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Abstract. We show the existence of continuous periodic solutions of
the 3D incompressible Euler equations which dissipate the total kinetic
energy.

1. Introduction

In what follows T3 denotes the 3-dimensional torus, i.e. T3 = S1×S1×S1.
In this note we prove the following theorem.

Theorem 1.1. Assume e : [0, 1] → R is a positive smooth function. Then
there is a continuous vector field v : T3× [0, 1]→ R3 and a continuous scalar
field p : T3 × [0, 1]→ R which solve the incompressible Euler equations ∂tv + div (v ⊗ v) +∇p = 0

div v = 0
(1)

in the sense of distributions and such that

e(t) =

ˆ
|v|2(x, t) dx ∀t ∈ [0, 1] . (2)

Obviously, if we choose a strictly decreasing function e(t), Theorem 1.1
yields continuous solutions of the incompressible Euler equations which “dis-
sipate” the total kinetic energy 1

2

´
|v|2(x, t) dx. This is not possible for C1

solutions: in that case one can multiply the first equation in (1) by v to
derive

∂t
|v|2

2
+ div

(
u

(
|u|2

2
+ p

))
= 0 .

Integrating this last identity in x we then conclude

d

dt

ˆ
T3

|v|2

2
(x, t) dx = 0 . (3)

Theorem 1.1 shows therefore that this formal computation cannot be justi-
fied for distributional solutions, even if they are continuous. The pair (v, p)
in Theorem 1.1 solves (1) in the following sense:

ˆ 1

0

ˆ
T3

(∂tϕ · v +∇ϕ : v ⊗ v + p divϕ) dxdt = 0 (4)

1
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for all ϕ ∈ C∞c (T3 × (0, 1);R3) and
ˆ 1

0

ˆ
T3

v · ∇ψ dxdt = 0 for all ψ ∈ C∞c (T3 × (0, 1)).

Remark 1. In the usual definition of weak solution, (4) is replaced by the
same condition for divergence free test fields: therefore p disappears from the
identity. With this alternative definition, for every weak solution v which
belongs to L2 a corresponding pressure field can then be recovered using

−∆p = div div (v ⊗ v) . (5)

p is then determined up to an arbitrary function of t: this arbitrariness can
be overcome by imposing, for instance,

ffl
p(x, t) dx = 0. However, as it is

well-known, the equation (5) and the continuity of v does not guarantee the
continuity of p.

1.1. Onsager’s Conjecture. The possibility that weak solutions might
dissipate the total kinetic energy has been considered for a rather long time
in the fluid dynamics literature: this phenomenon goes under the name of
“anomalous dissipation”. In fact, to our knowledge, the existence of dis-
sipative solutions was considered for the first time by Lars Onsager in his
famous 1949 note about statistical hydrodynamics, see [18]. In that paper
Onsager conjectured that

(a) C0,α solutions are energy conservative when α > 1
3 ;

(b) There exist dissipative solutions with C0,α regularity for any α < 1
3

(note that, though Onsager’s definition of “weak solution” is, strictly speak-
ing, different from the one given above, it can be easily shown that the two
concepts are equivalent).

The first part of the conjecture, i.e. assertion (a), has been shown by
Eyink in [11] and by Constantin, E and Titi in [2]. The proof of the last
paper amounts to give a rigorous justification of the formal computation
sketched above and leading to (3): this is done via a suitable regularization
of the equation and some careful commutator estimates. The second part
of the conjecture, i.e. statement (b), is still widely open. A first result in
that direction was the groundbreaking work of Scheffer [20] which proved
the existence of a compactly supported nontrivial weak solution in R2 × R.
A different construction of the existence of a compactly supported nontrivial
weak solution in T2×R was then given by Shnirelman in [21]. In both cases
the solutions are only square summable (as a function of both space and
time variables): it is therefore not clear whether there are intervals of time
in which the total kinetic energy is a monotone function (indeed it is not
even clear whether these solutions belong to the energy space L∞t (L2

x)). The
first proof of the existence of a solution for which the total kinetic energy
is a monotone decreasing function has been given by Shnirelman in [22].
Shnirelman’s example is only in the energy space L∞([0,∞[, L2(R3)).
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1.2. h-principle. Our previous work [6, 7] showed the existence of dissipa-
tive solutions for which both pressure and velocity are bounded. Besides the
obvious improvement (and the discovery of quite severe counterexamples to
the uniqueness of admissible solutions, both for incompressible and com-
pressible Euler), in this work we introduced a new point of view in the sub-
ject, highlighting connections to other counterintuitive solutions of (mainly
geometric) systems of partial differential equations: in geometry these solu-
tions are, according to Gromov, instances of the h-principle. In particular
Onsager’s conjecture bears striking similarities with the rigidity and flexibil-
ity properties of isometric embeddings of Riemannian manifolds, pioneered
by the celebrated work of Nash [17]. Indeed, results of the same flavor as
statements (a) and (b) can be proved in the case of isometric embeddings
(see for instance [4] and the references therein): in comparing Onsager’s
conjecture and these results, the reader should take into account that, in
this analogy, the velocity field of the Euler equations corresponds to the
differential of the embedding in the isometric embedding problem. All these
aspects (and further developments for some PDEs in fluid dynamics inspired
by our work) are surveyed in the note [8]. See also [1, 5, 23, 26, 27, 28].

1.3. Comments on the proof. As in all applications of convex integration,
the solution of (1) is constructed by an iteration scheme: at each stage
of this iteration we produce an “almost solution” which solves Euler with
an additional error term. We name the resulting “perturbed” system of
equations Euler-Reynolds system, since the error term has the typical form
of the so-called Reynolds stress in the fluid dynamics literature (see [8] for an
informal discussion of this point). This error term converges to 0, while the
sequence of almost solutions converge to an exact solution, uniformly in C0.
At each stage the new approximate solution is generated from the previous
one by adding fast oscillatory perturbations. Being oscillatory, the linear
terms in the perturbation are negligible whereas the nonlinear (quadratic)
term is the leading order, which should cancel the previous error.

Although this general underlying philosophy is the same as in our previous
papers [6, 7], in the actual proof we need to substantially depart from the
previous strategy and introduce several new ideas.

1) First of all, recall that in [6] we rewrite the Euler equations as a
differential inclusion and thus we are able to apply some of the machinery
developed in the context of Lipschitz differential inclusions. In particular,
in all our results for bounded weak solutions there are two routes: a Baire
category approach and a more direct convex integration approach. In fact
these approaches are in some sense equivalent, see [25].

For continuous solutions the Baire category approach does not work as
there is no way to extract a uniform continuity estimate for approximating
sequences. In this paper we are therefore forced to abandon this, essentially
“soft” functional analytic technique in favour of a more “hard” PDE ap-
proach based on Schauder estimates and oscillatory integrals. This seems to



4 CAMILLO DE LELLIS AND LÁSZLÓ SZÉKELYHIDI JR.

be entirely new in the context of convex integration, even compared to the
original proof of Nash [17] for rough isometric embeddings.

