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Abstract

We study properties of functions convex with respect to a given family X of vector fields, a
notion that appears natural in Carnot-Carathéodory metric spaces. We define a suitable sub-
differential and show that a continuous function is X -convex if and only if such subdifferential
is nonempty at every point. For vector fields of Carnot type we deduce from this property that
a generalized Fenchel transform is involutive and a weak form of Jensen inequality. Finally
we introduce and compare several notions of X -affine functions and show their connections
with X -convexity.

Keywords: convex functions in Carnot groups, Carnot-Carathéodory metric spaces, subdif-
ferential, Legendre-Fenchel transform, convex duality, Jensen inequality.

1 Introduction

Classical convex analysis was successfully extended to Riemannian manifolds by means of the no-
tion of geodesic convexity. This concept can be defined in more general sub-Riemannian contexts.
However, in the simplest example of such geometry, the Heisenberg group, Monti and Rickly [25]
proved that all geodetically convex functions are constant, so this property is too restrictive. A
notion of horizontal convexity in the Heisenberg group, that seems to have been first conceived
by Caffarelli, was introduced and studied independently by Lu, Manfredi, and Stroffolini [20] and
by Danielli, Garofalo, and Nhieu [15] (in more general Carnot groups and with the name of weak
H-convexity). It uses convex combinations built by the group operation and dilations. Lu, Man-
fredi, and Stroffolini [20, 19] introduced also the notion of convexity in viscosity sense. It requires
a stratification of the Lie algebra associated to the Carnot group, the choice of a basis of the first
layer, that is the horizontal subspace, formed by left-invariant vector fields X = {X1, . . . , Xm},
and uses the Hessian matrix D2

Xu associated to these fields. These papers stimulated intensive
work by several authors concerning the equivalence of these notions and the regularity properties
of horizontally convex functions in stratified Lie groups, see, e.g., [2, 17, 18, 26, 21, 16, 11, 9, 10, 22]
and the survey in the book [8] or [4] for more references.

In the paper [4] we considered the context of more general Carnot-Carathéodory spaces without
the algebraic structure of Carnot groups. More precisely, we are given a finite family of vector
fields on Rn, X = {X1, . . . , Xm} and the C-C metric

d(x, y) := inf {T ≥ 0 | ∃ γ admissible in [0, T ] with γ(0) = x, γ(T ) = y} , (1)

∗This author is partially supported by the Fondazione CaRiPaRo Project ”Nonlinear Partial Differential Equa-
tions: models, analysis, and control-theoretic problems”, the MIUR project PRIN ”Viscosity, geometric, and control
methods for nonlinear diffusive models”, and the European Project Marie Curie ITN ”SADCO - Sensitivity Analysis
for Deterministic Controller Design”.
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where a curve γ is admissible if it is absolutely continuous in [0, T ] and for some measurable
functions αi(t) with

∑m
i=1 α

2
i (t) = 1

γ̇(t) =

m∑
i=1

αi(t)Xi(γ(t)), a.e. t ∈ [0, T ]. (2)

Our notion of convexity is based on the X -lines, that are solutions of the previous system with
constant αi, i.e.,

ẋ(t) =

m∑
i=1

αiXi(x(t)), (3)

for some α ∈ Rm. Given Ω ⊂ Rn open set, we say that a function u : Ω→ R is X -convex if u ◦ xα
is convex for any X -line xα contained in Ω. Clearly this reduces to the classical convexity if X
is the canonical basis of Rn. In [4] we showed that if X1, . . . , Xm are the generators of a Carnot
group this notion is also equivalent to the horizontal convexity defined in [15, 20]. Moreover we
proved a characterization in terms of the inequality D2

Xu ≥ 0 in the viscosity sense, and a local
Lipschitz estimate for X -semiconvex functions in terms of the C-C distance:

|u(x)− u(y)| ≤ Ld(x, y), ∀x, y ∈ Ω1, (4)

where the constant L depends on the open set Ω1 such that Ω1 ⊂ Ω. Further estimates for
X -convex functions can be found in the very recent paper of Magnani and Scienza [23].

In this paper we continue the study of X -convex functions introduced in [4].
In Section 2 we define the X -plane through a point x, Vx, that corresponds to the horizontal

space in Carnot groups, and define its parametrization Φx by the time-1 map of the flow of (3).
We compute explicitly these objects in some important examples, in particular vector fields of
Carnot-type, i.e., of the form

Xj =
∂

∂xj
+

n∑
i=m+1

aij(x)
∂

∂xi
, j = 1, . . . ,m. (5)

In Section 3, following suitable motivations, we define the X -subdifferential of u at x, ∂Xu(x),
as the set of p ∈ Rm such that

u(y) ≥ u(x) + p · Φ−1
x (y), ∀ y ∈ Ω ∩ Vx,

and prove that a continuous function u is X -convex if and only if ∂Xu(x) 6= ∅ for all x. Results
of this kind were proved by Calogero and Pini in the Heisenberg group [10] and by Magnani and
Scienza in Carnot groups [22].

In Section 4 we give two applications of the preceding result to fields of Carnot type. The first
concerns a generalized Legendre-Fenchel transform of u and states that it is involutive if and only
if u is X -convex. This is a form of convex duality that extends a result obtained by Calogero and
Pini in the Heisenberg group [9]. Next we prove some weak versions of Jensen integral inequality
for X -convex functions. The main result is that, if Ω = Ω1×Ω2, Ω1 ⊆ Rm is convex, Ω2 ⊆ Rn−m,
µi is a finite measure on Ωi, i = 1, 2, then

−
∫

Ω

u dµ1 × dµ2 ≥ −
∫

Ω2

u

(
−
∫

Ω1

y1dµ1 , x2

)
dµ2. (6)

In Section 5 we name X -affine a function u such that u and −u are both X -convex, and show
some properties of these functions. If the fields are of Carnot type we prove that the weak Jensen
inequality (6) is an equality, and therefore it is sharp. If, in addition, the C-C metric satisfies

d(x, y) < +∞ ∀x, y,
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we show that u is X -affine if and only if there are β ∈ R and p ∈ Rm such that

u(x) = β + p · πm(x),

where πm is the projection to the first m coordinates, a property that corresponds to being
horizontally affine in Carnot groups [15, 9]. We also show that for Carnot-type fields a continuous
function is X -convex if and only if it can be represented as an envelope of horizontally affine
functions.

Finally, let us mention that our initial motivation in the study of X -convex functions is their
role in the theory of nonlinear partial differential equations elliptic with respect to the derivatives
XiXju, and therefore degenerate elliptic with respect to the Euclidean derivatives if m < n. In
particular, equations of Monge-Ampère type involving vector fields X1, . . . , Xm are well-posed in
the viscosity sense among X -convex functions [5, 6], and we showed in [4] that estimates like (4)
are very useful in the study of these equations.

2 Preliminaries

2.1 Definitions and notations

Throughout the paper we are given a family of vector fields X = {X1, . . . , Xm}, Xi : Rn → Rn,
i = 1, . . . ,m, m ≤ n, at least of class C1. We denote with σ(x) the n×m-matrix whose columns
are the coefficients of the vector fields and call X -line associated to the vector α ∈ Rm a curve
xα : I → Rn solving the ODE

ẋ(t) = σ(x(t))α, (7)

where I ⊆ R is the maximal interval of existence of the solution. We are also given

Ω ⊆ Rn open set

and we denote with Imax the maximal interval such that xα(t) remains in Ω.

Definition 2.1. We say that a function u : Ω → R is X -convex if, for any α ∈ Rm, u ◦ xα is
convex in Imax, where xα is the X -line defined by (7).

