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Abstract

In a pioneering work written 30 years ago, Almgren developed a far-reaching reg-
ularity theory for area-minimizing currents in codimension higher than 1. Build-
ing upon Almgren’s work, Chang proved later the optimal regularity statement
for 2-dimensional currents. In some recent papers the author, in collaboration
with Emanuele Spadaro, has simplified and extended some results of Almgren’s
theory, most notably the ones concerning Dir-minimizing multiple valued func-
tions and the approximation of area-minimizing currents with small cylindrical
excess. In this talk I will give an overview of our contributions and illustrate
some possible future directions.
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1. Introduction

1.1. The regularity theory for area-minimizing currents.
In this note we will describe some recent contributions to the regularity theory
for integer rectifiable area-minimizing currents. For the sake of simplicity we
will restrict ourselves to currents in the Euclidean space. For all the relevant
definitions concerning currents we refer the reader to the classical textbooks
[16] and [39].

As it is well known there is a dramatic difference in the theory depending
on the codimension of the current. In codimension 1 currents without boundary
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are boundaries of sets of finite perimeter. This allows several important sim-
plifications in the theory (see for instance [23]) and it also implies that area-
minimizing currents of codimension 1 enjoy much better regularity properties.
Let us briefly review the main results in the interior regularity theory.

Codimension 1. Let T be an area-minimizing current of dimension n in R"*1,

(al) For n < 6, T is an analytic submanifold in R"*! \ supp (0T (see for
instance [16, Theorem 5.4.15]);

(a2) for n = 7, T is an analytic submanifold in R"*! \ supp (9T) with the
exception of a discrete set Sing(7T") of singular points (see for instance [16,
Section 5.4.16));

(a3) for n =7, in a neighborhood of each x € Sing(T) the current is a pertur-
bation of an area-minimizing cone (see [40]);

(a4) for n > 7, T is an analytic submanifold in R"*! \ supp (9T) with the
exception of a closed set Sing(T") of (Hausdorff) dimension at most n — 7
(see for instance [39, Theorem 37.7]);

(ab) if n > 7, the singular set Sing(7T') is rectifiable and has locally finite
H"~"-measure (see [42, Lecture 4, Theorem 4] and [41]; here H® denotes,
as usual, the a-dimensional Hausdor{f measure).

The results in (a2) and (a5) give the optimal estimates of the size of Sing(T') .
The optimality of (a2) is shown by the Simons cone. The minimizing property
of this cone was first proved in the celebrated paper of Bombieri, De Giorgi,
and Giusti [8]. In order to prove the optimality of (a5) it suffices to take the
product of the Simons cone with a linear space of dimension n — 7 (cp. with
[16, Theorem 5.4.9]).

Codimension k > 1. Let T be an integer rectifiable area-minimizing current
of dimension n in R***,

(bl) If n =1, T is the union of nonintersecting straight lines;

(b2) if n = 2, T is an analytic submanifold in R"** \ supp (9T) with the
exception of a discrete set Sing(T") (see [7]);

(b3) if n = 2, in a neighborhood of each = € Sing(T) the current is a pertur-
bation of a suitable “branched holomorphic curve” (see [32]);

(b4) for n > 2, T is an analytic submanifold in R"** \ supp (9T) with the
exception of a closed set Sing(T") of dimension at most n — 2 (see [4]).

The size estimate of (b2) is optimal, as shown by taking any holomorphic curve
in R* = C? with branch points. This example plays a crucial role in the rest of
our discussion and will be examined in further detail later on.
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One first striking difference between these series of results is that in the
latter singularities appear quite naturally as soon as we depart from the trivial
case n = 1. Moreover, this appearance, linked to the well-known phenomenon
of branching of holomorphic curves, is far much easier to understand than the
minimizing property of the Simons cone, which is the simplest example of a
singular area-minimizing current with codimension 1.

The second striking difference is in the length, the intricacy and the technical
complications presented by Almgren’s and Chang’s results ((b2) and (b4)) in
comparison with Federer’s size estimates of Sing(T") ((a2) and (a4)). Assuming
indeed a certain amount of prerequisites in geometric measure theory, (al),
(a2) and (a4) are essentially the combination of three ingredients: the pioneering
work of De Giorgi on the excess-decay [9], the classical work of Simons on stable
minimal cones [43] and Federer’s reduction argument, see [17]. Moreover, only
a relatively small portion of the theorems in [43] are needed to prove (ad).
Let me also mention that, before the work of [43] completed the proof of (al),
lower-dimensional versions were achieved in the works of Fleming, De Giorgi
and Almgren [19, 10, 3]. The interested reader might find a complete and quite
readable account in the beautiful book of Giusti [23].

Assuming the same amount of prerequisites, the theorem in (b4) is instead a
monograph of about 950 pages, see [4]. This monograph contains, among many
other things, far-reaching generalizations of both De Giorgi’s and Federer’s
arguments. The proof of (b2) is contained in the paper [7], where the author
builds upon (essentially all) the techniques developed in Almgren’s monograph
and on the important papers [33] and [47]. Indeed, some of the constructions
needed in [7] are claimed to be suitable modifications of the ones in [4], but the
detailed proofs of these statements have never appeared.

1.2. Branching. Let us examine in more details the first obstruction to
the full regularity in the case of higher codimension. The key observation relies
on a classical computation of Wirtinger [49], used by Federer in his elegant
proof of the following statement (cp. to [16, Section 5.4.19]).

Theorem 1.1. If M is a Kdhler manifold of real dimension 2m and I a com-
plex submanifold of M of real dimension 2j, then I' represents an integer recti-
fiable area minimizing current. More precisely, if U is a bounded open set with
U Nsupp (9T) = 0 and X is an integer rectifiable current of dimension 2j such
that

e J(I—X)=0,
e supp(I'— %) CU,

then the mass of ¥ in U is larger than the mass of T in U. Moreover, the
inequality is strict unless I' = 3.

In a more modern language, the Wirtinger-Federer result can be rephrased
in the following way: the k-th exterior power of the Kahler form is a calibration
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for holomorphic submanifolds of complex dimension k. For a beautiful account
of calibrating forms we refer the reader to the paper [27].