2) In all applications so far of convex integration to fluid mechanics
[1, 5, 23, 26, 27, 28, 8] a key starting point is a plane-wave analysis, in order
to identify compatible plane-waves that will be used in the subsequent con-
struction. Indeed, the use of suitably localized plane-waves for an iteration
scheme goes back to the work of Nash [17] and has been widely generalized
by Gromov [13] as the technique of convex integration - the simple reason
being that one-dimensional oscillations can be “integrated”, hence the name
convex integration. In the scheme of Nash simple plane-waves suffice to pro-
duce a C1 solution. Nevertheless, it is crucial here that one has an extra
dimension (the codimension of the range) to absorb linear errors.

For the Euler equations we have no extra dimension and simple plane-
waves do not work for continuous solutions. This leads to two points of
departure from existing schemes: we use genuinely multi-dimensional build-
ing blocks, the Beltrami flows, and we retain a linear “transport term” in
the iteration, which needs to be controlled with new ideas.

3) As mentioned above, the main building blocks of our iteration scheme
are Beltrami flows, which are truly three-dimensional oscillations. The issue
of going beyond one-dimensional oscillations has been raised by Gromov
(p219 of [13]) as well as Kirchheim-Müller-Šverák (p52 of [15]), but as far
as we know, there have been no such examples in the literature so far. As
a result of using Beltrami flows, the final result of our iteration scheme
is the superposition of infinitely many (perturbed) and weakly interacting
Beltrami flows. Curiously, the idea that turbulent flows can be understood
as a superposition of Beltrami flows has been proposed almost 30 years ago
in the fluid dynamics literature: see the work of Constantin and Majda [3].
Indeed, it was Peter Constantin who suggested to us to try Beltrami flows
in a convex integration scheme.

4) The “transport term” is perhaps the most important new aspect of
our scheme in comparison with Nash. This arises, roughly speaking, as the
linearization of the first equation in (1): this term is typical of an evolu-
tion equation, whereas, instead, the equations for isometric embeddings are
“static”. Moreover, the linear terms in the Nash scheme are set to zero by
choosing suitable coordinates and working with the extra dimension. At
a first glance this transport term makes it impossible to use a scheme like
the one of Nash to prove Theorem 1.1. To overcome this obstruction we
need to introduce a phase-function that acts as a kind of discrete Galilean
transformation of the (stationary) Beltrami flows, and to introduce an “in-
termediate” scale along each iteration step on which this transformation
acts.

5) A further difference to the approach in [6, 7] is that we cannot use
simple potentials to generate space-time localized versions of the Beltrami
flows. One reason is that, in a sense, we cannot simply “integrate” Bel-
trami flows. More importantly, a space-time cutoff would result in error
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terms which cannot be controlled in C0. In order to overcome this issue
we introduce a “corrector term” to the main perturbation. This corrector
term is not “explicit”: it is determined by solving some appropriate elliptic
equations.

6) In comparing Theorem 1.1 to the main result in [7] an important
difference is that, whereas in the bounded case e is a function of (x, t), here
it is a function of t only. In other words, whereas for bounded solutions we
can prescribe (x, t) 7→ |v(x, t)|, for continuous solutions we are only able to
prescribe t 7→

´
|v(x, t)|2 dx. As a consequence, our solutions in this paper

cannot deal with the local energy inequality (cp. with the discussion in
Section 3.1 of [8]). We do not know whether this is just a technical issue or
a new feature of continuous solutions.

As a minor comment we remark that obviously the smoothness of e in
Theorem 1.1 can be relaxed, but we do not pursue this issue here. Moreover,
the same theorem can be proved if we replace [0, 1] with [0,∞[: in this case
we require in addition that e and its derivatives are uniformly bounded and
that there is a positive constant c0 with e ≥ c0.

7) In Theorem 1.1 our aim was to construct continuous weak solutions.
In particular we did not address issues concerning the initial-value problem.
Thus, setting aside the difference between bounded and continuous solutions,
our Theorem 1.1 is weaker than the results proved in [7]. In particular, in
this paper we do not prove any non-uniqueness statement.

However, this is a typical way to proceed with problems involving the h-
principle. In general one may distinguish two aspects: a local and a global
one. In geometric situations the local one is typically a differential con-
straint whereas the global one is topological (cf. [10]). The flexibility (in
other words the lack of uniqueness) that one observes in instances of the
h-principle is tied to the specifics of the local aspect. Thus, our Theorem
1.1 deals exclusively with the “local” aspect for the Euler equations, whereas
a possible analogue of the global aspect would be the imposition of an ini-
tial data, possibly together with an admissibility condition (as in [7]). In
subsequent papers we plan to address such “global” issues (e.g. initial data,
compactly supported ancient solutions, etc).

1.4. Acknowledgements. We wish to thank Peter Constantin and Sergio
Conti for several very valuable discussions on earlier attempts to prove Theo-
rem 1.1. Moreover we are grateful to Antoine Choffrut for several comments
on earlier versions of the paper, which considerably improved its readabil-
ity. The first author acknowledges the support of the SFB Grant TR71,
the second author acknowledges the support of the ERC Grant Agreement
No. 277993 and the support of the Hausdorff Center for Mathematics in
Bonn.
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2. Setup and plan of the paper

The proof of Theorem 1.1 will be achieved through an iteration proce-
dure. Along the iteration the maps will be “almost solutions” of the Euler
equations. To measure “how far” a solenoidal field is from being a solu-
tion of incompressible Euler we introduce a system of differential equations
which we call Euler-Reynolds system. The name is justified by the fact that
the matrix-field R̊ is a well known object in the theory of turbulence, called
“Reynolds stress” (cp. with [8] and the references therein). In what fol-
lows S3×3

0 denotes the vector space of symmetric trace-free 3 × 3 matrices.
Moreover we will, as it is usual, use the word smooth for C∞ maps.

Definition 2.1. Assume v, p, R̊ are smooth functions on T3×[0, 1] taking val-
ues, respectively, in R3,R,S3×3

0 . We say that they solve the Euler-Reynolds
system if  ∂tv + div (v ⊗ v) +∇p = div R̊

div v = 0 .
(6)

We are now ready to state the main proposition of this paper, of which
Theorem 1.1 is a simple corollary.

Proposition 2.2. Let e be as in Theorem 1.1. Then there are positive
constants η and M with the following property.