We also say that Ω is X -convex if, for all x, y ∈ Ω any X -segment joining x to y is contained
in Ω. (A X -segment between two points x and y is the piece of the X -line joining the two points,
exactly as in the Euclidean case.) In this case (up to some reparametrization) we can assume that
xα(0) = x and xα(1) = y and require that u ◦ xα(t) is convex on the interval [0, 1].

If Ω is not X -convex, Definition 2.1 requires that u◦xα(t) is convex in all connected components
of the pre-image x−1

α (Ω). These connected components are disjoint open intervals. In this way we
often do not need to impose any assumption on the domain of the function.

We recall that X -convexity implies some regularity properties. Exactly as in the case of classical
convex functions one can prove that X -convex functions have locally bounded first derivatives (in
the viscosity sense) in the directions of the vector fields and they are Lipschitz continuous with
respect to the C-C distance (1). When such distance is continuous in the usual topology, all
X -convex functions are continuous, the first derivatives in the directions of the vector fields exist
and they are in L∞. Moreover, if the vector fields satisfy the Hörmander condition (e.g., in any
Carnot group), then X -convex functions are Hölder continuous of exponent 1/k, where k is the
step of the Hörmander condition. We refer to Section 6 in [4] for more details on these regularity
properties.

Definition 2.2. We call X -plane associated to a point x the set of all the points that one can
reach from x through a X -line, i.e.

Vx:=
{
y∈Rn|∃α ∈ Rm such that xα(0)=x, xα(1)=y

}
. (8)
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Roughly speaking the X -plane associated to the point x is the union of all the X -lines starting
from the point x. In the particular case of vector fields that are generators of a Carnot group, Vx
is the so-called horizontal space (see, e.g., [15]). We denote also

Xx := Span
(
X1(x), . . . , Xm(x)

)
⊆ Rn

Note that Vx is a subset of Rn as manifold, while Xx is a set of “velocities”, i.e. elements of the
tangent space. If Vx is a subspace of Rn, then Vx and Xx have the same dimension and they can
be identified if necessary.

The function we define next gives a parametrization of Vx and will be extensively used in the
paper.

Definition 2.3. The time-1 map of the flow (7) defining the X -lines xα(·) is

Φx : Rm → Vx
α 7→ y = xα(1)

. (9)

Next result collects some elementary properties of this function.

Lemma 2.1. 1. Φx is surjective, so Φx is invertible if and only if it is injective.

2. If Φx is injective then X1, . . . , Xm are linearly independent at x.

3. If the vector fields are Ck, then Φx is Ck in both α and x. (

4. If Φ−1
x exists, it takes any X -lines starting at the point x into a Euclidean line starting at

the origin of Rm.

Remark 2.1. i) By the Lemma, if Φx is locally invertible and the fields are C1 the set Vx is an
m-dimensional submanifold of Rn with charts given by suitable restrictions of Φx.

ii) The converse of property 2 is not always true: the single vector field

X(x1, x2, x3) =
(
x2,−x1, 1− (x1)2 − (x2)2

)
on R3 is linearly independent because it is never zero. If we consider a point x on the unit cylinder
around the x3-axis, the X -lines from that point are unit circles on the cylinder. In this case you
can reach a point y antipodal to x at the time 1 by moving with a starting velocity α but also
with starting velocity −α. (In the same way we can always reach any two points on the circle by
two different X -lines). Nevertheless Φx is locally invertible around 0.

iii) Property 4 holds because if y = xα(t) with xα(0) = x, then y = xtα(1).

Before turning to the examples we introduce some more notations for the case m < n, to which
we are mostly interested. We indicate by x1 ∈ Rm and by x2 ∈ Rn−m, respectively, the first m
components and the last n−m components of a point x ∈ Rn, i.e.,

x = (x1, x2) ∈ Rm × Rn−m.

Finally, πm indicates the projection on the first m components

πmx = πm(x) := x1.

2.2 Examples of X -planes.

We now compute Vx and Φx for different families of vector fields. In particular we want to show
that Φx is invertible in the case of Carnot-type vector fields. On the other hand Φx is not even
locally invertible in any Grušin-type space. Let us start with a very easy model.
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Example 2.1 (Linearly independent constant vector fields). Suppose Xj
i (x) = 0 for j 6= i and

Xi
i (x) = 1 for i = 1, . . . ,m, j = 1, . . . , n and m < n. In this case the X -lines are Euclidean lines

where the last n−m components are constant and the X -plane is

Vx =
{

(y1, y2) ∈ Rn | y2 = x2
}

= Rm × {y2 = x2}.

Moreover Φx is invertible and

Φ−1
x (y1, y2) = y1 − x1 = πm(y − x).

The case of linearly independent constant vector fields is the easiest example of Carnot-type
vector fields, that we introduce next.

Definition 2.4 (Carnot-type vector fields.). We say that X1, . . . , Xm, m < n, are Carnot-type
vector fields if the n×m matrix associated to them has the following form:

σ(x) =

(
Idm×m

A(x1, . . . , xm)

)
, (10)

where the matrix A(x1, . . . , xm) is a (n −m) ×m C1 matrix depending only on the first m com-
ponents of x.

Interesting examples of Carnot-type vector fields are the generators of the Heisenberg group
and of any other Carnot group, but in general no structure of Lie group is required (e.g., the
Martinet distribution does not generate a Carnot group but it is associated to Carnot-type vector
fields). See [24] and [8] for more details on these sub-Riemannian examples. Moreover Carnot-type
vector fields are not required to satisfy the Hörmander condition.

Lemma 2.2. If X1, . . . , Xm are of Carnot-type,then for any x ∈ Rn the function Φx defined by
(9) is invertible and

Φ−1
x (y) = πm(y − x), for any y ∈ Rn.

Moreover there are C1 functions Cj : Rm × Rm → R such that the X -plane can be written as

Vx =
{
y ∈ Rn | yj = xj + Cj(y1, x1), j = m+ 1, . . . , n

}
. (11)

Proof. By (10) we get the following ODE for the X -lines:

ẋα(t) =



α1

...

αm

σ1(x1
α(t), . . . , xmα (t))α

...

σn−m(x1
α(t), . . . , xmα (t))α

where by σi(x) we indicate the rows of σ(x), i.e. [σ1(x), . . . , σn−m(x)]t = A(x1). (Note that σi is
a 1×m matrix while α ∈ Rm is interpreted as a m× 1 matrix, hence σi α is a well defined scalar.)
By integrating the previous equation we get

(xα(t))
j

=


xj + αj t j = 1, . . . ,m

xj +

∫ t

0

σj(α1 s+ x1, . . . , αm s+ xm)αds j = m+ 1, . . . , n
(12)

which implies that Φx(α) = xα(1) is invertible with

Φ−1
x (y) = πm(y − x) = y1 − x1,
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and the representation (11) holds with

Cj(y1, x1) =

∫ 1

0

σj
(
(y1 − x1) s+ x1, . . . , (ym − xm) s+ xm

)
πm(y − x) ds

for j = m+ 1, . . . , n.

Example 2.2. By computing the corresponding X -lines, we can find the expression of Ci(·) in
the following subcases of Carnot-type vector fields.

1. Linearly independent vector fields: Ci(y1, x1) = 0 for any i = 1, . . . , n − m (see Example
2.1).

2. Heisenberg group (see e.g. [24] or [8] for a definition): Vx is the horizontal plane through x
and

C1(y1, x1) =
y1

1 · x1
2 − y1

2 · x1
1

2
,

where by · we indicate the standard inner product in Rm, for y1 = (y1
1, y

1
2) ∈ Rd ×Rd, x1 =

(x1
1, x

1
2) ∈ Rd × Rd (note that in this case m = 2d and n = 2d + 1 with d ≥ 1); therefore

C1 = 0 if and only if x ∗ y = y ∗ x where ∗ is the law defined in the Heisenberg group (in
fact this implies y1

1 · x1
2 − y1

2 · x1
1 = 0).

