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Abstract. We introduce a model of dynamic visco-elasto-plastic evolution in
the linearly elastic regime and we prove an existence and uniqueness result.

Then we study the limit of (a rescaled version of) the solutions when the data
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evolution in perfect plasticity.
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1. Introduction

The quasistatic evolution of rate independent systems has been often obtained
as the limit case of a viscosity driven evolution (see [27], [20], [9], [6], [30], [22], [13],
[14], [16], [17], [21], [23]). In this paper we present a case study on the approximation
of a quasistatic evolution by dynamic evolutions, in a mechanical problem governed
by partial differential equations. For a similar problem in finite dimension we refer
to [1].

More precisely we approximate the solutions of the quasistatic evolution in lin-
early elastic perfect plasticity (see [27] and [5]) by the solutions of suitable dynamic
visco-elasto-plastic problems, when a parameter connected with the speed of the
process tends to 0.

In the first part of the paper we consider a model of dynamic visco-elasto-plastic
evolution in the linearly elastic regime. The reference configuration is a bounded
open set Ω ⊂ Rn with sufficiently smooth boundary. The linearized strain Eu,
defined as the symmetric part of the gradient of the displacement u, is decomposed
as Eu = e + p, where e is the elastic part and p is the plastic part. The stress
σ = A0e+A1ė is the sum of an elastic part A0e and a viscous part A1ė, where A0

is the elasticity tensor, A1 is the viscosity tensor, and ė is the derivative of e with
respect to time. The balance of momentum gives the equation

ü− divσ = f,

where f is the volume force, and we have supposed, for simplicity, that the mass
density is identically equal to 1. The evolution of the plastic part is governed by
the flow rule

ṗ = σD − πKσD,
where σD is the deviatoric part of σ and πK is the projection onto a prescribed con-
vex set K in the space of deviatoric symmetric matrices, which can be interpreted
as the domain of visco-elasticity. Indeed, if σD belongs to K during the evolution,
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then there is no production of plastic strain, so that, if p = 0 at the initial time,
then p = 0 for every time and the solution is purely visco-elastic.

The complete system of equations is then

Eu = e+ p, (1.1a)

σ = A0e+A1ė, (1.1b)

ü− divσ = f, (1.1c)

ṗ = σD − πKσD, (1.1d)

supplemented by initial and boundary conditions.
Under natural assumptions on A0, A1, f , and K we prove existence and unique-

ness of a solution to (1.1) with initial and boundary conditions (Theorem 3.1).
In analogy with the energy method for rate independent processes developed by
Mielke (see [20] and the references therein), we first prove that system (1.1) has a
weak formulation expressed in terms of an energy balance together with a stability
condition (Theorem 3.3). The proof of the existence of a solution to this weak
formulation is obtained by time discretization. In the discrete formulation we solve
suitable incremental minimum problems and then we pass to the limit as the time
step tends to 0.

In the second part of the work we analyze the behavior of the solution to system
(1.1) as the data of the problem become slower and slower. After a standard change
of variables described at the beginning of Section 6, we are led to study the behavior
of the solutions to the system

Euε = eε + pε, (1.2a)

σε = A0eε + εA1ėε, (1.2b)

ε2üε − divσε = f, (1.2c)

εṗε = σεD − πKσεD, (1.2d)

as ε tends to 0.
Under suitable assumptions we show (Theorem 6.2) that these solutions con-

verge, up to a subsequence, to a weak solution of the quasistatic evolution problem
in perfect plasticity (see [27] and [5]), whose strong formulation is given by

Eu = e+ p, (1.3a)

σ = A0e, (1.3b)

− divσ = f, (1.3c)

σD ∈ K and ṗ ∈ NKσD, (1.3d)

where NKσD denotes the normal cone to K at σD.
The proof of this convergence result is obtained using the weak formulation of

(1.1) expressed by energy balance and stability condition. We show that we can pass
to the limit in this formulation obtaining the energy formulation of (1.3) developed
in [5]. A remarkable difficulty in this proof is due to the fact that problems (1.1)
and (1.3) are formulated in completely different function spaces (see Theorem 3.1
and Definition 5.1).

2. Preliminaries

2.1. Notation. Vectors and Matrices. If a, b ∈ Rn, their scalar product is
defined by a · b :=

∑
i aibi, and |a| := (a · a)1/2 is the norm of a. If η = (ηij) and

ξ = (ξij) belong to the space Mn×n of n× n matrices with real entries, their scalar
product is defined by η · ξ :=

∑
ij ηijξij . Similary |η| := (η · η)1/2 is the norm of η.

Mn×n
sym is the subspace of Mn×n composed of symmetric matrices. Moreover Mn×n

D
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denotes the subspace of symmetric matrices with null trace, i.e., η ∈ Mn×n
D if η is

symmetric and trη =
∑
i ηii = 0. The space Mn×n

sym can be split as

Mn×n
sym = Mn×n

D ⊕ RI,

where I is the identity matrix, so that every η ∈ Mn×n
sym can be written as η =

ηD + trηI, where ηD, called the deviatoric part of η, is the projection of η into
Mn×n
D .
Duality and Norms. If X is a Banach space and u ∈ X, we usually denote the

norm of u by ‖u‖X . If X is Lp(Ω) or Lp(Ω; Rn) the norm is denoted by ‖u‖Lp . If
u, v are functions in L2(Ω; Rn) the scalar product of u and v is denoted by 〈u, v〉Ω.
In general, if X is a Banach space, X ′ is its dual space and 〈u, v〉X denotes the
duality product between u ∈ X ′ and v ∈ X. The subscript X is sometimes omitted,
if it is clear from the context.

If Γ is an oriented hypersurface in Rn and v, w are two Rn-valued maps defined
on Γ, we write

〈v, w〉Γ :=
∫

Γ

v · w dHn−1,

where Hn−1 denotes the n− 1 dimensional Hausdorff measure.

3. Visco-Elasto-Plastic Evolution

3.1. Kinematical Setting. The Reference Configuration. The reference con-
figuration is a bounded connected open set Ω in Rn, n ≥ 2, with Lipschitz boundary.
We suppose that ∂Ω = Γ0 ∪ Γ1 ∪ ∂Γ, where Γ0, Γ1, and ∂Γ are pairwise disjoint,
Γ0 and Γ1 are relatively open in ∂Ω, and ∂Γ is the relative boundary in ∂Ω both
of Γ0 and Γ1. We assume that Γ0 6= Ø and that Hn−1(∂Γ) = 0. On Γ0 we will
prescribe a Dirichlet condition on the displacement u, while on Γ1 we will impose
a Neumann condition on the stress σ.

Elastic and Plastic Strain. If u is the displacement, the linearized strain Eu is
its symmetrized gradient, defined as the Mn×n

sym -valued distribution with components
Eiju = 1

2 (Diuj + Djui). The linearized strain is decomposed as the sum of the
elastic strain e and the plastic strain p. Given w ∈ H1(Ω,Rn), we say that a
triple (u, e, p) is kinematically admissible for the visco-elasto-plastic problem with
boundary datum w if u ∈ H1(Ω; Rn), e ∈ L2(Ω; Mn×n

sym ), p ∈ L2(Ω; Mn×n
D ), and

Eu = e+ p on Ω, (3.1a)

u|Γ0 = w on Γ0. (3.1b)

We denote the set of these triples by A(w). It is convenient to introduce the
subspace of H1(Ω; Rn) defined by

H1
Γ0

(Ω; Rn) := {u ∈ H1(Ω; Rn) : u|Γ0 = 0}

and its dual space, denoted by H−1
Γ0

(Ω; Rn). It is clear that (u, e, p) ∈ A(w) if
and only if u − w ∈ H1

Γ0
(Ω; Rn) and Eu = e + p, with e ∈ L2(Ω; Mn×n

sym ) and
p ∈ L2(Ω; Mn×n

D ).
Stress and External Forces. In the visco-elasto-plastic model the stress σ

depends linearly on the elastic part e of the strain Eu and on its time derivative ė.
To express this dependence we introduce the elastic tensor A0 and the visco-elastic
tensor A1. These are positive definite symmetric linear operators of Mn×n

sym into
itself, therefore there exist positive constants α0, α1 and β0, β1 such that

|Aiξ| ≤ βi|ξ|, (3.2a)

Aiξ · ξ ≥ αi|ξ|2, (3.2b)
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for every ξ ∈Mn×n
sym and i = 0, 1. The stress satisfies the constitutive relation

σ = A0e+A1ė. (3.3)

The term A1ė in the equation above is the component of the stress due to internal
frictions. To express the energy balance it is useful to introduce the quadratic forms

Q0(ξ) =
1
2
A0ξ · ξ and Q1(ξ) = A1ξ · ξ.

For every e ∈ L2(Ω; Mn×n
sym ) we define

Q0(e) =
∫

Ω

Q0(e)dx and Q1(e) =
∫

Ω

Q1(e)dx.

These function turn out to be lower semicontinuous with respect to the weak topol-
ogy of L2(Ω; Mn×n

sym ). Q0(e) represents the stored elastic energy associated to
e ∈ L2(Ω; Mn×n

sym ) while Q1(ė) represents the rate of viscoelastic dissipation.
We assume that the time dependent body force f(t) belongs to L2(Ω; Rn) and

that the time dependent surface force g(t) belongs to L2(Γ1; Rn). It is convenient
to introduce the total load L(t) ∈ H−1

Γ0
(Ω; Rn) of external forces acting on the body,

defined by
〈L(t), u〉 := 〈f(t), u〉Ω + 〈g(t), u〉Γ1 , (3.4)

where 〈·, ·〉 denotes the duality pairing between H−1
Γ0

(Ω; Rn) and H1
Γ0

(Ω; Rn). When
dealing with the visco-elasto-plastic problem we will only suppose that the total
load L(t) belongs to H−1

Γ0
(Ω; Rn), without assuming the particular form (3.4). The

hypotheses on the functions t 7→ L(t) and t 7→ w(t) and the regularity of t 7→
(u(t), e(t), p(t)) will be made precise in the statement of Theorems 3.1 and 3.3
below.

The law which expresses the second principle of dynamic is

ü(t)− divσ(t) = f(t) in Ω, (3.5)

where we assume that the mass density of the elasto-plastic body is 1. Equation
(3.5) is supplemented with the boundary conditions

u(t) = w(t) on Γ0, (3.6a)

σ(t)ν = g(t) on Γ1. (3.6b)

To deal with (3.5) and (3.6), it is convenient to introduce the continuous linear
operator divΓ0 : L2(Ω; Mn×n

sym )→ H−1
Γ0

(Ω; Rn) defined by

〈divΓ0σ, ϕ〉 := −〈σ,Eϕ〉 (3.7)

for every σ ∈ L2(Ω; Mn×n
sym ) and every ϕ ∈ H1

Γ0
(Ω; Rn).

If f(t), g(t), σ(t), u(t), Γ0, and Γ1 are sufficiently regular and L(t) is the total
external load defined by (3.4), then we can prove, using integration by parts, that
(3.5) and (3.6b) are equivalent to

ü(t)− divΓ0σ(t) = L(t), (3.8)

interpreted as equality between elements of H−1
Γ0

(Ω; Rn). In other words (3.8) is
satisfied if and only if

〈ü(t), ϕ〉+ 〈σ(t), Eϕ〉 = 〈L(t), ϕ〉 (3.9)

for every ϕ ∈ H1
Γ0

(Ω; Rn). In the irregular case, equation (3.9) represents the weak
formulation of problem (3.5) with boundary condition (3.6b).

Plastic Dissipation. The elastic domain K is a convex and compact set in
Mn×n
D . We will suppose that there exist two positive real numbers r1 < R1 such

that
B(0, r1) ⊆ K ⊆ B(0, R1). (3.10)



QUASISTATIC EVOLUTION AS LIMIT OF DYNAMIC PROCESSES 5

It is convenient to introduce the set

K(Ω) := {ξ ∈ L2(Ω; Mn×n
D ) : ξ(x) ∈ K for a.e. x ∈ Ω}. (3.11)

If πK denotes the minimal distance projection of Mn×n
D into K, and πK(Ω) denotes

the projection of L2(Ω; Mn×n
D ) into K(Ω), then it is easy to check that

(πK(Ω)ξ)(x) = πKξ(x) for a.e. x ∈ Ω, (3.12)

for every ξ ∈ L2(Ω; Mn×n
D ).

The evolution of the plastic strain p(t, x) will be expressed by the Maximum
Dissipation Principle, or Principle of Maximum Work of Hill (see, e.g., [11], [18],
[27]): if σ is the stress, then p will satisfy the following

(σD(t, x)− ξ) · ṗ(t, x) ≥ 0 for every ξ ∈ K and a.e. x in Ω

σD(t, x)− ṗ(t, x) ∈ K, for a.e. x in Ω,

where we assume for simplicity that the viscosity coefficient is 1. Thanks to the
characterization of the projection onto convex sets (see, e.g., [12]), this condition is
satisfied if and only if σD(t, x) − ṗ(t, x) coincides with πKσD(t, x), for a.e. x ∈ Ω.
By (3.12), this can be written as

ṗ(t) = σD(t)− πK(Ω)σD(t). (3.13)

We define the support function H : Mn×n
D → [0,+∞[ of K by

H(ξ) = sup
ζ∈K

ζ · ξ. (3.14)

It turns out that H is convex and positively homogeneous of degree one. In partic-
ular it satisfies the triangle inequality

H(ξ + ζ) ≤ H(ξ) +H(ζ)

and the following inequality, due to (3.10):

r1|ξ| ≤ H(ξ) ≤ R1|ξ|. (3.15)

We define H : L2(Ω; Mn×n
D )→ R by

H(p) =
∫

Ω

H(p(x))dx. (3.16)

If p ∈ H1([0, T ];L2(Ω; Mn×n
D )) and ṗ(t) is its time derivative, then H(ṗ) represents

the rate of plastic dissipation, so that,∫ T

0

H(ṗ)dt (3.17)

is the total plastic dissipation in the time interval [0, T ].
We notice that, by the definition of H, the subdifferential of H satisfies (see e.g.

[25, Theorem 13.1])

∂H(0) = K. (3.18)

From (3.18), it easily follows

∂H(0) = K(Ω), (3.19)

where ∂H(ξ) denotes the subdifferential of H at ξ.
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3.2. Existence Results for Elasto-Visco-Plastic Evolutions. Given an elasto-
visco-plastic body Ω in Rn satisfying all the properties described in the previous
section, we fix an external load L and a Dirichlet boundary datum w, and look for
a solution of the dynamic equation (3.8) and of the flow rule (3.13), with stress σ
defined by (3.3) and strain satisfying equation (3.1). The main existence result for
an elasto-visco-plastic evolution is the following theorem.