Let δ ≤ 1 be any positive number and (v, p, R̊) a smooth solution of the
Euler-Reynolds system (6) such that

3δ
4 e(t) ≤ e(t)−

ˆ
|v|2(x, t) dx ≤ 5δ

4 e(t) ∀t ∈ [0, 1] (7)

and

sup
x,t
|R̊(x, t)| ≤ ηδ . (8)

Then there is a second smooth triple (v1, p1, R̊1) which solves as well the
Euler-Reynolds system and satisfies the following estimates:

3δ
8 e(t) ≤ e(t)−

ˆ
|v1|2(x, t) dx ≤ 5δ

8 e(t) ∀t ∈ [0, 1] , (9)

sup
x,t
|R̊1(x, t)| ≤ 1

2ηδ , (10)

sup
x,t
|v1(x, t)− v(x, t)| ≤M

√
δ (11)

and

sup
x,t
|p1(x, t)− p(x, t)| ≤Mδ . (12)

As already mentioned, Theorem 1.1 follows immediately from Proposition
2.2.
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Proof of Theorem 1.1. We start by setting v0 = 0, p0 = 0, R̊0 = 0 and
δ := 1. We then apply Proposition 2.2 iteratively to reach a sequence
(vn, pn, R̊n) which solves (6) and such that

3

4

e(t)

2n
≤ e(t)−

ˆ
|vn|2(x, t) dx ≤ 5

4

e(t)

2n
for all t ∈ [0, 1] (13)

sup
x,t
|R̊n(x, t)| ≤ η

2n
(14)

sup
x,t
|vn+1(x, t)− vn(x, t)| ≤ M

√
1

2n
(15)

sup
x,t
|pn+1(x, t)− pn(x, t)| ≤ M

2n
. (16)

Then {vn} and {pn} are both Cauchy sequences in C(T3×[0, 1]) and converge

uniformly to two continuous functions v and p. Similarly R̊n converges
uniformly to 0. Moreover, by (13)ˆ

T3

|v|2(x, t) dx = e(t) ∀t ∈ [0, 1] .

Passing into the limit in (6) we therefore conclude that (v, p) solves (1). �

2.1. Construction of v1. The rest of the paper will be dedicated to prove
Proposition 2.2. The construction of the map v1 consists of adding two
perturbations to v:

v1 = v + wo + wc =: v + w. (17)

To specify the form of the perturbation wo, which is a highly oscillatory
function and for which we give a rather explicit formula, we need several
ingredients. The vectorfield v+wo is not in general divergence free. There-
fore we add the correction wc to restore this condition. Having added the
correction, the main focus will then be on finding maps R̊1 and p1 with the
desired estimate and such that

∂tv1 + divx(v1 ⊗ v1) +∇p1 = divxR̊1 .

The perturbation wo will depend on two parameters, µ and λ, which will
satisfy the following conditions

λ, µ,
λ

µ
∈ N . (18)

In order to achieve the estimates, λ and µ will be chosen quite large, depend-
ing on appropriate norms of v. As already mentioned, the building blocks
for the perturbation wo are Beltrami flows. In order to give the formula
leading to the definition of wo we must, therefore, study closer the partic-
ular “geometry” of these flows. This will be done in the next section. We
will then be ready to define the perturbations wo and wc: this task will be
accomplished in Section 4 where we also prescribe the constants η and M
of the estimates in Proposition 2.2. After recalling some classical Schauder
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theory in Section 5, in the Sections 6 and 7 we will prove the relevant es-
timates of the various terms involved in the construction, in terms of the
parameters λ and µ. The choice of these parameters will be finally specified
in Section 8, where we conclude the proof of Proposition 2.2.

3. Geometric preliminaries

In this paper we denote by Rn×n, as usual, the space of n × n matrices,
whereas Sn×n and Sn×n0 denote, respectively, the corresponding subspaces of
symmetric matrices and of trace-free symmetric matrices. The 3×3 identity
matrix will be denoted with Id. For definitiveness we will use the matrix
operator norm |R| := max|v|=1 |Rv|. Since we will deal with symmetric
matrices, we have the identity |R| = max|v|=1 |Rv · v|.

3.1. Beltrami flows. We start by recalling a celebrated example of sta-
tionary periodic solutions to the 3D Euler equations, the so called Beltrami
flows. One important fact which will play a central role in our paper is that
the space of Beltrami flows contains linear spaces of fairly large dimension.

Proposition 3.1 (Beltrami flows). Let λ0 ≥ 1 and let Ak ∈ R3 be such that

Ak · k = 0, |Ak| = 1√
2
, A−k = Ak

for k ∈ Z3 with |k| = λ0. Furthermore, let

Bk = Ak + i
k

|k|
×Ak ∈ C3.

For any choice of ak ∈ C with ak = a−k the vectorfield

W (ξ) =
∑
|k|=λ0

akBke
ik·ξ (19)

is divergence-free and satisfies

div (W ⊗W ) = ∇|W |
2

2
. (20)

Furthermore

〈W ⊗W 〉 =

 
T3

W ⊗W dξ =
1

2

∑
|k|=λ0

|ak|2
(

Id− k

|k|
⊗ k

|k|

)
. (21)

In other words W (ξ) defined by (19) is a stationary solution of (1) with

pressure p = − |W |
2

2 . For the rest of this paper we will treat the vectors Ak ∈
R3, Bk ∈ C3 as fixed (the choice of Ak as prescribed in the Proposition is not
unique, but this is immaterial for our purposes). The proof of Proposition
3.1 is a classic in the fluid dynamics literature, but we include it for the
reader’s convenience.
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Proof. First of all observe that a−kB−k = akBk. Thus the vector field
defined in (19) is real valued. Next notice that

divW (ξ) =
∑
|k|=λ0

ik ·Bkakeik·ξ = 0 ,

because k ·Bk = 0 for every k.
Observe also that

curlW (ξ) =
∑
|k|=λ0

ik ×Bkakeik·ξ .

On the other hand

ik ×Bk = λ0

(
i
k

|k|
×Ak −

k

|k|
×
(
k

|k|
×Ak

))
= λ0

(
i
k

|k|
×Ak +Ak

)
= λ0Bk .

We therefore infer curlW = λ0W . SinceW is divergence free, div (W⊗W ) =
(W · ∇)W and we can use the well known vector identity

div (W ⊗W ) = (W · ∇)W = ∇|W |
2

2
−W × (curlW ) .

Since we have just seen that curlW and W are parallel, (20) follows easily.
Finally, we compute

W ⊗W =
∑
k,j

akajBk ⊗Bjei(k+j)·ξ =
∑
k,j

akajBk ⊗Bje
i(k−j)·ξ .

Averaging this identity in ξ we infer

〈W ⊗W 〉 =
∑
|k|=λ0

|ak|2Bk ⊗Bk .

However, since Bk = B−k, we get

〈W ⊗W 〉 =
∑
|k|=λ0

|ak|2 Re
(
Bk ⊗Bk

)
=

∑
|k|=λ0

|ak|2
(
Ak ⊗Ak +

(
k

|k|
×Ak

)
⊗
(
k

|k|
×Ak

))
.

On the other hand, observe that the triple
√

2Ak,
√

2 k
|k| × Ak,

k
|k| forms an

orthonormal basis of R3. Thus,

2Ak ⊗Ak + 2

(
k

|k|
×Ak

)
⊗
(
k

|k|
×Ak

)
+

k

|k|
⊗ k

|k|
= Id .

This shows (21) and hence completes the proof. �
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3.2. The geometric lemma. One key point of our construction is that
the abundance of Beltrami flows allows to find several such flows v with the
property that

〈v ⊗ v〉(t) :=
1

(2π)3

ˆ
T3

v ⊗ v(x, t) dx

equals a prescribed symmetric matrix R. Indeed we will need to select these
flows so as to depend smoothly on the matrix R, at least when R belongs
to a neighborhood of the identity matrix. In view of (21), such selection is
made possible by the following Lemma.