3. Martinet distribution (see [24] for a definition and some properties):

C1(y1, y2, x1, x2) = − (y2−x2)2

3 − (y2 − x2)− (x2)2 (in this case m = 2 and n = 3).

Carnot-type vector fields are not the only family of vector fields where Φx is invertible for
any x. In the next example we study the case of the rototranslation geometry which is a very
well-know sub-Riemannian geometry, recently studied as a model for the visual cortex (see [14]
and also [12, 13]).

Example 2.3 (The Rototraslation geometry). The rototraslation geometry is the geometry de-
fined on R3 by the vector fields

X1(x1, x2, x3) =

cosx3

sinx3

0

 and X2(x1, x2, x3) =

0
0
1

 .

The X -lines can be computed by solving

ẋα(t) =


ẋ1
α(t) = α1 cos

(
x3
α(t)

)
ẋ2
α(t) = α1 sin

(
x3
α(t)

)
ẋ3
α(t) = α2.

If we assume α2 6= 0 we get

y = xα(1) =



y1 = x1 +
α1

α2

(
sin(α2 + x3)− sinx3

)
= x1 +

α1

α2
sinα2 cosx3 +

α1

α2
sinx3(cosα2 − 1)

y2 = x2 +
α1

α2

(
cosx3 − cos(α2 + x3)

)
= x2 +

α1

α2
sinα2 sinx3 +

α1

α2
cosx3 (1− cosα2)

y3 = x3 + α2
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while if α2 = 0 the X -lines in t = 1 assume the form:

y = xα(1) =


y1 = x1 + α1 cosx3

y2 = x2 + α1 sinx3

y3 = x3 + α2

Using the X -lines, we can write the set Vx as

If x3 6= k
π

2
, k ∈ Z, Vx =

{
(y1, y2, y3) ∈ R3 | y

1 − x1

cosx3
=
y2 − x2

sinx3

}
,

If x3 = k π, k ∈ Z, Vx =
{

(y1, y2, y3) ∈ R3 | y2 = x2
}
,

If x3 =
π

2
+ k π, k ∈ Z, Vx =

{
(y1, y2, y3) ∈ R3 | y1 = x1

}
.

Moroever Φx is invertible on Vx and Φ−1
(x1,x2,x3)(y

1, y2, y3) = (α1, α2) with α2 = y3 − x3 while

α1 =
y1 − x1

cosx3

(
=
y2 − x2

sinx3

)
, if x3 6= k

π

2
,

α1 =
y1 − x1

cosx3
, if x3 = k π,

α1 =
y2 − x2

sinx3
, if x3 =

π

2
+ k π.

It is obvious that whenever X1, . . . , Xm are not linearly independent at some point x, then
the corresponding Φx cannot be invertible. One of the main example of this is given by Grušin
spaces, see, e.g., [7] and the next example.

Example 2.4 (The Grušin plane). Consider the vector fields on R2

X1(x1, x2) =

(
1
0

)
and X2(x1, x2) =

(
0
x1

)
.

They are not linearly independent at points of the line x1 = 0. Therefore Φx cannot be injective.
The X -lines can be found by solving

ẋ1
α(t) = α1 and ẋ2

α(t) = α2 x
1
α(t),

which gives x1
α(1) = x1 +α1 and x2

α(1) = x2 +α2 x
1 + α1 α2

2 . To find an expression for Vx we can
remark that α1 = y1 − x1 implies

y2 = x2 + α2x
1 + α2

y1 − x1

2
= x2 + α2

x1 + y1

2
.

This means that, whenever y1 6= −x1, then α2 can be uniquely determinated, otherwise it cannot.
Moreover

Vx =
{

(y1, y2) ∈ R2 | y1 6= −x1
}
∪
{

(y1, y2) ∈ R2 | y1 = −x1 and y2 = x2
}

=: V1
x ∪ V2

x.

Then the restriction of Φx to V1
x is injective but the restriction to V2

x is not.

To our knowledge most of the results proved in this paper (in particular the characterization of
convex functions by a nonempty subdifferential) are open for Grušin spaces, although the results
proved in [4] (i.e., the viscosity characterization for X -convex functions and their local intrinsic
Lipschitz continuity and the corresponding bounds for the intrinsic gradient) apply also to the
case of Grušin spaces.
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3 X -subdifferential and X -convex functions.

Definition 3.1. Given u : Ω→ R, we denote with δi the i-th vector of the canonical basis of Rm
and with xδi(t) the corresponding X -line starting from x at t = 0. The X -partial derivatives (or
derivatives along the vector fields) of u are

Xiu(x) := lim
t→0

u(xδi(t))− u(x)

t
, for i = 1, . . . ,m.

The X -gradient at the point x is

∇Xu(x) :=

m∑
i=1

Xiu(x)Xi(x).

In the case of a Carnot-Carathéodory space the X -gradient coincides with the usual horizontal
gradient (see [8] for some definitions). For later use we will identify the X -gradient with the
corresponding coordinate-vector w.r.t. the basis X1, . . . , Xm, i.e.

∇Xu(x) ∈ Xx ←→ DXu(x) = (X1u(x), . . . , Xmu(x))
t ∈ Rm.

Definition 3.2. We say that a function u : Ω → R is X -directionally differentiable at a point
x ∈ Ω if there exists p ∈ Rm (depending on the point x) such that

lim
t→0

u(xα(t))− u(x)

t
= p · α, ∀α ∈ Rm. (13)

Note that if such a p exists, then it is unique and p = DXu(x).
The following lemma states the existence of a supporting X -hyperplane for the graph of u at

the points of X -directional differentiability of u.

Lemma 3.1. If Φx is invertible and u : Ω→ R is X -convex and X -directionally differentiable at
a point x ∈ Ω, then

u(x) +DXu(x) · α ≤ u(Φx(α)), ∀α ∈ Rm,

or, equivalently,
u(x) +DXu(x) · Φ−1

x (y) ≤ u(y), ∀ y ∈ Vx ∩ Ω.

Proof. For sake of simplicity we take Ω = Rn. For y ∈ Vx we take α ∈ Rm and xα : [0, 1] → Ω
such that xα(0) = x and xα(1) = y. By definition of X -convexity and writing t = (1 − t)0 + t1,
we find

u(xα(t)) ≤ (1− t)u(xα(0)) + t u(xα(1)) = u(x) + t
(
u(y)− u(x)

)
, ∀ y ∈ Vx,

which implies
u(xα(t))− u(x)

t
≤ u(y)− u(x), ∀ y ∈ Vx.

Passing to the limit as t→ 0 and using (13), we conclude

DXu(x) · α ≤ u(y)− u(x),

which proves the lemma.

Motivated by Lemma 3.1 and by the classical definition of Euclidean subdifferential we intro-
duce a notion of subdifferential along the vector fields for non-smooth functions. For p, q ∈ Xx
denote 〈

p, q
〉
X :=

m∑
i=1

pi qi for p =

m∑
i=1

piXi(x), q =

m∑
i=1

qiXi(x).
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Definition 3.3. Assume Φx : Rm → Vx (defined in (9)) is invertible for any fixed x ∈ Ω. The
X -subdifferential of u : Ω→ R at x is the set

∂Xu(x) :=
{
p ∈ Xx |u(x) +

〈
p,Ψx(y)

〉
X ≤ u(y), ∀ y ∈ Ω ∩ Vx

}
,

where Ψx(y) =
∑m
i=1

(
Φ−1
x (y)

)
i
Xi(x) ∈ Xx.