Theorem 3.1. Let T > 0, let L ∈ L2([0, T ];H−1
Γ0

(Ω; Rn)), and let w be a function
such that

w ∈ L∞([0, T ];H1(Ω; Rn)), (3.20a)

ẇ ∈ C0([0, T ];L2(Ω; Rn)) ∩ L2([0, T ];H1(Ω; Rn)), (3.20b)

ẅ ∈ L2([0, T ];H−1
Γ0

(Ω; Rn)). (3.20c)

Then for every (u0, e0, p0) ∈ A(w(0)) and v0 ∈ L2(Ω; Rn) there exists a unique
quadruple (u, e, p, σ) of functions, with

u ∈ L∞([0, T ];H1(Ω; Rn)), (3.21a)

u̇ ∈ L∞([0, T ];L2(Ω; Rn)) ∩ L2([0, T ];H1(Ω; Rn)), (3.21b)

ü ∈ L2([0, T ];H−1
Γ0

(Ω; Rn)), (3.21c)

e ∈ L∞([0, T ];L2(Ω; Mn×n
sym )), (3.21d)

p ∈ L∞([0, T ];L2(Ω; Mn×n
D )), (3.21e)

ė ∈ L2([0, T ];L2(Ω; Mn×n
sym )), (3.21f)

ṗ ∈ L2([0, T ];L2(Ω; Mn×n
D )), (3.21g)

σ ∈ L2([0, T ];L2(Ω; Mn×n
sym )), (3.21h)

such that for a.e. t ∈ [0, T ] we have

Eu(t) = e(t) + p(t), (3.22a)

σ(t) = A0e(t) +A1ė(t), (3.22b)

ü(t)− divΓ0σ(t) = L(t), (3.22c)

ṗ(t) = σD(t)− πK(Ω)σD(t), (3.22d)

and
u(t) = w(t) on Γ0, (3.23)

u(0) = u0, e(0) = e0, p(0) = p0, u̇(0) = v0. (3.24)
Moreover (u, e, p, σ) satisfies the equilibrium condition

−H(q) ≤ 〈A0e(t), η〉+ 〈A1ė(t), η〉+ 〈ṗ(t), q〉
+ 〈ü(t), ϕ〉 − 〈L(t), ϕ〉 ≤ H(−q), (3.25)

for a.e. t ∈ [0, T ] and for every (ϕ, η, q) ∈ A(0), where 〈·, ·〉 denotes the duality
pairing between H−1

Γ0
(Ω; Rn) and H1

Γ0
(Ω; Rn) in the terms containing ü and L, while

it denotes the scalar product in L2 in all other terms.

Remark 3.2. In view of (3.20) and (3.21) we see that u, w, u̇, ẇ, e and p are
absolutely continuous, i.e.,

u,w ∈ AC([0, T ];H1(Ω; Rn)), (3.26a)

u̇, ẇ ∈ AC([0, T ];H−1
Γ0

(Ω; Rn)), (3.26b)

e ∈ AC([0, T ];L2(Ω; Mn×n
sym )), (3.26c)

p ∈ AC([0, T ];L2(Ω; Mn×n
D )) (3.26d)
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(see, e.g., [4], Proposition A.3 and following Corollary). Moreover [31, Proposi-
tion 23.23] implies that

u̇− ẇ ∈ C0([0, T ];L2(Ω; Rn)), (3.27a)

‖u̇− ẇ‖2L2 ∈ AC([0, T ]), (3.27b)
d
dt‖u̇− ẇ‖

2
L2 = 2〈ü− ẅ, u̇− ẇ〉 a.e. t ∈ [0, T ], (3.27c)

where 〈·, ·〉 denotes the duality pairing between H−1
Γ0

(Ω; Rn) and H1
Γ0

(Ω; Rn). Since
ẇ ∈ C0([0, T ];L2(Ω; Rn)), from (3.27a) we obtain

u̇ ∈ C0([0, T ];L2(Ω; Rn)). (3.28)

This property gives a precise meaning to the initial conditions (3.24).

Before proving Theorem 3.1 we will first state the following result, which char-
acterizes the solutions of equations (3.22c) and (3.22d).

Theorem 3.3. Under the hypotheses of Theorem 3.1, we assume that (u, e, p, σ)
satisfies (3.21), (3.22a), (3.22b), (3.23), and (3.24). Then (u, e, p, σ) satisfies
(3.22c) and (3.22d) for a.e. t ∈ [0, T ] if and only if both the following conditions
hold:

(a) Energy balance: for every t ∈ [0, T ] we have

Q0(e(t)) +
1
2
‖u̇(t)−ẇ(t)‖2L2 +

∫ t

0

Q1(ė)ds+
∫ t

0

‖ṗ‖2L2ds+
∫ t

0

H(ṗ)ds =

=
∫ t

0

〈σ,Eẇ〉ds+
∫ t

0

〈L − ẅ, u̇− ẇ〉ds+Q0(e0) +
1
2
‖v0 − ẇ(0)‖2L2 , (3.29)

(b) For a.e. t ∈ [0, T ] the equilibrium condition (3.25) holds for every (ϕ, η, q) ∈
A(0).

Moreover, if the two previous conditions are satisfied, then

〈σD(t)− ṗ(t), ṗ(t)〉 = H(ṗ(t)), (3.30)

for a.e. t ∈ [0, T ].

Remark 3.4. If the data w and L are sufficiently regular and L has the form (3.4)
with f ∈ L2([0, T ];L2(Ω; Rn)) and g ∈ L∞([0, T ];L2(Γ1; Rn)), then we can integrate
by parts the terms

∫ t
0
〈ẅ, u̇〉ds and

∫ t
0
〈ẅ, ẇ〉ds obtaining that we can rewrite the

energy balance formula as follows:

Q0(e(t)) +
1
2
‖u̇(t)‖2L2 +

∫ t

0

Q1(ė)ds+
∫ t

0

‖ṗ‖2L2ds+
∫ t

0

H(ṗ)ds =

=
∫ t

0

〈σ,Eẇ〉ds+
∫ t

0

〈f, u̇− ẇ〉ds+
∫ t

0

〈g, u̇− ẇ〉Γ1ds

+
∫ t

0

〈ü, ẇ〉ds+Q0(e0) +
1
2
‖v0‖2L2 ,

which becomes, using ü = divΓ0σ + L:

Q0(e(t)) +
1
2
‖u̇(t)‖2L2 +

∫ t

0

Q1(ė)ds+
∫ t

0

‖ṗ‖2L2ds+
∫ t

0

H(ṗ)ds =

=
∫ t

0

〈σν, u̇〉Γ0ds+
∫ t

0

〈f, u̇〉ds+
∫ t

0

〈g, u̇〉Γ1ds+Q0(e0) +
1
2
‖v0‖2L2 ,

where we have used u̇ = ẇ on Γ0. This is the usual formulation of the energy
conservation law. Indeed Q0(e(t)) is the stored elastic energy, 1

2‖u̇(t)‖2L2 is the
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kinetic energy,
∫ t

0
Q1(ė(t))ds is the visco-elastic dissipation,

∫ t
0
‖ṗ‖2L2ds is the visco-

plastic dissipation, and
∫ t

0
H(ṗ)ds is the plastic dissipation. On the right-hand side

the terms
∫ t

0
〈σν, u̇〉Γ0ds,

∫ t
0
〈g, u̇〉Γ1ds, and

∫ t
0
〈f, u̇〉ds represent the work done by

the external forces on the Dirichlet boundary, on the Neumann boundary, and on
the body itself, while the two terms Q0(e0) and 1

2‖v0‖2L2 are the stored elastic
energy and the kinetic energy at the initial time.

Proof of Theorem 3.3. Let us suppose that the quadruple (u, e, p, σ) satisfies (3.25)
and (3.29); let us prove (3.22c). Let ϕ ∈ H1

Γ0
(Ω; Rn); since (ϕ,Eϕ, 0) ∈ A(0), we

choose η = E(ϕ) and q = 0 in (3.25) and for a.e. t ∈ [0, T ] we get

〈A0e(t) +A1ė(t), Eϕ〉+ 〈ü(t), ϕ〉 − 〈L(t), ϕ〉 = 0,

which is equivalent to (3.22c), thanks to (3.9) and (3.22b).
It remains to prove (3.22d). Choosing (0, q,−q) ∈ A(0) in (3.25) for some q ∈

L2(Ω,Mn×n
D ), for a.e. t ∈ [0, T ] we get

−H(−q) ≤ 〈A0e(t) +A1ė(t), q〉 − 〈ṗ(t), q〉 ≤ H(q),

which, by (3.22b), says that

σD(t)− ṗ(t) ∈ ∂H(0) = K(Ω) (3.31)

thanks to the arbitraryness of q (see (3.19)).
By (3.20), (3.21), and (3.23) for a.e. t ∈ [0, T ] the function ϕ := u̇(t) − ẇ(t)

belongs to H1
Γ0

(Ω; Rn). Then we use this function in (3.9) and integrate with
respect to time, taking into account (3.22a), (3.22b), (3.26c), (3.27b), and (3.27c).
We finally get

Q0(e(t))−Q0(e0) +
∫ t

0

Q1(ė)ds−
∫ t

0

〈σ,Eẇ〉ds+
∫ t

0

〈σD, ṗ〉ds

+
1
2
‖u̇(t)− ẇ(t)‖2L2 −

1
2
‖v0 − ẇ(0)‖2L2 −

∫ t

0

〈L − ẅ, u̇− ẇ〉ds = 0. (3.32)

for every t ∈ [0, T ]. This equality, together with the energy balance (3.29), implies
that (3.30) holds for a.e. t ∈ [0, T ]. As a consequence, by the definition of H, we
deduce that for a.e. t ∈ [0, T ] and for every ξ ∈ K(Ω) we have

〈σD(t)− ṗ(t), ṗ(t)〉 ≥ 〈ξ, ṗ(t)〉,
which is equivalent to

〈σD(t)− (σD(t)− ṗ(t)), ξ − (σD(t)− ṗ(t))〉 ≤ 0.

Thanks to (3.31), σD(t)− ṗ(t) belongs to K(Ω); therefore the arbitrariness of ξ and
the well-known characterization of the projection onto convex sets (see, e.g., [12],
Chapter 1.2) give that σD(t)− ṗ(t) = πK(Ω)σD(t) for a.e. t ∈ [0, T ].

Conversely suppose (u, e, p, σ) to be a solution of the system of equations (3.22).
Formula (3.25) is proved in Theorem 3.1. In order to get the energy balance we
first prove that, if a function (u, e, p, σ) satisfies (3.22), then (3.30) holds. Indeed, if
ξ ∈ K(Ω), then from the properties of convex sets it follows that for a.e. t ∈ [0, T ]

(σD − ṗ) · ṗ = πKσD · (σD − πKσD) ≥
≥ πKσD · (σD − πKσD) + (ξ − πKσD) · (σD − πKσD) = ξ · (σD − πKσD)

almost everywhere in Ω, that is (σD − ṗ) · ṗ ≥ H(σD − πKσD) = H(ṗ) thanks to
the definition of H. Since σD − ṗ ∈ K a.e. in Ω and for a.e. t ∈ [0, T ] by (3.22d),
the definition of H gives also the opposite inequality. So integrating on Ω we get
(3.30).

Choosing again ϕ = u̇(t)− ẇ(t) in (3.9) and integrating with respect to time, we
get (3.32), which together with (3.30) gives the energy balance (3.29).
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Proof of Theorem 3.1. We will obtain the solution by time discretization, consider-
ing the limit of approximate solutions constructed by solving incremental minimum
problems. Given an integer N > 0 we define τ = T/N and subdivide the interval
[0, T ) into N subintervals [ti, tt+1), i = 0, . . . , N − 1 of length τ , with ti = iτ . Let
us set

u−1 = u0 − τv0, w−1 = w0 − τẇ(0),

wi = w(ti), Li =
1
τ

∫ ti+1

ti

L(s)ds.

We construct a sequence (ui, ei, pi) with i = 0, 1, . . . , N by induction. First
(u0, e0, p0) coincides with the initial data (3.24). Let us fix i and let us suppose
(uj , ej , pj) ∈ A(wj) to have been defined for j = 0, . . . , i. Then (ui+1, ei+1, pi+1) is
defined as the unique minimizer on A(wi+1) of the functional

Vi(u, e, p) =
1
2
〈A0e, e〉+

1
2τ
〈A1(e− ei), e− ei〉+

1
2τ
‖p− pi‖2L2

+H(p− pi) +
1
2
‖u− ui

τ
− ui − ui−1

τ
‖2L2 − 〈Li, u〉, (3.33)

which turns out to be coercive and strictly convex on A(wi+1).
To obtain the Euler conditions we observe that (ui+1, ei+1, pi+1) + λ(ϕ, η, q) ∈

A(wi+1) for every (ϕ, η, q) ∈ A(0), and for every λ ∈ R. Evaluating Vi in this point
and differentiating with respect to λ at 0± we get

−H(q) ≤〈A0ei+1, η〉+
1
τ
〈A1(ei+1 − ei), η〉+

1
τ
〈pi+1 − pi, q〉

+
1
τ
〈vi+1 − vi, ϕ〉 − 〈Li, ϕ〉 ≤ H(−q), (3.34)

where we have set
vj =

1
τ

(uj − uj−1). (3.35)

We now define the piecewise affine interpolation uτ , eτ , pτ , wτ on [0, T ] by

uτ (t) = ui +
ui+1 − ui

τ
(t− ti) if t ∈ [ti, ti+1) (3.36a)

eτ (t) = ei +
ei+1 − ei

τ
(t− ti) if t ∈ [ti, ti+1) (3.36b)

pτ (t) = pi +
pi+1 − pi

τ
(t− ti) if t ∈ [ti, ti+1) (3.36c)

wτ (t) = wi +
wi+1 − wi

τ
(t− ti) if t ∈ [ti, ti+1) (3.36d)

The proof now is divided into four steps: in the first one we obtain that a
subsequence of (uτ , eτ , pτ ) has a limit (u, e, p) as τ → 0, and we show that such a
limit satisfies the regularity conditions (3.21). In the second step we pass to the
limit in (3.34), obtaining the equilibrium condition (3.25). In the third step we
obtain the energy balance (3.29) for (u, e, p). From this and Theorem 3.3 it will
follow that (u, e, p) satisfies the required equations (3.22). In the last step we prove
the uniqueness.

Step 1. To simplify the notation we set ωi = 1
τ (wi − wi−1) and define, for

t ∈ [0, T ],

ωτ (t) = ωi + (ωi+1 − ωi)
t− ti
τ

if t ∈ [ti, ti+1), (3.37a)

vτ (t) = vi + (vi+1 − vi)
t− ti
τ

if t ∈ [ti, ti+1). (3.37b)



10 GIANNI DAL MASO AND RICCARDO SCALA

We shall use the three following identities:

〈A0ei+1, ei+1 − ei〉 =
∫ ti+1

ti

〈A0eτ , ėτ 〉ds+
τ

2

∫ ti+1

ti

〈A0ėτ , ėτ 〉ds, (3.38)

〈A0ei+1, Ewi+1 − Ewi〉 =

=
∫ ti+1

ti

〈A0eτ , Eẇτ 〉ds+
τ

2

∫ ti+1

ti

〈A0ėτ , Eẇτ 〉ds, (3.39)

〈(vi+1 − vi)− (ωi+1 − ωi), vi+1 − ωi+1〉 =

=
1
2
‖vi+1 − ωi+1‖2L2 −

1
2
‖vi − ωi‖2L2 +

τ

2

∫ ti+1

ti

‖v̇τ − ω̇τ‖2L2ds. (3.40)

We put

ϕ = ui+1 − ui − (wi+1 − wi),
η = ei+1 − ei − (Ewi+1 − Ewi),
q = pi+1 − pi, (3.41)

into (3.34) and take the sum over i = 0, . . . , j − 1. Using (3.38)-(3.40) we get∫ tj

0

〈A0eτ , ėτ 〉ds+
τ

2

∫ tj

0

〈A0ėτ , ėτ 〉ds+
∫ tj

0

〈A1ėτ , ėτ 〉ds

+
∫ tj

0

‖ṗτ‖2L2ds+
τ

2

∫ tj

0

‖v̇τ − ω̇τ‖2ds+
1
2
‖vτ (tj+1)− ωτ (tj+1))‖2 ≤

≤
∫ tj

0

H(−ṗτ )ds+
∫ tj

0

〈L − ω̇τ , u̇τ − ẇτ 〉ds

+
1
2
‖v0 − ω0‖2 +

∫ t

0

〈A0eτ +A1ėτ +
τ

2
A0ėτ , Eẇτ 〉ds, (3.42)

By (3.15) there exists a constant C such that H(q) ≤ C‖q‖L2 for every q ∈
L2(Ω; Mn×n

D ). Therefore we obtain

1
2
〈A0eτ (tj), eτ (tj)〉+

∫ tj

0

〈A1ėτ , ėτ 〉ds

+
∫ tj

0

‖ṗτ‖2L2ds+
1
2
‖vτ (tj+1)− ωτ (tj+1)‖2L2 ≤

≤ C
∫ tj

0

‖ṗτ‖L2dt+
1

2λ

∫ tj

0

‖L − ω̇τ‖2H−1
Γ0

ds+
λ

2

∫ tj

0

‖u̇τ − ẇτ‖2H1
Γ0
ds

+
3

2λ

∫ tj

0

‖Eẇτ‖2L2ds+
λ

2

∫ tj

0

‖A0eτ‖2L2ds

+
λ

2

∫ tj

0

‖A1ėτ‖2L2ds+
τλ

4

∫ tj

0

‖A0ėτ‖2L2ds+D, (3.43)

where λ is an arbitrary positive number, that we will choose later, and C and D
are positive constants independent of λ.

