Q(λ)
%i (zi), i = 1, . . . ,∞ defined according to (1.3) on which we have∫

Q
(λ)
%i

(zi)

|Du|p(·) +M(|F |+ 1)p(·) dz ≈ λ.

Thereby, M � 1 is a suitably chosen parameter depending on the structural constants of
the problem. Then, we know that∫

Q
(λ)
%i

(zi)

|Du|p(·) dz . λ and
∫
Q

(λ)
%i

(zi)

(|F |+ 1)p(·) dz .
λ

M
.

Therefore, if M is large u solves approximately (here we suppose a ≡ 1 for simplicity)

∂tu− div
(
|Du|p(z)−2Du

)
≈ 0 on Q(λ)

%i (zi).

This heuristic suggests to compare u to the solution w of ∂tw − div
(
|Dw|p(zi)−2Dw

)
= 0 in Q(λ)

%i (zi),

w = u on ∂PQ
(λ)
%i (zi).

To be precise, this will be done in a two step comparison argument. Here, we stress that
the comparison argument strongly relies on the parabolic localization technique, since we
replaced the variable exponent p(z)−2 by the constant exponent p(zi)−2. The advantage
now is that the theory of DiBenedetto and Friedman [18] ensures that Dw satisfies an a
priori L∞-estimate. Via the comparison argument this L∞-estimate can be transferred into
estimates for Du on the super level sets. At this stage the final result follows by a standard
argument using Fubini’s theorem.

2. STATEMENT OF THE RESULT

As already mentioned before, Ω will be a bounded open set in Rn, n ≥ 2, and ΩT :=
Ω×(0, T ), T > 0 will denote the space-time cylinder over Ω. Moreover, we shall consider
an exponent function p : ΩT → ( 2n

n+2 ,∞). For k ∈ N we define Lp(·)(ΩT ,Rk) to be the
set of those measurable functions v : ΩT → Rk such that |v|p(·) ∈ L1(ΩT ), i.e.

Lp(·)(ΩT ,Rk) :=

{
v : ΩT → Rk :

∫
ΩT

|v|p(·) dz <∞
}
.

As usual we shall deal with weak solutions to (1.1) which are specified in the following

Definition 2.1. We identify a map u ∈ L2(ΩT ,RN ) ∩ L1(0, T ;W 1,1(Ω,RN )) as a weak
solution of the parabolic system (1.1) if and only if Du ∈ Lp(·)(ΩT ,RNn) and

(2.1)
∫

ΩT

u · ϕt −
〈
a(·)|Du|p(·)−2

Du,Dϕ
〉
dz =

∫
ΩT

〈
|F |p(·)−2

F,Dϕ
〉
dz

holds for every test function ϕ ∈ C∞0 (ΩT ,RN ).

Since our problem is of local nature, it is not restrictive to assume the existence of γ1, γ2

such that

(2.2) 2n
n+2 < γ1 ≤ p(z) ≤ γ2 <∞ for all z ∈ ΩT .
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The lower bound γ1 > 2n/(n + 2) is unavoidable even in the constant exponent case
p(·) ≡ p, cf. [17, Chapters 5, 8]. With respect to the regularity of p(·) we will assume the
following strong logarithmic continuity condition to hold:

(2.3) |p(z)− p(z̃)| ≤ ω
(
dP(z, z̃)

)
for any z, z̃ ∈ ΩT ,

where the parabolic metric dP is given by

dP(z, z̃) := max
{
|x− x̃|,

√
|t− t̃|

}
for z = (x, t), z̃ = (x̃, t̃) ∈ Rn+1

and ω : [0,+∞)→ [0,+∞) is a nondecreasing modulus of continuity satisfying

(2.4) lim sup
%↓0

ω(%) log
(1

%

)
= 0

an assumptions which has been first considered in [1] and then used in [3] and [13]. By
virtue of (2.4) we may assume that there exists R1 ∈ (0, 1] depending on ω(·) such that

(2.5) ω(%) log
(1

%

)
≤ 1 for all % ∈ (0, R1].

For the coefficient function a : ΩT → R we will assume its measurablity and that

(2.6) ν ≤ a(z) ≤ L for any z ∈ ΩT

holds with some constants 0 < ν ≤ 1 ≤ L. With regard to its regularity, we will only
assume that it satisfies a VMO condition with respect the spatial variable. More precisely,
denoting

(a)xo,%(t) :=

∫
B%(xo)

a(x, t) dx for B%(xo) ⊂ Ω,

we assume that there exists ω̃ : [0,∞)→ [0, 1] such that

(2.7) sup
B%(xo)⊂Ω,0<%≤r

∫
B%(xo)

|a(x, t)− (a)xo,%(t)| dx ≤ ω̃(r)

for a.e. t ∈ (0, T ) any r > 0 and

(2.8) lim
r↓0

ω̃(r) = 0.

Here, we stress that with respect to time we assume not more than measurability. Moreover,
our assumptions on a allow product coefficients of the type a(x, t) = b(x)c(t), with b ∈
VMO(Ω) ∩ L∞(Ω) and c ∈ L∞(0, T ). Now we are ready to state our main result.

Theorem 2.2. Let u be a weak solution of the parabolic system (1.1) where p : ΩT →
[γ1, γ2] and a : ΩT → [ν, L] satisfy the assumptions (2.2) – (2.4) and (2.6) – (2.8). More-
over, assume that |F |p(·) ∈ Lqloc(ΩT ) for some q > 1. Then we have

|Du|p(·) ∈ Lqloc(ΩT ).

Moreover, forK ≥ 1 there exist a radiusRo = Ro(n,N, ν, L, γ1, γ2,K, ω(·), ω̃(·), q) > 0
and a constant c = c(n,N, ν, L, γ1, γ2, q) such that the following holds: If

(2.9)
∫

ΩT

|Du|p(·) + (|F |+ 1)p(·) dz ≤ K,

then for every parabolic cylinder Q2R ≡ Q2R(zo) b ΩT with R ∈ (0, Ro], there holds∫
QR

|Du|p(·)q dz
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≤ c
[ ∫

Q2R

|Du|p(·) dz +

(∫
Q2R

(|F |+ 1)p(·)q dz

) 1
q
]1+d(po)(q−1)

,(2.10)

where we denoted

(2.11) d(po) :=


po
2

if po ≥ 2,

2po
po(n+ 2)− 2n

if po < 2,
with po := p(zo).

We note that the constant c in Theorem 2.2 remains stable when q ↓ 1 and it blows up,
i.e. c → ∞ when q → ∞. Moreover, due to an improved localization technique we are
able to prove the gradient estimate (2.10) with a constant c independent of the parameter
K, which was even not known in the elliptic case, cf. [3, 24].

Remark 2.3. The same result holds true if we assume, instead of the VMO condition (2.8),
that the BMO seminorm of a with respect to x is small, i.e. that

[a]BMO := sup
r>0

ω̃(r) ≤ εBMO

with some constant εBMO > 0 depending on n,N, ν, L, γ1, γ2, q.

3. PRELIMINARIES AND NOTATION

3.1. Notation. For a point zo ∈ Rn+1 we shall always write zo = (xo, to) with xo ∈ Rn
and to ∈ R and we shall consider – as we did for instance in the statement of Theorem 2.2 –
symmetric parabolic cylinders around zo of the formQ%(zo) := B%(xo)×(to−%2, to+%

2).
Moreover, in the course of the proof of our main result, in order to rebalance the non
homogeneity of the parabolic system, we shall also deal with scaled cylinders of the form

(3.1) Q(λ)
% (zo) := B%(xo)× Λ(λ)

% (zo),

where λ > 0 and

Λ(λ)
% (zo) :=

(
to − λ

2−po
po %2, to + λ

2−po
po %2

)
.

In any case, when considering a certain cylinder Q(λ)
% (zo) with center zo, by po we denote

the value of p(·) at the center of the cylinder, i.e. po ≡ p(zo). Note that such a system
of scaled cylinders is non-uniform in the sense that the scaling λ

2−po
po depends on the

particular point zo via po ≡ p(zo). In the particular case λ = 1 the cylinders Q(1)
% (zo)

reduce to the standard parabolic ones, i.e. Q
(1)
% (zo) ≡ Q%(zo). By χQ

(λ)
% (zo), for a

constant χ > 1, we denote the χ-times enlarged cylinder, i.e. χQ(λ)
% (zo) := Q

(λ)
χ% (zo). For

g ∈ L1
loc(C,Rk), with C ⊂ ΩT of strictly positive measure, we shall write

(g)C :=

∫
C

g(z) dz :=
1

|C|

∫
C

g(z) dz

for the mean value of g on C. Finally, αn denotes the Lebesgue measure of the unit
ball B1(0) in Rn. We will denote with c a generic constant greater than one, possibly
varying from line to line. We will highlight the dependencies of the constants in between
parentheses. For shortness of notation we will denote by the word data exactly the set of
parameters n,N, ν, L, γ1, γ2, so that writing c(data,M) we will mean that the constant c
depends on n,N, ν, L, γ1, γ2 and moreover upon M . Constants we need to recall will be
denoted with special symbols, such as cDiB , c̃, c∗, c`.
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3.2. Preliminaries. The following lemma is a standard iteration lemma and can for in-
stance be found in [23, Lemma 6.1].