Remark 3.1. If the function Φx is not invertible (e.g. in the Grušin case) we can generalize the
previous definition and call X -subdifferential the set

∂Xu(x) :=
{
p ∈ Xx |u(y) ≥ u(x) +

〈
p,Θy

x

〉
X ,∀Θy

x and ∀ y ∈ Ω ∩ Vx
}
,

where Θy
x :=

∑m
i=1

(
ηyx)iXi(x) ∈ Xx for any ηyx ∈ Φ−1

x (y), Φ−1
x being the pre-image of Φx at the

point y. Note that Lemma 3.1 is still true using this more general definition.

Remark 3.2. We can always identify any element in Xx by its coordinate vector w.r.t. the given
family of vector fields. Using this identification, we can re-write the X -subdifferential simply as a
subset of Rm, i.e.

∂Xu(x)↔ ∂̃Xu(x) :=
{
p ∈ Rm |u(y) ≥ u(x) + p · Φ−1

x (y),∀ y ∈ Ω ∩ Vx
}
. (14)

We will usually work with this set ∂̃Xu(x) instead of the original X -subdifferential.

Remark 3.3. If X1, . . . , Xm are vector fields of Carnot-type, then by Lemma 2.2

∂̃Xu(x) = {p ∈ Rm |u(y) ≥ u(x) + p · πm(y − x),∀ y ∈ Ω ∩ Vx} .

In this case p ∈ ∂̃Xu(x) is the slope of a hyperplane supporting the restriction of u to Vx.
Moreover this notion of X -subdifferential extends to general vector fields the notion of horizontal
subdifferential introduced in Carnot groups in [15] (Definition 3.1) and studied later in [10] in the
case of the Heisenberg group (see also [22]).

The main result of this section is the following.

Theorem 3.1. Assume that X1, . . . , Xm are linearly independent and u : Ω → R is continuous
and X -convex. Then ∂Xu(x) 6= ∅ for all x ∈ Ω.

In view of Remark 3.2 we will write ∂Xu(x) instead of ∂̃Xu(x), with a slight abuse of notation.

Remark 3.4. The result does not assume the Hörmander condition, so it generalizes to a very
large class of vector fields what proved in [10] for the Heisenberg group and in [22] in Carnot
groups. The case of Grušin spaces remains open since in this case the vector fields are not linearly
independent at the origin.

Remark 3.5. If the vector fields X1, . . . , Xm satisfy the Hörmander condition, we can remove the
continuity assumption on u, requiring that u is upper semicontinuous on Ω and locally bounded
(see [4], Theorem 6.1)

Before proving the result we want to show that linearly independent vector fields imply that
the associated Φx is locally invertible around 0, for any fixed x (i.e. the inverse Φ−1

x exists for
y ∈ Vx near x) and next we show that for X -convex function the notion of X -subdifferential can
be written locally.

Lemma 3.2. The map Φx has the Jacobian matrix such that DΦx(0) = σ(x). In particular, if
X1, . . . , Xm are linearly independent at x, then Φx is locally invertible at 0 for any fixed x.
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Proof. Recall that Φx(t α) = xα(t), so taking the derivative in time, we get

ẋα(t) =
d

dt
Φx(t α) = DΦx(t α) α.

Moreover by the definition of X -lines we know that

ẋα(t) = σ(xα(t)) α = σ(Φx(t α)) α,

which means
DΦx(t α) α = σ(Φx(t α)) α, ∀ α ∈ Rm.

If t = 0 and using Φx(0) = x, we have DΦx(0) α = σ(x) α for any α ∈ Rm which implies
DΦx(0) = σ(x). The last statement follows easily, since Φx is surjective by definition.

Lemma 3.3. For u : Ω→ R X -convex, consider the following local definition of subdifferential

∂̂Xu(x) :=
{
p ∈ Rm |u(y) ≥ u(x) + p · Φ−1

x (y),∀ y ∈ Ω ∩ Vx ∩BR(x)
}
,

for some R > 0. Then ∂Xu(x) = ∂̂Xu(x).

Proof. It is obvious that ∂Xu(x) ⊂ ∂̂Xu(x), so we have to show only the reverse inclusion. Let us fix
some ball BR(x) with radius R and centered at x and let us consider a point z ∈

(
Ω∩Vx

)
\BR(x).

Since z ∈ Vx there exist α ∈ Rm and xα(·) X -line such that z = xα(1) and xα(0) = x; moreover
u(xα(t)) is convex in t. Since the X -lines are continuous, we can find λ close enough to 0 such
that y := xα(λ 0 + (1− λ) 1) ∈ Ω ∩ BR(x). By the local definition of X -subdifferential and using

that y ∈ Ω ∩BR(x) ∩ Vx, p ∈ ∂̂Xu(x) implies

u(y) ≥ u(x) + p · Φ−1
x (y).

To conclude we apply the convexity of u ◦ xα and remark that Φ−1
x ◦ xα(t) is linear in t (in fact

Φ−1
x ◦ xα(t) = Φ−1

x ◦ Φx(α t) = α t). Therefore

λu(x) + (1− λ)u(z) ≥ u(y) ≥ u(x) + p ·
(
λΦ−1

x (x) + (1− λ) Φ−1
x (z)

)
,

which gives, by using Φ−1
x (x) = 0 and dividing by 1− λ,

u(z) ≥ u(x) + p · Φ−1
x (z),

and this implies p ∈ ∂Xu(x).

The previous lemma implies that the invertibility assumption on Φx can be replaced by local
invertibility, which holds as soon as X1, . . . , Xm are linearly independent.

Next we show that ∂Xu is an upper semicontinuous set-valued map.

Lemma 3.4. Assume Φx is locally invertible for all x ∈ Ω and u : Ω → R is continuous and
X -convex. Then the X -subdifferential map of u is closed, i.e.,

xn → x, pn ∈ ∂Xu(xn) and pn → p =⇒ p ∈ ∂Xu(x).

Proof. By Lemma 3.3 we can assume Ω = Rn and Φx invertible everywhere. By definition of
X -subdifferential, if pn ∈ ∂Xu(xn) then

u(y) ≥ u(xn) + pn · Φ−1
xn (y), ∀ y ∈ Vxn . (15)

The idea is to pass to the limit in the previous inequality. We first show that “ limn Vxn = Vx ′′
which means that y ∈ Vx if and only if y = lim

n→+∞ yn with yn ∈ Vxn . In fact, for any
yn ∈ Vxn with xn → x, by the continuity of the X -lines w.r.t. the initial condition, we have
yn = xα(1;xn) → xα(1;x) = y ∈ Vx, as n → +∞. Viceversa, let us consider y ∈ Vx, then there
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exists α ∈ Rm such that y = xα(1;x). For any xn → x, we look at yn = xα(1;xn) and we get
yn → y. Therefore we can pass to the limit as n→ +∞ in (15) and use the continuity of u(x) and
the continuity of Φ−1

x (y) in (x, y) to find

u(y) ≥ u(x) + p · Φ−1
x (y), ∀ y ∈ Vx,

i.e. p ∈ ∂Xu(x).

We are now ready to prove the main result of this section.

Proof of Theorem 3.1. By Lemma 3.2 Φx is locally invertible around 0 and by Lemma 3.3 we can
assume that Φx is globally invertible, without loss of generality. Lemma 3.4 says that ∂Xu(·) is
closed, so we only have to find suitable sequences xn → x and pn ∈ ∂Xu(xn) such that |pn| ≤ L
for some constant L > 0. We use the property of continuous functions that the set of points where
there exist test functions touching from above is dense in the domain, and then apply Proposition
6.1 in [4] to such test functions.