Since ẅ ∈ L2([0, T ];H−1
Γ0

(Ω; Rn)) and ẇ ∈ L2([0, T ];H1(Ω; Rn)), we see that

ẇτ → ẇ strongly in L2([0, T ];H1(Ω; Rn)), (3.44a)

ωτ → ẇ strongly in L2([0, T ];H1(Ω; Rn)), (3.44b)

ω̇τ → ẅ strongly in L2([0, T ];H−1
Γ0

(Ω; Rn)). (3.44c)

The proof of the first two properties is straightforward. To prove (3.44c) we first
put w̃τ (t) := 1

τ

∫ ti+1

ti
ẅ(s)ds ∈ H−1

Γ0
(Ω; Rn)) for t ∈ [ti, ti+1). Since w̃τ tends to ẅ, it
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suffices to show that w̃τ − ω̇τ tends to 0 strongly in L2([0, T ];H−1
Γ0

(Ω; Rn)). So we
write

‖ω̇τ − w̃τ‖2L2(H−1
Γ0

)
=
N−1∑
i=0

τ
∥∥∥1
τ

∫ ti+1

ti

(1
τ

∫ s

s−τ
ẅ(r)dr − ẅ(s)

)
ds
∥∥∥2

H−1
Γ0

≤

≤ 1
τ

N−1∑
i=0

∫ ti+1

ti

∫ s

s−τ
‖ẅ(r)− ẅ(s)‖2

H−1
Γ0

drds ≤

≤ 1
τ

N−1∑
i=0

∫ ti+1

ti−1

∫ ti+1

ti−1

‖ẅ(r)− ẅ(s)‖2
H−1

Γ0

drds,

where we set ẅ(s) = 0 for s < 0. Defining W (r, s) = ‖ẅ(r)− ẅ(s)‖2
H−1

Γ0

, we see that

the integral in the last line is bounded by

2
τ

∫ 2τ

2τ

dh

∫ T

0

W (r, r + h)dr,

that turns out to go to 0 as τ → 0, because h 7→
∫ T

0
W (r, r + h)dr is continuous

and vanishes at h = 0.
Therefore from (3.44) we see that the term∫ tj

0

‖L − ω̇τ‖2H−1
Γ0

ds+
∫ tj

0

‖Eẇτ‖2L2ds

is bounded from above. By Poincaré and Korn inequalities there exists a constant
γ such that

‖u̇τ − ẇτ‖2H1
Γ0
≤ γ(‖ėτ‖2L2 + ‖ṗτ‖2L2 + ‖Eẇτ‖2L2),

and since for some constant C1 > 0

C

∫ tj

0

‖ṗτ‖L2ds ≤ C1 +
1
2

∫ tj

0

‖ṗτ‖2L2ds,

using formula (3.2) we get from (3.43)

α0

2
‖eτ (tj)‖2L2 + α1

∫ tj

0

‖ėτ‖2L2ds+
1
2

∫ tj

0

‖ṗτ‖2L2ds

+
1
2
‖vτ (tj+1)− ωτ (tj+1)‖2L2 ≤

≤ λγ

2

∫ tj

0

‖ėτ‖2L2ds+
λγ

2

∫ tj

0

‖ṗτ‖2L2ds+
λβ2

0

2

∫ tj

0

‖eτ‖2L2ds

+
λβ2

1

2

∫ tj

0

‖ėτ‖2L2ds+ T
λβ2

0

4

∫ tj

0

‖ėτ‖2L2ds+Mλ,

where Mλ is a constant depending on λ. Choosing now λ in such a way that
λβ2

0 < α0, 2λγ < 1, and 2λγ + 2λβ2
1 + Tλβ2

0 < 2α1 we obtain

α0

2
‖eτ (tj)‖2L2 +

α1

2

∫ tj

0

‖ėτ‖2L2ds+
1
4

∫ tj

0

‖ṗτ‖2L2ds

+
1
2
‖vτ (tj+1)− ωτ (tj+1)‖2L2 ≤

α0

2

∫ tj

0

‖eτ‖2L2ds+Mλ. (3.45)

Now neglecting some non-negative terms in the left-hand side we get

‖eτ (t)‖2L2 ≤ K +
∫ t

0

‖eτ‖2L2ds ∀t ∈ [0, T ] (3.46)
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K being a positive constant independent of τ . So we can use Gronwall lemma to
obtain that eτ is bounded in L∞([0, T ];L2(Ω; Mn×n

sym )) uniformly with respect to τ .
Going back to (3.45) we also obtain:

u̇τ ∈ L∞([0, T ];L2(Ω; Rn)), (3.47a)

eτ ∈ L∞([0, T ];L2(Ω; Mn×n
sym )), (3.47b)

ėτ ∈ L2([0, T ];L2(Ω; Mn×n
sym )), (3.47c)

ṗτ ∈ L2([0, T ];L2(Ω; Mn×n
D )), (3.47d)

and u̇τ , eτ , ėτ , ṗτ are bounded in these spaces uniformly with respect to τ . For the
first condition above we have used that, as a consequence of (3.20) and (3.37), ωτ
is uniformly bounded in L∞([0, T ];L2(Ω; Rn)). We can then pass to the limit as τ
tends to 0 in a subsequence, and find functions v, e, h and q such that

u̇τ ⇀ v weakly* in L∞([0, T ];L2(Ω; Rn)), (3.48a)

eτ ⇀ e weakly* in L∞([0, T ];L2(Ω; Mn×n
sym )), (3.48b)

ėτ ⇀ h weakly in L2([0, T ];L2(Ω; Mn×n
sym )), (3.48c)

ṗτ ⇀ q weakly in L2([0, T ];L2(Ω; Mn×n
D )). (3.48d)

Integrating by parts we get h = ė almost everywhere in [0, T ]; thanks to the prop-
erties of the distributional derivatives of functions on a real interval into a Banach
space (see [4], Appendix), we obtain that e is absolutely continuous and its strong
derivative coincides with h a.e. in [0, T ].

From the estimates (3.48) and from the equalities uτ (t) =
∫ t

0
u̇τds + u0 and

pτ (t) =
∫ t

0
ṗτds+ p0 it follows that

uτ is bounded in L∞([0, T ];L2(Ω; Rn)), (3.49a)

pτ is bounded in L∞([0, T ];L2(Ω; Mn×n
D )), (3.49b)

uτ (t) ⇀ u(t) :=
∫ t

0

v(s)ds+ u0 weakly in L2(Ω; Rn), (3.49c)

pτ (t) ⇀ p(t) :=
∫ t

0

q(s)ds+ p0 weakly in L2(Ω; Mn×n
D ) (3.49d)

for every t ∈ [0, T ]. Note that, by (3.48a) and (3.48d) we deduce that

u ∈ L∞([0, T ];L2(Ω; Rn)), (3.50a)

p ∈ L∞([0, T ];L2(Ω; Mn×n
D )). (3.50b)

Arguing in a similar way for e and h we see

eτ (t) ⇀ e(t) :=
∫ t

0

ė(s)ds+ e0 weakly in L2(Ω; Mn×n
sym ) (3.51)

for every t ∈ [0, T ].
In view of (3.49) we see that u and p are absolutely continuous and that their

derivatives with respect to t coincide with v and q almost everywhere in [0, T ].
Moreover from (3.47a) and by definition of vτ we see that also vτ is uniformly
bounded in L∞([0, T ];L2(Ω; Rn)) and we claim that it tends weakly* to v = u̇ in
L∞([0, T ];L2(Ω; Rn)). Indeed let v∗ be a weak* limit of a subsequence of vτ and
let ϕ ∈ H1

Γ0
(Ω; Rn). Putting η = Eϕ and q = 0 in (3.34) we get

−divΓ0(A0ei+1)− divΓ0(A1 ei+1 − ei
τ

) +
vi+1 − vi

τ
= Li,
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which allows us to deduce from (3.47b) and (3.47c) that v̇τ = vi+1−vi
τ is bounded

in L2([0, T ];H−1
Γ0

(Ω; Rn)) uniformly with respect to τ , thanks to the continuity of
the operator divΓ0 .

So, using the Hölder inequality, we estimate

‖vτ (t)− vτ (ti+1)‖H−1
Γ0
≤ τ1/2M for t ∈ [ti, ti+1),

for some positive constant M independent of τ , t, and i. Since u̇τ (t) = vτ (ti+1) for
t ∈ [ti, ti+1) we have

‖vτ (t)− u̇τ (t)‖H−1
Γ0
≤ τ1/2M,

so that vτ − u̇τ tends to 0 strongly in L∞([0, T ], H−1
Γ0

(Ω; Rn)). From this it eas-
ily follows that the two sequences vτ and u̇τ must have the same weak* limit in
L∞([0, T ];H−1

Γ0
(Ω; Rn)), so v = v∗, proving our claim.

The boundness condition proved above implies that v̇τ tends, up to a subse-
quence, to a function ζ weakly in L2([0, T ];H−1

Γ0
(Ω; Rn)), and it easily follows that

ζ = v̇ = ü. Therefore

v̇τ ⇀ ü weakly in L2([0, T ];H−1
Γ0

(Ω; Rn)). (3.52)

Now, the identity
Euτ (t) = eτ (t) + pτ (t), (3.53)

together with conditions (3.47b) and (3.49b), implies that Euτ (t) is bounded in
L2(Ω; Mn×n

sym ) uniformly with respect to τ and t. Then the Korn inequality implies
that Duτ (t) is actually uniformly bounded in L2(Ω; Mn×n), so since uτ (t) ⇀ u(t)
weakly in L2(Ω; Rn)), we get u(t) ∈ H1(Ω; Rn) and

uτ (t) ⇀ u(t) weakly in H1(Ω; Rn) and strongly in L2(Ω; Rn) (3.54)

for all t ∈ [0, T ]. Hence (3.53) passes to the limit giving

Eu(t) = e(t) + p(t) (3.55)

for all t ∈ [0, T ]. By (3.48b) and (3.50b) we deduce that Eu(t) is bounded in
L2(Ω; Mn×n

sym ) uniformly with respect to t. By (3.50a) and Korn inequality this
implies that u ∈ L∞([0, T ];H1(Ω; Rn)). On the other hand since (3.55) gives

Eu̇(t) = ė(t) + ṗ(t), (3.56)

from (3.48c), (3.48d), and (3.49d) we deduce that Eu̇ ∈ L2([0, T ];L2(Ω; Mn×n
sym )).

Together with (3.48a) and (3.49) this implies that u̇ ∈ L2([0, T ];H1(Ω; Rn)). More-
over (3.53), (3.48c), (3.48d), and (3.56) give

Eu̇τ ⇀ Eu̇ weakly in L2([0, T ];L2(Ω; Mn×n
sym )), (3.57)

so that (3.48a) implies

u̇τ ⇀ u̇ weakly in L2([0, T ];H1(Ω; Rn)). (3.58)

We now define σ(t) := A0e(t) + A1ė(t). The results proved so far imply that
(u, e, p, σ) satisfies (3.21).

Step 2. In order to show that the functions above satisfy (3.22) we need to pass
to the limit in (3.34). We consider the piecewise constant interpolation ẽτ defined
by

ẽτ (t) = ei+1 if t ∈ [ti, ti+1).

Using (3.47c), it is easily seen that ẽτ−eτ → 0 strongly in L∞([0, T ];L2(Ω; Mn×n
sym )).

Together with (3.48b), this gives

ẽτ ⇀ e weakly* in L∞([0, T ];L2(Ω; Mn×n
sym )). (3.59)
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We also define the piecewise constant interpolation Lτ by

Lτ (t) = Li =
1
τ

∫ ti+1

ti

L(s)ds if t ∈ [ti, ti+1).

By standard properties of L2 functions and of their approximation by averaging on
subintervals, we have that

Lτ → L strongly in L2([0, T ];H−1
Γ0

(Ω; Rn)). (3.60)

For fixed τ (3.34) says that for a.e. t ∈ [0, T ] we have

−H(q) ≤ 〈A0ẽτ , η〉+ 〈A1ėτ , η〉+ 〈ṗτ , q〉
+ 〈v̇τ , ϕ〉 − 〈Lτ , ϕ〉 ≤ H(−q)

for every (ϕ, η, q) ∈ A(0). All the terms in the formula above converge weakly in
L1([0, T ]) as τ → 0, thanks to (3.48), (3.52), and (3.59). So for every (ϕ, η, q) ∈ A(0)
we can pass to the limit obtaining

−H(q) ≤ 〈A0e, η〉+ 〈A1ė, η〉+ 〈ṗ, q〉
+ 〈ü, ϕ〉 − 〈L, ϕ〉 ≤ H(−q) (3.61)

for a.e. t ∈ [0, T ]. Since the space A(0) is separable, we can construct a set of full
measure in [0, T ] such that (3.61) holds in this set for every (ϕ, η, q) ∈ A(0), which
gives (3.25).

Step 3. We will now prove the energy balance (3.29): let λ ∈ (0, 1) and put

ϕ = ui+1 − λ(ui+1 − ui) + λ(wi+1 − wi)
η = ei+1 − λ(ei+1 − ei) + λ(Ewi+1 − Ewi)

q = pi+1 − λ(pi+1 − pi), (3.62)

by the minimality of (ui+1, ei+1, pi+1) for the functional Vi defined by (3.33) we
have Vi(ui+1, ei+1, pi+1) ≤ Vi(ϕ, η, q). This implies

1
2
〈A0ei+1, ei+1〉+

1
2τ
〈A1(ei+1 − ei), ei+1 − ei〉+

1
2τ
‖pi+1 − pi‖2L2

+H(pi+1 − pi) +
1
2
‖vi+1 − vi‖2L2 − 〈Li, ui+1〉 ≤

≤ (1− λ)2

2
〈A0ei+1, ei+1〉+ λ(1− λ)〈A0ei+1, ei〉+

λ2

2
〈A0ei, ei〉

+
λ2

2
〈A0(Ewi+1 − Ewi), Ewi+1 − Ewi〉+ λ〈A0ei+1, Ewi+1 − Ewi〉

− λ2〈A0(ei+1 − ei), Ewi+1 − Ewi〉+
(1− λ)2

2τ
〈A1(ei+1 − ei), ei+1 − ei〉

+
λ2

2τ
〈A1(Ewi+1 − Ewi), Ewi+1 − Ewi〉

+
λ(1− λ)

τ
〈A1(ei+1 − ei), Ewi+1 − Ewi〉

+
(1− λ)2

2τ
‖pi+1 − pi‖2L2 + (1− λ)H(pi+1 − pi) +

1
2
‖vi+1 − vi‖2L2

+
λ2

2
‖vi+1−ωi+1‖2L2 − λ〈vi+1− vi −(ωi+1− ωi), vi+1−ωi+1〉

− 〈Li, ui+1〉+ λτ〈Li −
ωi+1 − ωi

τ
, vi+1 − ωi+1〉.
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Dividing by λ we get

2− λ
2

(A0ei+1, ei+1)− (1− λ)〈A0ei+1, ei〉

− 〈A0ei+1, Ewi+1 − Ewi〉+ λ〈A0(ei+1 − ei), Ewi+1 − Ewi〉

− λ

2
〈A0(Ewi+1 − Ewi), Ewi+1 − Ewi〉+

2− λ
2τ
〈A1(ei+1 − ei), ei+1 − ei〉

+
2− λ

2τ
‖pi+1 − pi‖2L2 +H(pi+1 − pi)−

λ

2τ
〈A1(Ewi+1 − Ewi), Ewi+1 − Ewi〉

− 1− λ
τ
〈A1(ei+1 − ei), Ewi+1 − Ewi〉+ 〈vi+1 − vi − (ωi+1 − ωi), vi+1 − ωi+1〉

− τ〈Li −
ωi+1 − ωi

τ
, vi+1 − ωi+1〉 ≤

λ

2
〈A0ei, ei〉+

λ

2
‖vi+1 − ωi+1‖2L2 .