The presence of branching phenomena in area-minimizing currents of codi-
mension larger than 1 is also the principal reason for the difficulty of Almgren’s
monumental result. Much of Section 2 will be devoted to give an intuitive ex-
planation of this.

1.3. Looking for a manageable proof. The intricacy of Almgren’s
big regularity paper [4] has essentially stopped the research in the area till few
years ago, in spite of the abundance of interesting geometric objects which are
naturally minimal submanifolds of “large” codimension (see again the paper
[27]). Recently, in view of some applications to geometry and topology, alter-
native proofs of Chang’s result have been found for J-holomorphic curves. The
first of these proofs has been given by Taubes in [45] for J-holomorphic curves in
symplectic 4-manifolds. The generalization of Taubes’ approach to 1—1 currents
in (even-dimensional) manifolds carrying a certain complex structure has been
given by Riviere and Tian (see [36], [35] and [37]). This proof contains several
beautiful ideas and faces some of the same problems which are solved in Alm-
gren’s monograph. However, its applicability seems limited to 2-dimensional
currents which are calibrated by some complex structure. At present, the gen-
eral theorem of Chang (not to speak of the result of Almgren) does not seem
reachable with similar approaches.

The remarkable papers [35] and [37] and several discussions of the author
with Tristan Riviere have been the starting point of the line of research which
will be presented here. The results which will be described in this note have
appeared in the papers [13], [14], [12], [44] and [15]. A substantial part of these
papers is dedicated to give self-contained and much simpler proofs of a consider-
able portion of Almgren’s monograph. In the remaining part we take advantage
of some new ideas to expand Almgren’s theories in other directions. Though
some fundamental ideas behind these papers are still the ones of Almgren, our
approaches highlight some rather new aspects. In some cases we have taken
advantage of modern techniques of metric analysis, in some other we have dis-
covered new phenomena. The overall result is that we can handle the complexity
of the subject in a much more efficient way. Our obvious final goal is to give a
less complex, yet complete account of Almgren’s and Chang’s regularity results
and possibly go beyond them in a not so far future.

In the next sections we will describe roughly the contents of the papers [13],
[14] and [15]. In the final section we collect several interesting related open
problems.

2. Why Multiple Valued Functions?

2.1. De Giorgi’s excess decay. The first breakthrough of the regu-
larity theory for area-minimizing currents is due to De Giorgi. In order to state
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De Giorgi’s main theorem, we have to introduce the so-called (spherical) ex-
cess Ex(T, B, (p)) of the current T in the ball B,.(p). For every simple unitary
n-vector 7, we set

1 =
Ex(T. B (o)) = 5 [ L T—wPd. (2.1)
(P

The measure ||T|| is the localized mass of the current: for every open set U,

|T|(U) is the total mass of the current in U. T is the simple unitary n-vector
field orienting T'.
The spherical excess is then defined as

Ex(T, B-(p)) := ngnEX(T, B.(p), 7).

This definition is valid in any codimension. For the reader who is not very
familiar with the notation of geometric measure theory, the formulas can be
considerably simplified in codimension 1. First of all, the minimum can be taken
over all oriented n-dimensional planes 7 (7 is then just the unitary n-vector
orienting 7). Moreover |T — 7| can be substituted by v — v|, where:

e vp is the unit vector field normal to the current, compatible with the
orientation of the tangent n-vector T’

e v is the unit vector normal to m compatible with the orientation 7.

A third important object that we need to introduce is the density of the current
at a point, which is defined as

O(T,p) = limw

2.2
0 wprht ’ (2:2)

where w,, denotes, as usual, the n-dimensional measure of the n-dimensional
ball. The existence of the limit in (2.2) is guaranteed by the monotonicity
formula (cp. with [39, Section 4.17]).

Theorem 2.1. Let Q be a positive integer. There exist constants e, > 0
depending only on @ and n such that the following holds. Let T be an area-
minimizing integral current of dimension n in R"*1. Assume that, for r > 0
and p € supp (T), the following hypotheses are satisfied:

(i) 0(T,p) = Q;
(ii) supp (9T) N B, (p) = 0;
(1) | TN (Br(p)) < (Q + &)wnr™;
(iv) the spherical excess of T in By(p) is smaller than €.

Then supp (T') N B, j2(p) is the graph of a CY8 function f.
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To be more precise, De Giorgi in [9] proved the case @ = 1 of this theorem.
However the general case ( > 1 can be easily recovered from De Giorgi’s
statement using the decomposition of T" in boundaries of sets of finite perimeter
as in [16, Section 4.5.17].

To get some intuitive idea about the theorem above, consider the extreme
case where the spherical excess in B,.(p) is 0. Using assumption (ii) we then
conclude that T in B,.(p) consists of (possibly countably many) parallel disks.
Exploiting (i), (iii) and the minimality of 7', from the monotonicity formula
we easily conclude that, in a slightly smaller ball B,_c.(p), T consists of a
single disk containing the origin and counted with multiplicity Q. Thus, the
assumptions (i)—(iv) tell us that the current T is close, in an “average” sense,
to @ copies of a single disk. Theorem 2.1 could be therefore classified as an
“e-regularity theorem”.

2.2. Again branching. As already mentioned, De Giorgi’s original proof
covers the case @ = 1 and the extension to () > 1 uses heavily the features of
codimension 1 currents. In higher codimension the statement is still correct for
Q@ =1 (see for instance [16, Theorem 5.4.7]; in fact much more is true, see [2]),
but fails dramatically if @ > 1. Once again, the main reason for this breakdown
is the existence of branching points.

Remark 2.2. Consider in R* = C? the holomorphic curve I' = {(z,w) : 2? =
w3}. Theorem 1.1 implies that ' is an area—minimizing current of real dimension
2 in any bounded open subset of R*. Moreover, set p = 0. Then

’ ) wor? '

Obviously, given any positive € > 0 there is a ¢ such that (i)—(iv) are satisfied
for every r < 4. On the other hand, no matter how small r is, B,.(0)NT" is never
the graph of a smooth function.