We first build the sequence of approximating points. Fix a point x0 ∈ Ω and look at the

function ϕε(x) := |x−x0|2
2 ε (where we set ε = 1

n ). Clearly ϕε ∈ C∞; so if we fix a closed ball

BR(x0) there is a maximum point xε for u−ϕε. Since u is continuous, it is bounded on any closed
ball and this implies that xε → x0 as ε → 0+ and moreover xε ∈ BR(x0) for ε > 0 sufficiently
small (see [3], Lemma II.1.8 for more details). By subtracting from ϕε the constant (ϕε − u)(xε)
we get a test function, that we still call ϕε, touching u from above at the point xε.

Now we show that the X -gradient of a test function touching from above a X -convex function
u is in the X -subgradient of the function u at the touching point, i.e.,

pε := DXϕε(xε) ∈ ∂Xu(xε). (16)

If we prove the claim (16) then we are done, because |pε| ≤ L on BR(x0) by Proposition 6.1 of
[4], with L > 0 constant which may depend on R and x0 but not on ε. Let us recall that for
X -convex functions the X -subgradient can be defined locally. We assume by contradiction that
pε /∈ ∂Xu(xε), i.e.,

∃ z ∈ Vxε ∩BR(x0) : u(z) < u(xε) + pε · Φ−1
xε (z). (17)

Then there exists α ∈ Rm and xα X -line such that xα(0) = xε and xα(1) = z. Let us consider the
functions uα := u ◦ xα and ψα := ϕε ◦ xα. The assumption (17) can be written as

uα(1) < uα(0) + pε · α. (18)

We set rα := pε · α = ψ′α(0); the strict inequality in (18) means that there is δ > 0 such that

uα(1)− uα(0) < rα − δ.

Since uα is convex the slope of the corresponding secant line is non decreasing, so for t > 0

uα(−t)− uα(0)

−t− 0
=
uα(0)− uα(−t)

t
≤ uα(1)− uα(0)

1
< rα − δ

and then
uα(−t) > uα(0)− trα + tδ.

Since ψα is touching uα from above at 0, i.e. ψα ≥ uα near 0 and ψα(0) = uα(0),

ψα(−t) > ψα(0)− trα + tδ. (19)

Moreover ψα is C1, so we can write its Taylor’s expansion of order 1, i.e.,

ψα(−t) = ψα(0)− t ψ′α(0) + o(t) = ψα(0)− t rα + o(t) as t→ 0 + . (20)

Putting together (19) and (20) we find o(t) > tδ, which gives the desired contradiction and
concludes the proof.
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The converse of Theorem 3.1 is easier to show and it was proved in [15] (Proposition 10.5) in
the case of Carnot groups.

Theorem 3.2. If u : Ω→ R has ∂Xu(x) 6= ∅ for all x ∈ Ω, then u is X -convex on Ω.

Proof. We fix x0 ∈ Ω, α ∈ Rm, and must show that u ◦ xα is convex, i.e.

u
(
xα
(
λ t1 + (1− λ) t2

))
≤ λu(xα(t1)) + (1− λ)u(xα(t2))

for any λ ∈ (0, 1) and for any t1, t2 ∈ Imax. Let us define

xλ : = xα
(
λ t1 + (1− λ) t2

)
,

x1 : = xα(t1),

x2 : = xα(t2).

Note that, since x1, x2, xλ belong to the same X -line starting from the point x0, then x1, x2 ∈ Vxλ .
Since the X -subdifferential is everywhere non empty, there exists pλ ∈ Xxλ such that

u(y) ≥ u(xλ) +
〈
pλ,Φ

−1
xλ

(y)
〉
X , ∀ y ∈ Vxλ .

We write this inequality for y = x1 and y = x2 and combine the two inequalities to get

λu(x1) + (1− λ)u(x2) ≥
λu(xλ) + λ

〈
pλ,Φ

−1
xλ

(x1)
〉
X + (1− λ)u(xλ) + (1− λ)

〈
pλ,Φ

−1
xλ

(x2)
〉
X

= u(xλ) +
〈
pλ, λΦ−1

xλ
(x1) + (1− λ)Φ−1

xλ
(x2)

〉
X . (21)

To conclude it remains to prove that λΦ−1
xλ

(x1) + (1 − λ)Φ−1
xλ

(x2) = 0. Let us write tλ = λ t1 +
(1 − λ) t2, so xλ = xα(tλ). We first need to reparametrize the X -line xα(t) so that the starting
point is xλ, namely,

x̃α(s) := xα(s+ tλ), s ∈ R.

Then

x1 = xα(t1) = x̃α(t1 − tλ) = x̃(t1−tλ)α(1) ⇒ Φ−1
xλ

(x1) = (t1 − tλ)α;

x2 = xα(t2) = x̃α(t2 − tλ) = x̃(t2−tλ)α(1) ⇒ Φ−1
xλ

(x2) = (t2 − tλ)α;

Hence
λΦ−1

xλ
(x1) + (1− λ)Φ−1

xλ
(x2) = α

[
λ (t1 − tλ) + (1− λ) (t2 − tλ)

]
= 0,

which concludes the proof.

We conclude the section by looking at the X -subdifferential of X -directionally differentiable
functions (see Definition 3.2).

Proposition 3.1. If u : Ω→ R is X -directionally differentiable at some point x ∈ Ω, then

∂Xu(x) 6= ∅ ⇒ ∂Xu(x) = {DXu(x)} .

Proof. Let us assume that there exists q ∈ ∂Xu(x). Then, for X -lines with xα(0) = x,

u(xα(t)) ≥ u(x) + q · Φ−1
x (xα(t)), t ∈ Imax and ∀α ∈ Rm.

Recall that xα(t) = xtα(1), so Φ−1
x (xα(t)) = tα, which means

q · α t ≤ u(xα(t))− u(x), t ∈ Imax and ∀α ∈ Rm.
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Therefore

q · α ≤ u(xα(t))− u(x)

t
∀ t > 0,

q · α ≥ u(xα(t))− u(x)

t
∀ t < 0.

Taking the limits as t→ 0+ and t→ 0− we can conclude

q · α ≤ p · α ≤ q · α ⇒ q = p.

where p = DXu(x).

In the case of X -convex functions, we know that the X -subdifferential is always nonempty, so
the previous result can be rewritten as follows.

Corollary 3.1. If u : Ω → R is X -directionally differentiable and X -convex, then ∂Xu(x) =
{DXu(x)} at any x ∈ Ω.

4 Two applications to Carnot-type vector fields.

Throughout this section we assume that X1, . . . , Xm are Carnot-type vector fields, see Definition
2.4.

4.1 Fenchel transform

The next definition extends to vector fields of Carnot-type the notion of Legendre-Fenchel trans-
form introduced by Calogero and Pini [9] in the Heisenberg group.

Definition 4.1. The Fenchel transform of u : Ω→ R is the family of functions {u∗x}x∈Rn where

u∗x(p) := sup
y∈Vx∩Ω

[p · πmy − u(y)], p ∈ Rm.

Note that u∗x : Rm → R ∪ {+∞} is convex. Then it has the classical Legendre-Fenchel
transform, or convex conjugate,

(u∗x)∗(q) := sup
p∈Rm

[q · p− u∗x(p)], q ∈ Rm.

The next result states that this iterated transform is involutive if computed at q = πmx. It extends
to general Carnot-type fields one of the main results found in [9] for the Heisenberg group.