Since 〈A0ei+1, ei+1〉 ≥ 0 and λ ∈ (0, 1) it follows that

(1− λ)〈A0ei+1, ei+1 − ei〉+
2− λ

2
τ〈A1 ei+1 − ei

τ
,
ei+1 − ei

τ
〉

− 〈A0ei+1, Ewi+1 − Ewi〉+ λτ2〈A0 ei+1 − ei
τ

,
Ewi+1 − Ewi

τ
〉

− τ2λ

2
〈A0Ewi+1 − Ewi

τ
,
Ewi+1 − Ewi

τ
〉

− (1− λ)τ〈A1 ei+1 − ei
τ

,
Ewi+1 − Ewi

τ
〉+

2− λ
2

τ‖pi+1 − pi
τ

‖2L2

+ τH(
pi+1 − pi

τ
) + 〈(vi+1 − vi)− (ωi+1 − ωi), vi+1 − ωi+1〉 ≤

≤ τ〈Li −
ωi+1 − ωi

τ
, vi+1 − ωi+1〉

+
λ

2
〈A0ei, ei〉+

λ

2
‖vi+1 − ωi+1‖2L2 +

λτ

2
〈A1Ewi+1 − Ewi

τ
,
Ewi+1 − Ewi

τ
〉.

Now, thanks to (3.38)-(3.40), from the last inequality we get

(1− λ)
∫ ti+1

ti

〈A0eτ , ėτ 〉ds+
2− λ

2

∫ ti+1

ti

〈A1ėτ , ėτ 〉ds

+
2− λ

2

∫ ti+1

ti

‖ṗτ‖2L2ds+
∫ ti+1

ti

H(ṗτ )ds

+
τ

2

∫ ti+1

ti

‖v̇τ − ω̇τ‖2L2ds+
1
2
‖vi+1 − ωi+1‖2L2 −

1
2
‖vi − ωi‖2L2 ≤

≤
∫ ti+1

ti

〈L − ω̇τ , u̇τ − ẇτ 〉ds−
6− 7λ

12
τ

∫ ti+1

ti

〈A0ėτ , ėτ 〉ds

+
λ

2τ

∫ ti+1

ti

‖u̇τ − ẇτ‖2L2ds+
λ

2

∫ ti+1

ti

〈τA0Eẇτ +A1Eẇτ , Eẇτ 〉ds

+
∫ ti+1

ti

〈A0eτ +A1ėτ , Eẇτ 〉ds+
∫ ti+1

ti

〈(τ
2
− λτ)A0ėτ − λA1ėτ , Eẇτ 〉ds

+
λ

2τ

∫ ti+1

ti

〈A0eτ , eτ 〉ds−
λ

2

∫ ti+1

ti

〈A0eτ , ėτ 〉ds,

where we have used that

λ

2
〈A0ei, ei〉 =

λ

2τ

∫ ti+1

ti

〈A0eτ , eτ 〉ds
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−λ
2

∫ ti+1

ti

〈A0eτ , ėτ 〉ds+
λτ

12

∫ ti+1

ti

〈A0ėτ , ėτ 〉ds.

We now sum over i = 0, . . . , j and we obtain

1− λ
2
〈A0eτ (tj+1), eτ (tj+1)〉 − 1− λ

2
〈A0e0, e0〉

+
2− λ

2

∫ tj+1

0

〈A1ėτ , ėτ 〉ds+
2− λ

2

∫ tj+1

0

‖ṗτ‖2L2ds+
∫ tj+1

0

H(ṗτ )ds

+
τ

2

∫ tj+1

0

‖v̇τ − ω̇τ‖2L2ds+
1
2
‖vj+1 − ωj+1‖2L2 −

1
2
‖v0 − ω0‖2L2 ≤

≤
∫ tj+1

0

〈L − ω̇τ , u̇τ − ẇτ 〉ds+
∫ tj+1

0

〈A0eτ +A1ėτ , Eẇτ 〉ds

+
λ

2τ

∫ tj+1

0

〈A0eτ , eτ 〉ds+
λ

2τ

∫ tj+1

0

‖u̇τ − ẇτ‖2L2ds

− 6− 7λ
12

τ

∫ tj+1

0

〈A0ėτ , ėτ 〉ds+
λ

2

∫ tj+1

0

〈τA0Eẇτ +A1Eẇτ , Eẇτ 〉ds

+
∫ tj+1

0

〈(τ
2
− λτ)A0ėτ − λA1ėτ , Eẇτ 〉ds−

λ

2

∫ tj+1

0

〈A0eτ , ėτ 〉ds.

We now take λ = o(τ) and then pass to the limit as τ → 0. To this aim we fix
t ∈ [0, T ] and, for every τ > 0, we define t̂τ = tj+1, where j is the unique index
such that tj ≤ t < tj+1. For the third, fourth, and fifth term in the left-hand
side of the previous inequality we just use the lower semicontinuity with respect to
the convergences in (3.48); for the sixth term we use (3.44a) and (3.44b); to deal
with the first and the seventh term we apply Lemma 3.5 below taking into account
(3.44b), (3.48b), (3.48c), and (3.52), obtaining

eτ (tj+1) = eτ (t̂τ ) ⇀ e(t) weakly in L2(Ω; Mn×n
sym ),

vj+1 − ωj+1 = vτ (t̂τ )− ω(t̂τ ) ⇀ u̇(t)− ẇ(t) weakly in H−1
Γ0

(Ω; Rn).

Since the L2 norm is lower semicontinuous with respect to weak convergence in
H−1

Γ0
(Ω; Rn) (this can be proved by a duality argument as in the classical case of

H−1(Ω; Rn)), we obtain a lower semicontinuity inequality also for these terms.
As for the right-hand side of the previous inequality, we can pass to the limit

in the first term thanks to (3.44) and (3.58), and in the second term thanks to
(3.44a), (3.48b), and (3.48c). All other terms tend to 0 by (3.44) and (3.47). Thus
we obtain

Q0(e(t))−Q0(e(0)) +
∫ t

0

Q1(ė)ds+
∫ t

0

‖ṗ‖2L2ds+
∫ t

0

H(ṗ)ds+
1
2
‖u̇(t)−ẇ(t)‖2L2

−
∫ t

0

〈A0e+A1ė, Eẇ〉ds− 1
2
‖v0 − ẇ(0)‖2L2 −

∫ t

0

〈L − ẅ, u̇− ẇ〉ds ≤ 0.

To prove the energy balance (3.29) we need to show that also the opposite
inequality holds. To this aim, for a.e. t ∈ [0, T ], we use the first inequality of (3.25)
with ϕ = u̇(t)− ẇ(t), η = ė(t)− Eẇ(t), and q = ṗ(t). This gives

〈A0e(t), ė(t)〉+ 〈A1ė(t), ė(t)〉 − 〈A0e(t) +A1ė(t), Eẇ(t)〉+ ‖ṗ(t)‖2L2

+ 〈ü(t)− ẅ(t), u̇(t)− ẇ(t)〉+H(ṗ(t))− 〈L(t)− ẅ(t), u̇(t)− ẇ(t)〉 ≥ 0;

integrating from 0 to t and using (3.26c), (3.27b), and (3.27c) we get the thesis.
Now thanks to Theorem 3.3 the quadruple (u, e, p, σ) satisfies the system of

equations (3.22), since the two conditions (3.25) and (3.29) hold.
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Step 4. It only remains to prove that the solution is unique. Let (u1, e1, p1)
and (u2, e2, p2) be two solutions with the same initial data. Setting u = u1 − u2,
e = e1 − e2, and p = p1 − p2, we will prove that (u, e, p) must be costantly zero. In
order to show this, we prove that∫ t

0

〈A0e, ė〉ds+
∫ t

0

〈A1ė, ė〉ds+
∫ t

0

‖ṗ‖2L2ds+
∫ t

0

〈ü, u̇〉ds ≤ 0 (3.63)

for every t ∈ [0, T ]. Since the initial data for u, e, p, and u̇ are zero, from this
inequality, from (3.26), and from [31, Proposition 23.23] it follows that

Q0(e(t)) +
∫ t

0

Q1(ė)ds+
∫ t

0

‖ṗ‖2L2ds+
1
2
‖u̇(t)‖2L2 ≤ 0.

We then deduce that all the terms are zero for every t ∈ [0, T ]. Together with the
initial conditions this implies that (u, e, p) is constantly zero.

Inequality (3.63) is equivalent to∫ t

0

〈A0e1, ė1〉ds+
∫ t

0

〈A1ė1, ė1〉ds+
∫ t

0

‖ṗ1‖2L2ds

+
∫ t

0

〈A0e2, ė2〉ds+
∫ t

0

〈A1ė2, ė2〉ds+
∫ t

0

‖ṗ2‖2L2ds

+
∫ t

0

〈ü1 − ü2, u̇1 − u̇2〉ds−
∫ t

0

〈A0e1, ė2〉ds−
∫ t

0

〈A0e2, ė1〉ds

−
∫ t

0

〈A1ė1, ė2〉ds−
∫ t

0

〈A1ė2, ė1〉ds− 2
∫ t

0

〈ṗ1, ṗ2〉ds ≤ 0. (3.64)

From (3.26c), (3.27b), and (3.27c), and from the energy balance (3.29) we get,
for i = 1, 2 ∫ t

0

〈A0ei, ėi〉ds+
∫ t

0

〈A1ėi, ėi〉ds+
∫ t

0

‖ṗi‖2L2ds =

=
∫ t

0

〈σi, Eẇ〉ds−
∫ t

0

H(ṗi)ds

−
∫ t

0

〈üi − ẅ, u̇i − ẇ〉ds+
∫ t

0

〈L − ẅ, u̇i − ẇ〉ds,

where σi = A0ei +A1ėi. Substituting in (3.64) we obtain

∫ t

0

〈L − ẅ, u̇1 − ẇ〉ds+
∫ t

0

〈L − ẅ, u̇2 − ẇ〉ds

−
∫ t

0

〈A0e1, ė2〉ds−
∫ t

0

〈A0e2, ė1〉ds−
∫ t

0

〈A1ė1, ė2〉ds

−
∫ t

0

〈A1ė2, ė1〉ds− 2
∫ t

0

〈ṗ1, ṗ2〉ds+
∫ t

0

〈σ1, Eẇ〉ds

+
∫ t

0

〈σ2, Eẇ〉ds−
∫ t

0

〈ü1 − ẅ, u̇2 − ẇ〉ds−
∫ t

0

〈ü2 − ẅ, u̇1 − ẇ〉ds ≤

≤
∫ t

0

H(ṗ1)ds+
∫ t

0

H(ṗ2)ds (3.65)

Since ϕ := u̇1(t)− ẇ(t) ∈ H1
Γ0

(Ω; Rn) for a.e. t ∈ [0, T ], by (3.22c) we can use it
in (3.9) for u2, σ2, and obtain

〈ü2 − ẅ, u̇1 − ẇ〉 = 〈L − ẅ, u̇1 − ẇ〉 − 〈A0e2 +A1ė2, ė1〉 − 〈σ2, ṗ1〉+ 〈σ2, Eẇ〉.



18 GIANNI DAL MASO AND RICCARDO SCALA

Similarly we have

〈ü1 − ẅ, u̇2 − ẇ〉 = 〈L − ẅ, u̇2 − ẇ〉 − 〈A0e1 +A1ė1, ė2〉 − 〈σ1, ṗ2〉+ 〈σ1, Eẇ〉,

and substituting in (3.65) we find that (3.63) is equivalent to∫ t

0

〈σ1, ṗ2〉ds+
∫ t

0

〈σ2, ṗ1〉ds− 2
∫ t

0

〈ṗ1, ṗ2〉ds ≤

≤
∫ t

0

H(ṗ1)ds+
∫ t

0

H(ṗ2)ds.

This follows easily from the inequalities

〈σ1(t)− ṗ1(t), ṗ2(t)〉 ≤ H(ṗ2(t)), 〈σ2(t)− ṗ2(t), ṗ1(t)〉 ≤ H(ṗ1(t)),

which are direct consequences of the the definition of H and of the inclusion
(σi)D(t)− ṗi(t) ∈ K(Ω), due to (3.22d).

�

Here we prove the lemma we have used in the previous proof.

Lemma 3.5. Let X be a Banach space. Assume that qτ tends to q0 weakly in
H1([0, T ];X) as τ tends to zero. Then it holds

qτ (tτ ) ⇀ q0(t0) weakly in X (3.66)

for every tτ , t0 ∈ [0, T ] with tτ → t0 as τ → 0.

Proof. Since H1([0, T ];X) is continuously embedded in C0,1/2([0, T ];X), we have
qτ ⇀ q0 weakly in C0,1/2([0, T ];X). This implies in particular that

qτ (t) ⇀ q0(t) weakly in X (3.67)

for all t ∈ [0, T ]. If tτ → t0 we have

‖qτ (tτ )− qτ (t0)‖ ≤
∫ tτ

t0

‖q̇τ‖dt ≤M(tτ − t0)1/2,

where ‖ · ‖ is the norm in X and M is an upper bound for the norm of qτ in
H1([0, T ];X). Now (3.66) follows from the previous inequality and (3.67). �

4. Perfect Plasticity

In this and in the next sections we study the behavior of the solutions of (3.22)
when the data of the problem, i.e., the external load and the boundary conditions,
vary very slowly. We are going to prove that the inertial and viscosity terms become
negligible in the limit, and that the solutions of the dynamic problems actually
approach the quasistatic evolution for perfect plasticity. To this aim we provide in
this section the mathematical setting and tools to formulate and solve the perfect
plasticity problem.

4.1. Preliminary Tools. Space BD. In perfect plasticity the displacement u
belongs to the space of functions with bounded deformation on Ω, defined as

BD(Ω) = {u ∈ L1(Ω; Rn) : Eu ∈Mb(Ω; Mn×n
sym )}.

Here and henceforth, if V is a finite dimensional vector space and A is a locally
compact subset of Rn, the symbolMb(A;V ) denotes the space of V -valued bounded
Radon measures on A, endowed with the norm ‖λ‖Mb

:= |λ|(A), where |λ| is the
variation of λ.

The space BD(Ω) is endowed with the norm

‖u‖BD = ‖u‖L1 + ‖Eu‖Mb
.