We proceed our discussion by giving an oversimplified description of De
Giorgi’s proof of Theorem 2.1 in the case @@ = 1. In a first step, the hypotheses
(i)—(iv) are used to approximate the current 7' with the graph G of a Lipschitz
(real valued) function f with small Lipschitz constant. In particular, the ap-
proximation algorithm ensures that the area of T" and the area of G are close.
On the other hand, recall that the area of the graph of a function over a domain

Q is given by the formula
/ 1+ V2. (2.3)
Q

If |V f] is small, this integral is close to

/Q (1 + 'V;P) (2.4)
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(in higher codimension, i.e. when f is vector-valued, the formula for (2.3) is more
complicated, but the second order expansion is nonetheless given by (2.4)).

Thus, the minimality of the current 7" implies that f is close, in a suitable
integral sense, to a minimum of the Dirichlet energy, i.e. to an harmonic func-
tion. Using the decay properties of harmonic functions, one can infer that the
excess Ex(T, B,(p)) is decaying like p?? for some 8 > 0. This decay leads then
to the C'1P regularity via a “Morrey-type” argument.

2.3. Dealing with branching. As already noticed, in codimension 1
the higher multiplicity case can be reduced to the case of multiplicity 1. Obvi-
ously, Remark 2.2 shows that this reduction is impossible in codimension larger
than 1. In that example the very beginning of De Giorgi’s strategy fails, since
it is simply not possible to approximate efficiently I' with the graph of a (sin-
gle valued) function. This discussion motivates the starting idea of Almgren’s
monograph. In order to tackle the regularity question in codimension larger
than 1 we need to approximate currents with “multiple valued functions”.

It is interesting to notice that, if we turn our attention to stationary currents
(or, more generally, stationary integral varifolds), the reduction to multiplicity
1 becomes false even in the codimension 1 case. In this setting, the best result
available at present is Allard’s Theorem [2], which ensures regularity in a dense
open set. Nothing better is known, even assuming stability, in spite of the fact
that all available examples have singularities of dimension at most n — 1. If we
assume stability and an a-priori knowledge that the singular set has zero H"~2-
measure, then the classical curvature estimates of Schoen and Simon imply that
the singular set has in fact dimension at most n — 7 (see [38]). In a very recent
paper [48], Wickramasekera has extended this result to the optimal assumption
that the H" !-measure of the singular set is 0. Related questions are open for
“stationary multiple valued functions” as well (see Section 8 below).

3. The Dirichlet Energy for Multiple Valued
Functions

3.1. The metric space of unordered Q-tuples. Roughly the first
fifth of Almgren’s monograph is devoted to develop the theory of multiple valued
functions. The obvious model case to keep in mind is the following. Given two
integers k, @ with MCD(k, Q) = 1, look at the function which maps each point
z € C into the set M(z) := {w* : w¥ = 2z} C C. Obviously for each z we can
order the elements of the set M (z) as {ua,...,uq}. However, it is not possible
to do it globally in such a way that the maps z — u;(z) are continuous.

This motivates the following definition. Given an integer ) we define a
Q-valued map from a set E C R™ into R™ as a function which to each point
x € FE associates an unordered Q-tuple of vectors in R™. There is a fairly efficient
formulation of this definition which will play a pivotal role in our discussion.
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Following Almgren, we consider the group &g of permutations of () elements
and we let Ag(R™) be the set (R")? modulo the equivalence relation

(Ul,...,UQ)E(Uﬂ(l),...,vﬁ(Q)) VWE@Q.

The set Ag(R™) can be naturally identified with a subset of the set of measures
(cp. with [4] and [13, Definition 0.1]).

Definition 3.1 (Unordered @-tuples). Denote by [P;] the Dirac mass in P; €
R™. Then,

Q
Ag(R"™) == {Z [P] : P € R™ for every i = 1,...,Q} .

i=1

This set has a natural metric structure; cp. with [4] and [13, Definition
0.2] (the experts will recognize the well-known Wasserstein 2-distance, cp. with
[46]).

Definition 3.2. For every 71,7 € Ag(R™), with T} = >, [P;] and Tp =

3. [5.], we sot
] 2
g(1,Ty) = S El |Pi— So(|”- (3.1)

3.2. Almgren’s extrinsic maps. The metric G is “locally euclidean”
at most of the points. Consider for instance the model case @ = 2 and a
point P = [P;] + [P2] with P; # P5. Then, obviously, in a sufficiently small
neighborhood of P, the metric space A2(R™) is isomorphic to the Euclidean
space R?". This fails instead in any neighborhood of a point of type P = 2 [P].
On the other hand, if we restrict our attention to the closed subset {2 [X] :
X € R"}, we obtain the metric structure of R™. A remarkable observation of
Almgren is that Ag(R™) is biLipschitz equivalent to a deformation retract of
the Euclidean space (cp. with [4, Section 1.3]). For a simple presentation of this
fact we refer the reader to [13, Section 2.1].

Theorem 3.3. There exists N = N(Q,n) and an injective € : Ag(R") — RY
such that:

(1) Lip(§) < 1;
(i) if Q=&(Aq), then Lip(§~'g) < C(n, Q).
Moreover there exists a Lipschitz map p : RN — Q which is the identity on Q.

In fact much more can be said: the set Q is a cone and a polytope. On each
separate face of the polytope the metric structure induced by G is euclidean,
essentially for the reasons outlined a few paragraphs above (cp. again with [4,
Section 1.3] or with [14, Section 6.1]).
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3.3. The generalized Dirichlet energy. Using the metric struc-
ture on Ag(R"™) one defines obviously measurable, Lipschitz and Hélder maps
from subsets of R™ into Ag(R™). However, if we want to approximate area-
minimizing currents with multiple valued functions and “linearize” the area
functional in the spirit of De Giorgi, we need to define a suitable concept of
Dirichlet energy. We will now show how this can be done naturally. However,
the approach outlined below is not the one of Almgren.