Theorem 4.1. i) For any function u : Ω→ R and for all x ∈ Ω

(u∗x)∗(πmx) ≤ u(x) (22)

ii) if u is continuous then (u∗x)∗(πmx) = u(x) if and only if ∂Xu(x) 6= ∅ ;
iii) a continuous function u is X -convex if and only if

(u∗x)∗(πmx) = u(x) ∀x ∈ Ω. (23)

Proof. i) By definition of u∗x, for all p ∈ Rm and y ∈ Vx ∩ Ω

u∗x(p) + u(y) ≥ p · πmy.

Then
u(y) ≥ sup

p∈Rm
[p · πmy − u∗x(p)] = (u∗x)∗(πmy), ∀y ∈ Vx ∩ Ω,
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and by choosing y = x we get (22).
ii) The definitions give

(u∗x)∗(πmx) = sup
p∈Rm

{p · πmx− sup
y∈Vx∩Ω

[p · πmy − u(y)]}

= sup
p∈Rm

inf
y∈Vx∩Ω

[p · πm(x− y) + u(y)− u(x)] + u(x).

By Remark 3.3 , if ∂Xu(x) 6= ∅ there is p̄ ∈ Rm such that p̄ · πm(x− y) + u(y)− u(x) ≥ 0 for all
y ∈ Vx ∩ Ω. Then (u∗x)∗(πmx) ≥ u(x).

Conversely, (u∗x)∗(πmx) ≥ u(x) implies supp∈Rm infy∈Vx∩Ω[p · πm(x − y) + u(y) − u(x)] ≥ 0.
Then for all ε > 0 there exists pε ∈ Rm such that

u(y)− u(x) ≥ pε · πm(y − x)− ε ∀y ∈ Vx ∩ Ω. (24)

We claim that, for some C, |pε| ≤ C for all ε ∈]0, 1]. Then there is a sequence εk → 0 such that
pεk → p̄. By passing to the limit in (24) we get

u(y)− u(x) ≥ p̄ · πm(y − x) ∀y ∈ Vx ∩ Ω,

thus ∂Xu(x) 6= ∅.
To prove the claim we choose y = Φx(α) in (24), so that πm(x − y) = α by Lemma 2.2. For

|α| = 1 the continuity of u implies that u(y) is bounded. Then there is C such that

C ≥ pε · α ∀ |α| = 1, ε ∈]0, 1],

and so |pε| ≤ C for all ε ∈]0, 1].
iii) By Theorems 3.1 and 3.2 a continuous function u : Ω → R is X -convex if and only if

∂Xu(x) 6= ∅ for all x ∈ Ω. Then the conclusion follows from ii) .

4.2 A Jensen-type inequality

In this section µ is a given positive and finite measure on Ω.
Notation. If u : Ω→ R and 0 < µ(Ω) < +∞ we set

−
∫

Ω

u dµ :=
1

µ(Ω)

∫
Ω

u dµ.

We briefly recall that for standard convex functions in the Euclidean setting Jensen’s inequality
states

−
∫

Ω

u(y) dµ(y) ≥ u
(
−
∫

Ω

y dµ(y)

)
. (25)

Its proof is based on integrating the inequality

u(y) ≥ u(x) + p · (y − x), ∀ y ∈ Ω,

where p is any element of the classical subdifferential of u at x. By Theorem 3.1 we can apply the
same idea to (continuous) X -functions, and get the following inequality∫

Vx∩Ω

u dµx ≥ u(x) + px ·
∫
Vx∩Ω

Φ−1
x (y) dµx(y), (26)

where px ∈ ∂Xu(x) and µx is the renormalized projection of µ on Vx. In the classical case the
integral on the right hand side vanishes if we choose x = xb = −

∫
Ω
y d µ because Φ−1

x (y) = y − x
and Vx = Rn. In the general case of (26), instead, the measure µx depends on x and the integrals
are on the lower-dimensional sets Vx. Nevertheless, in the case of Carnot-type vector fields, the
special structure of Vx allows to derive a weak version of Jensen’s inequality.
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Theorem 4.2. Let X1, . . . , Xm be Carnot-type vector fields and µ be a measure with 0 < µ(Ω) <
+∞. Assume that Ω = Ω1 × Ω2 with Ω1 ⊂ Rm and Ω2 ⊂ Rn−m, µ = µ1 × µ2 with µ1 = µ

∣∣
Ω1

and µ2 = µ
∣∣
Ω2

, and −
∫

Ω1
y1dµ1 ∈ Ω1 (e.g., Ω1 is convex). If u : Rn → R is a continuous X -convex

function, then

−
∫

Ω

u dµ ≥ −
∫

Ω2

u

(
−
∫

Ω1

y1dµ1 , y2

)
dµ2, (27)

with y = (y1, y2) ∈ Ω1 × Ω2 and where by y1 and y2 we mean respectively the first m components
and the last n−m components of y.

Proof. By Lemma 2.2 y = (y1, y2) ∈ Vx if and only if y2 = x2 +C(y1, x1). Then by Theorem 3.1
there exists px such that

u(y1, y2) = u(y1, x2 + C(y1, x1)) ≥ u(x1, x2) + px · (y1 − x1), ∀ y1 ∈ Ω1.

We choose x1 = x1
b := −

∫
Ω1

y1 dµ1 and integrate the previous inequality in dµ1(y1) to get

−
∫

Ω1

u(y1, x2 + C(y1, x1
b)) dµ1(y1) ≥ u(x1

b , x
2), ∀ x2 ∈ Ω2.

By integrating the previous inequality in dµ2(x2) we find

−
∫

Ω

u(y1, x2 + C(y1, x1
b)) dµ(y1, x2) ≥ −

∫
Ω2

u

(
−
∫

Ω1

y1dµ1(y1) , x2

)
dµ2(x2). (28)

Now we define the following change of variables from Rn into itself:

(y1, y2) = T (y1, x2) = (y1, x2 + C(y1, x1
b)). (29)

(Remember that now x1
b is fixed.) Since the function C(·) depends only on the first m components

of y, then

J T (y) =

(
Idm×n 0m×(n−m)

? Id(n−m)×(n−m)

)
.

We can observe that J T (y) is a triangular matrix where all the coefficients on the diagonal are
equal to 1; so |det J T | = 1. Therefore the inequality (28) can be rewritten as (27).

Remark 4.1. Note that in general the inequality (27) cannot be improved. Take for instance
m = 1 and n = 2, i.e. X1(x1, x2) = (1, 0)T on R2, Ω = [a, b]× [c, d], dµ = 1

|Ω| d x
1 d x2 where d x1

and d x2 are standard Lebesgue measures, and u(x1, x2) = x1 − (x2)2.

Example 4.1. Let X1, . . . , Xm be linearly independent and constant (see Example 2.1), and Ω
and µ be as in the last theorem. Then the proof of (27) is easier and can be generalised to any
Radon measure by using the Disintegration Theorem (see, e.g., Theorem 2.28 in [1]).

An immediate consequence of this theorem is the following Jensen inequality for functions that
do not exceed their restriction to the first m components, e.g., u(x1, x2) ≥ u(x1, x2

o) for some
x2
o ∈ Rn−m.

Corollary 4.1. Under the assumptions of Theorem 4.2 suppose also that u(x1, x2) ≥ ũ(x1) for
all (x1, x2) ∈ Ω, for some ũ : Rm → R. Then

−
∫

Ω

u dµ ≥ ũ
(
−
∫

Ω1

y1dµ1

)
.

To show that our inequality is optimal in the case of Carnot-type vector fields, we introduce
and study in the next section affine functions with respect to X and we verify that for them the
inequality (28) holds as identity.
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5 X -affine functions.

In this section we first introduce a notion of X -superdifferential dual of the X -subdifferential,
prove some regularity of functions that have both these objects nonempty at some point, and then
introduce three notions of affine functions with respect to the vector fields, compare them and
study their properties.