QUASISTATIC EVOLUTION AS LIMIT OF DYNAMIC PROCESSES 19

Besides the strong convergence, we shall also consider a notion of weak* convergence
in BD(Ω) . We say that a sequence uk converges to u weakly* in BD(Ω) if and
only if uk converges to u weakly in L1(Ω; Rn) and Euk converges to Eu weakly* in
Mb(Ω; Mn×n

sym ). Every function u in BD(Ω) has a trace in L1(∂Ω; Rn), that we will
still denote by u, or sometimes by u|∂Ω. By [28, Proposition 2.4 and Remark 2.5]
there exists a constant C depending only on Ω such that

‖u‖L1(Ω) ≤ C(‖u‖L1(Γ0) + ‖Eu‖Mb(Ω)). (4.1)

For technical reasons related to the stress-strain duality, in addition to the assump-
tion already introduced in Section 2.1, we now suppose that

∂Ω and ∂Γ are of class C2. (4.2)

Elastic and Plastic Strain. In perfect plasticity the plastic strain p belongs
to Mb(Ω ∪ Γ0; Mn×n

D ). The singular part of this measure describes plastic slips.
Given w ∈ H1(Ω; Rn), we say that a triple (u, e, p) is kinematically admissible
for the perfectly plastic problem with boundary datum w if u ∈ BD(Ω; Rn), e ∈
L2(Ω; Mn×n

sym ), p ∈Mb(Ω ∪ Γ0; Mn×n
D ), and

Eu = e+ p on Ω, (4.3a)

p = (w − u)� νHn−1 on Γ0, (4.3b)

where ν denotes the outer unit normal to ∂Ω and � denotes the symmetrized tensor
product.

The set of these triples will be denoted by ABD(w). Note that in this definition
of kinematical admissibility, the Dirichlet boundary condition (3.1b) is replaced by
the relaxed condition (4.3b), which represents a plastic slip occurring at Γ0. It is
also easily seen that the inclusion A(w) ⊂ ABD(w) holds, so that every admissible
triple for the visco-elasto-plastic problem is also admissible for the perfectly plastic
problem.

The following closure property is proved in [5, Lemma 2.1].

Lemma 4.1. Let wk be a sequence in H1(Ω; Rn) and (uk, ek, pk) ∈ ABD(wk). Let
us suppose that wk ⇀ w∞ weakly in H1(Ω; Rn), uk ⇀ u∞ weakly* in BD(Ω),
ek ⇀ e∞ weakly in L2(Ω; Mn×n

sym ), and pk ⇀ p∞ weakly* in Mb(Ω ∪ Γ0; Mn×n
D ).

Then (u∞, e∞, p∞) ∈ ABD(w∞).

Stress. In addition to the assumptions of Section 2.1, we now suppose that
the elastic tensor A0 maps the orthogonal spaces Mn×n

D and RI into themselves.
This is equivalent to require that there exist a positive definite symmetric operator
A0
D : Mn×n

D →Mn×n
D and a positive constant κ0 such that

A0ξ = A0
DξD + κ0(trξ)I. (4.4)

In the perfectly plastic model the stress σ is related to the strain by the equation

σ = A0e (4.5)

where e is the elastic component of the strain Eu. Therefore if (u, e, p) is kinemat-
ically admissible, then σ belongs to L2(Ω; Mn×n

sym ).
In perfect plasticity the stress satisfies the constraint

σD ∈ K(Ω), (4.6)

where K(Ω) is defined in (3.11). In particular

σD ∈ L∞(Ω; Mn×n
D ). (4.7)

Convex Functions of Measures. In perfect plasticity we need to define the
functional (3.16) for p ∈ Mb(Ω ∪ Γ0; Mn×n

D ). This is done by using the theory of
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convex functions of measures (see [10] and [28]): for every p ∈ Mb(Ω ∪ Γ0; Mn×n
D )

we consider the non-negative Radon measure H(p) on Ω ∪ Γ0 defined by

H(p)(B) :=
∫
B

H(p/|p|)d|p| (4.8)

for every Borel set B ⊂ Ω ∪ Γ0, where p/|p| is the Radon-Nikodym derivative of p
with respect to its variation |p|. We also define

H(p) := H(p)(Ω ∪ Γ0) =
∫

Ω∪Γ0

H(p/|p|)d|p|.

The function p 7→ H(p) turns out to be lower semicontinuous with respect to the
weak* topology ofMb(Ω∪Γ0; Mn×n

D ), and satisfies the triangle inequality. Moreover
if pk ⇀ p weakly* and |pk|(Ω ∪ Γ0)→ |p|(Ω ∪ Γ0), then H(pk)→ H(p).

Stress-Strain Duality. If σ ∈ L2(Ω; Mn×n
sym ), with divσ ∈ L2(Ω; Rn), we define

the distribution [σν] on ∂Ω by setting

〈[σν], ϕ〉∂Ω := 〈divσ, ϕ〉+ 〈σ,Eϕ〉, (4.9)

for each ϕ ∈ H1(Ω; Rn). It turns out that [σν] ∈ H−
1
2 (∂Ω; Rn) (see e.g. [28,

Theorem 1.2, Chapter I]). We define the normal and tangential part of [σν] by

[σν]ν := ([σν] · ν)ν, [σν]⊥ν := [σν]− [σν]ν , (4.10)

and we have that [σν]ν and [σν]⊥ν belong to H−
1
2 (∂Ω; Rn) thanks to the regularity

assumption (4.2) on ∂Ω. If σD ∈ L∞(Ω; Mn×n
D ), by [15, Lemma 2.4] we also have

that [σν]⊥ν ∈ L∞(∂Ω; Rn) and

‖[σν]⊥ν ‖∞,∂Ω ≤
1√
2
‖σD‖L∞ . (4.11)

The set of admissible stresses for the perfectly plastic problem is defined by

Σ(Ω) := {σ ∈ L2(Ω; Mn×n
sym ) : divσ ∈ Ln(Ω; Rn) and σD ∈ L∞(Ω; Mn×n

D )}.

The set of admissible plastic strains ΠΓ0(Ω) is the set of all p ∈Mb(Ω∪Γ0; Mn×n
D )

such that there exist u ∈ BD(Ω), e ∈ L2(Ω; Mn×n
sym ) and w ∈ H1(Ω; Rn) satisfying

(u, e, p) ∈ ABD(w).
If σ ∈ Σ(Ω) it turns out that σ ∈ Lr(Ω; Mn×n

sym ) for all r < +∞ (see [29, Propo-
sition 2.5]). For every u ∈ BD(Ω) with divu ∈ L2(Ω) we define the distribution
[σD · EDu] by

〈[σD · EDu], ϕ〉 = −〈divσ, ϕu〉 − 1
n
〈trσ, ϕdivu〉 − 〈σ, u�∇ϕ〉 (4.12)

for every ϕ ∈ C∞c (Ω). As proved in [29, Theorem 3.2] the distribution [σD · EDu]
is a bounded Radon measure in Ω.

As in [5], if σ ∈ Σ(Ω) and p ∈ ΠΓ0(Ω), we define the bounded Radon measure
[σD · p] on Ω ∪ Γ0 by setting

[σD · p] := [σD · EDu]− σD · eD on Ω,

[σD · p] := [σν]⊥ν · (w − u)Hn−1 on Γ0,

where u ∈ BD(Ω), e ∈ L2(Ω; Mn×n
sym ) and w ∈ H1(Ω; Rn) satisfy (u, e, p) ∈ ABD(w),

and we notice that this definition does not depend on the particular choice of u,
e, w (see [5, page 250]). We also define the duality pairing between σ ∈ Σ(Ω) and
p ∈ ΠΓ0(Ω) by

〈σD, p〉 := [σD · p](Ω ∪ Γ0). (4.13)
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The following inequalities between measures hold (see [5, (2.33) and Proposition
2.4]):

|[σD · p]| ≤ ‖σD‖L∞ |p| on Ω ∪ Γ0, (4.14)

[σD · p] ≤ H(p) on Ω ∪ Γ0, (4.15)

where H(p) is the measure introduced in (4.8). The following integration by parts
formula is proved in [5, Proposition 2.2] when ϕ ∈ C1(Ω̄). The extension to Lips-
chitz functions is straightforward.

Proposition 4.2. Let σ ∈ Σ(Ω), f ∈ Ln(Ω; Rn), g ∈ L∞(Γ1; Rn) and suppose
(u, e, p) ∈ ABD(w) with w ∈ H1(Ω; Rn). If −divσ = f on Ω and [σν] = g on Γ1,
then it holds

〈σD, p〉+ 〈σ, e− Ew〉 = 〈f, u− w〉+ 〈g, u− w〉Γ1 . (4.16)

Moreover

〈[σD · p], ϕ〉+ 〈σ · (e− Ew), ϕ〉+ 〈σ,∇ϕ� (u− w)〉 =

= 〈f, ϕ(u− w)〉+ 〈g, ϕ(u− w)〉Γ1 , (4.17)

for every ϕ ∈ C0,1(Ω̄).

As a consequence of the formula above we obtain the following lemma.

Lemma 4.3. Let σk, σ ∈ Σ(Ω), wk, w ∈ H1(Ω; Rn), (uk, ek, pk) ∈ ABD(wk), and
(u, e, p) ∈ ABD(w) be such that

σk → σ strongly in L2(Ω; Mn×n
sym ),

divσk → divσ strongly in Ln(Ω; Rn),

(σk)D are uniformly bounded in L∞(Ω; Mn×n
D ),

uk ⇀ u weakly in L
n
n−1 (Ω; Rn),

wk ⇀ w weakly in H1(Ω; Rn),

ek ⇀ e weakly in L2(Ω; Mn×n
sym ),

then 〈[(σk)D · pk], ϕ〉 → 〈[σ · p], ϕ〉 for every ϕ ∈ C0,1
c (Ω ∪ Γ0).

Proof. Our hypotheses imply that σk → σ strongly in Ln(Ω; Mn×n
sym ) by [29, Propo-

sition 2.5]. The conclusion follows now from (4.17). �

4.2. Hypotheses on the Data. We discuss here the hypotheses on the data for
the quasistatic evolution problem in perfect plasticity.

External Load. In contrast to the dynamic case, in perfect plasticity it is not
enough to assume that the total load L(t) belongs to H−1

Γ0
(Ω; Rn). Instead, we as-

sume that L(t) takes the form (3.4), with f(t) ∈ Ln(Ω; Rn) and g(t) ∈ L∞(Γ1; Rn),
so that now the duality 〈L(t), u〉 is well defined by (3.4) for every u ∈ BD(Ω).

The balance equations for the forces are

− divσ(t) = f(t) in Ω, (4.19)

[σ(t)ν] = g(t) on Γ1, (4.20)

where [σ(t)ν] denotes the normal component of σ(t), which can be defined as a
distribution according to (4.9), since divσ(t) ∈ L2(Ω; Rn) by (4.19). As for the
time dependence, we assume that

f ∈ AC([0, T ];Ln(Ω; Rn)), (4.21a)

g ∈ AC([0, T ];L∞(Γ1; Rn)). (4.21b)
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This implies that for a.e. t ∈ [0, T ] there exists an element of the dual of BD(Ω),
denoted by L̇(t), such that

〈L̇(t), u〉 = lim
s→t
〈L(s)− L(t)

s− t
, u〉 (4.22)

for every u ∈ BD(Ω) (see [5, Remark 4.1]).
As usual in perfect plasticity problems, we assume a uniform safe-load condition:

there exist a function % : [0, T ]→ L2(Ω,Mn×n
sym ) and a positive constant δ such that

for every t ∈ [0, T ] we have

− div%(t) = f(t) on Ω, (4.23a)

[%(t)ν] = g(t) on Γ1, (4.23b)

and
%D(t) + ξ ∈ K(Ω) for every ξ ∈Mn×n

D with |ξ| ≤ δ. (4.24)
Moreover we require that

t 7→ %(t) and t 7→ %D(t) are absolutely continuous (4.25)

from [0, T ] to L2(Ω; Mn×n
sym ) and L∞(Ω; Mn×n

D ) respectively, so that the function
t 7→ %̇(t) belongs to L1([0, T ];L2(Ω; Mn×n

sym )) and

%D(t)− %D(s)
t− s

→ %̇D(s) weakly* in L∞(Ω; Mn×n
D ) as t→ s, (4.26)

for a.e. s ∈ [0, T ], and

t 7→ ‖%̇(t)‖L∞ belongs to L1([0, T ]) (4.27)

(see [5, Theorem 7.1]).
Using (4.14) and (4.25) we see that for every p ∈ ΠΓ0(Ω) the function

t 7→ 〈%D(t), p〉 belongs to AC([0, T ]). (4.28)

Moreover, by (4.21a), (4.23a), (4.24), and (4.25), we obtain
d
dt 〈%D(t), p〉 = 〈%̇D(t), p〉 for a.e. t ∈ [0, T ], (4.29)

thanks to [5, formula (2.38)].
Boundary Conditions. The boundary condition on Γ0 is given in the relaxed

form considered in (4.3b) with a time dependent function t → w(t). We assume
that

w ∈ AC([0, T ];H1(Ω; Rn)). (4.30)
Plastic Dissipation. In the energy formulation for the quasistatic evolution

problem for perfect plasticity, it is not convenient to use formulas like (3.17), be-
cause they require the existence of the time derivative of p(t). Instead, for an
arbitrary function p : [0, T ]→Mb(Ω ∪ Γ0; Mn×n

D ) we define the plastic dissipation
in [a, b] ⊂ [0, T ] as

DH(a, b; p) := sup
N−1∑
i=0

H(p(ti+1)− p(ti)), (4.31)

where the supremum is taken over all the possible choices of the integer N > 0 and
of the real numbers a = t0 < t1 < ... < tN−1 < tN = b. One can prove (see [5,
Chapter 7]) that, if p : [0, T ]→Mb(Ω ∪ Γ0; Mn×n

D ) is absolutely continuous, then

DH(a, b; p) =
∫ b

a

H(ṗ(t))dt, (4.32)

where ṗ is the derivative of p defined by

ṗ(t) := w∗- lim
s→t

p(s)− p(t)
s− t

. (4.33)
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As a consequence of the safe-load condition (4.24) we can easily prove that for
every t ∈ [0, T ]

H(q)− 〈%(t), q〉 ≥ γ‖q‖Mb
, (4.34)

for every q ∈ L1(Ω,Mn×n
D ), where the positive constant γ is independent of q and

t (see [5, Lemma 3.2]). Moreover we have that

H(q)− %(t) · q ≥ 0 a.e. in Ω, (4.35)

for every q ∈ L1(Ω,Mn×n
D ).

5. Quasistatic Evolution in Perfect Plasticity

We recall here the energy formulation of a perfectly plastic quasistatic evolution.

Definition 5.1. Let u0 ∈ BD(Ω), e0 ∈ L2(Ω; Mn×n
sym ), and p0 ∈Mb(Ω∪Γ0; Mn×n

D ).
Suppose that f , g, L, %, and w satisfy (3.4), (4.21), (4.23), (4.24), (4.25), and (4.30).
A quasistatic evolution in perfect plasticity with initial conditions u0, e0, p0, and
boundary condition w on Γ0 is a function (u, e, p, σ) from [0, T ] into BD(Ω,Rn)×
L2(Ω,Mn×n

sym )×Mb(Ω ∪ Γ0,Mn×n
D )× L2(Ω,Mn×n

sym ), with

u(0) = u0, e(0) = e0, p(0) = p0, (5.1)

σ(t) = A0e(t) for every t ∈ [0, T ], (5.2)

such that t 7→ p(t) has bounded variation and the following two conditions are
satisfied for every t ∈ [0, T ]:

(a) (u(t), e(t), p(t)) ∈ ABD(w(t)) and

Q0(e(t))− 〈L(t), u(t)〉 ≤ Q0(η)− 〈L(t), ϕ〉+H(q − p(t)) (5.3)

for every (ϕ, η, q) ∈ ABD(w(t));

(b) Q0(e(t))−Q0(e0) +DH(p; 0, t) =
∫ t

0

〈σ,Eẇ〉ds−
∫ t

0

〈L, ẇ〉ds

+〈L(t), u(t)〉 − 〈L(0), u0〉 −
∫ t

0

〈L̇, u〉ds, (5.4)

where DH(p; 0, t) is defined by (4.31).