Consider again the model case of @ = 2 and assume u : Q — A3(R") is a
Lipschitz map. If, at some point z, u(z) = [P1] + [P2] is “genuinely 2-valued”,
i.e. P; # P, then there exist obviously a ball B,(xz) C Q and two Lipschitz
functions wuy,us : B.(z) — R™ such that u(y) = [ui(y)] + [uz(y)] for every
y € B,(z) (in this and similar situations, we will then say that there is a
regular selection for u in B,.(z), cp. with [13, Definition 1.1]). For each separate
function u;, the classical Theorem of Rademacher ensures the differentiability
almost everywhere.

Recall that our ultimate goal is to define the Dirichlet energy so that it is
a suitable approximation of the area of the graph of w. The “graph of u over
B, (z)” is simply to union of the graphs of the two functions w;. When the
gradients Vu; are close to 0, the area of each graph is close to

1
B, (x) 2

Thus, the only suitable definition of Dirichlet energy of u on the domain B,.(x)

is given by
/ |Dul? = / (|Dup|* + | Dus|?).
B, (x) B, (x)

By an obvious localization procedure, this definition can be extended to the
(open!) set Qo C Q where u is genuinely 2-valued.

For each element z in the complement set €y := Q\ Qo, u(z) is a single
point counted with multiplicity 2. Then there is a Lipschitz map v : Q; — R”
such that u(z) = 2v(2)] for every z € Q. Again in view of our goal, the only
suitable definition of the Dirichlet energy of w over §2; is twice the Dirichlet
energy of v. We thus are left with only one possibility for the Dirichlet energy
on the global set Q:

Dir(u, ) = / (IDusl? + | Dus ?) +2/ Dof?.
Qo Q1

This analysis can be obviously generalized to any positive integer @, lead-
ing to a general definition of Dirichlet energy for Lipschitz multiple valued
functions. The graphs of Lipschitz multiple valued functions carry naturally a
structure of integer rectifiable currents (see [4, Section 1.6] or [14, Appendix
C)). It is not difficult to see that, when the Lipschitz constant is small, the
Dirichlet energy defined in this section is the second order approximation of
the area of the corresponding graph (we refer the reader to [14, Section 2.3]).
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Almgren’s definition of Dir goes instead through a suitable concept of dif-
ferentiability for multiple valued functions and a corresponding Rademacher’s
theorem (in [4] the derivation of this result is quite involved and a much simpler
proof has been published in [24]). The arguments in [13, Section 1] easily show
that the two points of view are equivalent. In fact the “stratification” strategy
outlined above yields a fairly straightforward proof of Almgren’s generalized
Rademacher’s Theorem (see [13, Section 1.3.2]).

Having established the correct notion of Dirichlet energy for Lipschitz func-
tions, one could define the Sobolev space W12(Q, Ag(R™)) through a “com-
pletion strategy”: a measurable map v : Q@ — Ag(R") is in W2 if and only
if there is a sequence of Lipschitz maps wu; converging to v a.e. and enjoying a
uniform bound Dir(€, uj) < C. The Dirichlet energy of v is then defined via a
“relaxation procedure”: Dir(€2,v) is the infimum of all constants C' for which
there is a sequence with the properties above.

Almgren’s approach is again rather different. W12 maps are defined as
those maps u for which € o u is W2, The Dirichlet energy is again defined
via a suitable notion of approximate differentiability. In our paper [13] we start
from a third definition of Dirichlet energy and Sobolev space. However, all these
points of view are completely equivalent, as one can easily conclude from the
arguments in [13, Section 4] (cp. in particular with the Lipschitz approximation
technique of [13, Proposition 4.4]).

3.4. The cornerstones of the theory of Dir-minimizers. We
are now ready to state the three main theorems of Almgren concerning Dir-
minimizers. Their proofs occupy essentially Chapters 1 and 2, i.e. the first
fifth of Almgren’s monograph. In what follows, € is always assumed to be a
bounded open set with a sufficiently regular boundary (in fact, in order to give
a complete account, we should have defined the trace at 99 of W12 multiple
valued functions; we have avoided to enter in the details to keep our presentation
short: the interested reader can consult, for instance, [13, Definition 0.7]).

Theorem 3.4 (Existence for the Dirichlet Problem). Let g € W12(Q; Ag).
Then there ezists a Dir-minimizing f € W12(Q; Ag) such that flaa = glaq.

Theorem 3.5 (Holder regularity). There is a constant o = a(m,Q) > 0
with the following property. If f € WY2(Q; Ag) is Dir-minimizing, then f €
CY2(Q) for every ' CC Q C R™. For two-dimensional domains, we have the
explicit constant a(2,Q) = 1/Q.

For the second regularity theorem we need the definition of the singular set
of f.

Definition 3.6 (Regular and singular points). A Dir-minimizing f is regular
at a point x €  if there exists a neighborhood B of x and @ analytic functions
fi + B — R” such that

fly) = Z [fi(y)] for almost every y € B (3.2)
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and either f;(z) # fj(z) for every € B, or f; = f;. The singular set ¥y of f
is the complement of the set of regular points.

Theorem 3.7 (Estimate of the singular set). Let f be Dir-minimizing. Then,
the singular set Xy of f is relatively closed in 2. Moreover, if m = 2, then Xy
is at most countable, and if m > 3, then the Hausdorff dimension of Xf is at
most m — 2.

Note in particular the striking similarity between the estimate of the size
of the singular set in the case of multiple valued Dir-minimizers and in that
of area-minimizing currents. It will be discussed later that, even in the case of
Dir-minimizers, there are singular solutions (which are no better than Holder
continuous).

Complete and self-contained proofs of these theorems can be found in [13].
The key idea beyond the estimate for the singular set is the celebrated frequency
function (cp. with [13, Section 3.4]), which has been indeed used in a variety
of different contexts in the theory of unique continuation of partial differential
equations (see for instance the papers [20], [21]). This is the central tool of our
proofs as well. However, our arguments manage much more efficiently the tech-
nical intricacies of the problem and some aspects of the theory are developed in
further details. For instance, we present in [13, Section 3.1] the Euler-Lagrange
conditions derived from first variations in a rather general form. This is to
our knowledge the first time that these conditions appear somewhere in this
generality.