Lemma 3.2 (Geometric Lemma). For every N ∈ N we can choose r0 > 0
and λ0 > 1 with the following property. There exist pairwise disjoint subsets

Λj ⊂ {k ∈ Z3 : |k| = λ0} j ∈ {1, . . . , N}

and smooth positive functions

γ
(j)
k ∈ C

∞ (Br0(Id)) j ∈ {1, . . . , N}, k ∈ Λj

such that

(a) k ∈ Λj implies −k ∈ Λj and γ
(j)
k = γ

(j)
−k;

(b) For each R ∈ Br0(Id) we have the identity

R =
1

2

∑
k∈Λj

(
γ

(j)
k (R)

)2
(

Id− k

|k|
⊗ k

|k|

)
∀R ∈ Br0(Id) . (22)

Remark 2. Though it will not be used in the sequel, the cardinality of each
set Λj constructed in the proof of the Lemma is indeed bounded a priori
independently of all the other parameters. A close inspection of the proof
shows that it gives sets with cardinality at most 98. This seems however far
from optimal: one should be able to find sets Λj with cardinality 14.

The proof of the Geometric Lemma is based on the following well-known
fact.

Proposition 3.3. The set Q3 ∩ S2 is dense in S2.

Proof. Let s : R2 → S2 be the inverse of the stereographic projection:

s(u, v) :=

(
2v

u2 + v2 + 1
,

2u

u2 + v2 + 1
,
u2 + v2 − 1

u2 + v2 + 1

)
.

It is obvious that s(Q2) ⊂ Q3. Since Q2 is dense in R2 and s is a diffeomor-
phism onto S2 \ (0, 0, 1), the proposition follows trivially. �

Indeed, much more can be proved: 1
nZ

3∩S2, distributes uniformly on the
sphere for n ∈ N large whenever n ≡ 1, 2, 3, 4, 5, 6 (mod 8). This problem
was raised by Linnik (see [16]), who proved a first result in its direction, and
solved thanks to a breakthrough of Iwaniec [14] in the theory of modular
forms of half-integral weight (see, for instance, [9] and [19]).
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Proof of Lemma 3.2. For each vector v ∈ R3 \ {0}, we denote by Mv the
3× 3 symmetric matrix given by

Mv = Id− v

|v|
⊗ v

|v|
.

With this notation the identity (22) reads as

R =
1

2

∑
k∈Λj

(
γ

(j)
k (R)

)2
Mk . (23)

Step 1 Fix a λ0 > 1 and for each set F ⊂ {k ∈ Z3 : |k| = λ0} we
consider the set c(F ) which is the interior of the convex hull, in S3×3, of
{Mk : k ∈ F}. We claim in this step that it suffices to find a λ0 and N
disjoint subsets Fj ⊂ {k ∈ Z3 : |k| = λ0} such that

(d) −Fj = Fj ;
(e) c(Fj) contains a positive multiple of the identity.

Indeed, we will show below that, if Fj satisfies (d) and (e), then we can find a

r0 > 0, a subset Γj ⊂ Fj and positive smooth functions λ
(j)
k ∈ C

∞(B2r0(Id))
such that

R =
∑
k∈Γj

λ
(j)
k (R)Mk .

We then find Λj and the functions γ
(j)
k by

• defining Λj := Γj ∪ −Γj ;

• setting λ
(j)
k = 0 if k ∈ Λj \ Γj ;

• defining

γ
(j)
k :=

√
λ

(j)
k + λ

(j)
−k

for every k ∈ Λj .

Observe that the functions and the sets satisfy both (a) and (b). Moreover,

since at least one of the λ
(j)
±k is positive on B2r0(Id), γ

(j)
k is smooth in Br0(Id).

We now come to the existence of the set Γj . For simplicity we drop the
subscripts. The open set c(F ) contains an element αId with α > 0. Then
there are seven matrices A1, . . . , A7 in c(F ) such that αId belongs to the
interior of their convex hull, which is an open convex simplex S. We choose
ϑ so that the ball Ũ of center αId and radius ϑ is contained in S. Then
each point R ∈ Ũ can be written in a unique way as a convex combination
of the elements Ai:

R =

7∑
i=1

βi(R)Ai

and the functions βi are positive and smooth on Ũ .
By Caratheodory’s Theorem, eachAi is the convex combination

∑
λi,nMvi,n

of at most 7 Mvi,n with vi,n ∈ F , where we require that each λi,n is positive
(observe that Caratheodory’s Theorem guarantees the existence of 7 points
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Mvi,n such that Ai belongs to the closed convex hull of them; if we insist
on the property that the corresponding coefficients are all positive, then we
might be obliged to choose a number smaller than 7).

Set r0 := ϑ
2α . Then,

R =
∑
i,n

1

α
βi(αR)λi,nMvi,n ∀R ∈ B2r0(Id) .

and each coefficient
1

α
βi(αR)λi,n

is positive for every R ∈ B2r0(Id).
The set Γj is then given by {vi,n}. Note that we might have vi,n = vl,m

for two distinct pairs (i, n) and (l,m). Therefore, for k ∈ Γj , the function
λk will be defined as

λk(R) =
∑

(i,n):k=vi,n

1

α
βi(αR)λi,n .

Step 2 By Step 1, in order to prove the lemma, it suffices to find a number
λ0 and N disjoint families F1, . . . , FN ⊂ λ0S2 ∩ Z3 such that the sets c(Fi)
contain all a positive multiple of the identity. By Proposition 3.3 there is
a sequence λk ↑ ∞ such that the sets S2 ∩ 1

λk
Z3 converge, in the Hausdorff

sense, to the entire sphere S2.
Given this sequence {λk}, we can easily partition each λkS2 ∩ Z3 into N

disjoint symmetric families {F kj }j=1,...,N in such a way that, for each fixed

j, the corresponding sequence of sets { 1
λk
F kj }k converges in the Hausdorff

sense to S2. Hence, any point of c(S2) is contained in c( 1
λk
F kj ) provided k

is large enough. On the other hand it is easy to see that c(S2) contains a
multiple of the identity αId (for instance one can adapt the argument of
Lemma 4.2 in [6]). By Step 1, this concludes the proof. �

4. The maps v1, R̊1 and p1

We have now all the tools to define the maps v1, R̊1 and p1 of Proposition
2.2. Recalling (17) and the discussion therein, w := v1− v is the sum of two
maps, wo and wc. wo is a highly oscillatory function based on “patching
Beltrami flows” and it will be defined first, in Section 4.1. wc will then
be added so as to ensure that v1 is divergence free: in order to achieve
this we will use the classical Leray projector, see Section 4.3 for the precise
definition. p1 is related to wo by a simple formula, given in Section 4.4.
Finally, in Section 4.5 we will define R̊1. Essentially, this last matrix field
can also be thought of as a “corrector term”, analogous to wc. In fact, if we
consider the point of view of [6], the Euler-Reynolds system can be stated
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equivalently as the fact that the 4× 4 matrix

U :=

(
v1 ⊗ v1 + p1Id− R̊1 v1

v1 0

)
is a divergence-free in space-time. R̊1 has therefore the same flavor as wc
and is also defined through a suitable (elliptic) operator, cp. with Definition
4.2.