The integrals in the right-hand side of (5.4) are well defined thanks to [5, The-
orem 3.8 and Remark 4.3].

If (u0, e0, p0) ∈ ABD(w(0)) satisfies the following stability condition

Q0(e0)− 〈L(0), u0〉 ≤ Q0(η)− 〈L(0), ϕ〉+H(q − p0) (5.5)

for every (ϕ, η, q) ∈ ABD(w(0)), then there exists a quasistatic evolution in perfect
plasticity with initial conditions u0, e0, p0, and boundary condition w on Γ0 (see [5,
Theorem 4.5]). Moreover the function t 7→ (u(t), e(t), p(t)) is absolutely continuous
from [0, T ] into BD(Ω; Rn)×L2(Ω; Mn×n

sym )×Mb(Ω∪Γ0; Mn×n
D ) ([5, Theorem 5.1]).

In our analysis of the behavior of the solutions (uε, eε, pε, σε) of (1.2) as ε → 0
we find that (uε, eε, pε, σε) converges to a function (u, e, p, σ) which satisfies con-
ditions (5.3) and (5.4) only for a.e. t ∈ [0, T ]. The following theorem shows that
this is enough to guarantee that (u, e, p, σ) is a quasistatic evolution, according to
Definition 5.1.

Theorem 5.2. Let u0, e0, p0, f , g, L, w, and % be as in Definition 5.1. Let
S be a subset of [0, T ] of full L1 measure containing 0 and let (u, e, σ) : S →
BD(Ω)×L2(Ω; Mn×n

sym )×L2(Ω; Mn×n
sym ) be a bounded and measurable function satis-

fying (5.1) and (5.2) for all t ∈ S. Suppose that p : [0, T ]→Mb(Ω∪Γ0; Mn×n
D ) has

bounded variation and that conditions (a) and (b) of Definition 5.1 are satisfied for
every t ∈ S. Then there exists an absolutely continuous function (u, e, σ) : [0, T ]→
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BD(Ω)×L2(Ω; Mn×n
sym )×L2(Ω; Mn×n

sym ) which extends (u, e, σ). Moreover p is abso-
lutely continuous and (u, e, p, σ) is a quasistatic evolution in perfect plasticity with
initial conditions u0, e0, p0, and boundary condition w on Γ0.

Remark 5.3. Let t ∈ S, (u(t), e(t), p(t)) ∈ ABD(w(t)) and σ(t) := A0e(t). As
shown in [5, Theorem 3.6] the following conditions are equivalent:

(a) Inequality (5.3) is satisfied for every (ϕ, η, q) ∈ ABD(w(t));
(b) −H(q) ≤ 〈A0e(t), η〉 − 〈L(t), v〉 ≤ H(−q) for every (v, η, q) ∈ ABD(0);
(c) σ(t)∈Σ(Ω), σD(t)∈K(Ω), −divσ(t)=f(t) in Ω, and [σ(t)ν]=g(t) on Γ1.

The following lemma gives an elementary but useful tool for the proof of Theorem
5.2.

Lemma 5.4. Let p : [0, T ] → Mb(Ω ∪ Γ0; Mn×n
D ) be a function with bounded

variation and let ψ(t) := DH(p; 0, t) for t ∈ [0, T ]. Assume that there exists a set
S ⊆ [0, T ] of full L1 measure such that p|S and ψ|S are absolutely continuous on S.
Then p is absolutely continuous on [0, T ].

Proof. The absolute continuity on S implies that

lim
s→t−
s∈S

ψ(s) = lim
s→t+
s∈S

ψ(s)

for every t ∈ [0, T ]. Since ψ is non-decreasing, we deduce that the common value
of the limit coincides with ψ(t). This shows that ψ is continuous on [0, T ]. Since

‖p(t1)− p(t2)‖Mb
≤ DH(p; t1, t2) = ψ(t2)− ψ(t1)

for every 0 ≤ t1 ≤ t2 ≤ T , we conclude that also p is continuous on [0, T ]. Moreover
the fact that the restriction of p to S is absolutely continuous implies that it is
absolutely continuous on [0, T ] as well. �

Proof of Theorem 5.2. We first prove that the functions e, p and u are absolutely
continuous on S. We argue as in the proof of [5, Theorem 5.2] using only times t1,
t2 and s in the set S, and we obtain that for any t1, t2 ∈ S with t1 < t2 we have
that

‖e(t2)− e(t1))‖2L2 ≤
∫ t2

t1

‖e(s)− e(t1)‖L2φ(s)ds+ (
∫ t2

t1

φ(s)ds)2,

where φ is a suitable non-negative integrable function. As a consequence of [5,
Lemma 5.3] we get that ‖e(t2) − e(t1))‖L2 ≤ 3

2

∫ t2
t1
φ(s)ds so that t 7→ e(t) is

absolutely continuous from S into L2(Ω; Mn×n
sym ). Continuing as in the proof of [5,

Theorem 5.2] we obtain also that p and u are absolutely continuous on S. From
equation (5.4) it follows that t 7→ DH(p; 0, t) is absolutely continuous on S, so that,
applying Lemma 5.4, we get that p is absolutely continuous on [0, T ]. Now (u, e)
admits an absolutely continuous extension to [0, T ] that we still denote by (u, e). By
continuity this extension satisfies (5.3) and (5.4) for every t ∈ [0, T ]. This completes
the proof. �

Remark 5.5. Under the hypotheses of Definition 5.1, for every t ∈ [0, T ] condition
(b) of Definition 5.1 is equivalent to the following condition:

(b′) The function p : [0, T ]→Mb(Ω ∪ Γ0; Mn×n
D ) has bounded variation and

Q0(e(t)) +DH(p; 0, t)− 〈%(t), e(t)− Ew(t)〉 − 〈%D(t), p(t)〉 =

= Q0(e0)− 〈%(0), e(0)− Ew(0)〉 − 〈%D(0), p(0)〉+
∫ t

0

〈σ,Eẇ〉ds

−
∫ t

0

〈%̇, e− Ew〉ds−
∫ t

0

〈%̇D, p〉ds. (5.6)
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This is proved in [5, Theorem 4.4] using the integration by parts formula (4.16).
Note that the duality product 〈%̇D(t), p(t)〉 is well defined for a.e. t ∈ [0, T ] by
(4.21a), (4.23a), (4.25), and (4.26).

6. Limit of Dynamic Solutions

Here we formulate in a precise way the asymptotic analysis of the dynamic
problem as the data become slower and slower. This will be done by a suitable
change of variables. We start from an external load L(t), a boundary datum w(t)
defined on the interval [0, T ], and initial conditions u0, e0, p0, and v0. We then
consider the rescaled problem with external load Lε(t) = L(εt), boundary condition
wε(t) = w(εt) on the interval [0, T/ε], and initial conditions uε(0) = u0, eε(0) = e0,
pε(0) = p0, and u̇ε(0) = εv0. The dynamic solutions of the corresponding systems
(3.22) are denoted by (uε(t), eε(t), pε(t), σε(t)).

To study the limit behavior of (uε(t), eε(t), pε(t), σε(t)) on the whole interval
[0, T/ε] it is convenient to consider the rescaled functions (uε(t), eε(t), pε(t), σε(t))
:= (uε(t/ε), eε(t/ε), pε(t/ε), σε(t/ε)), defined on [0, T ], and to study their limit as
ε ↓ 0. A straightforward change of variables shows that (uε, eε, pε, σε) will satisfy
the following system of equations on [0, T ]

Euε = eε + pε, (6.1a)

σε = A0eε + εA1ėε, (6.1b)

ε2üε − divΓ0(σε) = L, (6.1c)

εṗε = σε − πKσε, (6.1d)

with boundary and initial conditions

uε(t) = w(t) on Γ0 for every t ∈ [0, T ], (6.2)

uε(0) = u0, eε(0) = e0, pε(0) = p0, u̇ε(0) = v0. (6.3)

We shall prove (Theorem 6.2) that, under suitable assumptions, the solutions
(uε, eε, pε, σε) of (6.1) tend to a solution of the quasi-static evolution problem in
perfect plasticity, according to Definition 5.1.

Hypotheses on the Data. The regularity assumptions on the data considered
in the dynamical problem are not sufficient to study the limit of the solutions of
(6.1). Therefore we introduce a new set of hypotheses, which includes also the case
of data depending on ε and converging in a suitable way as ε tends to 0.

Let M > 0 be a constant. For ε ∈ (0, 1) we consider the following assumptions.
(i) Hypotheses on wε and w:

wε ∈ L∞([0, T ];H1(Ω; Rn)), (6.4a)

ẇε ∈ C0([0, T ];L2(Ω; Rn)) ∩ L2([0, T ];H1(Ω; Rn)), (6.4b)

ẅε ∈ L2([0, T ];H−1
Γ0

(Ω; Rn)), (6.4c)

w ∈ AC([0, T ];H1(Ω; Rn)), (6.4d)

wε → w strongly in W 1,1([0, T ];H1(Ω; Rn)), (6.4e)

ε‖ẇε(0)‖L2 → 0, (6.4f)

ε‖ẇε(t)‖L2 ≤M for all t ∈ [0, T ], (6.4g)

ε

∫ T

0

‖ẇε‖2H1dt→ 0, (6.4h)

ε2
∫ T

0

‖ẅε‖2
H−1

Γ0

dt ≤M. (6.4i)
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(ii) Hypotheses on f ε, gε, f , and g: we assume that there exist %ε and %
satisfying (4.23) and (4.24) with f ε, gε and f , g respectively, and with δ
independent of ε. We also suppose that

f ε ∈ AC([0, T ];Ln(Ω; Rn)), (6.5a)

%ε ∈ AC([0, T ];Ln(Ω; Mn×n
sym )), (6.5b)

f ∈ AC([0, T ];Ln(Ω; Rn)), (6.5c)

g ∈ AC([0, T ];L∞(Γ1; Rn)), (6.5d)

% ∈ AC([0, T ];Ln(Ω; Mn×n
sym )), (6.5e)

%D ∈ AC([0, T ];L∞(Ω; Mn×n
D )), (6.5f)

f ε → f strongly in W 1,1([0, T ];Ln(Ω; Rn)), (6.5g)

%ε → % strongly in W 1,1([0, T ];Ln(Ω; Mn×n
sym )). (6.5h)

(iii) Hypotheses on the initial data (uε0, e
ε
0, p

ε
0), (u0, e0, p0), and vε0.

(uε0, e
ε
0, p

ε
0) ∈ A(wε(0)), (6.6a)

(u0, e0, p0) ∈ ABD(w(0)), (6.6b)

(u0, e0, p0) satisfies the stability condition (5.5), (6.6c)

uε0 → u0 strongly in L
n
n−1 (Ω; Rn), (6.6d)

eε0 → e0 strongly in L2(Ω; Mn×n
sym ), (6.6e)

pε0 ⇀ p0 weakly* in Mb(Ω ∪ Γ0; Mn×n
D ), (6.6f)

vε0 ∈ L2(Ω; Rn) and ε‖vε0‖L2 → 0. (6.6g)

Remark 6.1. If we assume that

%εD ∈ AC([0, T ];L∞(Ω; Mn×n
D )), (6.7a)∫ T

0

‖%̇εD − %̇D‖L∞dt→ 0, (6.7b)

then we can replace (6.5b), (6.5e), and (6.5h) by the weaker conditions

%ε, % ∈ AC([0, T ];L2(Ω; Mn×n
sym )), (6.7c)

%ε → % strongly in W 1,1([0, T ];L2(Ω; Mn×n
sym )). (6.7d)

Indeed using [29, Proposition 2.5] (see also [28, Chapter 2, Proposition 7.1]) from
(4.27), (6.5g), and (6.7) we deduce that %ε, % ∈ AC([0, T ];Ln(Ω; Mn×n

sym )) and that
(6.5h) holds.

We now state the main result.

Theorem 6.2. Assume hypotheses (i)-(iii) above. Let (uε, eε, pε, σε) be the solution
of (6.1) satisfying the boundary condition wε on Γ0 for every t ∈ [0, T ], and the
initial data

uε(0) = uε0, e
ε(0) = eε0, p

ε(0) = pε0 u̇ε(0) = vε0.

Then there exist a quasistatic evolution in perfect plasticity (u, e, p, σ), with ini-
tial conditions (u0, e0, p0) and boundary condition w on Γ0, and a subsequence of
(uε, eε, pε, σε), not relabeled, such that

uε(t) ⇀ u(t) weakly* in BD(Ω), (6.8)

eε(t)→ e(t) strongly in L2(Ω; Mn×n
sym ), (6.9)

for a.e. t ∈ [0, T ], and

pε(t) ⇀ p(t) weakly* in Mb(Ω ∪ Γ0; Mn×n
D ), (6.10)
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for all t ∈ [0, T ]. Moreover there exists M > 0 such that

‖uε(t)‖L1 + ‖eε(t)‖L2 + ‖pε(t)‖Mb
≤M (6.11)

for every ε ∈ (0, 1) and every t ∈ [0, T ].

Proof. From Theorem 3.3 we get the energy balance formula

Q0(eε(t)) +
ε2

2
‖u̇ε(t)−ẇε(t)‖2L2 + ε

∫ t

0

Q1(ėε)ds+ ε

∫ t

0

‖ṗε‖2L2ds+
∫ t

0

H(ṗε)ds =

=
∫ t

0

〈σε, Eẇε〉ds+
∫ t

0

〈f ε, u̇ε − ẇε〉ds+
∫ t

0

〈gε, u̇ε − ẇε〉Γ1ds

− ε2
∫ t

0

〈ẅε, u̇ε − ẇε〉ds+Q0(eε0) +
ε2

2
‖vε0 − ẇε(0)‖2L2 , (6.12)

where σε = A0eε + εA1ėε. Using the safe-load condition (4.23) and (4.24) and
integrating by parts in space, we get

Q0(eε(t)) +
ε2

2
‖u̇ε(t)−ẇε(t)‖2L2 + ε

∫ t

0

Q1(ėε)ds+ ε

∫ t

0

‖ṗε‖2L2ds+
∫ t

0

H(ṗε)ds =

=
∫ t

0

〈σε, Eẇε〉ds+
∫ t

0

〈%ε, Eu̇ε − Eẇε〉ds− ε2
∫ t

0

〈ẅε, u̇ε − ẇε〉ds

+Q0(eε0) +
ε2

2
‖vε0 − ẇε(0)‖2L2 . (6.13)

By (3.2), (6.4e), (6.4g),(6.4i), (6.5h), (6.6e), and (6.6g), using the Cauchy inequality,
we get a positive constant D0 such that

α0

2
‖eε(t)‖2L2 + εα1

∫ t

0

‖ėε‖2L2ds+ ε

∫ t

0

‖ṗε‖2L2ds+
∫ t

0

H(ṗε)ds ≤

≤ β0

∫ t

0

‖eε‖L2‖Eẇε‖L2ds+ εβ1

∫ t

0

‖ėε‖L2‖Eẇε‖L2ds+
∫ t

0

〈%ε, ėε〉ds

+
∫ t

0

〈%εD, ṗε〉ds+
ε2

2

∫ t

0

‖u̇ε − ẇε‖2H1
Γ0
ds+D0, (6.14)

for every ε ∈ (0, 1). By Poincaré and Korn inequalities there exists a constant c
such that

‖u̇ε − ẇε‖2H1
Γ0
≤2c‖ėε‖2L2 + 2c‖ṗε‖2L2 +2c‖Eẇε‖2L2 .