Largely following ideas of [7] and of White, we improve the second regularity
theorem to the following optimal statement for planar maps.

Theorem 3.8 (Improved estimate of the singular set). Let f be Dir-minimizing
and m = 2. Then, the singular set 3 of [ consists of isolated points.

This result was announced in [7]. However, to our knowledge the proof has
never appeared so far. For a discussion of the optimality of these regularity
results, we refer the reader to Section 5 below.

4. Metric Analysis

4.1. An intrinsic approach. One of the less satisfactory points of Alm-
gren’s theory is the heavy use of the Lipschitz maps & and p. First of all, this
makes the arguments often counterintuitive. Second, there is the obvious dis-
turbing fact that, while several choices of £ and p are possible, the objects of
the study and the ultimate conclusions of the theory are totally independent
of this choice. This fact has been pointed out for the first time in [24]. In the
papers [24] and [25] the author made some progress in the program of making
Almgren’s theory “intrinsic”, i.e. independent of the euclidean embedding.
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As far as the theory of Dir-minimizers is concerned, this program has been
completed in our paper [13]. This work also makes a clear link between Alm-
gren’s theory and the vast existing literature about metric analysis, metric ge-
ometry and general harmonic maps, which started with the pioneering papers
[22], [30] and [5] (we refer the interested reader to [13, Section 4.1]).

The metric approach has several features:

e One first advantage is that it allows to separate “hard” and “soft” parts in
Almgren’s theory. Several conclusions can indeed be reached in a straight-
forward way by “abstract nonsense”. Only few key points need deeply the
structure of Ag(R™) and some “hard” computations. By quickly discard-
ing the minor points, the metric theory is a powerful tool to recognize
plausible statements and crucial issues.

e A second advantage is the natural link to the metric theory of currents
developed by Ambrosio and Kirchheim in [6]. This theory recovers many
of the central theorems of Federer and Fleming’s work [18] in a clean way
and offers some new powerful tools (like the Jerrard-Soner BV estimates
for the slicing theory). The reason why this connection is useful will be
explored in detail in Section 6.

4.2. Intrinsic definition of the Dirichlet energy. The metric
point of view relies upon the following alternative definitions of Dirichlet energy
and Sobolev functions (cp. with the general theory developed in [5] and [34];
the careful reader will notice, however, that there is a crucial difference between
the definition of Dirichlet energy in [34] and the one given below).

Definition 4.1 (Sobolev Q-valued functions). A measurable f : Q — Ag is in
the Sobolev class WP (1 < p < o0) if there exist m functions ¢; € LP(;RT)
such that

(i) z+— G(f(x), T) e WhP(Q) for all T € Ag;
(i) |0, G(f,T)] < ¢j ae.in Qfor all T € Ag and for all j € {1,...,m}.

It is not difficult to show the existence of minimal functions ¢; fulfilling
(ii), i.e. such that, for any other ¢, satisfying (ii), ¢; < ¢; a.e. (cp. with
[13, Proposition 4.2]). Such “minimal bounds” will be denoted by |9, f| and
we note that they are characterized by the following property (see again [13,
Proposition 4.2]): for every countable dense subset {7} }ien of Ag and for every
j=1...,m,

|0;f| = sup|0; G(f,T;)| almost everywhere in Q. (4.1)
ieN

We are now ready to define the Dirichlet energy.

Definition 4.2. The function |Df|? is defined to be the sum of |9; f|?. The
Dirichlet energy of f € W'2(U; Aq) is then defined by Dir(f,U) := [, |[Df>.
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As already mentioned, this definition is equivalent to the one proposed in
the previous section.

The paper [13] gives therefore two different approaches to the theorems
stated in the previous section. One can follow a (considerably simpler) version
of Almgren’s “extrinsic” approach, exploiting the maps £ and p. Or one can
use the intrinsic approach starting from the definitions above, without using
the maps &€ and p. However, proceeding further in Almgren’s program for the
regularity of area-minimizing currents, there is a point at which we have not
been able to avoid these extrinsic maps (see Sections 6.4 and 8).

5. Higher Integrability of Dir Minimizers and
Other Results

5.1. Multiple valued functions beyond Almgren. Many results
of Almgren have been extended in several directions. In particular

e The papers [11], [25], [52], [63] extend some of Almgren’s results to am-
bient spaces which are more general than the euclidean one;

e The papers [51], [54], [26] and [24] consider some other objects in the
multiple valued setting (such as differential inclusions, geometric flows
and quasiminima);

e The papers [31] and [12] extend some of Almgren’s theorems to more
general energy functionals.

5.2. Higher integrability. In this section we focus on a recent new
contribution to the theory, which plays an important role in our derivation of
the second main step in Almgren’s program. Dir-minimizing functions enjoy
higher integrability of the gradient. We believe that several intricate arguments
and complicated constructions in Almgren’s third chapter can be reinterpreted
as rather particular cases of this key observation (see for instance [4, Section
3.20]). Surprisingly, this higher integrability can be proved in a very simple way
by deriving a suitable reverse Holder inequality and using a (nowadays) very
standard version of the classical Gehring’s Lemma.

Theorem 5.1 (Higher integrability of Dir-minimizers). Let Q' CC Q CcC R™
be open domains. Then, there exist p > 2 and C' > 0 such that

[1Dull ooy < C [[Dull 2y  for every Dir-minimizing u € Wh2(Q, Ag(R™)).
(5.1)

This theorem has been stated and proved for the first time in [14]. The rel-
evant reverse Holder inequality has been derived using a comparison argument
and hence relying heavily on the minimality of the Dir-minimizers. A second
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proof, exploiting the Euler-Lagrange conditions to give a Caccioppoli-type in-
equality, has been given in [44]. This last proof still uses the regularity theory
for Dir-minimizers. However, this occurs only at one step: one could hope to re-
move this restriction and generalize the higher integrability to “critical” points
of the Dirichlet energy (cp. with Section 8).