4.1. The perturbation wo. We start by defining a partition of unity on
the space of velocities, i.e. the state space. Choose two constants c1 and c2

such that
√

3
2 < c1 < c2 < 1 and we fix a function ϕ ∈ C∞c (Bc2(0)) which

is nonnegative and identically 1 on the ball Bc1(0). We next consider the
lattice Z3 ⊂ R3 and its quotient by (2Z)3, i.e. we define the equivalence
relation

(k1, k2, k3) ∼ (`1, `2, `3) ⇐⇒ ki − `i is even ∀i.

We then denote by Cj , j = 1, . . . , 8 the 8 equivalence classes of Z3/ ∼. For
each k ∈ Z3 denote by ϕk the function

ϕk(x) := ϕ(x− k) .

Observe that, if k 6= ` ∈ Ci, then |k − `| ≥ 2 > 2c2. Hence ϕk and ϕ` have
disjoint supports. On the other hand, the function

ψ :=
∑
k∈Z3

ϕ2
k

is smooth, bounded and bounded away from zero. We then define

αk(v) :=
ϕk(v)√
ψ(v)

and

φ
(j)
k (v, τ) :=

∑
l∈Cj

αl(µv)e
−i(k· l

µ
)τ
.

Since αl and αl̃ have disjoint supports for l 6= l̃ ∈ Cj , it follows that for all
v, τ, j

|φ(j)
k (v, τ)|2 =

∑
l∈Cj

αl(µv)2, (24)

and in particular
∑8

j=1 |φ
(j)
k (v, τ)|2 = 1. Furthermore, for the same reason

there exist for any m = 0, 1, 2, . . . constants C = C(m) such that

sup
v,τ
|Dm

v φ
(j)
k (v, τ)| ≤ C(m)µm. (25)

Fix next any (v, τ) and j. Observe that there is at most one l ∈ Cj with
the property that αl(µv) 6= 0 and this l has the property that |µv − l| < 1.
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Thus, in a neighborhood of (v, τ) we will have

∂τφ
(j)
k + i(k · v)φ

(j)
k = ik ·

(
v − l

µ

)
φ

(j)
k . (26)

Combining (25) and (26), for any m = 0, 1, 2, . . . we find constants C =
C(m, |k|) such that

sup
v,τ

∣∣∣Dm
v

(
∂τφ

(j)
k + i(k · v)φ

(j)
k

)∣∣∣ ≤ C(m, |k|)µm−1. (27)

We apply Lemma 3.2 with N = 8 to obtain λ0 > 1, r0 > 0 and pairwise

disjoint families Λj together with corresponding functions γ
(j)
k ∈ C

∞ (Br0(Id)).

Next, set

ρ(t) :=
1

3(2π)3

(
e(t)

(
1− δ

2

)
−
ˆ
T3

|v|2(x, t) dx

)
and

R(x, t) := ρ(t)Id− R̊(x, t) ,

and define

wo(x, t) :=
√
ρ(t)

8∑
j=1

∑
k∈Λj

γ
(j)
k

(
R(x, t)

ρ(t)

)
φ

(j)
k (v(x, t), λt)Bke

iλk·x. (28)

4.2. The constants η and M . Note that wo is well-defined only if R
ρ ∈

Br0(Id) where r0 is given in Lemma 3.2. This is ensured by an appropriate
choice of η. Indeed,

ρ(t) ≥ 1

3(2π)3

δ

4
e(t) ≥ cδ min

t∈[0,1]
e(t) =: cδm ,

where c is a dimensional (positive) constant and m > 0 by assumption.
Then ∥∥∥∥ R

ρ(t)
− Id

∥∥∥∥ ≤ 1

cδm
‖R̊‖ ≤ η

cm
.

Thus, it suffices to choose

η := 1
2cmr0 =

r0

24(2π)3
min
t∈[0,1]

e(t) . (29)

Observe that this choice is independent of δ > 0.
Notice next that, by our choice of ρ(t) and by (7), ρ(t) ≤ δe(t). Thus there

exists a constant M > 1 depending only on e (in particular independent of
δ) so that

sup
t∈[0,1]

sup
x∈T3

|wo(x, t)| ≤
√
Mδ

2
. (30)

This fixes the choice of the constant M in Proposition 2.2
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4.3. The correction wc. We next define the Leray projector onto divergence-
free vectorfields with zero average.

Definition 4.1. Let v ∈ C∞(T3,R3) be a smooth vector field. Let

Qv := ∇φ+

 
T3

v,

where φ ∈ C∞(T3) is the solution of

∆φ = div v in T3

with
ffl
T3 φ = 0. Furthermore, let P = I − Q be the Leray projection onto

divergence-free fields with zero average.

The vector field v1 is then the sum of v with the Leray projection w of
wo, namely

v1(x, t) := v(x, t) + Pwo(x, t) =: v(x, t) + w(x, t)

and hence
wc(x, t) := −Qwo(x, t) = w(x, t)− wo(x, t).

4.4. The pressure p1. We define

p1 := p− |wo|
2

2
. (31)

4.5. The Reynolds stress R̊1. In order to specify the choice of R̊1 we
introduce a new operator.

Definition 4.2. Let v ∈ C∞(T3,R3) be a smooth vector field. We then
define Rv to be the matrix-valued periodic function

Rv :=
1

4

(
∇Pu+ (∇Pu)T

)
+

3

4

(
∇u+ (∇u)T

)
− 1

2
(div u)Id,

where u ∈ C∞(T3,R3) is the solution of

∆u = v −
 
T3

v in T3

with
ffl
T3 u = 0.

Lemma 4.3 (R = div−1). For any v ∈ C∞(T3,R3) we have

(a) Rv(x) is a symmetric trace-free matrix for each x ∈ T3;
(b) divRv = v −

ffl
T3 v.

Proof. It is obvious by inspection thatRv is symmetric. Since Pv is divergence-
free, we obtain for the trace

tr(Rv) =
3

4
(2div u)− 3

2
div u = 0.

Similarly, we have

div (Rv) =
1

4
∆(Pu) +

3

4
(∇div u+ ∆u)− 1

2
∇div u. (32)
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On the other hand recall that Pu = u −∇φ −
ffl
u = u −∇φ, where ∆φ =

div u. Therefore ∆(Pu) = ∆u−∇div u. Plugging this identity into (32), we
obtain

div (Rv) = ∆u

and since u solves ∆u = v −
ffl
v, (b) follows readily. �

Then we set

R̊1 := R (∂tv1 + div (v1 ⊗ v1) +∇p1) .