Integrating by parts in time the term 〈%ε, ėε〉 and using again the Cauchy inequality
and the inequality ‖eε‖L2 ≤ 1 + ‖eε‖2L2 , we obtain that for every λ > 0 the right-
hand side of (6.14) can be estimated from above by

β0

∫ t

0

‖eε‖2L2‖Eẇε‖L2ds+ ελβ1

∫ t

0

‖ėε‖2L2ds+ λ‖eε(t)‖2L2 +
∫ t

0

‖%̇ε‖L2‖eε‖2L2ds

+
∫ t

0

〈%εD, ṗε〉ds+ cε2
∫ t

0

‖ėε‖2L2ds+ cε2
∫ t

0

‖ṗε‖2L2ds+Dλ, (6.15)

for a suitable constantDλ independent of ε that can be obtained using (6.4e), (6.4h),
(6.5h), and (6.6e). Taking λ = min{α0

4 ,
α1
2β1
}, from (4.34), (6.14), and (6.15), we

get

α0

4
‖eε(t)‖2L2 + (

α1

2
ε−cε2)

∫ t

0

‖ėε‖2L2ds+ (ε−cε2)
∫ t

0

‖ṗε‖2L2dt+ γ

∫ t

0

‖ṗε‖L1ds ≤

≤
∫ t

0

ψε‖eε‖2L2ds+Dλ, (6.16)
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where ψε = β0‖Eẇε‖L2 + ‖%̇ε‖L2 . Since ψε is bounded in L1([0, T ]) by (6.4e) and
(6.5h), using the Gronwall Lemma we obtain that ‖eε(t)‖L2 is bounded by some
constant independent of t and ε. Together with (6.16), this gives

‖eε(t)‖L2 ≤M for all t ∈ [0, T ], (6.17a)∫ T

0

‖ṗε‖L1ds ≤M, (6.17b)

ε

∫ T

0

‖ėε‖2L2ds ≤M, (6.17c)

ε

∫ T

0

‖ṗε‖2L2ds ≤M. (6.17d)

for all ε ∈ (0, 1) and some constant M > 0 independent of t and ε. Using the Korn
inequality, from (6.4e), (6.4h), (6.17c), and (6.17d), we get

ε

∫ T

0

‖u̇ε‖2H1ds ≤M. (6.17e)

Since L1(Ω; Mn×n
D ) is naturally embedded intoMb(Ω∪Γ0; Mn×n

D ), the functions
pε are actually continuous functions from [0, T ] intoMb(Ω∪Γ0; Mn×n

D ), and inequal-
ity (6.17b) says that the total variation of pε is bounded uniformly with respect to
ε. Taking into account (6.6f), we can employ a generalization of Helly Theorem (see
[5, Lemma 7.2] and [3, Theorem 3.5, Chapter 1]), which implies that there exist a
subsequence, still denoted by pε, and a function p : [0, T ] → Mb(Ω ∪ Γ0; Mn×n

D ),
with bounded variation, such that, as ε→ 0,

pε(t) ⇀ p(t) weakly* in Mb(Ω ∪ Γ0; Mn×n
D ) for every t ∈ [0, T ]. (6.18)

It then follows that p(t) is bounded in Mb(Ω ∪ Γ0; Mn×n
D ) uniformly with respect

to t.
From (6.17a) we also get, possibly passing to another subsequence, that there

exists e ∈ L∞([0, T ];L2(Ω; Mn×n
sym )) such that

eε ⇀ e weakly* in L∞([0, T ];L2(Ω; Mn×n
sym )), (6.19)

as ε→ 0.
Writing E(uε−wε) = eε+pε−Ewε, by (6.4e), (6.6f), (6.17a), and (6.17b), we see

that E(uε−wε) is bounded in L∞([0, T ];L1(Ω; Mn×n
sym )) uniformly with respect to ε,

so that, thanks to (4.1), uε−wε is bounded in L∞([0, T ];BD(Ω,Rn)) uniformly with
respect to ε. Then, as a consequence of the embedding BD(Ω) ↪→ L

n
n−1 (Ω; Rn),

there exists u ∈ L∞([0, T ];L
n
n−1 (Ω; Rn)) such that

uε ⇀ u weakly* in L∞([0, T ];L
n
n−1 (Ω; Rn)), (6.20)

again for a suitable subsequence, as ε→ 0. Using the equality Euε = eε + pε, from
(6.18) and (6.19) we obtain that u ∈ L∞([0, T ];BD(Ω)) and Eu = e+ p.

By (3.25) we see that the function (uε, eε, pε) satisfies the equilibrium condition

−H(q) ≤ 〈A0eε(t), η〉+ 〈εA1ėε(t), η〉+ 〈εṗε(t), q〉
+ 〈ε2üε(t), ϕ〉 − 〈f ε(t), ϕ〉 − 〈gε(t), ϕ〉Γ1 ≤ H(−q), (6.21)

for every (ϕ, η, q) ∈ A(0) and a.e. t ∈ [0, T ].
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Let us fix a smooth and non-negative real function ψ on [0, T ]. Multipling the
previous formula by ψ and integrating on [0, T ] we get

−
∫ T

0

H(q)ψ(s)ds ≤
∫ T

0

〈A0eε(s), η〉ψ(s)ds+
∫ T

0

〈εA1ėε(s), η〉ψ(s)ds

+
∫ T

0

〈εṗε(s), q〉ψ(s)ds+
∫ T

0

〈ε2üε(s), ϕ〉ψ(s)ds−
∫ T

0

〈f ε(s), ϕ〉ψ(s)ds

−
∫ T

0

〈gε(s), ϕ〉Γ1ψ(s)ds ≤
∫ T

0

H(−q)ψ(s)ds, (6.22)

for every (ϕ, η, q) ∈ A(0). It is easily seen that, if ψ has compact support, thanks
to (6.17e) the term∫ T

0

〈ε2üε(s), ϕ〉ψ(s)ds = −ε2
∫ T

0

〈u̇ε(s), ϕ〉ψ̇(s)ds

vanishes as ε→ 0, and the same is true for the terms∫ T

0

〈εA1ėε(s), η〉ψ(s)ds+
∫ T

0

〈εṗε(s), q〉ψ(s)ds

thanks to (3.2a), (6.17c) and (6.17d). Moreover, by (4.23) we can write∫ T

0

(〈f ε(s), ϕ〉+ 〈gε(s), ϕ〉Γ1)ψ(s)ds =
∫ T

0

〈%ε(s), η + q〉ψ(s)ds,

and, thanks to (6.5h), we obtain that the last expression tends to∫ T

0

〈%(s), η + q〉ψ(s)ds =
∫ T

0

(〈f(s), ϕ〉+ 〈g(s), ϕ〉Γ1)ψ(s)ds.

So from (6.19) and (6.22) we get

−
∫ T

0

H(q)ψ(s)ds ≤
∫ T

0

〈A0e(s), η〉ψ(s)ds−
∫ T

0

〈f(s), ϕ〉ψ(s)ds

−
∫ T

0

〈g(s), ϕ〉Γ1ψ(s)ds ≤
∫ T

0

H(−q)ψ(s)ds,

and thanks to the arbitrariness of ψ:

−H(q) ≤ 〈A0e(t), η〉 − 〈f(t), ϕ〉 − 〈g(t), ϕ〉Γ1 ≤ H(−q), (6.23)

for a fixed (ϕ, η, q) ∈ A(0) and for a.e. t ∈ [0, T ]. The fact that A(0) is separable
allows us to prove that for a.e. t ∈ [0, T ] inequalities (6.23) hold for every (ϕ, η, q) ∈
A(0).

Let us define σ(t) := A0e(t). For each q ∈ L2(Ω; Mn×n
D ), since (0, q,−q) ∈ A(0),

we see that
−H(−q) ≤ 〈σ(t), q〉 ≤ H(q), (6.24)

which says that σD(t) ∈ ∂H(0) = K(Ω) (see (3.19)). Moreover, since for each
ϕ ∈ H1

Γ0
(Ω; Rn) we have (ϕ,Eϕ, 0) ∈ A(0), from (6.23) we obtain

〈σ(t), Eϕ〉 − 〈f(t), ϕ〉 = 〈g(t), ϕ〉Γ1 for all ϕ ∈ H1
Γ0

(Ω; Rn). (6.25)

From this we get divσ(t) = f(t) a.e. in Ω, and [σ(t)ν] = g(t) on Γ1. Therefore,
(u(t), e(t), p(t)) satisfies condition (c) of Remark 5.3. This implies that for a.e.
t ∈ [0, T ], (u(t), e(t), p(t)) satisfies the minimality condition (5.3) for all (ϕ, η, q) ∈
ABD(w(t)). We now set S := {0} ∪ {t ∈ (0, T ] : (5.3) is satisfied} and we define
u(0) := u0 and e(0) := e0. Since p(0) = p0 by (6.6f) and (6.18), we deduce from
(6.6c) that condition (5.3) is also satisfied for t = 0.
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Since t 7→ p(t) has bounded variation from [0, T ] into Mb(Ω ∪ Γ0; Mn×n
D ), it is

globally bounded and there exists a countable set N ⊂ [0, T ] such that for every
t ∈ [0, T ] \N

p(s)→ p(t) strongly in Mb(Ω ∪ Γ0; Mn×n
D ) as s→ t. (6.26a)

By the minimality property of (u(s), e(s), p(s)) for s ∈ S we can apply [5, Theorem
3.8] and for every t ∈ S \N we obtain

e(s)→ e(t) strongly in L2(Ω; Mn×n
sym ) as s→ t, (6.26b)

u(s)→ u(t) strongly in BD(Ω) as s→ t. (6.26c)

By the continuity of the embedding BD(Ω) ↪→ L
n
n−1 (Ω; Rn) we also get

u(s)→ u(t) strongly in L
n
n−1 (Ω; Rn) as s→ t. (6.26d)

In order to prove the energy balance (5.4) we fix t ∈ S \ (N ∪ {0}). For every
k let 0 = tk0 < tk1 < ... < tkk = t be elements of (S \N) ∪ {0} such that maxi(tki −
tki−1) → 0 as k → ∞. Then, since (u(tki ) − (w(tki ) − w(tki−1)), e(tki ) − (Ew(tki ) −
Ew(tki−1)), p(tki )) ∈ ABD(w(tki−1)) by (5.3), we have

Q0(e(tki−1))− 〈f(tki−1), u(tki−1)〉 − 〈g(tki−1), u(tki−1)〉Γ1 ≤ Q0(e(tki ))

− 〈A0e(tki ), Ew(tki )− Ew(tki−1)〉+Q0(Ew(tki ))− Ew(tki−1))

− 〈f(tki−1), u(tki )− (w(tki )− w(tki−1))〉

− 〈g(tki−1), u(tki )− (w(tki )− w(tki−1))〉Γ1 +H(p(tki )− p(tki−1)).

Employing the integration by parts formula (4.16) and then summing up over i =
1, . . . , k, we obtain

Q0(e(t))−Q0(e0) +
k∑
i=1

H(p(tki )−p(tki−1)) +
k∑
i=1

Q0(Ew(tki )−Ew(tki−1)) ≥

≥
k∑
i=1

〈A0e(tki ), Ew(tki )−Ew(tki−1)〉+〈%(t), e(t)−Ew(t)〉−〈%(0), e(0)−Ew(0)〉

+ 〈%D(t), p(t)〉 − 〈%D(0), p(0)〉 −
k∑
i=1

〈%(tki )− %(tki−1), e(tki )〉

+
k∑
i=1

〈%(tki )− %(tki−1), Ew(tki )〉 −
k∑
i=1

〈%D(tki )− %D(tki−1), p(tki )〉. (6.27)

By (4.28), (4.29), (6.4d), (6.5e), (6.5f), and (6.26) we can apply Lemmas 7.1 and
7.2, with S replaced by S \ (N ∪ {0}), and we obtain that the four Riemann sums
in the right-hand side of (6.27) converge to∫ t

0

〈σ,Ew〉ds,
∫ t

0

〈%̇, e〉ds,
∫ t

0

〈%̇, Ew〉ds,
∫ t

0

〈%̇D, p〉ds.

Moreover we see that
∑k
i=1Q0(Ew(tki ) − Ew(tki−1)) tends to 0 as k → ∞, thanks

to the absolute continuity of t 7→ Ew(t). Therefore, passing to the limit in (6.27)
we obtain

Q0(e(t)) +DH(p; 0, t)− 〈%(t), e(t)− Ew(t)〉 − 〈%D(t), p(t)〉 ≥

≥ Q0(e0)− 〈%(0), e(0)− Ew(0)〉 − 〈%D(0), p(0)〉+
∫ t

0

〈σ,Eẇ〉ds

−
∫ t

0

〈%̇, e− Ew〉ds−
∫ t

0

〈%̇D, p〉ds, (6.28)
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for a.e. t ∈ [0, T ], where σ = A0e.
We want to show that actually equality holds. In order to prove the opposite

inequality we consider equation (6.13).
Thanks to the semicontinuity of Q0(·), by (6.19) we have

∫ b

a

Q0(e(t))dt ≤ lim inf
ε→0

∫ b

a

Q0(eε(t))dt (6.29)

for all 0 < a < b < T . We claim that∫ b

a

(
DH(p; 0, t)− 〈%D(t), p(t)〉+ 〈%D(0), p0〉+

∫ t

0

〈%̇D, p〉ds
)
dt ≤

≤ lim inf
ε→0

∫ b

a

(∫ t

0

H(ṗε)ds−
∫ t

0

〈%εD, ṗε〉ds
)
dt, (6.30)

for all 0 < a < b < T . This, together with (6.29), implies

∫ b

a

(
Q0(e(t)) +DH(p; 0, t)− 〈%D(t), p(t)〉+ 〈%D(0), p0〉+

∫ t

0

〈%̇D, p〉ds
)
dt ≤

≤ lim inf
ε→0

∫ b

a

(
Q0(eε(t)) +

ε2

2
‖u̇ε(t)− ẇε(t)‖2L2 + ε

∫ t

0

Q1(ėε)ds

+ ε

∫ t

0

‖ṗε‖2L2ds+
∫ t

0

H(ṗε)ds−
∫ t

0

〈%εD, ṗε〉ds
)
dt =

= lim inf
ε→0

∫ b

a

(∫ t

0

〈σε, Eẇε〉ds+ 〈%ε(t), eε(t)− Ewε(t)〉

− 〈%ε(0), eε(0)− Ewε(0)〉 −
∫ t

0

〈%̇ε, eε − Ewε〉ds

− ε2
∫ t

0

〈ẅε, u̇ε − ẇε〉ds+Q0(eε0) +
ε2

2
‖vε0 − ẇε(0)‖2L2

)
dt, (6.31)

where the equality follows from (6.13) after an integration by parts in time.
Using (6.4f), (6.4h), (6.4i), (6.6g), and (6.17e) it is easily seen that

ε2
∫ b

a

(∫ t

0

〈ẅε, u̇ε − ẇε〉ds
)
dt→ 0, (6.32a)

ε2‖vε0 − ẇε(0)‖2L2 → 0, (6.32b)

while ∫ b

a

(∫ t

0

〈σε, Eẇε〉ds
)
dt→

∫ b

a

(∫ t

0

〈σ,Eẇ〉ds
)
dt, (6.32c)

Q0(eε0)→ Q0(e0), (6.32d)∫ b

a

〈%ε(t), eε(t)− Ewε(t)〉dt→
∫ b

a

〈%(t), e(t)− Ew(t)〉dt, (6.32e)

〈%ε(0), eε(0)− Ewε(0)〉 → 〈%(0), e(0)− Ew(0)〉, (6.32f)∫ b

a

(∫ t

0

〈%̇ε, eε − Ewε〉ds
)
dt→

∫ b

a

(∫ t

0

〈%̇, e− Ew〉ds
)
dt, (6.32g)
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thanks to (6.4e), (6.4h), (6.5h), (6.6e), (6.17c), and (6.19) . This implies that∫ b

a

(
Q0(e(t)) +DH(p; 0, t)− 〈%D(t), p(t)〉+ 〈%D(0), p0〉+

∫ t

0

〈%̇D, p〉ds
)
dt ≤

≤
∫ b

a

(∫ t

0

〈σ,Eẇ〉ds+Q0(e0) + 〈%(t), e(t)− Ew(t)〉

− 〈%(0), e(0)− Ew(0)〉 −
∫ t

0

〈%̇, e− Ew〉ds
)
dt. (6.33)

From the arbitrariness of a and b and from (6.28) for a.e. t ∈ [0, T ] we obtain (5.6),
which is equivalent to (5.4).