5.3. Optimality. In [44] a yet different proof for the planar case is pro-
posed, yielding the optimal range of exponents p for which (5.1) holds. The
optimality of this result, as well as the optimality of Theorems 3.5 and 3.8,
is shown by another remarkable observation of Almgren. Besides giving area-
minimizing currents, holomorphic varieties are locally graphs of Dir minimizing
Q-valued functions. In [4, Section 2.20] Almgren proves this statement appealing
to his powerful approximation results for area-minimizing currents (see Section
6 below). However this is unnecessary and a rather elementary proof can be
found in [44].

6. Approximation of Area-Minimizing Currents

After developing the theory of multiple valued functions, Almgren devotes the
third chapter of his monograph to a suitable approximation theorem for area-
minimizing currents, which is the multiple valued counterpart of the classical
approximation theorem of De Giorgi in his proof of the excess-decay property.

6.1. Almgren’s main approximation theorem. We start by giv-
ing the exact statement of Almgren’s approximation result in the euclidean
setting. Compared to the rest of the note, this part is rather technical. On
the other hand, in order to get an understanding of Almgren’s approximation
theorem, a certain familiarity with the theory of currents can hardly be avoided.

Consider integer rectifiable m-dimensional currents T supported in some
open cylinder C.(y) = B,(y) x R* € R™ x R™ and satisfying the following
assumption:

4T = Q[Br(y)] and oT =0, (6.1)

where 7 : R™ x R™ — R™ is the orthogonal projection and m,n,@Q are fixed
positive integers. In an informal language, the hypothesis (6.1) means that the
current “covers” @) times the base of the cylinder.

We denote by er the non-negative excess measure and by Ex(T,C,(y)) the
cylindrical excess, respectively defined by

er(A) ;= M(TL(A xR")) — Q|A| for every Borel A C B,(y), (6.2)

Ex(T, C,(y)) == eT“(}f (S) ) _ °TLi :ﬁf”. (6.3)

Though it is not apparent from the definition given above, the cylindrical excess
bears some similarities with the spherical excess.
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Theorem 6.1. There exist constants C, 0,9 > 0 with the following property.
Let T be an area-minimizing, integer rectifiable m-dimensional current in the
cylinder Cy4 which satisfies (6.1). If E = Ex(T,C4) < €0, then there exist a
Q-valued function f € Lip(B1, Ag(R™)) and a closed set K C By such that

Lip(f) < CE’, (6.4)
graph(f|x) = TL(K x R") and |B;\ K|<CE'?, (6.5)

|Df|?

M(TLCl)—me—/ | < CET. (6.6)
By

2

An interesting aspect which makes the proof of Theorem 6.1 quite hard is
the gain of a small power E° in the three estimates (6.4), (6.5) and (6.6). Ob-
serve that the usual approximation theorems stated commonly in the literature,
which cover the case @ = 1 and “stationary currents” (in fact, stationary inte-
gral varifolds), are stated with § = 0. On the other hand, the gain of Theorem
6.1 plays a crucial role in some of the estimates needed for the third main step
of Almgren’s program, i.e. the “construction of the center manifold” (cp. with
Section 7).

6.2. Higher integrability for area-minimizing currents. The
note [14] provides a different, much simpler proof of Almgren’s theorem. A
key point is a higher integrability estimate for the Lebesgue density &7 of the
measure ep, called the excess density,

o7 (z) := limsup M

s—0 W, sm

Theorem 6.2. There exist constants p > 1 and C,e > 0 with the following
property. Assume T is an area-minimizing, integer rectifiable current of dimen-
sion m. If T' satisfies (6.1) and E = Ex(T,C4) < €, then

/ & < CEP. (6.7)
{8<1}nB,

This estimate, which can be thought as the “current counterpart” of Theo-
rem 5.1, is not explicitly stated in [4], but it can be deduced from some of the
arguments therein. These arguments, which include quite elaborate construc-
tions and use several intricate covering algorithms, are the most involved part
of Almgren’s proof.

One comment is in order. In the case Q = 1 we know a posteriori that T
coincides with the graph of a C1'® function over By (cp. with Theorem 2.1).
However, the branching phenomenon makes Theorem 6.2 much more interesting
in the higher codimension, since essentially it cannot be improved (except in the
sense of optimizing the exponent p and the constant C). Consider in particular
the following example. Let 7 be a rather small constant and 7" be the current
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associated to the holomorphic variety {22 = nw} C C? = R%. Set C4 := {|w| <
4} and @ = 2. If n is chosen very small compared to €, then T satisfies all the
assumptions of Theorem 6.1. On the other hand, the corresponding function
67 does not belong to L? and one can easily check that estimate (6.7) does not
hold if p > 2.

6.3. Some new techniques coming from metric analysis.
The main contribution of [14] is to give a much shorter and conceptually clearer
derivation of (6.7) (in fact, since Theorem 6.2 is not stated by Almgren, the real
point is to establish Theorem 6.6 below, which however is trivially equivalent).
Moreover, in [14] we introduce several new ideas. In particular:

(i) we introduce a powerful maximal function truncation technique to ap-
proximate general integer rectifiable currents with multiple valued func-
tions;

ii) we give a simple compactness argument to conclude directly a first har-
ii i impl t tt lude directly a first h
monic approximation of T’

(iii) we give a new proof of the existence of Almgren’s “almost projections”
*

p*.
In the rest of this section we look more closely at these ideas.

Given a normal m-current T', following [6] we can view the slice map x —
(T, 7, x) as a BV function taking values in the space of 0-dimensional currents
(endowed with the flat metric). Indeed, by a key estimate of Jerrard and Soner
(see [6] and [29]), the total variation of the slice map is controlled by the mass
of T and OT'. In the same vein, following [13], Q-valued functions can be viewed
as Sobolev maps into the space of 0-dimensional currents. These two points of
view can be combined with standard maximal function truncation arguments
to develop a powerful and simple Lipschitz approximation technique, which
gives a systematic tool to find graphical approximations of integer rectifiable
currents.

To give a more precise idea of this method, we introduce the maximal func-
tion of the excess measure of a current T' (satisfying (6.1)):

Myp(z):=  sup ez (B, (@) = sup Ex(T,Cs(x)).