5.1 General vector fields

Definition 5.1. The X -superdifferential of u : Ω→ R at x is the set

∂Xu(x) := −∂X (−u)(x).

All the properties proved for the X -subdifferential are still true if we consider the X -superdifferential,
in particular we can still use the identification with the corresponding subset of Rm, i.e.

∂Xu(x)↔
{
p ∈ Rm |u(y) ≤ u(x) + p · Φ−1

x (y),∀ y ∈ Ω ∩ Vx
}

=: ∂̂Xu(x), (30)

(see Remark 3.2) and the local expression proved in Lemma 3.3. Of course all the properties of
the X -subdifferential proved in the previous sections have an analogue for the X -superdifferential.
In particular, ∂Xu(x) 6= ∅ for all x ∈ Ω if the function u is X -concave, i.e., −u is X -convex.

We next prove some additional useful properties for the X -subdifferential and the X -superdifferential.

Proposition 5.1. If u : Ω→ R is continuous, then

(i) ∂Xu(x) and ∂Xu(x) are closed and convex subsets of Rm (by using the identifications (14) and
(30));

(ii) if ∂Xu(x) 6= ∅ and ∂Xu(x) 6= ∅ at x ∈ Ω, then u is X -directionally differentiable at x and

∂Xu(x) = ∂Xu(x) =
{
DXu(x)

}
;

(iii) if ∂Xu(x) 6= ∅ and ∂Xu(x) 6= ∅ for all x ∈ Ω, then DXu is a continuous fumction on Ω; if,
in addition, u ∈ Cαloc(Ω) then DXu is also locally α-Hölder continuous.

Proof. Note that ∂Xu(x) and ∂Xu(x) are closed by Lemma 3.4. To show the convexity of the
X -subdifferential take p1, p2 ∈ ∂Xu(x) and look at

pλ := λ p1 + (1− λ)p2, λ ∈ (0, 1).

By definition
u(y) ≥ u(x) + pi · Φ−1

x (y), y ∈ Vx ∩ Ω, 1 = 1, 2.

Taking a convex combination we get

u(y) ≥ u(x) +
[
λ p1 + (1− λ) p2

]
· Φ−1

x (y) = u(x) + pλ · Φ−1
x (y),

which means that pλ ∈ ∂Xu(x).
Next we prove (ii). We first prove that for any p ∈ ∂Xu(x) and q ∈ ∂Xu(x) we have p = q;

then it is easy to conclude. By the definitions

(I) : p ∈ ∂Xu(x) ⇒ u(y) ≥ u(x) + p · Φ−1
x (y), y ∈ Vx ∩ Ω,

(II) : q ∈ ∂Xu(x) ⇒ u(y) ≤ u(x) + q · Φ−1
x (y), y ∈ Vx ∩ Ω.

Recall that whenever y ∈ Vx there exists α ∈ Rm such that y = xα(1) and Φ−1
x (y) = α; hence

(II)− (I) implies
(q − p) · α ≤ 0, ∀α ∈ Rm.
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This is possible only if p = q and we have proved that ∂Xu(x) = ∂Xu(x) =
{
p
}

. It remains to
show the limit (13) (see Definition 3.2). If y ∈ Vx we can write y = xα(t) for some α ∈ Rm, t ∈ R
and xα(·) X -line. In this case Φ−1

x (y) = α t. Combining now (I) and (II) with p = q, we find, for
all t small enough,

u(xα(t))− u(x)

t
= p · α, ∀α ∈ Rm.

So by taking the limit as t→ 0+ we can conclude that Definition 3.2 is satisfied and p = DXu(x).
Finally, (iii) follows from the last identity, by recalling that the X -lines depend locally in a

Lipschitz way on the initial position x and u is continuous.

The following definition is a very general geometric notion of affine function which holds w.r.t.
any given family of vector fields.

Definition 5.2. A continuous function A : Ω→ R is X -affine if A ◦ xα is (Euclidean) affine for
any xα(·) X -line contained in Ω.

Note that A X -affine means that it is at the same time X -convex and X -concave.
For X -affine functions, we can give a PDE characterization which follows directly from the

characterization of X -convex and X -concave functions in terms of matrix inequalities in viscosity
sense proved in [4], Theorem 3.1.

Proposition 5.2. If X1, . . . , Xm are C2-vector fields and A : Ω → R is continuous, then A is
X -affine if and only if −D2

XA(x) ≤ 0 and −D2
XA(x) ≥ 0, i.e.

aTD2
XA(x)a = 0, ∀ a ∈ Rm,

in the viscosity sense.

Lemma 5.1. Any X -affine function A is X -directionally differentiable and DXA is continuous.

Proof. Since A is X -convex and X -concave, Theorem 3.1 implies that ∂XA(x) 6= ∅ and ∂XA(x) 6= ∅
at any point x ∈ Ω. We can so directly conclude applying Proposition 5.1, properties (ii) and
(iii).

Looking at our definition of X -subdifferential, there is another very natural definition for affine
functions.

Definition 5.3. Assume that Φx defined in (9) is invertible (e.g. in the case of linearly indepen-
dent vector fields). We say that a continuous function A : Ω → R is Φ-affine if for any x0 ∈ Ω
there exist βx0 ∈ R and px0 ∈ Xx0 = Span

(
X1(x0), . . . , Xm(x0)

)
such that

A(x) = βx0
+
〈
px0

,Ψx0
(x)
〉
X , ∀ x ∈ Ω ∩ Vx0

, (31)

with
〈
·, ·
〉
X and Ψx(·) defined as in Definition 3.3.

Remark 5.1. By using the same identification between px ∈ Xx and its coordinate vector
(p1
x, . . . , p

m
x ) ∈ Rm, i.e. px =

∑m
i=1 p

i
xXi(x), we can say that a continuous function A : Ω → R is

Φ-affine if and only if for any x0 ∈ Ω there exist βx0 ∈ R and px0 ∈ Rm such that

A(x) = βx0 + px0 · Φ−1
x0

(x), ∀ x ∈ Ω ∩ Vx0 . (32)

As we did in the case of the X -subdifferential, for sake of simplicity we will use definition (32)
instead of the original definition (31).

Remark 5.2. Since x0 ∈ Vx0
and Φ−1

x0
(x0) = 0, βx0

= A(x0).

Under suitable assumptions, the two definitions of affine functions introduced above are indeed
equivalent.
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Proposition 5.3. Let X1, . . . , Xm be such that the associated function Φx defined in (9) is in-
vertible and A : Ω→ R be continuous. Then A is Φ-affine if and only if it is X -affine.

Proof. For sake of simplicity we take Ω = Rn. We first show that the representation formula (32)
implies that A is X -affine. Given α ∈ Rm, x0 ∈ Ω and xα(·) corresponding X -line, we need to
prove that if A is given by (32) then A ◦ xα(t) is (Euclidean) affine in t. In fact,

A ◦ xα(t) = βx0
+ px0

· Φ−1
x0

(xα(t)) = β0 + t (p0 · α).

since x0 = xα(0) and xα(t) = xt α(1), so Φ−1
x0

(xα(t)) = x0. Then A ◦ xα is affine in t.
For the reverse implication we use Lemma 5.1. Let us fix x0 ∈ Ω and consider a X -line xα(·)

with starting point x0, then A◦xα(t) is affine in t. This implies that there exists a constant λ ∈ R
such that

λ =
d

d t
A ◦ xα(t) = DXA(xα(t)) · α;

taking in particular t = 0, we get λ = DXA(x0) · α. Therefore we can conclude that for any
x ∈ Vx0

(i.e. x = xα(t) for some t)

A(x) = A(x0) +
(
DXA(x0) · α

)
t = A(x0) +DXA(x0) · Φ−1

x0
(x),

with βx0 = A(x0) and px0 = DXA(x0) (we have used α t = Φ−1
x0

(x) whenever x = xα(t)).