Lemma 3.1. Let φ : [R, 2R]→ [0,∞) be a function such that

φ(r1) ≤ 1
2φ(r2) +A+

B
(r2 − r1)β

for every R ≤ r1 < r2 ≤ 2R,

where A,B ≥ 0 and β > 0. Then

φ(R) ≤ c(β)

[
A+

B
Rβ

]
.

The next lemma is a useful tool when dealing with p-growth problems. The contin-
uous dependence of the constant with respect to p allows to instead consider a constant
depending on γ1, γ2 when p ∈ [γ1, γ2].

Lemma 3.2. Let p ∈ [γ1, γ2]. Then there exists a constant c ≡ c(n,N, γ1, γ2) such that
for any A, B ∈ RNn, not both zero, there holds(

|A|2 + |B|2
)(p−2)/2|B −A|2 ≤ c

〈
|B|p−2

B − |A|p−2
A,B −A

〉
.

The following Lemma can be deduced from [16, Lemma 2.2]. Note that the dependence
of the constant on γ2 instead of p can be deduced from the proof of the lemma.

Lemma 3.3. Let p ∈ [γ1, γ2]. Then there exists a constant c` ≡ c`(γ2) such that for any
A, B ∈ RNn there holds

|A|p ≤ c` |B|p + c`
(
|A|2 + |B|2

) p−2
2 |B −A|2.

Finally, we state a useful estimate which is a consequence of Iwaniec’s inequality for
Orlicz spaces [27], see also [3, inequality (28)]. Let β > 0, Q ⊂ Rn+1 and g ∈ Lσ(Q) for
some σ > 1. Then, there holds

(3.2)
∫
Q

|g| logβ
(
e+

|g|
(g)Q

)
dz ≤ c(σ, β)

(∫
Q

|g|σ dz
) 1
σ

for all σ > 1.

Thereby, the constant c(σ, β) blows up when σ ↓ 1. Moreover, c(σ, β) depends continu-
ously on β and therefore it can be replaced by a constant c(σ, γ1, γ2) if β ∈ [γ′2, γ

′
1].

4. NON UNIFORM INTRINSIC GEOMETRY

In the following lemma we provide a parabolic localization technique. Obviously the
difficulty stems from the necessity to couple the technique of intrinsic geometry with the
localization needed to treat the variable exponent growth conditions. As we already pointed
out in the introduction, this will be achieved by a non uniform intrinsic geometry, i.e.
a system of cylinders as defined in (3.1) whose scaling depends on the particular point
considered. Most of this technique goes back to [10].

Lemma 4.1. Let κ,K,M ≥ 1 and p : ΩT → [γ1, γ2] satisfy (2.3) and (2.5). Then there
exists a radius %o ≡ %o(n, γ1, κ,K,M,ω(·)) ∈ (0, R1] such that the following holds:
whenever Du,F ∈ Lp(·)(ΩT ,RNn) satisfy (2.9) and Q(λ)

% (zo) ⊂ ΩT is a parabolic cylin-
der with % ∈ (0, %o] and λ ≥ 1 such that

(4.1) λ ≤ κ
∫
Q

(λ)
% (zo)

|Du|p(·) +M(|F |+ 1)p(·) dz,
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then we have

(4.2) λ ≤
(

Γ

4%n+2

) po
2

, p2 − p1 ≤ ω(Γ%α) and λω(Γ%α) ≤ e
3npo
α ,

where

po := p(zo), p1 := inf
Q

(λ)
% (zo)

p(·), p2 := sup
Q

(λ)
% (zo)

p(·)

and

(4.3) Γ := 4βnκKM, βn := max{1, (2αn)−1}, α := min
{

1, γ1
n+2

4 −
n
2

}
.

Proof. We first deduce from (4.1), (2.9) (recall that Q(λ)
% (zo) ⊂ ΩT ) and the definitions of

Γ and βn in (4.3) the following bound for λ:

λ ≤ κKM

|Q(λ)
% (zo)|

=
κKM

2αn%n+2
λ
po−2
po ≤ βnκKM

%n+2
λ
po−2
po =

Γ

4%n+2
λ
po−2
po .

Rewriting this inequality we obtain (4.2)1. Now, we come to the proof of (4.2)2. We define

(4.4) %o := R
1
α
1 Γ−

2
α ≤ R1 ≤ 1

and assume that % ≤ %o. Keeping in mind the definition of α and Γ this determines %o as a
constant depending on n, γ1,K,M, κ, ω(·). From (2.3) and the fact that λ ≥ 1 we obtain
the following preliminary bound for the oscillation of p(·) on Q(λ)

% (zo):

p2 − p1 ≤ ω
(
2%+

√
2λ

2−po
2po %

)
≤ ω

(
2%+

√
2λ

2−γ1
2po %

)
.

In the case γ1 ≥ 2 this leads us to

p2 − p1 ≤ ω(4%) ,

while in the case 2n
n+2 < γ1 < 2 we infer from (4.2)1 that

p2 − p1 ≤ ω
(
4λ

2−γ1
2po %

)
≤ ω

(
4
(

Γ
4

) 2−γ1
4 %1− (2−γ1)(n+2)

4

)
≤ ω

(
Γ%γ1

n+2
4 −

n
2

)
.

Note that the restriction γ1 >
2n
n+2 ensures that the exponent of % is positive, i.e. γ1

n+2
4 −

n
2 > 0. Combining the estimates from the cases γ1 ≥ 2 and γ1 < 2 and recalling that
% ≤ 1 we arrive at:

p2 − p1 ≤ ω(Γ%α) ,

which proves (4.2)2. Finally, we come to the proof of (4.2)3. Using the definition of %o in
(4.4) and the logarithmic bound (2.5) (which is applicable since R1/Γ ≤ R1) we obtain

Γω(Γ%α) ≤ Γω(Γ%αo ) ≤ Γω(R1/Γ) ≤
(

Γ
R1

)ω(R1/Γ)
= exp

[
ω
(
R1

Γ

)
log
(

Γ
R1

)]
≤ e.

Moreover, by a similar reasoning and using the last inequality we get

%−ω(Γ%α) = Γ
ω(Γ%α)
α (Γ%α)−

ω(Γ%α)
α ≤ e

1
α (Γ%α)−

ω(Γ%α)
α

= e
1
α exp

[ω(Γ%α)
α log 1

Γ%α

]
≤ e

2
α .

At this stage (4.2)3 follows from (4.2)1 and the previous two inequalities since

λω(Γ%α) ≤
(
Γ%−(n+2)

) poω(Γ%α)
2 ≤ e

po
2 +

po(n+2)
α ≤ e

3npo
α .

This completes the proof of the lemma. �
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Since the family of intrinsic cylinders is non uniform – in the sense that the scaling
depends on the center of the cylinder – we need the following non uniform version of
Vitali’s covering theorem, which can be found in [10, Lemma 7.1]. Note that we may
choose L1 = 1 due to assumption (2.5) and that we replaced M by KM which is more
suitable in our setting.

Lemma 4.2. Let K,M, λ ≥ 1 and let p : ΩT → [γ1, γ2] fulfill assumptions (2.3) and
(2.5). Then there exists χ ≡ χ(n, γ1) ≥ 5 and %1 = %1(n, γ1,K,M) ∈ (0, 1] such that
the following is true: Let F = {Qi}i∈I be a family of axially parallel parabolic cylinders
of the form

Qi ≡ Q(λ)
%i (zi) ≡ B%i(xi)×

(
ti − λ

2−p(zi)

p(zi) %2
i , ti + λ

2−p(zi)

p(zi) %2
i

)
with uniformly bounded radii, in the sense that there holds

(4.5) %i ≤ min
{
%1,
[
βnKMλ

− 2
p(zi)

] 1
n+2

}
∀ i ∈ I

with βn defined in (4.3). Then there exists a countable subcollection G ⊂ F of disjoint
parabolic cylinders, such that⋃

Q∈F
Q ⊂

⋃
Q∈G

χQ.

5. HIGHER INTEGRABILITY

In this Section we provide a higher integrability result for solutions to homogeneous
parabolic p(x, t)-Laplacian systems that will be crucial later in the proof of certain com-
parison estimates. We consider the parabolic system

(5.1) ∂tv − div
(
a(z)|Dv|p(z)−2

Dv
)

= 0 on A× (t1, t2) =: A,

whereA ⊂ Rn is an open set and t1 < t2. Then, we have the following higher integrability
result from [10, Theorem 2.2].