B.(z)CB,(y) WmS™ B.(z)C B (y)

Our main approximation result is the following and relies on an improvement
of the usual Jerrard—Soner estimate.

Proposition 6.3 (Lipschitz approximation). There exist constants ¢,C > 0
with the following property. Let T be an integer rectifiable m-current in Cys(x)
satisfying (6.1) and let n € (0,c) be given. Set K := { My < n} N Bss(x). Then,
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there exists uw € Lip(Bss(x), Ag(R™)) such that graph(u|x) = TL(K x R"),
Lip(u) < Cnz and

|Bss(z) \ K| < %eT({MT >n/2}). (6.8)

In the rest of this section, we will often choose n = E?* (= Ex(T, Cys(x))??),
for some o € (0,(2m)~!). The map u given by Proposition 6.3 will then be
called the E*-Lipschitz (or briefly the Lipschitz) approximation of T in Cz4(z).
We therefore conclude the following estimates:

Lip(u) < C E®, (6.9)

|Bss(z) \ K| < CE2“er({Mr > E**/2}), (6.10)

/ |Dul?® < er({Mr > E*>*/2}). (6.11)
Bss(2)\K

In particular, the function f in Theorem 6.1 is given by the E*-Lipschitz ap-
proximation of 7" in Cy, for a suitable choice of «.

The second step in the proof of Theorem 6.2 is a compactness argument
which shows that, when T is area-minimizing, the approximation f is close to
a Dir-minimizing function w, with an o(E) error.

Theorem 6.4 (o(E)-improvement). Let o € (0,(2m)~1). For every n > 0,
there exists e1 = e1(n) > 0 with the following property. Let T' be a rectifiable,
area-minimizing m-current in Cyqs(x) satisfying (6.1). If E < €1 and f is the
E®-Lipschitz approzimation of T in Css(x), then

/ IDfI? < ner(Bas(x)), (6.12)
Bas(z)\K
and there exists a Dir-minimizing w € W12(Bas(z), Ag(R™)) such that
2
[ etwrs [ (D= Dl <ner(Bu@). 613
Bas(x) Bs.(z)

This theorem is the multi-valued analog of De Giorgi’s harmonic approxi-
mation, which is ultimately the heart of all the regularity theories for minimal
surfaces. Our compactness argument is, to our knowledge, new (even for n = 1)
and particularly robust. Indeed, we expect it to be useful in more general situ-
ations.

Next, Theorems 6.4 and 5.1 imply the following key estimate, which leads
to Theorem 6.2 via an elementary “covering and stopping radius” argument.

Proposition 6.5. For every x > 0, there is €2 > 0 with the following property.
Let T be an integer rectifiable, area-minimizing current in Cas(x) satisfying
(6.1). If E < &g, then

er(A) < K Es™  for every Borel A C Bs(x) with |A] <e3|Bs(x)|. (6.14)



18 Camillo De Lellis

Using now Theorem 6.2, we can prove the most important estimate con-
tained in Chapter 3 of [4].

Theorem 6.6. There exist constants o,C > 0 with the following property.
Let T be an area-minimizing, integer rectifiable T of dimension m in Cy4. If T
satisfies (6.1) and E = Ex(T,Cy4) < €q, then

er(A) < CE (E° +|A|”)  for every Borel A C Byys. (6.15)

6.4. Almgren’s “almost projection” p*. The proof of Theorem
6.6 is then the only part where we follow essentially Almgren’s strategy. The
main point is to estimate the size of the set over which the graph of the Lipschitz
approximation f differs from T'. As in many standard references, in the case Q =
1 this is achieved comparing the mass of T with the mass of the graph of fxpgw,
where p is a smooth convolution kernel and w > 0 a suitably chosen constant
(this idea is, essentially, already contained in De Giorgi’s original proof).

However, for Q > 1, the space Ag(R"™) is not linear and we cannot regu-
larize f by convolution. To bypass this problem, we follow Almgren and view
Ag as a subset of a large Euclidean space (via the biLipschitz embedding &).
We can then take the convolution of the map £ o f and project it back on the
set £(Aq). However, in order to do this efficiently in terms of the energy, we
need an “almost” projection, denoted by pj,, which is almost 1-Lipschitz in the
p-neighborhood of £(Ag(R™)) (u is a parameter which must be tuned accord-
ingly). At this point Theorem 6.2 enters in a crucial way in estimating the size
of the set where the regularization of £ o f is far from &(Ag(R™)).

The maps pj, are slightly different from Almgren’s almost projections, but
similar in spirit. In [14] we propose on original argument for the construction
of pj,. One advantage of this argument is that it yields more explicit estimates
in terms of the crucial parameter u. As mentioned earlier, this is so far the
only stage where we cannot avoid Almgren’s extrinsic maps. It would be of
interest to develop a more intrinsic approximation procedure, bypassing this
“convolution and projection” technique (cp. Section 8 below).

7. Center Manifold: A Case Study

The fourth chapter of the big regularity paper (and roughly half of this mono-
graph) is devoted to the construction of the so called “center manifold”. In
that chapter Almgren succeeds in constructing a C*® regular surface, which
he calls center manifold and, roughly speaking, approximates the “average of
the sheets of the current” (we refer to [4] for further details) in a neighborhood
of a branching point. In the model example of Remark 2.2, the “ideal center
manifold” would be the plane {z = 0}.

Essentially, the center manifold plays the same role of the barycenters of
the measures u(x) when u is a @-valued map. In the latter example, it is rather
straightforward to prove that the resulting “average function” is a classical
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harmonic function (see for example [13, Lemma 3.23]). Unfortunately for the
case of area-minimizing current, due to the “nonlinear nature” of the problem,
there is no obvious PDE allowing for a similar conclusion.

7.1. Higher regularity “without PDEs”. In the introduction of
[4] Almgren observes that, in the case @ = 1, the center manifold coincides
necessarily with the current itself, thus implying directly its C** regularity.
Compared to the usual proofs, this is rather striking. In fact, after proving
Theorem 2.1, the “usual” regularity theory proceeds further by deriving the
well-known Euler—Lagrange equations for the function f. It then turns out that
f solves a system of elliptic partial differential equations and the Schauder
theory implies that f is smooth (in fact analytic, using the classical result by
Hopf [28]).