Note that [∂tv1 + div (v1 ⊗ v1) +∇p1] has average zero. Indeed:

• the vector field div (v1 ⊗ v1) + ∇p1 has average 0 because it is the
divergence of the matrix field v1 ⊗ v1 + p1Id;
• for the same reason, the identity ∂tv = −div (v⊗v+pId − R̊) shows

that ∂tv has average 0; on the other hand w = Pwo has average 0
because of the definition of P; this implies that ∂tw has also average
zero and thus we conclude as well that ∂tv1 = ∂tv+ ∂tw has average
zero.

Therefore from Lemma 4.3 it follows that R̊1(x, t) is symmetric and trace-
free and that the identity

∂tv1 + div (v1 ⊗ v1) +∇p1 = div R̊1

holds.
The rest of this note is devoted to prove that the triple (v1, p1, R̊1) sat-

isfies the estimates (9), (10), (11) and (12). This will be achieved by an
appropriate choice of the parameters µ and λ. In particular, we will show
that the estimates hold provided µ is sufficiently large and λ much larger
than µ.

5. Schauder Estimates

In the following m = 0, 1, 2, . . . , α ∈ (0, 1), and β is a multiindex. We
introduce the usual (spatial) Hölder norms as follows. First of all, the supre-
mum norm is denoted by ‖f‖0 := supT3 |f |. We define the Hölder seminorms
as

[f ]m = max
|β|=m

‖Dβf‖0 ,

[f ]m+α = max
|β|=m

sup
x 6=y

|Dβf(x)−Dβf(y)|
|x− y|α

.

The Hölder norms are then given by

‖f‖m =

m∑
j=0

[f ]j

‖f‖m+α = ‖f‖m + [f ]m+α.

Recall the following elementary inequalities:

[f ]s ≤ C
(
εr−s[f ]r + ε−s‖f‖0

)
(33)
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for r ≥ s ≥ 0 and all ε > 0, and

[fg]r ≤ C
(
[f ]r‖g‖0 + ‖f‖0[g]r

)
(34)

for any 1 ≥ r ≥ 0.
Finally, we recall the classical Schauder estimates for the Laplace operator

and the corresponding estimates which we can infer for the various operators
involved in our construction.

Proposition 5.1. For any α ∈ (0, 1) and any m ∈ N there exists a constant
C(α,m) with the following properties. If φ, ψ : T3 → R are the unique
solutions of  ∆φ = f

ffl
φ = 0

 ∆ψ = divF

ffl
ψ = 0

,

then

‖φ‖m+2+α ≤ C(m,α)‖f‖m,α and ‖ψ‖m+1+α ≤ C(m,α)‖F‖m,α . (35)

Moreover we have the estimates

‖Qv‖m+α ≤ C(m,α)‖v‖m+α (36)

‖Pv‖m+α ≤ C(m,α)‖v‖m+α (37)

‖Rv‖m+1+α ≤ C(m,α)‖v‖m+α (38)

‖R(divA)‖m+α ≤ C(m,α)‖A‖m+α (39)

‖RQ(divA)‖m+α ≤ C(m,α)‖A‖m+α . (40)

Proof. The estimates (35) are the usual Schauder estimates, see for instance
[12, Chapter 4]. The meticulous reader will notice that the estimates in [12]
are stated in Rn for the potential-theoretic solution of the Laplace operator.
The periodic case is however an easy corollary. Take for instance φ and f
and consider them as periodic functions defined on R3. Consider g = fχ,
where χ is a cut-off function supported in B6π(0) and identically 1 on B4π(0).

Let φ̃ be the potential-theoretic solution in R3 of ∆φ̃ = g. For φ̃ we can
invoke the Schauder estimates as in [12, Chapter 4]. Moreover φ − φ̃ is an
harmonic function in B4π(0). Obviously ‖φ‖L2(B4π(0)) can be easily bounded

using ∆φ = f ,
ffl
φ = 0 and the Parseval identity. Thus, standard properties

of harmonic functions give ‖φ− φ̃‖Cm,α([2π]3) ≤ C(m,α)‖f‖0.
The estimates (36), (37), (38) and (39) are easy consequences of (35) and

the definitions of the operators. The estimate (40) requires a little more
care. Let u : T3 → R3 be the unique solution of

∆∆ui = ∂i
∑
j,n

∂2
jnAjn

with
ffl
u = 0. Then

‖u‖m+1+α ≤ C(m,α)‖A‖m+α . (41)
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First of all, with the argument above, one can reduce this estimate to a corre-
sponding one for the potential-theoretic solution of the biLaplace operator
in R3. For this case we can then invoke general estimates for elliptic k-
homogeneous constant coefficients operators (see for instance [24, Theorem
1]) or use the same arguments of [12, Chapter 4] replacing the fundamental
solution of the Laplacian with that of the biLaplacian. Finally, (40) follows
from the identity

RQ(divA) =
1

4

(
∇Pu+ (∇Pu)T

)
+

3

4

(
∇u+ (∇u)T

)
− 1

2
(div u)Id

and the estimates (41) and (37). �

In what follows we will use the convention that greek subscripts of Hölder
norms denote always exponents in the open interval (0, 1).

Proposition 5.2. Let k ∈ Z3 \ {0} and λ ≥ 1 be fixed.
(i) For any a ∈ C∞(T3) and m ∈ N we have∣∣∣∣ˆ

T3

a(x)eiλk·x dx

∣∣∣∣ ≤ [a]m
λm

. (42)

(ii) Let φλ ∈ C∞(T3) be the solution of

∆φλ = fλ in T3

with
´
T3 φλ = 0, where

fλ(x) := a(x)eiλk·x −
 
T3

a(y)eiλk·y dy.

Then for any α ∈ (0, 1) and m ∈ N we have the estimate

‖∇φλ‖α ≤
C

λ1−α ‖a‖0 +
C

λm−α
[a]m +

C

λm
[a]m+α, (43)

where C = C(α,m).

Proof. For j = 0, 1, . . . define

Aj(y, ξ) := −i

[
k

|k|2

(
i
k

|k|2
· ∇
)j

a(y)

]
eik·ξ ,

Fj(y, ξ) :=

[(
i
k

|k|2
· ∇
)j

a(y)

]
eik·ξ .

Direct calculation shows that

Fj(x, λx) =
1

λ
div
[
Aj(x, λx)

]
+

1

λ
Fj+1(x, λx).

In particular for any m ∈ N

a(x)eiλk·x = F0(x, λx) =
1

λ

m−1∑
j=0

1

λj
div
[
Aj(x, λx)

]
+

1

λm
Fm(x, λx)
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Integrating this over T3 and using that |k| ≥ 1 we obtain (42).
Next, using (33) and (34) we have for any j ≤ m− 1

‖Aj(·, λ·)‖α ≤ C (λα[a]j + [a]j+α)

≤ Cλj+α
(
λ−m[a]m + ‖a‖0

)
and similarly

‖Fm(·, λ·)‖α ≤ C (λα[a]m + [a]m+α) .