5.2 Carnot-type vector fields

In the particular case of Carnot groups a different notion of affine functions was previously intro-
duced and studied: the H-affine functions [15]. This notion can be generalized to any family of
Carnot-type vector fields since one only needs Φ−1

x0
(x) = πm(x− x0) = πm(x)− πm(x0).

Definition 5.4. Let X = {X1, . . . , Xm} be a family of Carnot-type vector fields. A continuous
function A : Ω→ R is horizontally affine if there exist two constants β ∈ R and p ∈ Rm such that

A(x) = β + p · πm(x), ∀ x ∈ Ω. (33)

This definition allows to give a nice characterization of any X -convex function as a suitable
envelope of horizontally affine ones, reminiscent of the Euclidean case. This property was called
abstract convexity in [9] for the Heisenberg group.

Proposition 5.4. For Carnot-type vector fields, u ∈ C(Ω) is X -convex if and only if for all x ∈ Ω

u(x) = max{A(x) : A horizontally affine, A(y) ≤ u(y) ∀ y ∈ Vx ∩ Ω}. (34)

Proof. Assume (34) holds, fix x ∈ Ω, and let Ā be the affine functions where the maximum is
attained. If we rewrite Ā(y) = u(x) + p̄ · πm(y − x) we get

u(y) ≥ u(x) + p̄ · πm(y − x) ∀ y ∈ Vx ∩ Ω, (35)

so ∂Xu(x) 6= ∅. By Theorem 3.2 we can conclude that u is X -convex.
Viceversa, if u ∈ C(Ω) is X -convex by Theorem 3.1 for any x there is p̄ such that (35) holds.

We define Ā(y) := u(x) + p̄ · πm(y − x) so that u(x) = Ā(x) and u ≥ A on Vx ∩ Ω. Then (34)
holds.

Next we compare the last definition with the preceding notions of generalized affine func-
tion. Clearly horizontally affine functions are Euclidean affine. Moreover, any horizontally
affine function is Φ-affine (and so also X -affine). In fact, it is sufficient to choose px0

= p and
βx0

= −p · πm(x0) + β, for any x0.
However, the reverse implication is not always true. For example we can consider X1(x1, x2) =

(1, 0)t on R2 (so (x1, x2) ∈ V(x1
0,x

2
0) if and only if x2 = x2

0) and look at

A(x1, x2) = β + p x2x1 = β + (p x2) · π1(x1, x2).
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It is easy to check that A is Φ-affine but it is not horizontal affine.
The reason why the equivalence fails in the previous example is that different X -planes are

disjoint and this is related to the existence of points that cannot be connected by an admissible
trajectory (2). We next give a sufficient condition for the equivalence between the functions given
by (33) and those given by (31). Define the Carnot-Carathéodory distance in Ω associated to
X1, . . . , Xm as

dΩ(x, y) := inf {T ≥ 0 | ∃ γ : [0, T ]→ Ω admissible, γ(0) = x, γ(T ) = y} , (36)

with the definition of admissible curve given in the Introduction. In the next theorem we assume
that

dΩ(x, y) < +∞ ∀x, y ∈ Ω. (37)

We recall that the last condition holds in any open set Ω if the vector fields are smooth and satisfy
the Hörmander condition in Ω, i.e., they and their iterated Lie brackets generate the whole space
Rn at every x ∈ Ω.

Lemma 5.2. If A is horizontally affine, then px0
= px for any x ∈ Vx0

.

Proof. By Remark 5.2 we can write

A(x) = A(x0) + px0
· πm(x− x0), ∀ x ∈ Vx0

. (38)

Note that x ∈ Vx0
implies x0 ∈ Vx, by a simple reparametrization for the X -line joining x0

to x. Therefore A(x0) = A(x) + px · πm(x0 − x). Adding up the last two identities gives 0 =
(px0

− px) · πm(x− x0), for any x ∈ Vx0
, and this means px0

= px for any x ∈ Vx.

Theorem 5.1. Let X be a family of Carnot-type vector fields satisfying (37). Then a function
A : Ω→ R is horizontally affine if and only if it is Φ-affine (and hence X -affine).

Proof. We only have to prove that the class of functions satisfying (38) verifies also condition (33).
Let x0, x be any pair of points in Ω; by the assumption (37) there exists a horizontal curve joining
x0 to x, that is, an absolutely continuous curve solving

γ̇(t) =

m∑
i=1

αi(t)Xi(γ(t)), γ(t) ∈ Ω,

for a suitable m-valued bounded measurable function α(t) = (α1(t), . . . , αm(t)). It is known that
the horizontal curve γ(t) can be uniformly approximated by piecewise X -lines, by approximating
the measurable function α(t) by piecewise constant functions. Then there is a sequence x(k) ∈ Ω
such that |x(k)− x| < 1/k and x(k) is the endpoint of a concatenation of X -lines. Denote with xj ,
j = 0, . . . , Nk, the vertices of the polygonal and set x(k) := xNk . Since xj+1 ∈ Vxj , Lemma 5.2
and (38) give

pxj+1
= pxj , A(xj+1) = A(xj) + pxj · πm(xj+1 − xj), j = 0, . . . , Nk − 1.

By iterating we get

px(k) = px0 , A(x(k)) = A(xNk) = A(x0) + px0 · πm(x(k) − x0). (39)

Now observe that A Φ-affine implies it is X -affine, by Proposition 5.3. Then Lemma 5.1 gives
px = DXA(x) continuous in x. Therefore letting k → ∞ in (39) we obtain px = px0 =: p
independent of x and A(x) = A(x0) + p · πm(x− x0), which completes the proof.

We finally verify that for Carnot-type vector fields the Jensen-type inequality (28) holds as
identity for Φ-affine functions, and therefore also for X -affine functions.
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Proposition 5.5. Assume X1, . . . , Xm are Carnot-type vector fields, Ω = Ω1×Ω2 ⊂ Rm×Rn−m
open, and µ = µ1 × µ2 where µi is a measure on Ωi such that 0 < µi(Ωi) < +∞; let A : Ω → R
be a Φ-affine function and assume −

∫
Ω1

y1dµ1 ∈ Ω1. Then

−
∫

Ω

A dµ = −
∫

Ω2

A

(
−
∫

Ω1

y1dµ1 , y2

)
dµ2. (40)

Proof. The particular structure of Vx in the case of Carnot-type vector fields found in Lemma 2.2
gives

A(y1, C(y1, x1) + x2) = β(x1,x2) + p
(x1,x2)

· (y1 − x1),

where x = (x1, x2) ∈ Ω1×Ω2 and y = (y1, y2). We will use it for x = (x1
b , x

2) with x1
b = −

∫
Ω1

y1dµ1.

By the definition of T (·) given in (29) and the fact that |detT | = 1 (see the proof of Theorem 4.2
for more details), for Φ-affine functions the left-hand side of (40) is equal to

−
∫

Ω

Adµ = −
∫

Ω

A(y1, C(y1, x1
b) + y2) dµ

= −
∫ (

β(x1
b ,y

2) + p
(x1
b
,y2)
· (y1 − x1

b)
)
dµ = −

∫
Ω2

β(x1
b ,y

2) dµ2.

The right-hand side of (40) is given by

−
∫

Ω2

(
β(x1

b ,y
2) + p

(x1
b
,y2)
·
(
−
∫

Ω1

y1 dµ1 − x1
b

))
dµ2 = −

∫
Ω2

β(x1
b ,y

2) dµ2,

thus the identity is verified.
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