It remains to prove claim (6.30). This will be done by adapting the proof of
[5, Theorem 4.5]. Let ϕ : [0,+∞) → R be a non-negative C∞ function such that
φ(s) = 0 for s ≤ 1 and φ(s) = 1 for s ≥ 2. For δ > 0 we define ψδ(x) :=
φ( 1

δdist(x,Γ1)) for x ∈ Ω̄.
Since H is positively 1-homogeneous and satisfies (4.35) we have that∫ t

0

H(ψδṗε)ds−
∫ t

0

〈%εD, ṗεψδ〉ds ≤
∫ t

0

H(ṗε)ds−
∫ t

0

〈%εD, ṗε〉ds. (6.34)

Integrating by parts with respect to time and using then (4.17), this is equivalent
to ∫ t

0

H(ψδṗε)ds−
∫ t

0

〈%̇ε, (eε − Ewε)ψδ〉ds+
∫ t

0

〈ḟ ε, ψδ(uε − wε)〉ds

−
∫ t

0

〈%̇ε, (uε − wε)�∇ψδ〉ds− 〈[%εD(t) · pε(t)], ψδ〉+ 〈[%εD(0) · pε(0)], ψδ〉 ≤

≤
∫ t

0

H(ṗε)ds−
∫ t

0

〈%εD, ṗε〉ds. (6.35)

The lower semicontinuity of the variation, together with (4.32) and (6.18), implies

DH(ψδp; 0, t) ≤ lim inf
ε→0

∫ t

0

H(ψδṗε(s))ds. (6.36)

By (4.24), (6.4e), (6.5g), (6.5h),(6.6d), and (6.6e), using Lemma 4.3 we obtain

〈[%εD(0) · pε(0)], ψδ〉 → 〈[%D(0) · p(0)], ψδ〉. (6.37)

For what concerns the term 〈[%εD(t) · pε(t)], ψδ〉, we fix 0 ≤ a < b ≤ T and integrate
on [a, b] with respect to time. Using (4.17) we write∫ b

a

〈[%εD · pε], ψδ〉ds = −
∫ b

a

〈%ε · (eε − Ewε), ψδ〉ds

+
∫ b

a

〈f ε, ψδ(uε − wε)〉ds−
∫ b

a

〈%ε, (uε − wε)�∇ψδ〉ds,

where we have used the fact that ψδ is zero in a neighborhood of Γ1. The last
three terms pass to the limit thanks to (6.4e), (6.5g), (6.5h), (6.19), and (6.20).
Therefore, using again (4.17) we obtain∫ b

a

〈[%εD · pε], ψδ〉ds→
∫ b

a

〈[%D · p], ψδ〉ds. (6.38)
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We now integrate in (6.35) with respect to time. By (6.4e), (6.5g), (6.5h), (6.19),
(6.20), and (6.36)-(6.38) we get∫ b

a

(
DH(ψδp; 0, t)−

∫ t

0

〈%̇ · (e− Ew), ψδ〉ds+
∫ t

0

〈ḟ , ψδ(u− w)〉ds

−
∫ t

0

〈%̇, (u− w)�∇ψδ〉ds− 〈[%D(t) · p(t)], ψδ〉+ 〈[%D(0) · p(0)], ψδ〉
)
dt ≤

≤ lim inf
ε→0

∫ b

a

(∫ t

0

H(ṗε)ds−
∫ t

0

〈%εD, ṗε〉ds
)
dt. (6.39)

Using (4.17) we get∫ b

a

(
DH(ψδp; 0, t)−〈[%D(t)·p(t)], ψδ〉+〈[%D(0)·p(0)], ψδ〉+

∫ t

0

〈[%̇D·p], ψδ〉ds
)
dt ≤

≤ lim inf
ε→0

∫ b

a

(∫ t

0

H(ṗε)ds−
∫ t

0

〈%εD, ṗε〉ds
)
dt.

Letting δ → 0 and using the semicontinuity of DH we then obtain (6.30). This
concludes the proof of (5.4) for a.e. t ∈ [0, T ].

Since (5.3) and (5.4) are satisfied for a.e. t ∈ [0, T ], and in particular for t = 0, we
can apply Theorem 5.2. We obtain that p : [0, T ]→Mb(Ω∪Γ0; Mn×n

D ) is absolutely
continuous and we can redefine u(t) and e(t) on a set of times with measure zero
so that u : [0, T ]→ BD(Ω) and e : [0, T ]→ L2(Ω,Mn×n

sym ) are absolutely continuous
and the function (u, e, p, σ), with σ(t) = A0e(t), is a quasistatic evolution in perfect
plasticity with initial conditions u0, e0, p0, and boundary condition w on Γ0.

From (6.32) and from the energy balance (5.4) it follows that the inequality in
(6.31) is actually an equality and that the liminf is a limit. So, since∫ b

a

(ε2
2
‖u̇ε(t)− ẇε(t)‖2L2 + ε

∫ t

0

Q1(ėε)ds+ ε

∫ t

0

‖ṗε‖2L2ds
)
dt ≥ 0,

it follows that equality holds also in (6.29) and (6.30), and that the liminf is a limit
also in this formulae. In particular∫ T

0

Q0(eε(t))dt→
∫ T

0

Q0(e(t))dt, (6.40)

Since eε ⇀ e weakly by (6.19), from (6.40) it follows that

eε → e strongly in L2([0, T ];L2(Ω; Mn×n
sym )), (6.41)

which gives (6.9) for a suitable subsequence. From this and (6.18) we conclude that

Euε(t) ⇀ Eu(t) weakly* in Mb(Ω ∪ Γ0; Mn×n
sym ), (6.42)

for a.e. t ∈ [0, T ].
Let us fix t for which (6.9) and (6.42) hold. Since uε(t) ∈ A(wε(t)), it follows

from (4.1) that uε(t) is bounded in BD(Ω) uniformly with respect to ε. Up to a
subsequence we may assume that uε(t) converges weakly* in BD(Ω) to a function
v. By Lemma 4.1 it follows that (v, e(t), p(t)) ∈ ABD(w(t)). Since we have also
(u(t), e(t), p(t)) ∈ ABD(w(t)), we deduce that Ev = Eu(t) in Ω and (w(t)−v)�ν =
(w(t)−u(t))�ν Hn−1-almost everywhere on Γ0. This implies that v = u(t) Hn−1

almost everywhere on Γ0, and applying inequality (4.1) to v − u(t) we obtain that
v = u(t) almost everywhere in Ω. This concludes the proof of (6.8).

�
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7. Appendix

This section contains the proof of two technical results concerning the conver-
gence of suitable Riemann sums for functions with values in Banach spaces.

Lemma 7.1. Let X be a Banach space, let φ ∈ W 1,1([0, T ];X), let S ⊂ (0, T ]
be a set of full measure containing T and let ψ : S → X ′ be a bounded weakly*
continuous function. For every k > 0 let {tki }0≤i≤k be a subset of S ∪{0} such that
0 = tk0 < tk1 < · · · < tkk = T and maxki=1 |tki − tki−1| → 0 as k → +∞. Then

lim
k→∞

k∑
i=1

〈ψ(tki ), φ(tki )− φ(tki−1)〉 =
∫ T

0

〈ψ(t), φ̇(t)〉dt,

where 〈·, ·〉 denotes the duality product between X ′ and X.

Proof. Let ψk : [0, T ] → X ′ be the piecewise constant function defined by ψk(t) =
ψ(tki ) for tki−1 < t ≤ tki . Then

k∑
i=1

〈ψ(tki ), φ(tki )− φ(tki−1)〉 =
∫ T

0

〈ψk(t), φ̇(t)〉dt.

Since ψk(t) ⇀ψ(t) weakly* for every t ∈ S we have 〈ψk(t), φ̇(t)〉 → 〈ψ(t), φ̇(t)〉 for
a.e. t ∈ [0, T ]. The conclusion follows from the Dominated Convergence Theorem.

�

The next lemma extends the previous result to the case of the duality product
introduced in (4.13).

Lemma 7.2. Let % be the function introduced in the safe-load condition (4.23)-
(4.25) and let p : [0, T ] →Mb(Ω ∪ Γ0; Mn×n

D ) be a bounded function. Assume that
there exists a set S ⊂ (0, T ] of full measure containing T such that for every t ∈ S
the function p is continuous at t with respect to the strong topology of Mb(Ω ∪
Γ0; Mn×n

D ) and p(t) ∈ ΠΓ0(Ω). For every k > 0 let {tki }0≤i≤k be a subset of S ∪{0}
such that 0 = tk0 < tk1 < · · · < tkk = T and maxki=1 |tki − tki−1| → 0 as k → +∞.
Then

lim
k→∞

k∑
i=1

〈%D(tki )− %D(tki−1), p(tki )〉 =
∫ T

0

〈%̇D(t), p(t)〉dt,

where 〈·, ·〉 denotes the duality product introduced in (4.13).

Proof. Let pk : [0, T ] → ΠΓ0(Ω) be the piecewise constant function defined by
pk(t) = p(tki ) for tki−1 < t ≤ tki . Using (4.28) and (4.29) we obtain that

k∑
i=1

〈%D(tki )− %D(tki−1), p(tki )〉 =
∫ T

0

〈%̇D(t), pk(t)〉dt =

=
∫ T

0

〈%̇D(t), pk(t)− p(t)〉dt+
∫ T

0

〈%̇D(t), p(t)〉dt. (7.1)

By (4.14) we have∫ T

0

|〈%̇D(t), pk(t)− p(t)〉|dt ≤
∫ T

0

‖%̇D(t)‖L∞‖pk(t)− p(t)‖Mb
dt

Since ‖pk(t) − p(t)‖Mb
→ 0 for a.e. t ∈ S by our continuity assumption and

t 7→ ‖%̇(t)‖L∞ belongs to L1([0, T ]) (see [5, Theorem 7.1]), we obtain

lim
k→∞

∫ T

0

|〈%̇D(t), pk(t)− p(t)〉|dt = 0 (7.2)
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by the Dominated Convergence Theorem. The conclusion follows from (7.1) and
(7.2). �

Acknowledgements. This material is based on work supported by the Italian
Ministry of Education, University, and Research under the Project “Calculus of
Variations” (PRIN 2010-11) and by the European Research Council under Grant
No. 290888 “Quasistatic and Dynamic Evolution Problems in Plasticity and Frac-
ture”.

References

[1] V. Agostiniani, Second Order Approximations of Quasistatic Evolution Problems in Finite

Dimension Discrete Cont. Dyn. Syst. A 32 no. 4, 1125-1167 (2012).
[2] G. Anzelotti, On the Extremal Stress and Displacement in Hencky Plasticity Duke Math. J.

51, 133-147, (1983).

[3] V. Barbu, T. Precupanu, Convexity and Optimization in Banach Spaces 2nd rev. ed. Reidel,
Dordrecht, (1986).

[4] H. Brezis, Operateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces

de Hilbert North-Hollande publishing company, Amsterdam, (1972).
[5] G. Dal Maso, A. De Simone, M. G. Mora, Quasistatic Evolution Problems for Linearly Elastic-

Perfectly Plastic Materials Arch. Ration. Mech. Anal. 180: 237-291, (2006).

[6] G. Dal Maso, A. DeSimone, M.G. Mora, M. Morini, A Vanishing Viscosity Approach to
Quasistatic Evolution in Plasticity with Softening, Arch. Ration. Mech. Anal., 189: 469-544,

(2008).
[7] G. Dal Maso, A. De Simone, M. G. Mora, M. Morini, Globally Stable Quasistatic Evolution

in Plasticity with Softening Networks and Heterogeneous Media, 3, no. 3, 567-614, (2008).

[8] G. Dal Maso, A. De Simone, F. Solombrino, Quasistatic Evolution for Cam-Clay Plasticity:
a Weak Formulation via Viscoplastic Regularization and Time Rescaling Calc. Var. Partial

Differential Equations 40: 125-181, (2011).

[9] M. Efendiev, A. Mielke, On the Rate-Independent Limit of Systems with Dry Friction and
Small Viscosity. J. Convex Anal. 13, 151-167 (2006).

[10] C. Goffman, J. Serrin, Sublinear Functions of Measures and Variational Integrals. Duke

Math. J. 31, 159-178, (1964).
[11] R. Hill, The Mathematical Theory of the Plasticity. Oxford University Press, (1950).

[12] D. Kinderlehrer, G. Stampacchia, An Introduction to Variational Inequalities and their Ap-

plications. Academic Press, New York and London, (1980).
[13] D. Knees, A. Mielke, C. Zanini, On the Inviscid Limit of a Model for Crack Propagation.

Math. Models Methods Appl. Sci. 18, 1529-1569, (2009).

[14] D. Knees, A. Mielke, C. Zanini, Crack Growth in Polyconvex Materials. Phys. D 239, 1470-
1484, (2010).

[15] R. Kohn, R. Temam, Dual Spaces of Stresses and Strains, with Application to Hencky Plas-
ticity. Appl. Math. Optim. 10, 1-35 (1983).

[16] G. Lazzaroni, R. Toader, A Model for Crack Propagation Based on Viscous Approximation.

Math. Models Methods Appl. Sci. 21, 2019-2047, (2011).
[17] G. Lazzaroni, R. Toader, Some Remarks on the Viscous Approximation of Crack Growth.

Discrete Contin. Dyn. Syst. Ser. S 6 , no. 1, 131-146.S (2013).
[18] J. Lubliner, Plasticity Theory. Macmillan Publishing Company, (1990).
[19] Matthies H., Strang G., Christiansen E., The Saddle Point of a Differential Program. Energy

Methods in Finite Element Analysis, R. Glowinski, E. Rodin, O.C. Zienkiewicz, (ed.) Wiley,

New York, 309-318, (1979).
[20] A. Mielke, Evolution of Rate-Independent Systems. In “Evolutionary equations. Vol. II.” (eds.

C.M. Dafermos and E. Feireisl), Handbook of Differential Equations, 461-559, Elsevier/North-
Holland, Amsterdam, (2005).

[21] A. Mielke, R. Rossi, G. Savaré, BV Solutions and Viscosity Approximations of Rate-

Independent Systems. ESAIM Control Optim. Calc. Var. 18, no. 1, 36-80, (2012).
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