Moreover, according to the standard estimate (35),

‖∇φ‖α ≤ C
(

1

λ

m−1∑
j=0

1

λj
‖Aj(·, λ·)‖α +

1

λm
‖Fm(·, λ·)‖α +

∣∣∣∣ 
T3

F0(x, λx) dx

∣∣∣∣),
hence, using (42) for the last term,

‖∇φ‖α ≤
C

λ1−α ‖a‖0 +
C

λm−α
[a]m +

C

λm
[a]m+α

as required. �

Corollary 5.3. Let k ∈ Z3 \ {0} be fixed. For a smooth vectorfield a ∈
C∞(T3;R3) let F (x) := a(x)eiλk·x. Then we have

‖R(F )‖α ≤
C

λ1−α ‖a‖0 +
C

λm−α
[a]m +

C

λm
[a]m+α,

where C = C(α,m).

Proof. This is an immediate consequence of the definition ofR, the Schauder
estimate (37) for P and Proposition 5.2 above. �

6. Estimates on the corrector and the energy

In all subsequent estimates, unless otherwise stated, C denotes a generic
constant that can vary from line to line, and depends on e, v, R̊ as well as
on λ0, α and δ, but is independent of λ and µ. Smallness of the respective
quantities will be achieved by an appropriate choice of λ, µ in Section 8.
Moreover, all estimates will implicitly assume (18), in particular that 1 ≤
µ ≤ λ.

Our aim is to estimate the space-time sup-norm of v1 − v = w = wo +wc
and R̊1. Since wc and R̊1 are defined in terms of the singular integral
operators P,Q and R, which act in space, instead of obtaining directly
estimates of the C0 norm, we will use Schauder estimates to obtain bounds
on spatial Hölder norms. Thus, in the sequel the Hölder norms will denote
spatial norms, and are understood to be uniform in time t ∈ [0, 1]. Moreover,
if the Hölder exponent is denoted by a greek letter, then it is a number in
the open interval (0, 1).

It will be convenient to write wo as

wo(x, t) = W (x, t, λt, λx),
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where

W (y, s, τ, ξ) :=
∑
|k|=λ0

ak(y, s, τ)Bke
ik·ξ (44)

=
√
ρ(s)

8∑
j=1

∑
k∈Λj

γ
(j)
k

(
R(y, s)

ρ(s)

)
φ

(j)
k (v(y, s), τ)Bke

ik·ξ. (45)

We summarize the main properties of the coefficients W :

Proposition 6.1. (i) Let ak ∈ C∞(T3 × [0, 1]×R) be given by (44). Then
for any r ≥ 0

‖ak(·, s, τ)‖r ≤ Cµr,

‖∂sak(·, s, τ)‖r ≤ Cµr+1,

‖∂τak(·, s, τ)‖r ≤ Cµr,

‖(∂τak + i(k · v)ak)(·, s, τ)‖r ≤ Cµr−1.

(ii) The matrix-function W ⊗W can be written as

(W ⊗W )(y, s, τ, ξ) = R(y, s) +
∑

1≤|k|≤2λ0

Uk(y, s, τ)eik·ξ, (46)

where the coefficients Uk ∈ C∞(T3 × [0, 1]× R;S3×3) satisfy

Ukk =
1

2
(trUk)k (47)

and for any r ≥ 0

‖Uµk (·, s, τ)‖r ≤ Cµr,

‖∂sUµk (·, s, τ)‖r ≤ Cµr+1,

‖∂τUk(·, s, τ)‖r ≤ Cµr,

‖(∂τUµk + i(k · v)Uµk )(·, s, τ)‖r ≤ Cµr−1 .

In all these estimates the constant C depends on r and e, v, R̊ but is inde-
pendent of (s, τ) and µ.

Proof. The estimates for ak are a consequence of (25) and (27). Indeed,

since the constants in the estimates are allowed to depend on e, v, R̊, one

only needs to keep track of the number of derivatives of φ
(j)
k with respect to

v. Then the estimates on ak, ∂sak and ∂τak + i(k · v)ak immediately follow.
From the triangle inequality we can then also conclude the estimate on ∂τak.

Next, consider the expansion of ξ 7→W ⊗W into a Fourier series in ξ, i.e.

(W ⊗W )(y, s, τ, ξ) = U0(y, s, τ) +
∑

1≤|k|≤2λ0

Uk(y, s, τ)eik·ξ.

Since each Uk is the sum of finitely many terms of the form ak′ak′′ , the
estimates for Uk follow from those for ak.
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Next, since U0 is given by the average (in ξ), in order to obtain (46) we
need to show that  

T3

W ⊗W (y, s, τ, ξ) dξ = R(y, s).

To this end we calculate: 
T3

W ⊗W dξ
(21)
=

ρ

2

∑
j

∑
k∈Λj

(
γ

(j)
k (ρ−1R)

)2
|φ(j)
k (v, τ)|2

(
Id− k

|k|
⊗ k

|k|

)
(24)
=

ρ

2

∑
j

∑
k∈Λj

∑
l∈Cj

(
γ

(j)
k (ρ−1R)

)2
(αl(µv))2

(
Id− k

|k|
⊗ k

|k|

)
(22)
= R

∑
j

∑
l∈Cj

(αl(µv))2

= R
∑
l∈Z3

(αl(µv))2 = R.

Finally, (47) is a direct consequence of Proposition 3.1, in particular (20).
�

After this preparation we are ready to estimate all the terms in the per-
turbation scheme. First of all we verify that the corrector term wc is indeed
much smaller than the main perturbation term wo:

Lemma 6.2 (Estimate on the corrector).

‖wc‖α ≤ C
µ

λ1−α (48)

Proof. We start with the observation that, since k ·Bk = 0,

wo(x, t) =
1

λ
∇×

 ∑
|k|=λ0

−iak(x, t, λt)
k ×Bk
|k|2

eiλx·k

+

+
1

λ

∑
|k|=λ0

i∇ak(x, t, λt)×
k ×Bk
|k|2

eiλx·k.

Hence

wc(x, t) = − 1

λ
Quc(x, t), (49)

where

uc(x, t) =
∑
|k|=λ0

i∇ak(x, t, λt)×
k ×Bk
|k|2

eiλx·k.

The estimate (48) then follows from the Schauder estimate (36) for Q
combined with

‖uc‖α ≤ Cµλα.
�

Next, we verify the estimate on the energy (9).
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Lemma 6.3 (Estimate on the energy).∣∣∣∣e(t)(1− 1
2δ)−

ˆ
T3

|v1|2 dx
∣∣∣∣ ≤ C µ

λ1−α . (50)

Proof. Taking the trace of identity (46) in Proposition 6.1 we have

|W (y, s, τ, ξ)|2 = trR(y, s) +
∑

1≤|k|≤2λ0

ck(y, s, τ)eik·ξ

for some coefficients ck ∈ C∞(T3 × [0, 1]× R), which satisfy the estimates

‖ck(·, s, τ)‖r ≤ Cµr.

From part (i) of Proposition 5.2 with m = 1 we deduce∣∣∣∣ˆ
T3

|wo|2 − trRdx

∣∣∣∣ ≤ Cµλ
and ∣∣∣∣ˆ

T3

v · wo dx
∣∣∣∣ ≤ Cµλ.