Theorem 5.1. Suppose that p : A → [γ1, γ2] satisfies (2.3) and (2.5) and that a : A →
R satisfies (2.6). Then there exists εo ≡ εo(data) > 0 such that the following holds:
whenever a function v ∈ L2(A,RN )∩L1(t1, t2;W 1,1(A,RN )) withDv ∈ Lp(·)(A,RNn)
is a weak solution to the parabolic system (5.1) on A, we have that

(5.2) Dv ∈ Lp(·)(1+εo)
loc

(
A,RNn

)
.

Moreover, for any K ≥ 1 there exists a radius %2 ≡ %2(n, γ1, γ2,K, ω(·)) ∈ (0, R1] such
that there holds: If

(5.3)
∫
A

(|Dv|+ 1)p(·) dz ≤ K

and ε ∈ (0, εo], then for any parabolic cylinder Q2%(zo) ⊂ A with % ∈ (0, %2] we have∫
Q%(zo)

|Dv|p(·)(1+ε) dz ≤ c
(∫

Q2%(zo)

|Dv|p(·) dz
)1+εd(p(zo))

+ c(5.4)

for a constant c ≡ c(data) and with d(·) defined in (2.11).
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Note that the quantitative higher integrability estimate (5.4) is non homogeneous, in
the sense that the exponents of |Dv| on both sides of the inequality are different. In the
following Corollary we deduce a homogeneous version of this estimate valid on intrinsic
cylinders of the type (5.5). In order to understand that inequality (5.7) is homogeneous one
has to interpret λ ≈

∫
|Dv|p(·) dz in a heuristic sense which will become clear later on.

Corollary 5.2. Let K, c∗, ĉ ≥ 1 and suppose that p : A → [γ1, γ2] satisfies (2.3)
and (2.5) and that a : A → R fulfills (2.6). Then, there exist εo ≡ εo(data) > 0,
c ≡ c(data, c∗, ĉ) ≥ 1 and %2 ≡ %2(n, γ1, γ2,K, ω(·)) ∈ (0, R1] such that the following
holds: whenever v ∈ L2(A,RN ) ∩ L1(t1, t2;W 1,1(A,RN )) with Dv ∈ Lp(·)(A,RNn) is
a weak solution to the parabolic system (5.1) satisfying (5.3) and

(5.5)
∫
Q

(λ)
2% (zo)

|Dv|p(·) dz ≤ c∗λ

for some cylinder Q(λ)
2% (zo) ⊂ A with % ∈ (0, %2] and λ ≥ 1 satisfying

(5.6) λp2−p1 ≤ ĉ, where p1 := inf
Q

(λ)
2% (zo)

p(·), p2 := sup
Q

(λ)
2% (zo)

p(·),

then we have (5.2) and

(5.7)
∫
Q

(λ)
% (zo)

|Dv|p(·)(1+εo) dz ≤ c λ1+εo .

Proof. Without loss of generality we assume that zo = 0. We let εo and %2 be the constants
appearing in Theorem 5.1. The strategy now is to rescale the problem from Q

(λ)
% , Q

(λ)
2%

to the standard parabolic cylinders Q%, Q2% via a transformation in time and then apply
Theorem 5.1. We start with the case po := p(0) ≥ 2 and define for (x, t) ∈ Q2% the
rescaled exponent

p̃(x, t) := p
(
x, λ

2−po
po t

)
,

the rescaled function

ṽ(x, t) := λ−
1
po v

(
x, λ

2−po
po t

)
and the rescaled coefficient

ã(x, t) := λ
p̃(x,t)−po

po a
(
x, λ

2−po
po t

)
.

Then, ṽ is a weak solution of the parabolic system

(5.8) ∂tṽ − div
(
ã(·)|Dṽ|p̃(·)−2Dṽ

)
= 0 in Q2%.

In order to apply the higher integrability Theorem 5.1 to ṽ we have to ensure that the
hypotheses on p̃ and ã are satisfied. Since po ≥ 2 and λ ≥ 1 we have

|p̃(x1, t1)− p̃(x2, t2)| =
∣∣p(x1, λ

2−po
po t1

)
− p
(
x2, λ

2−po
po t2

)∣∣
≤ ω

(
max

{
|x1 − x2|, λ

2−po
2po

√
|t1 − t2|

})
≤ ω

(
max

{
|x1 − x2|,

√
|t1 − t2|

})
= ω

(
dP
(
(x1, t1), (x2, t2)

))
.(5.9)

Moreover by (2.6) and (5.6) it holds that

(5.10) ν
ĉ ≤ ν λ

− p2−p1
po ≤ ã(x, t) ≤ Lλ

p2−p1
po ≤ ĉ L.
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Therefore, we are allowed to apply Theorem 5.1 with (ν/ĉ, ĉ L) instead of (ν, L) to the
function ṽ on Q%, Q2% to infer that Dṽ ∈ L

p(·)(1+εo)
loc (Q2%,RNn) and moreover the fol-

lowing quantitative estimate holds:∫
Q%

|Dṽ|p̃(·)(1+εo) dz ≤ c
(∫

Q2%

|Dṽ|p̃(·) dz
)1+εod(po)

+ c

for a constant c ≡ c(data). Note that po = p(0) = p̃(0). Scaling back from v to ṽ and
back and using the preceding estimate, (5.5) and (5.6) several times we find that∫

Q
(λ)
%

|Dv|p(·)(1+εo) dz =

∫
Q%

λ
p̃(·)
po

(1+εo)|Dṽ|p̃(·)(1+εo) dz

≤ c λ1+εo

∫
Q%

|Dṽ|p̃(·)(1+εo) dz

≤ c λ1+εo

(∫
Q2%

|Dṽ|p̃(·) dz
)1+εod(po)

+ c λ1+εo

= c λ1+εo

(∫
Q

(λ)
2%

λ−
p(·)
po |Dv|p(·) dz

)1+εod(po)

+ c λ1+εo

≤ c λεo(1−d(po))

(∫
Q

(λ)
2%

|Dv|p(·) dz
)1+εod(po)

+ c λ1+εo

≤ c(data, c∗, ĉ)λ1+εo .(5.11)

This proves the lemma in the case po ≥ 2. In the case po < 2 we define similarly as above

p̃(x, t) := p
(
λ
po−2
2po x, t

)
, ṽ(x, t) := λ−

1
2 v
(
λ
po−2
2po x, t

)
and

(5.12) ã(x, t) := λ
p̃(x,t)−po

po a
(
λ
po−2
2po x, t

)
for (x, t) ∈ Q2%̃, where %̃ := λ

2−po
2po %. A straightforward computation shows that

Dṽ(x, t) = λ−
1
poDv

(
λ
po−2
2po x, t

)
in Q2%̃

and that ṽ is a weak solution of the system (5.8) in Q2%̃, where ã, ṽ, p̃ are this time the
quantities defined just above. Notice that estimate (5.10) holds also for the vector field
defined in (5.12), while the verification of (5.9) in this case is analoguous to the previous
one. Applying again Theorem 5.1 and repeating the computations in (5.11) we obtain the
assertion of the lemma also in the case po < 2. �

6. A PRIORI ESTIMATES

In the next Theorem we state the gradient bound of DiBenedetto and Friedman [17, 18]
for parabolic standard growth problems. Later on, we will transfer these a priori estimates
via a comparison argument to our non-standard growth problem. Therefore, in this Section
we consider parabolic systems with constant p-growth of the type

(6.1) wt − div
(
ã(t)|Dw|p−2

Dw
)

= 0 on A× (t1, t2) =: A,

with p > 2n/(n + 2) and ã : (t1, t2) → R. Thereby, A is an open set in Rn and t1 < t2.
Moreover, we denote

C(λ)
% (zo) := B%(xo)×

(
to − λ

2−p
p %2, to + λ

2−p
p %2

)
.
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Note that the scaling of this system of cylinders does not depend on the center zo. Later
on, we will apply the subsequent Theorem with the choice p = po ≡ p(zo), and hence
the cylinders C(λ)

% (zo) will coincide with the ones defined in (3.1). As mentioned above,
the next Theorem is a consequence of the gradient bounds proved in [18, 17]. The precise
statement for the case p ≥ 2 can be found in [4, Lemma 1] (replacing λ by λ

1
p ), and for

the case 2n/(n+ 2) < p < 2 in [4, Lemma 2] (replacing % by λ
p−2

2 % and subsequently λ
by λ

1
p ).

Theorem 6.1. Let w ∈ C0(t1, t2;L2(A,RN )) ∩ Lp(t1, t2;W 1,p(A,RN )) be a weak so-
lution to (6.1) in A with ã : (t1, t2) → R satisfying ν ≤ ã ≤ L for some constants
0 < ν ≤ 1 ≤ L. Moreover suppose that∫

C
(λ)
2% (zo)

|Dw|p dz ≤ c∗λ

holds for some cylinder C(λ)
2% (zo) b A, where c∗ is a given positive constant. Then there

exists a constant cDiB ≥ 1, depending on n,N, p, ν, L and c∗ such that

sup
C

(λ)
% (zo)

|Dw| ≤ cDiB λ
1
p .