The corollary of Almgren’s construction is that the C*® regularity can be
concluded without appealing to “nonparametric techniques”. In the note [15]
we give a simple direct proof of this remark, essentially following Almgren’s
strategy for the construction of the center manifold in the case Q = 1. Though
in a very simplified situation, this model case retains several key estimates of
Almgren’s construction. For instance it makes transparent the fundamental role
played by the E°-gain in the estimates of the Approximation Theorem 6.1.

Our hope is that this will be a first step in the full understanding of Alm-
gren’s result. It is worthwhile to notice that, compared to the extremely long
construction of the center manifold, the last portion of [4], containing the con-
cluding arguments of Almgren’s regularity theorem for area-minimizing integral
currents, is much shorter. The construction of the center manifold seems the
last big obstacle which needs to be overcome in order to understand the full
regularity results of Almgren and Chang.

It is of a certain interest to notice that this “higher regularity” result stops
a little after three derivatives. It does not seem possible, for instance, to get an
estimate for the C* norm. In the proof presented in [15], this is quite transpar-
ent. In some sense, one can think of Almgren’s strategy as an extremely careful
approximation of the current obtained by pasting together (suitably rotated)
graphs of harmonic functions.

One reason for the C* estimate might be the fact that the Dirichlet energy
is a quite accurate approximation of the area functional. Loosely speaking, one
can think of De Giorgi’s theorem as a consequence of the fact that the har-
monic functions are first order expansions of solutions to the minimal surfaces.
One gains almost 2 derivatives in this way (a careful look at the proof of The-
orem 2.1 would show that it works for every 8 < 1, cp. with the Appendix of
[15]). Taking the Taylor expansion to the next level, it turns out that harmonic
functions approximate solutions of the minimal surface equations even “to the
next order”. To illustrate this phenomenon, consider the simpler situation of
a surface of codimension 1, given by the graph of a Lipschitz function f. The
key ingredient in De Giorgi’s argument for the excess-decay is the following
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observation on the integrand of the area functional:

1)) = VTFIVIE = 1+ V1P +o(VP)

However, the Taylor expansion yields a much more precise information:
1
I(Vf) = 145V +O0(VIY. (7.1)

The identity (7.1) is correct also in higher codimension.

8. Open Problems

In this section we collect a list of open problems on Q-valued functions. As
already mentioned, there are several directions in which Almgren’s theory could
be extended, in particular in generalizing it to non-euclidean ambient spaces.
However, in this list we have decided to focus on the euclidean setting and on
problems which would deliver new information rather than generalizing existing
theorems to different contexts. Many of these problems have been proposed by
Almgren and the reader might find them in the collection [1].

(1) In the proof of Theorem 3.7 a pivotal role is played by the so called “tan-
gent functions”. The key idea (which ultimately might be regarded as the
most important discovery of Almgren) is that, when suitably rescaling
a Dir-minimizer in a neighborhood of a singularity, the resulting maps
converge, up to subsequences, to Dir-minimizers which are radially ho-
mogeneous. This theorem is achieved through the monotonicity of the
celebrated frequency function, which in this context plays the same role
of the monotonicity formula for area-minimizing currents.

The uniqueness of the “blow-up” at a singularity is not known, except for
the planar maps (see [13, Theorem 5.3], where it is proved before Theorem
3.8 exploiting some ideas of [7]; assuming Theorem 3.8, this uniqueness is
an obvious consequence of the considerations in [32]). Almgren suggests
that a relevant role in this problem might be played by the techniques
developed in [40] (cp. with [1, Problem 5.6]).

(2) A tentative conjecture is that the singular set of a Dir-minimizer map
on an m-dimensional domain should have (locally) finite %™ ~2 measure
and be rectifiable. This is only known to hold in the case m = 2 (cp. with
Theorem 3.8).

(3) In [1, Problem 5.5] Almgren asks whether the graph of a Dir-minimizer is
always a real analytic set. To our knowledge this is unknown even in the
case of planar maps, where rather detailed information is available (after
combining Theorem 3.8 with the results of [32]).

(4) It would be interesting to get other examples of Dir-minimizers. To our
knowledge, no other systematic class of examples is known apart from
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that of holomorphic varieties (c¢p. with the discussion in Section 5.3). Is
there any other similar class that one could derive from other calibrated
geometries?

(5) Essentially nothing is known if we replace the minimizing property with
stationarity. Different notions of stationary maps are possible, due to the
difference between inner and outer variations (cp. with [13, Section 3.1])
and to the possibility of introducing more general type of deformations.
Does the singular set have measure zero? It is easy to see that there are
maps which are stationary with respect to both inner and outer variations
and have a singular set of dimension m — 1. Does the singular set have
dimension m—2 if the map is stationary with respect to any one-parameter
family of deformations (cp. with [4, Problem 5.5])?

(6) Very little is known if we change the Dirichlet energy. The paper [12]
shows the existence of a large class of semicontinuous functionals. If we
restrict to planar maps and quadratic (semicontinuous) functionals, the
only information available for minimizers is the Holder continuity (proved
in [31]).

(7) Are Dir-minimizers continuous, or ever Holder, up to the boundary, if
the boundary data are sufficiently regular? The only known result is the
continuity for 2-dimensional domains (proved in [50]).

(8) Can ome avoid the map pj, in the proof of Theorem 6.17 Another way
to phrase this question is the following. Is there an “intrinsic” efficient
smoothing procedure for @-valued functions? So far the following are the
only two available techniques:

— The (intrinsic) maximal function truncation argument which allows
to approximate general Q-valued functions in WP with Lipschitz
maps.

— Almgren’s extrinsic smoothing: the given map w is transformed into
a Euclidean map £ o u; this map is than regularized (for instance
with a convolution) and, to produce again a Q-valued map, the reg-
ularization is projected on the set £(Ag).

The latter yields efficient estimates when dealing with the Dirichlet ener-
gies of the corresponding maps. We do not know of any intrinsic method
to achieve regularizations with the same estimates.
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