Hence, combining with (48) we see that∣∣∣∣ˆ
T3

|v1|2 − |v|2 − |wo|2 dx
∣∣∣∣ ≤ C µ

λ1−α .

Recalling that

trR = 3ρ =
1

(2π)3

(
e(t)(1− 1

2δ)−
ˆ
T3

|v|2 dx
)
,

we conclude (50). �

7. Estimates on the Reynolds stress

Rewrite

∂tv1+div (v1 ⊗ v1) +∇p1 = [∂two + v · ∇wo] +

+
[
div (wo ⊗ wo − 1

2 |wo|
2Id + R̊)

]
+ [∂twc + div (v1 ⊗ wc + wc ⊗ v1 − wc ⊗ wc + v ⊗ wo)] .

(51)

In other words we split the Reynolds stress into the three parts on the right
hand side. We will refer to them as the transport part, the oscillation part,
and the error. In the following we will estimate each term separately.

Lemma 7.1 (The transport part).

‖R(∂two + v · ∇wo)‖α ≤ C
(
λα

µ
+

µ2

λ1−α

)
. (52)
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Proof. Observe that

R(∂two + v · ∇wo) = λR

 ∑
|k|=λ0

(∂τak + i(k · v)ak)(x, t, λt)Bke
iλk·x

+

+R

 ∑
|k|=λ0

(∂sak + v · ∇yak)(x, t, λt)Bkeiλk·x
 .

For the first term Corollary 5.3 with m = 2 implies the bound

λα

µ
+

µ

λ1−α +
µ1+α

λ
,

whereas for the second term Corollary 5.3 with m = 1 implies the bound

µ

λ1−α +
µ2

λ1−α +
µ2+α

λ
.

Since 1 ≤ µ ≤ λ, we obtain (52). �

Lemma 7.2 (The oscillation part).

‖R
(

div (wo ⊗ wo − 1
2 |wo|

2Id + R̊)
)
‖α ≤ C

µ2

λ1−α . (53)

Proof. Recall the formula (46) from Proposition 6.1. Since ρ is a function
of t only, we can write the oscillation part in (51) as

div (wo ⊗ wo−1
2(|wo|2 − ρ)Id + R̊)

= div
(
wo ⊗ wo −R− 1

2(|wo|2 − trR)Id
)

= div

 ∑
1≤|k|≤2λ0

(Uk − 1
2(trUk)Id)(x, t, λt)eiλk·x


=

∑
1≤|k|≤2λ0

div y[Uk − 1
2(trUk)Id](x, t, λt)eiλk·x .

Corollary 5.3 with m = 1 then implies (53). �

Concerning the error, we are going to treat three terms separately, as
follows.

Lemma 7.3 (Estimate on the error I).

‖R(∂twc)‖α ≤ C
µ2

λ1−α . (54)
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Proof. Recall from (49) that wc = − 1
λQuc. Now

∂tuc(x, t) =λ
∑
|k|=λ0

i(∇∂τak)(x, t, λt)×
k ×Bk
|k|2

eiλx·k+

+
∑
|k|=λ0

i(∇∂sak)(x, t, λt)×
k ×Bk
|k|2

eiλx·k .

Moreover, for any ck ∈ C∞(T3;R3) we have

ck(x, t, λt)e
iλx·k =

1

iλ
div

[
ck(x, t, λt)⊗

k

|k|2
eiλx·k

]
−

− 1

iλ

(
k

|k|2
· ∇
)
ck(x, t, λt)e

iλx·k .

Therefore ∂tuc can be written as

∂tuc = divUc + ũc,

where
‖Uc‖α ≤ Cµλα, ‖ũc‖α ≤ Cµ2λα.

Therefore we have R∂twc = − 1
λ (RQdivUc +RQũc). From the Schauder

estimate (40) for the operator RQdiv , we conclude that

‖R∂twc‖α ≤
1

λ
(‖RQdivUc‖α + ‖RQũc‖α)

≤ C

λ
(‖Uc‖α + ‖ũc‖α) ≤ C µ2

λ1−α .

�

Lemma 7.4 (Estimate on the error II).

‖R (div (v1 ⊗ wc + wc ⊗ v1 − wc ⊗ wc)) ‖α ≤ C
µ

λ1−2α
. (55)

Proof. We first estimate

‖v1 ⊗ wc+wc ⊗ v1 − wc ⊗ wc‖α ≤
≤ C(‖v1‖0‖wc‖α + ‖v1‖α‖wc‖0 + ‖wc‖0‖wc‖α)

(48)

≤ C
µ

λ1−α (‖v1‖α + ‖wc‖α)

≤ C µ

λ1−α (‖v‖α + ‖wc‖α + ‖wo‖α)

≤ C µ

λ1−α

(
C + C

µ

λ1−α + Cλα
)
.

Recall that 1 ≤ µ ≤ λ and hence 1 ≤ µ
λ1−α ≤ λ

α. Thus we conclude

‖v1 ⊗ wc + wc ⊗ v1 − wc ⊗ wc‖α ≤ C
µ

λ1−2α
.

(55) follows from the latter inequality and the Schauder estimate (39). �
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Lemma 7.5 (Estimate on the error III).

‖R (div (v ⊗ wo)) ‖α ≤ C
µ2

λ1−α . (56)

Proof. Since Bk · k = 0, we can write

div (v ⊗ wo) = wo · ∇v + (divwo)v

=
∑
|k|=λ0

[ak(Bk · ∇)v + v(Bk · ∇ak)] eiλk·x .

The claim follows from Corollary 5.3 with m = 1. �

8. Conclusion: Proof of Proposition 2.2

In this section we collect the estimates from the preceding sections. For
simplicity we set

µ = λβ.

It should be noted, however, that due to the requirement (18) we can only
ensure µ ∼ λβ for large λ.

We claim that for an appropriate choice of α and β, the estimates (9),(10),
(11) and (12) will be satisfied for sufficiently large λ. First of all recall that,
by the choice of M we have

‖wo‖0 ≤
√
Mδ

2
(57)

(cp. with (30)) and M > 1. Therefore (11) follows from the estimate
‖wc‖α ≤ Cµλα−1 (cp. with (48)) if, for instance, we can prescribe

C
µ

λ1−α = Cλα+β−1 ≤
√
δ

2
.

On the other hand (12) follows easily from (57) and the identity p1 − p =
−1

2 |wo|
2.

Also, from (50) it follows that (9) is satisfied provided

Cλα+β−1 ≤ 1

8
δ min
t∈[0,1]

e(t).

Finally, (52),(53) as well as the estimates on the error (54)-(56) imply that

‖R̊1‖α ≤ C
(
λα−β + λα+2β−1 + λ2α+β−1

)
.

Therefore, any choice of α, β such that

α < β, α+ 2β < 1 (58)

will ensure that (9),(10), (11) and (12) will be valid for sufficiently large
λ. This completes the proof. As a side remark observe that (58) requires
α < 1

3 .
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