7. COMPARISON ESTIMATES

In this Section we prove two different comparison estimates. The first one compares
the weak solution u of the original inhomogeneous parabolic system (1.1) to the solution
v of the associated homogeneous parabolic system (7.2) below. The second one compares
v to the solution w of the frozen parabolic system (7.14). Both, the parabolic localiza-
tion Lemma 4.1 and the homogeneous version of the higher integrability estimate from
Corollary 5.2 will be crucial in order to achieve homogeneous comparison estimates.

Now, we let K ≥ 1 and suppose that (2.9) is satisfied. Next, we fix κ,M ≥ 1 to be
specified later. In the following we consider a cylinderQ := Q

(λ)
% (zo) with zo = (xo, to) ∈

ΩT , % ∈ (0, 1] and λ ≥ 1 defined according to (3.1) and which satisfies 2Q := Q
(λ)
2% (zo) b

ΩT and

(7.1)
λ

κ
≤
∫

2Q

|Du|p(·) dz +

∫
2Q

M(|F |+ 1)p(·) dz ≤ λ.

Moreover, we abbreviate B := B%(xo) and Λ := Λ
(λ)
% (to) so that Q ≡ B × Λ and define

po := p(zo), p1 := inf
2Q
p(·) and p2 := sup

2Q
p(·).

By v ∈ L2(2Q,RN )∩L1(2Λ;W 1,1(2B,RN )) with Dv ∈ Lp(·)(2Q,RNn) we denote the
unique solution of the homogeneous initial-boundary value problem

(7.2)

 ∂tv − div
(
a(z)|Dv|p(z)−2

Dv
)

= 0 in 2Q,

v = u on ∂P2Q.

Thereby, the parabolic boundary ∂P2Q is given by ∂P2Q := (∂2B × 2Λ) ∪ (2B × {to −
λ2−po(2%)2}). Note that the existence of v can be inferred from [8] by small modifications.
Our first aim is to prove suitable energy and comparison estimates for the comparison
function v. We hence subtract the weak formulation of the parabolic system (7.2) from the
one of (1.1) given in (2.1). This yields
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2Q

(u− v) · ∂tϕdz −
∫

2Q

a(·)
〈
|Du|p(·)−2Du− |Dv|p(·)−2Dv,Dϕ

〉
dz

=

∫
2Q

〈
|F |p(·)−2F,Dϕ

〉
dz

for any ϕ ∈ C∞0 (2Q,RN ). For θ > 0 and τ := to + λ
2−po
po (2%)2 we define

(7.3) χθ(t) :=


1 on (−∞, τ − θ],
− 1
θ (t− τ) on (τ − θ, τ),

0 on [τ,∞).

Since Du − Dv ∈ Lp(·)(2Q,RNn) and u = v on ∂P2Q in the sense of traces, we are
(formally) allowed to choose ϕ = (u − v)χθ in the preceding identity. We note that
the argument can be made rigorous via the use of Steklov averages and an approximation
argument; since this is standard we omit the details. This choice of ϕ together with the
observation that∫

2Q

(u− v) · ∂t[(u− v)χθ] dz = −
∫

2Q

∂t(u− v) · (u− v)χθ dz

= −1

2

∫
2Q

∂t|u− v|2χθ dz

=
1

2

∫
2Q

|u− v|2∂tχθ dz

= − 1

2θ

∫ τ

τ−θ

∫
2B

|u− v|2 dz

θ↓0→ −1

2

∫
2B

|u− v|2(·, τ) dx ≤ 0(7.4)

leads us after letting θ ↓ 0 to∫
2Q

a(·)
〈
|Du|p(·)−2Du− |Dv|p(·)−2Dv,D(u− v)

〉
dz

≤ −
∫

2Q

〈
|F |p(·)−2F,D(u− v)

〉
dz.(7.5)

This inequality will be used in the following in two different directions. The first one
will lead to an energy inequality for Dv. Rearranging terms and taking into account that
ν ≤ a(·) ≤ L we find

ν

∫
2Q

|Dv|p(·) dz ≤ L
∫

2Q

(
|Du|p(·)−1|Dv|+ |Dv|p(·)−1|Du|

)
dz

+

∫
2Q

|F |p(·)−1
(
|Du|+ |Dv|

)
dz

≤ ν

2

∫
2Q

|Dv|p(·) dz + c

∫
2Q

(
|Du|p(·) + |F |p(·)

)
dz,

where in the last line we applied Young’s inequality and c = c(ν, L, γ1, γ2). Reabsorbing
the first integral of the right-hand side into the left and subsequently using (7.1) we get the
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following energy estimate for Dv:

(7.6)
∫

2Q

|Dv|p(·) dz ≤ c
∫

2Q

(
|Du|p(·) + |F |p(·)

)
dz ≤ c(data)λ|Q|.

We now come to the proof of the comparison estimate. Starting again from (7.5) we use
Lemma 3.2 and Young’s inequality to infer

ν

∫
2Q

(
|Du|2 + |Dv|2

) p(·)−2
2 |Du−Dv|2 dz

≤ c
∫

2Q

|F |p(·)−1
(
|Du|+ |Dv|

)
dz

≤ cM−
γ1−1
γ1

∫
2Q

(
|Du|p(·) + |Dv|p(·) +M |F |p(·)

)
dz,

where the constant c depends on n,N,L, γ1, γ2. Finally, using (7.1) and the energy esti-
mate (7.6) this leads us to the first comparison estimate we were looking for:∫

2Q

(
|Du|2 + |Dv|2

) p(·)−2
2 |Du−Dv|2 dz ≤ c(data)M−

γ1−1
γ1 λ|Q|.(7.7)

We now let εo = εo(data) > 0 be the higher integrability exponent from Corollary 5.2
and set

%3 := min{%o/2, %2} ∈ (0, 1],

where %o is the radius appearing in the localization Lemma 4.1 and %2 the one for the
higher integrability from Corollary 5.2. Note that %3 depends on data, κ,K,M,ω(·). In
the course of the proof we shall further reduce the value of %3 when necessary, but without
changing its dependencies. In the following we assume that

% ≤ %3.

Thanks to assumption (7.1) we are allowed to apply Lemma 4.1 on 2Q which yields that

(7.8) p2 − p1 ≤ ω
(
Γ(2%)α

)
and λp2−p1 ≤ λω(Γ(2%)α) ≤ e

3npo
α ≤ e

3nγ2
α ,

where Γ and α are defined according to (4.3). Note that for the second estimate we
also used that λ ≥ 1. Therefore, assumption (5.6) of Corollary 5.2 is satisfied with
ĉ ≡ ĉ(n, γ1, γ2) := e

3nγ2
α . Due to the energy estimate (7.6) we know that also assumption

(5.5) is satisfied with c∗ replaced by the constant c(data) from (7.6). The application of
the Corollary then ensures that Dv ∈ Lp(·)(1+εo)(Q,RNn) and moreover

(7.9)
∫
Q

|Dv|p(·)(1+εo) dz ≤ c(data)λ1+εo .

Next, we reduce the value of %3 in such a way that

(7.10) ω
(
Γ(2%3)α

)
≤ ε1

γ′1
, where ε1 :=

√
1 + εo − 1 ≤ εo

is satisfied. Then, by (7.8), for any z ∈ 2Q there holds

po(1 + ε1) ≤ p(z)
(
1 + ω

(
Γ(2%)α

))
(1 + ε1) ≤ p(z)

(
1 + ω

(
Γ(2%3)α

))
(1 + ε1)

< p(z)(1 + ε1)2 = p(z)(1 + εo)

and therefore we have Dv ∈ Lpo(1+ε1)(Q,RNn) together with the estimate∫
Q

|Dv|po(1+ε1) dz ≤
∫
Q

|Dv|p(·)(1+ω(Γ(2%)α))(1+ε1) dz + 1



CALDERÓN-ZYGMUND ESTIMATES 15

≤
(∫

Q

|Dv|p(·)(1+εo) dz

) (1+ω(Γ(2%)α))(1+ε1)
1+εo

+ 1

≤ c λ(1+ω(Γ(2%)α))(1+ε1) + 1

= c λ1+ε1λω(Γ(2%)α)(1+ε1) + 1

≤ c(data)λ1+ε1 ,(7.11)

where we used Hölder’s inequality, (7.9), (7.8) and the fact that λ ≥ 1. For later reference
we also provide the following estimate using (7.8) and (7.10):

p′o(p2 − 1) = po

(
1 +

p2 − po
po − 1

)
≤ po

(
1 +

ω(Γ(2%3)α)

γ1 − 1

)
≤ po

(
1 + ε1

γ1

)
< po(1 + ε1).(7.12)

Together with (7.11), Hölder’s inequality and (7.8) this implies∫
Q

|Dv|p
′
o(p2−1) dz ≤

(∫
Q

|Dv|po(1+ε1) dz

) p2−1

(po−1)(1+ε1)

≤ c λ
p2−1
po−1 = c λ1+

p2−po
po−1 ≤ c(data)λ.(7.13)

We now define

ã(t) := (a)xo,%(t) :=

∫
B%(xo)

a(·, t) dx for any t ∈ (0, T ).

Note that ν ≤ ã(t) ≤ L for any t ∈ (0, T ) as a consequence of (2.6). By

w ∈ C0
(
Λ, L2(B;RN )

)
∩ Lpo

(
Λ,W 1,po(B;RN )

)
we denote the unique solution to the initial-boundary value problem

(7.14)

 ∂tw − div
(
ã(t)|Dw|po−2

Dw
)

= 0 in Q,

w = v on ∂PQ.

We now start deriving energy and comparison estimates for w. As before, we subtract the
weak formulations of (7.2) and (7.14) and test the result with ϕ := (v − w)χθ, where
χθ is defined in (7.3). Here, we recall that Dv ∈ Lpo(Q,RNn) by (7.11) and therefore
ϕ is (formally) admissible as a test function. Proceeding as before, i.e. treating the terms
involving the time derivatives with the argument performed in (7.4) and passing to the limit
θ ↓ 0 we obtain

(7.15)
∫
Q

〈
a(·)|Dv|p(·)−2Dv − ã(t)|Dw|po−2Dw,D(v − w)

〉
dz ≤ 0.

Firstly, we shall use this inequality to get an energy estimate for Dw. Rearranging terms,
taking into account that ν ≤ a(·), ã(·) ≤ L and applying Young’s inequality we find

ν

∫
Q

|Dw|po dz ≤ L
∫
Q

(
|Dw|po−1|Dv|+ |Dv|p(·)−1|Dw|

)
dz

≤ ν

2

∫
Q

|Dw|po dz + c

∫
Q

(
|Dv|po + |Dv|p

′
o(p(·)−1)

)
dz
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with a constant c = c(ν, L, γ1, γ2). Reabsorbing the first integral of the right-hand side
into the left and using Hölder’s inequality, (7.11), (7.13) and the fact that λ ≥ 1 we get the
following energy estimate for Dw:∫

Q

|Dw|po dz ≤ c
[ ∫

Q

|Dv|po dz +

∫
Q

|Dv|p
′
o(p2−1) dz + 1

]
≤ c(data)λ.(7.16)

In order to obtain a comparison estimate we once again start from (7.15) which can be
rewritten as follows:∫

Q

ã(t)
〈
|Dv|po−2Dv − |Dw|po−2Dw,D(v − w)

〉
dz

≤
∫
Q

(
ã(t)− a(·)

)〈
|Dv|po−2Dv,D(v − w)

〉
dz

+

∫
Q

a(·)
〈
|Dv|po−2Dv − |Dv|p(·)−2Dv,D(v − w)

〉
dz.

Using Lemma 3.2 and the fact that ν ≤ ã(·) ≤ L we obtain∫
Q

(
|Dv|2 + |Dw|2

) po−2
2 |Dv −Dw|2 dz

≤ c
[ ∫

Q

|ã(t)− a(·)||Dv|po−1|Dv −Dw| dz

+

∫
Q

∣∣|Dv|po−1 − |Dv|p(·)−1
∣∣|Dv −Dw| dz] =: c [I + II],(7.17)

where c = c(ν, L, γ1, γ2). Now we estimate separately the two terms. For the first one we
use Hölder’s inequality several times, (7.11), (7.16), the fact that a(·), ã(t) ≤ L, (2.7) and
ω̃ ≤ 1 to infer that

I ≤ c
(∫

Q

|a(t)− a(·)|p
′
o |Dv|po dz

) 1
p′o
(∫

Q

(
|Dv|po + |Dw|po

)
dz

) 1
po

≤ c
(∫

Q

|a(t)− a(·)|
p′o(1+ε1)

ε1 dz

) ε1
p′o(1+ε1)

(∫
Q

|Dv|po(1+ε1) dz

) 1
p′o(1+ε1)

λ
1
po

≤ c λ
1
p′o

+ 1
po
[
ω̃(%)

] ε1
γ′1(1+ε1) ≤ c(data)

[
ω̃(%)

] ε1
2γ′1 λ.

In order to estimate II we first use (7.8) to find that for any z ∈ Q and b ≥ 0 there holds

|bpo−1 − bp(z)−1| ≤ |po − p(z)| sup
σ∈[p1−1,p2−1]

bσ| log b|

≤ ω
(
Γ(2%)α

) [
bp2−1 log

(
e + bp

′
o(p2−1)

)
+ 1

e(γ1−1)

]
,

where in the last line we used bσ| log b| ≤ 1
e(γ1−1) for b ∈ [0, 1] and σ ∈ [p1 − 1, p2 − 1]

and bσ| log b| ≤ bp2−1 log(e + bp
′
o(p2−1)) for b > 1 and σ ∈ [p1− 1, p2− 1]. This together

with Hölder’s inequality, (7.11) and (7.16) yields

II ≤ c ω
(
Γ(2%)α

) ∫
Q

[
|Dv|p2−1 log

(
e + |Dv|p

′
o(p2−1)

)
+ 1
]
|Dv −Dw| dz

≤ c ω
(
Γ(2%)α

)(∫
Q

[
|Dv|p2−1 log

(
e + |Dv|p

′
o(p2−1)

)
+ 1
]p′o

dz

) 1
p′o
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·
(∫

Q

|Dv −Dw|po dz
) 1
po

≤ c ω
(
Γ(2%)α

)(∫
Q

[
|Dv|p2−1 log

(
e + |Dv|p

′
o(p2−1)

)
+ 1
]p′o

dz

) 1
p′o
λ

1
po ,

where c = c(data). Next, we note that the monotonicity of the logarithm implies

log(e + ab) ≤ log(e + a) + log(e + b) ∀ a, b ≥ 0,

which together with Young’s inequality allows to further estimate II as follows:

II ≤ c ω
(
Γ(2%)α

)
λ

1
po

[ ∫
Q

|Dv|p
′
o(p2−1) logp

′
o

(
e +

|Dv|p′o(p2−1)

(|Dv|p′o(p2−1))Q

)
dz

+ logp
′
o

(
e +

(
|Dv|p

′
o(p2−1)

)
Q

)∫
Q

|Dv|p
′
o(p2−1) dz + 1

] 1
p′o

= c(data)ω
(
Γ(2%)α

)
λ

1
po

[
II1 + II2 + 1

] 1
p′o ,(7.18)

with the obvious meaning of II1 and II2. In order to estimate II1 we apply inequality (3.2)
with the choices g = |Dv|p′o(p2−1) and

σ :=
1 + ε1

1 + ε1
γ1

= c(data) > 1

to infer that

II1 ≤ c(data)

(∫
Q

|Dv|p
′
o(p2−1)σ dz

) 1
σ

.

To the integral on the right-hand side we apply Hölder’s inequality (which is justified by
(7.12)). Subsequently using (7.11) and (7.8) we obtain

II1 ≤ c
(∫

Q

|Dv|po(1+ε1/γ1)σ dz

) 1
σ ·

p2−1

(po−1)(1+ε1/γ1)

= c

(∫
Q

|Dv|po(1+ε1) dz

) p2−1

(po−1)(1+ε1)

≤ c λ
p2−1
po−1 = c λ1+

p2−po
po−1 ≤ c(data)λ.

Now, we come to the estimate for II2 in (7.18). From (7.13) and (4.2)1 we get(
|Dv|p

′
o(p2−1)

)
Q

=

∫
Q

|Dv|p
′
o(p2−1) dz ≤ c λ ≤ c(data, κ)

(
KM

%n+2

) po
2

.

Using this estimate, again (7.13), the fact that log(cx) ≤ c log(x) for c ≥ 1 and that we
can always assume c(KM/%n+2)po/2 ≥ e by possibly reducing the value of %3 we find

II2 ≤ logp
′
o

(
e + c

(
KM

%n+2

) po
2
)∫

Q

|Dv|p
′
o(p2−1) dz ≤ cMp′o logp

′
o

(K
%

)
λ

with c = c(data, κ). Joining the estimates for II1 and II2 with (7.18) we end up with

II ≤ c(data, κ)ω
(
Γ(2%)α

)
M log

(K
%

)
λ.
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Merging the preceding estimates for I and II into (7.17) we get∫
Q

(
|Dv|2 + |Dw|2

) po−2
2 |Dv −Dw|2dz

≤ c(data, κ)
[
ω
(
Γ(2%)α

)
M log

(K
%

)
+
[
ω̃(%)

] ε1
2γ′1

]
λ.

Here, we still want to replace the exponent po in the integral on the left-hand side by p(·).
This is achieved with the help of Hölder’s inequality as follows:∫

1
2Q

(
|Dv|2 + |Dw|2

) p(·)−2
2 |Dv −Dw|2 dz

≤
(∫

1
2Q

(
|Dv|2 + |Dw|2

) po−2
2 |Dv −Dw|2 dz

) 1
2

·
(∫

1
2Q

(
|Dv|2 + |Dw|2

) 2p(·)−po−2
2 |Dv −Dw|2 dz

) 1
2

≤ c
[
ω
(
Γ(2%)α

)
M log

(K
%

)
+
[
ω̃(%)

] ε1
2γ′1

] 1
2

λ
1
2

·
(∫

1
2Q

|Dv|2p(·)−po + |Dw|2p(·)−po dz
) 1

2

.

In order to further estimate the integral on the right-hand side we use that fact that 2p(·)−
po ≤ p(·)(1 +ω(Γ(2%)α)) ≤ p(·)(1 +ω(Γ%α3 )) ≤ p(·)(1 + εo) which is a consequence of
(7.10), Hölder’s inequality, (7.9), (7.8) and λ ≥ 1 to infer that∫

1
2Q

|Dv|2p(·)−po dz ≤ 2n+2

∫
Q

|Dv|p(·)(1+ω(Γ(2%)α)) dz + 1

≤ 2n+2

(∫
Q

|Dv|p(·)(1+εo) dz

) 1+ω(Γ(2%)α)
1+εo

+ 1

≤ c λ1+ω(Γ(2%)α) + 1 ≤ c(data, κ)λ.

Moreover, since the parabolic system (7.14)1 is of the same type as (6.1) we are allowed
by (7.16) to apply Theorem 6.1 which yields that

(7.19) sup
1
2Q

|Dw| ≤ cDiB λ
1
po .

Note that cDiB initially depends on n,N, ν, L, po. Since the dependence upon po is con-
tinuous it can be replaced by a larger constant depending on γ1 and γ2 instead of po, i.e.
cDiB = cDiB(data). Therefore, using (7.19) and (7.8) we can bound also the integral in-
volving Dw in terms of λ. Inserting this above we deduce the second comparison estimate
we were looking for:∫

1
2Q

(
|Dv|2 + |Dw|2

) p(·)−2
2 |Dv −Dw|2 dz

≤ c(data, κ)
[
ω
(
Γ(2%)α

)
M log

(K
%

)
+
[
ω̃(%)

] ε1
2γ′1

] 1
2

λ|Q|.(7.20)
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Note that this estimate holds for any cylinder 1
2Q ≡ Q

(λ)
%/2(zo) with λ ≥ 1 and % ∈ (0, %3]

such that 2Q satisfies the intrinsic relation (7.1) and 2Q b ΩT . We recall that %3 ∈ (0, 1]
depends on data, κ,K,M,ω(·).

8. PROOF OF THE CALDERÓN-ZYGMUND ESTIMATE

This Section is devoted to the proof of Theorem 2.2. We shall proceed in several steps.

8.1. A stopping-time argument. Here, we shall construct a covering of the upper level
set of |Du|p(·) with respect to some parameter λ by intrinsic cylinders. The argument
uses a certain stopping time argument which takes its origin in [28] together with the non
uniform version of Vitali’s covering argument from Lemma 4.2.

We let K ≥ 1 and suppose that (2.9) is satisfied and consider a standard parabolic
cylinder QR ≡ QR(zo) such that Q2R b ΩT . Then, we fix M ≥ 1 to be specified later
and define

(8.1) λo :=

[ ∫
Q2R

|Du|p(·) +M(|F |+ 1)p(·) dz

]d
≥ 1, where d := sup

Q2R

d(p(·))

and d(·) is defined according to (2.11). Next, as in [4, Section 4], we fix two numbers
R ≤ r1 < r2 ≤ 2R such that QR ⊂ Qr1 ⊂ Qr2 ⊂ Q2R, all the cylinders sharing the
same center zo. In the following we shall consider λ such that

(8.2) λ > Bλo, where B :=
( 8χR

r2 − r1

)(n+2)d

and for zo ∈ Qr1 we consider radii % satisfying

(8.3) min
{

1, λ
po−2
2po

}r2 − r1

4χ
≤ % ≤ min

{
1, λ

po−2
2po

}r2 − r1

2
,

where po := p(zo) and χ ≡ χ(n, γ1) ≥ 5 denotes the constant appearing in Lemma 4.2.
Note that these choices of λ and % ensure that Q(λ)

% (zo) ⊂ Qr2 for any zo ∈ Qr1 . Next,
we want to prove that for any zo ∈ Qr1 there holds

(8.4)
∫
Q

(λ)
% (zo)

|Du|p(·) +M(|F |+ 1)p(·) dz < λ.

Indeed, enlarging the domain of integration from Q
(λ)
% (zo) to Q2R and recalling the defi-

nition of λo from (8.1) we infer that∫
Q

(λ)
% (zo)

|Du|p(·) +M(|F |+ 1)p(·) dz

≤ |Q2R|
|Q(λ)

% (zo)|

∫
Q2R

|Du|p(·) +M(|F |+ 1)p(·) dz

=
(2R

%

)n+2

λ
po−2
po λ

1
d
o .

Now we distinguish the cases po ≥ 2 and po < 2. If po ≥ 2, then 1/d ≤ 1/d(po) = 2/po

and min {1, λ
po−2
2po } = 1, so that, using also the choice of % from (8.3) we obtain∫

Q
(λ)
% (zo)

|Du|p(·) +M(|F |+ 1)p(·) dz ≤
( 8χR

r2 − r1

)n+2

λ
po−2
po λ

1
d
o

< B
1
dλ

po−2
po B−

1
dλ

1
d = λ

po−2
po λ

1
d ≤ λ.
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If γ1 ≤ po < 2, we have 1/d ≤ 1/d(po) = 1 − n(2 − po)/(2po) and min {1, λ
po−2
2po } =

λ
po−2
2po and therefore we get∫

Q
(λ)
% (zo)

|Du|p(·) +M(|F |+ 1)p(·) dz ≤
(8χRλ

2−po
2po

r2 − r1

)n+2

λ
po−2
po λ

1
d
o

= B
1
dλ

n(2−po)
2po λ

1
d
o < B

1
dλ

n(2−po)
2po B−

1
dλ

1
d = λ

n(2−po)
2po λ

1
d ≤ λ.

Hence, in any case we proved that (8.4) holds.
For λ as in (8.2) we consider the upper level set

E(λ, r1) :=
{
z ∈ Qr1 : z is a Lebesgue point of |Du| and |Du(z)|p(z) > λ

}
.

In the following we show that also a converse inequality holds true for small radii and for
points zo ∈ E(λ, r1). Indeed, by Lebesgue’s differentiation theorem (see [10, (7.9)]) we
infer for any zo ∈ E(λ, r1) that

lim
%↓0

∫
Q

(λ)
% (zo)

|Du|p(·) +M(|F |+ 1)p(·) dz ≥ |Du(zo)|p(zo) > λ.

From the preceding reasoning we conclude that the last inequality yields a radius for which
the considered integral takes a value larger than λ, while (8.4) states that the integral is
smaller than λ for any radius satisfying (8.3). Therefore, the continuity of the integral
yields the existence of a maximal radius %zo in between, i.e.

(8.5) 0 < %zo < min
{

1, λ
po−2
2po

}r2 − r1

4χ

such that

(8.6)
∫
Q

(λ)
%zo

(zo)

|Du|p(·) +M(|F |+ 1)p(·) dz = λ.

By saying that %zo is maximal we mean that for every % ∈ (%zo ,min {1, λ
po−2
2po }(r2−r1)/2]

inequality (8.4) holds. With this choice of %zo we define concentric parabolic cylinders
centered at zo ∈ E(λ, r1) as follows:

(8.7) Q0
zo := Q(λ)

%zo
(zo), Q

1
zo := Q(λ)

χ%zo
(zo), Q

2
zo := Q

(λ)
2χ%zo

(zo), Q
3
zo := Q

(λ)
4χ%zo

(zo).

Then, we have Q0
zo ⊂ Q

1
zo ⊂ Q

2
zo ⊂ Q

3
zo ⊂ Qr2 and for j ∈ {0, . . . , 3} there holds

(8.8)
λ

(4χ)n+2
≤
∫
Qjzo

|Du|p(·) +M(|F |+ 1)p(·) dz ≤ λ.

Note that the upper bound follows from (8.6) and the maximal choice of the stopping radius
%zo , while the lower bound follows from (8.6) by enlarging the domain of integration from
Q0
zo to Qjzo and taking into account that |Qjzo |/|Q

0
zo | ≤ (4χ)n+2.

8.2. Estimates on intrinsic cylinders. We now fix one particular cylinderQ0
zo and define

the comparison functions v and w as the unique solutions to the initial-boundary value
problems (7.2) and (7.14) with Q3

zo and Q2
zo instead of 2Q and Q. Thanks to (8.8) we

know that (7.1) is satisfied with κ = κ(n, γ1) = (4χ)n+2. Moreover, we assume that

R ≤ Ro ≤ %3,

where %3 = %3(data,K,M,ω(·)) ∈ (0, 1] denotes the radius introduced after (7.20) for
the choice κ = (4χ)n+2. This ensures that we may apply (7.7), (7.19) and (7.20) with κ =
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(4χ)n+2 for any radius smaller than %3. Therefore, from (7.19) applied with κ = (4χ)n+2

we infer that

(8.9) sup
Q1
zo

|Dw| ≤ cDiB λ
1
po ,

where cDiB = cDiB(data) ≥ 1. In the following by c` = c`(γ2) ≥ 1 we denote the
constant from Lemma 3.3. For A chosen in dependence on data according to

A ≥ 2c2` c
γ2

DiB e
3n
α ≥ 1

we now consider z ∈ Q1
zo ∩ E(Aλ, r1). Our aim now is to deduce a suitable estimate for

|Du(z)|p(z). Applying Lemma 3.3 twice yields

|Du(z)|p(z) ≤ c2` |Dw(z)|p(z)

+ c2`
(
|Dv(z)|2 + |Dw(z)|2

) p(z)−2
2 |Dv(z)−Dw(z)|2

+ c`
(
|Du(z)|2 + |Dv(z)|2

) p(z)−2
2 |Du(z)−Dv(z)|2.(8.10)

Next, we prove that

|Dw(z)|p(z) ≤
(
|Du(z)|2 + |Dv(z)|2

) p(z)−2
2 |Du(z)−Dv(z)|2

+
(
|Dv(z)|2 + |Dw(z)|2

) p(z)−2
2 |Dv(z)−Dw(z)|2(8.11)

holds. Indeed, if (8.11) fails to hold we obtain from (8.9), (4.2)2,3 from Lemma 4.1 (which
is applicable due to (8.8)), the fact that z ∈ E(Aλ, r1) and (8.10) that

|Dw(z)|p(z) ≤ cp(z)DiB λ
p(z)
po ≤ cγ2

DiB e
3n
α λ

<
cγ2

DiB e
3n
α

A
|Du(z)|p(z) ≤

2c2` c
γ2

DiB e
3n
α

A
|Dw(z)|p(z).

But this contradicts the choice of A and hence (8.11) is proved. Therefore, combining
(8.10) and (8.11) we get

|Du(z)|p(z) ≤ 2c2`
(
|Du(z)|2 + |Dv(z)|2

) p(z)−2
2 |Du(z)−Dv(z)|2

+ 2c2`
(
|Dv(z)|2 + |Dw(z)|2

) p(z)−2
2 |Dv(z)−Dw(z)|2.

Integrating over Q1
zo ∩ E(Aλ, r1) and using the comparison estimates (7.7) and (7.20)

applied with κ = (4χ)n+2 we obtain∫
Q1
zo
∩E(Aλ,r1)

|Du|p(·) dz ≤ 2c2`

∫
Q1
zo

(
|Du|2 + |Dv|2

) p(·)−2
2 |Du−Dv|2 dz

+ 2c2`

∫
Q1
zo

(
|Dv|2 + |Dw|2

) p(·)−2
2 |Dv −Dw|2 dz

≤ c(data)G(M,R)λ|Q0
zo |,(8.12)

where

(8.13) G(M,R) := sup
%∈(0,R]

[
1

M2− 2
γ1

+ ω
(
Γ(2%)α

)
M log

(K
%

)
+
[
ω̃(%)

] ε1
2γ′2

] 1
2

.

Note that M ≥ 1 is yet to be chosen and α and Γ are defined according to (4.3). Moreover,
we recall that this estimate holds for any λ > Bλo and zo ∈ E(λ, r1).
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Next, we will infer a bound for the measure of the cylinder Q0
zo . From (8.6) we have

(8.14) |Q0
zo | =

1

λ

∫
Q0
zo

|Du|p(·) dz +
1

λ

∫
Q0
zo

M(|F |+ 1)p(·) dz.

We split the first integral of (8.14) as follows:∫
Q0
zo

|Du|p(·) dz =

∫
Q0
zo
∩{|Du|p(·)≤λ/4}

|Du|p(·) dz +

∫
Q0
zo
∩E(λ/4,r2)

|Du|p(·) dz

≤ λ

4
|Q0

zo |+
∫
Q0
zo
∩E(λ/4,r2)

|Du|p(·) dz,

and similarly the second one∫
Q0
zo

M(|F |+ 1)p(·) dz ≤ λ

4
|Q0

zo |+
∫
Q0
zo
∩{M(|F |+1)p(·)>λ/4}

M(|F |+ 1)p(·) dz.

Inserting the last two estimates into (8.14) we can reabsorb the term |Q0
zo |/2 from the

right-hand side into the left, yielding the following estimate:

|Q0
zo | ≤

2

λ

∫
Q0
zo
∩E(λ/4,r2)

|Du|p(·) dz

+
2

λ

∫
Q0
zo
∩{M(|F |+1)p(·)>λ/4}

M(|F |+ 1)
p(·)

dz.

Using this estimate in (8.12) we obtain for a constant c ≡ c(data) that∫
Q1
zo
∩E(Aλ,r1)

|Du|p(·) dz ≤ cG(M,R)

∫
Q0
zo
∩E(λ/4,r2)

|Du|p(·) dz

+ cG(M,R)

∫
Q0
zo
∩{M(|F |+1)p(·)>λ/4}

M(|F |+ 1)
p(·)

dz.(8.15)

8.3. Estimates on level sets. Here, we will extend estimate (8.15) to the super level set
E(Aλ, r1). To this aim we first construct a suitable covering ofE(λ, r1) by intrinsic cylin-
ders of the type as considered in the preceding steps. Here, we recall from the preceding
two steps that for every zo ∈ E(λ, r1) there exists a radius %zo satisfying (8.5) such that
on the cylinders Qjzo , j ∈ {0, . . . , 3} the estimates (8.8) and (8.15) hold. Next, we want to
apply the Vitali-type covering argument from Lemma 4.2. For this aim we note that (8.6)
and (4.2)1 (with κ = 1) imply that

λ ≤
(βnMK

%n+2
zo

) p(zo)
2

.

This ensures that assumption (4.5) of Lemma 4.2 is satisfied for the family F := {Q0
zo}

of parabolic cylinders with center zo ∈ E(λ, r1) (note that by possibly reducing the value
of Ro we can ensure that %zo ≤ R ≤ Ro ≤ %1, where %1 is the radius from Lemma
4.2). The application of the Lemma then yields the existence of a countable subfamily
{Q0

zi}
∞
i=1 ⊂ F of pairwise disjoint parabolic cylinders, such that the χ-times enlarged

cylinders Q1
zi cover the set E(Aλ, r1), i.e.

E(Aλ, r1) ⊂ E(λ, r1) ⊂
⋃
i∈N

Q1
zi .
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Moreover, for the 4χ-times enlarged cylinders Q3
zi we know that Q3

zi ⊂ Qr2 . Here, we
have used the notation from (8.7) with zo replaced by zi. Since we know that on any of the
cylinders Q1

zi , i ∈ N estimate (8.15) holds, we obtain after summing over i ∈ N that∫
E(Aλ,r1)

|Du|p(·) dz ≤ cG(M,R)

∫
E(λ/4,r2)

|Du|p(·) dz

+ cG(M,R)

∫
Qr2∩{M(|F |+1)p(·)>λ/4}

M(|F |+ 1)p(·) dz,(8.16)

where c = c(data). We recall that this estimate holds for every λ > Bλo.

8.4. Raising the integrability exponent. Having arrived at this stage we would like to
multiply both sides of (8.16) by λq−2 and subsequently integrate with respect to λ over
(Bλo,∞). This, formally would lead to an Lp(·)q estimate of Du after reabsorbing∫
|Du|p(·)q dz on the left-hand side. However, this step is not allowed since the inte-

gral might be infinite. This problem will be overcome in the following by a truncation
argument. For k ≥ Bλo we define the truncation operator

Tk : [0,+∞)→ [0, k], Tk(σ) := min{σ, k}

and

Ek(Aλ, r1) :=
{
z ∈ Qr1 : Tk

(
|Du(z)|p(z)

)
> Aλ

}
.

Then, from inequality (8.16) we deduce that∫
Ek(Aλ,r1)

|Du|p(·) dz ≤ cG(M,R)

∫
Ek(λ/4,r2)

|Du|p(·) dz

+ cG(M,R)

∫
Qr2∩{M(|F |+1)p(·)>λ/4}

M(|F |+ 1)p(·) dz.(8.17)

This can be seen as follows: In the case k ≤ Aλ we have Ek(Aλ, r1) = ∅ and therefore
(8.17) holds trivially. In the case k > Aλ inequality (8.17) follows since Ek(Aλ, r1) =
E(Aλ, r1) and Ek(λ/4, r2) = E(λ/4, r2). Therefore, multiplying both sides of (8.17) by
λq−2 and integrating with respect to λ over (Bλo,+∞), we obtain∫ ∞

Bλo

λq−2

∫
Ek(Aλ,r1)

|Du|p(·) dz dλ

≤ cG(M,R)

∫ ∞
Bλo

λq−2

∫
Ek(λ/4,r2)

|Du|p(·) dz dλ

+ cG(M,R)

∫ ∞
Bλo

λq−2

∫
Qr2∩{M(|F |+1)p(·)>λ/4}

M(|F |+ 1)p(·) dz dλ.(8.18)

Using Fubini’s theorem we get for the integral on the left-hand side of (8.18) that∫ ∞
Bλo

λq−2

∫
Ek(Aλ,r1)

|Du|p(·) dz dλ

=

∫
Ek(ABλo,r1)

|Du|p(·)
∫ Tk(|Du(z)|p(z))/A

Bλo

λq−2 dλ dz

=
1

q − 1

[
1

Aq−1

∫
Ek(ABλo,r1)

|Du|p(·)Tk
(
|Du|p(·)

)q−1
dz
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− (Bλo)
q−1

∫
Ek(ABλo,r1)

|Du|p(·) dz
]

≥ 1

q − 1

[
1

Aq−1

∫
Qr1

|Du|p(·)Tk
(
|Du|p(·)

)q−1
dz

− (Bλo)
q−1

∫
Qr1

|Du|p(·) dz
]
,

where in the last line we used the decomposition Qr1 = Ek(ABλo, r1) ∪ (Qr1 \
Ek(ABλo, r1)) and the fact that Tk(|Du|p(·)) ≤ ABλo on Qr1 \ Ek(ABλo, r1). Again
by Fubini’s theorem we obtain for the first integral on the right-hand side of (8.18)∫ ∞

Bλo

λq−2

∫
Ek(λ/4,r2)

|Du|p(·) dz dλ

=

∫
Ek(Bλo/4,r2)

|Du|p(·)
∫ 4Tk(|Du|p(·))

Bλo

λq−2 dλ dz

≤ 4q−1

q − 1

∫
Qr2

|Du|p(·)Tk
(
|Du|p(·)

)q−1
dz

and analogously for the integral involving the right-hand side F :∫ ∞
Bλo

λq−2

∫
Qr2∩{M(|F |+1)p(·)>λ/4}

M(|F |+ 1)p(·) dz dλ

=

∫
Qr2∩{M(|F |+1)p(·)>Bλo/4}

M(|F |+ 1)p(·)
∫ 4M(|F |+1)p(·)

Bλo

λq−2 dλ dz

≤ 4q−1Mq

q − 1

∫
Qr2

(|F |+ 1)p(·)q dz.

Hence, joining the preceding estimates with (8.18) we get∫
Qr1

|Du|p(·)Tk
(
|Du|p(·)

)q−1
dz

≤ (ABλo)
q−1

∫
Qr1

|Du|p(·) dz

+ c̄ Aq−1G(M,R)

∫
Qr2

|Du|p(·)Tk
(
|Du|p(·)

)q−1
dz

+ c̄ Aq−1MqG(M,R)

∫
Qr2

(|F |+ 1)p(·)q dz,(8.19)

where c̄ = c̄(data). Note that the estimate stays stable as q ↓ 1.

8.5. Choice of the parameters. We now perform the choices of the parameters M and
Ro in such a way that c̄Aq−1G(M,R) ≤ 1

2 whenever R ≤ Ro. First, we choose M =
M(data, q) ≥ 1 large enough to have

c̄ Aq−1

M1− 1
γ1

≤ 1

4
.
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Next, we reduce the value of Ro, now depending on data,K, ω(·), ω̃(·), q, in such a way
that for any % ≤ Ro we have

(8.20) c̄ Aq−1
[
ω
(
Γ(2%)α

)
M log

(K
%

)
+
[
ω̃(%)

] ε1
2γ′1

] 1
2 ≤ 1

4
.

Note that this is possible due to the assumptions (2.4) and (2.8). Recalling the definition of
G in (8.13) we therefore have c̄Aq−1G(M,R) ≤ 1

2 for any R ≤ Ro. Using this in (8.19)
we get ∫

Qr1

|Du|p(·)Tk
(
|Du|p(·)

)q−1
dz

≤ 1

2

∫
Qr2

|Du|p(·)Tk
(
|Du|p(·)

)q−1
dz

+ c
( R

r2 − r1

)β
λq−1
o

∫
Q2R

|Du|p(·) dz + c

∫
Q2R

(|F |+ 1)p(·)q dz,

where β ≡ (n + 2)(q − 1)d and with a constant c = c(data, q). At this point we apply
Lemma 3.1 with

φ(r) ≡
∫
Qr

|Du|p(·)Tk
(
|Du|p(·)

)q−1
dz,

and

A ≡ c
∫
Q2R

(|F |+ 1)p(·)q dz and B ≡ cRβλq−1
o

∫
Q2R

|Du|p(·) dz,

yielding that∫
QR

|Du|p(·)Tk
(
|Du|p(·)

)q−1
dz ≤ c(β)

[
A+

B
Rβ

]
.

Passing to the limit k → ∞ which is possible by Fatou’s lemma and taking averages we
find that

(8.21)
∫
QR

|Du|p(·)q dz ≤ c
[
λq−1
o

∫
Q2R

|Du|p(·) dz +

∫
Q2R

(|F |+ 1)p(·)q dz

]
.

Note that c = c(data, q), since β depends continuously on p(·), i.e. the dependence
upon p(·) via the parameter d can be replaced by a dependence on γ1 and γ2. Since
Q2R b ΩT was arbitrary, we have thus proved the first assertion in Theorem 2.2, i.e. that
|Du|p(·) ∈ Lqloc(ΩT ). It now remains to show the estimate (2.10).

8.6. Adjusting the exponent. Here, we first observe that (8.21) together with the defini-
tion of λo in (8.1) lead to estimate (2.10) in Theorem 2.2, but with d instead of d(po), with
po := p(zo) and zo is the center of the cylinder Q2R ≡ Q2R(zo). We recall that d was
defined in (2.11) and d ≥ d(po). In order to reduce the exponent from d to d(po) we need
to show a bound of the following form

(8.22) Ed−d(po) ≤ c(n, γ1), where E :=

∫
Q2R

|Du|p(·) + (|F |+ 1)p(·)q dz.

To this aim we first shall deduce an upper bound for d − d(po) in terms of ω(R). Since
d(p(·)) is continuous there exists ẑ ∈ QR such that d = d(p(ẑ)). From the definition of
d(·) in (2.11) we observe that

d(po) ≥ max

{
po
2
,

2po
po(n+ 2)− 2n

}
.
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In the following we distinguish the cases where p(ẑ) is larger, respectively smaller than 2.
In the case p(ẑ) ≥ 2 we get from (2.5) that

d− d(po) =
p(ẑ)

2
− d(po) ≤

p(ẑ)

2
− po

2
≤ 1

2
ω(R),

while in the case p(ẑ) < 2 we have p(ẑ) ≤ po and therefore we find in a similar way that

d− d(po) ≤
2p(ẑ)

p(ẑ)(n+ 2)− 2n
− 2po
po(n+ 2)− 2n

=
4n(po − p(ẑ))

[p(ẑ)(n+ 2)− 2n][po(n+ 2)− 2n]
≤ 4n

[γ1(n+ 2)− 2n]2
ω(R).

Hence, in any case we have proved that d−d(po) ≤ c(n, γ1)ω(R). Recalling the definition
of E from (8.22) and using (2.9) we thus obtain

Ed−d(po) ≤ c(n, γ1)
[
R−(n+2)K

]c(n,γ1)ω(R) ≤ c(n, γ1).

We note that the last inequality is a consequence of the logarithmic continuity of ω from
(2.5), since R−ω(R) ≤ e and

Kω(R) = exp
[
ω(R) logK

]
≤ exp

[
ω(R) log

(
1
R

)]
≤ e

provided R ≤ Ro ≤ min{R1, 1/K}, where R1 is the radius from (2.5). This finishes the
proof of (8.22) and by the reasoning from above we therefore obtain the asserted estimate
(2.10). We have thus completed the proof of Theorem 2.2. 2

8.7. Proof of Remark 2.3. Here, it is enough to ensure that we can choose Ro > 0 and
εBMO in such a way that (8.20) is satisfied. Assuming for instance

[a]BMO ≤ εBMO :=
( 1

8c̄Aq−1

) 4γ′1
ε1 and ω

(
Γ(2%)α

)
M log

(K
%

)
≤
( 1

8c̄Aq−1

)2

for any % ≤ Ro we conclude that (8.20) holds, since ω̃(%) ≤ [a]BMO. The rest of the proof
is completely the same as the one of Theorem 2.2.
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STRASSE 11, 91058 ERLANGEN, GERMANY

E-mail address: boegelein@mi.uni-erlangen.de


	1. Introduction
	2. Statement of the result
	3. Preliminaries and notation
	3.1. Notation
	3.2. Preliminaries

	4. Non uniform intrinsic geometry
	5. Higher integrability
	6. A priori estimates
	7. Comparison estimates
	8. Proof of the Calderón-Zygmund estimate
	8.1. A stopping-time argument
	8.2. Estimates on intrinsic cylinders
	8.3. Estimates on level sets
	8.4. Raising the integrability exponent
	8.5. Choice of the parameters
	8.6. Adjusting the exponent
	8.7. Proof of Remark 2.3

	References

