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Abstract. It is known since the pioneering works of Scheffer and Shnirelman that there
are nontrivial distributional solutions to the Euler equations which are compactly sup-
ported in space and time. Obviously these solutions do not respect the classical conserva-
tion law for the total kinetic energy and they are therefore very irregular. In recent joint
works we have proved the existence of continuous and even Hölder continuous solutions
which dissipate the kinetic energy. Our theorem might be regarded as a first step towards
a conjecture of Lars Onsager, which in 1949 asserted the existence of dissipative Hölder
solutions for any Hölder exponent smaller than 1

3
.
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1. The Euler equations

The incompressible Euler equations are a system of partial differential equations
which were derived more than 250 years ago by Euler to describe the motion of
an inviscid fluid. If we assume that the density of the fluid is a constant ρ0, the
unknowns of the system are the velocity v, a vector field, and the pressure p, a
scalar field. For convenience we will assume that these fields are defined on Tn× I
or in Rn × I, where Tn = S1 × . . .× S1 is the n-dimensional torus and I is either
an open interval ]0, T [, or the open halfline ]0,∞[ or the entire real line R. In
general we assume n ≥ 2, but the case of interests here are obviously n = 2, 3. The
equations take then the following form{

∂tv + divx(v ⊗ v) +∇p = 0

divxv = 0 ,
(1.1)

where the density ρ0 of the fluid is normalized to 1.

The velocity v(x, t) represents the speed of the fluid particle which at times t
occupies the point x. If Ω is a smooth (bounded) open domain, then∫

∂Ω

p(x, t)ν(x) dA(x)
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is the total force exerted at time t by the fluid outside Ω upon the portion of fluid
inside Ω. ν denotes the exterior unit normal to Ω. Note that p is then well-defined
up to an arbitrary function of time, since∫

∂Ω

ν = 0

for every smooth bounded open set Ω. This arbitrariness in the definition of p can
be seen directly from (1.1) and it is natural to mod it out by normalizing p so that∫
Tn p(x, t) dx = 0, which from now on will always be assumed to hold.

The two equations in (1.1) express simply the conservation of mass and momen-
tum. Indeed, if (v, p) is a pair of C1 functions satisfying (1.1) and Ω an arbitrary
domain, the divergence theorem implies∫

∂Ω

v · ν = 0 (1.2)

d

dt

∫
Ω

v =

∫
∂Ω

v(v · ν) +

∫
∂Ω

pν . (1.3)

The identity (1.2) expresses the conservation of mass: the total amount of fluid
particles “getting out” of Ω is balanced by the total amount “getting in”. The
identity (1.3) is the counterpart of the conservation of momentum: the rate of
change of the momentum of the fluid contained in Ω is given by the sum of the
flux of momentum through Ω and the total force exerted on Ω by the portion of
fluid lying outside.

In continuum mechanics it is often the case that balance laws as in (1.2) and
(1.3) (valid for any “fluid element” Ω) are derived, under suitable assumptions,
from first principles, whereas the differential equations (as (1.1)) are deduced as
consequences when the functions are sufficiently smooth. In the case at hand (1.1)
can be easily derived from (1.2)-(1.3) if the pair (v, p) is C1. However we can make
sense of (1.2) and (1.3) even if (v, p) are much less smooth: the continuity of the
pair is, for instance, enough to make sense of all the integrals in (1.2) and (1.3)
whenever Ω has C1 (or even Lipschitz) boundary. Though this looks quite natural,
we will see that there are pairs of continuous functions satisfying (1.2) and (1.3)
which display a quite counterintuitive behavior.

2. Anomalous dissipation

If (v, p) is a C1 solution of (1.1), we can scalar multiply the first equation by v
and use the chain rule to derive the identity

∂t
|v|2

2
+ divx

((
|v|2

2
+ p

)
v

)
= 0 .

Assume that the domain of definition is Tn × I and integrate this last equality in
space. We then derive the conservation of the total kinetic energy

d

dt

∫
Tn

|v|2(x, t) dx = 0 . (2.1)
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Thus, classical solutions of the incompressible Euler equations are energy conser-
vative.

Nonetheless, in [42] Onsager suggested the existence of solutions to the 3-
dimensional incompressible Euler equations which dissipate the energy. Such so-
lutions cannot be interpreted in classical terms and it is remarkable that indeed
Onsager himself suggests a concept of solution which coincides with our modern
notion of weak (distributional) solutions.

Before coming to this, let us briefly describe the considerations of Onsager on
the energy spectrum for 3-dimensional isotropic turbulence. We start by introduc-
ing the Navier Stokes equations, namely the system{

∂tv + divx(v ⊗ v) +∇p = ν∆v

divxv = 0 ,
(2.2)

where the viscosity ν is considered to be fairly small (or, in the language of fluid
dynamics, the Reynolds number of the flow is high). For a smooth solution of (2.2)
the balance law for the energy (2.1) would then take the form

d

dt

∫
Tn

|v|2(x, t) dx = −2ν

∫
Tn

|∇ × v|2(x, t) dx . (2.3)

It is well known that, in 2 dimensions, the right hand side of (2.3), called the en-
strophy, is a conserved quantity and hence there is no mechanism of “inflation” for
the dissipation term. However, this conservation does not hold for 3-dimensional
solutions, where the energy is the only constant of motion and there are several
experimental reasons to believe that typically the enstrophy becomes quite large.

If we were considering a family of solutions uν with ν → 0 and if these solutions
were to converge to a classical solution of (1.1), then the right hand side of (2.3)
would behave as O(ν). However, in the theory of hydrodynamic turbulence it is
expected that, in 3-dimensions and for “typical” turbulent solutions of (2.2), the
right hand side of (2.3) is independent of the viscosity. Thus, one may advance
the hypothesis that the dissipation of the energy is not primarily driven by the
viscous term ν∆u and that the main responsible for this dissipation is indeed the
nonlinear term of the equations, which appear as well in (1.1).

This hypothesis and a corresponding “energy spectrum” law has been first
put forward by Kolmogorov in [34] (nowadays often cited as K41 theory) and, as
pointed out by Onsager in [42], rediscovered independently at least twice (in [41]
and [56]; see also [30], which refers to [45]). We briefly explain here the motivations
given by [42] for the Kolmogorov’s law (and refer to [28] for a nice and much more
detailed analysis of Onsager’s discoveries).

Denote by E(t) the average of the total kinetic energy (divided by the density
of the fluid) and by Q = −dEdt its rate of dissipation. Moreover, we let L be the
“macroscale” of the flow (in our case we can suppose this is the side length of the
torus, i.e. 2π). If we assume that Q depends only on L and E a simple dimensional
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analysis suggests the law

Q = −dE
dt

= cE
3
2L−1 (2.4)

where c is a dimensionless constant. Indeed, if σ denotes the unit of space and τ
the unit of time, then E is measured in σ2/τ2, Q in σ2/τ3 and L in σ: it can be
readily checked that the law (2.4) is the only possible one of the form cEαLβ for
which c is a dimensionless constant. The law (2.4) has been verified extensively
in experiments and it turns out to be valid as long as the viscosity is very small
compared to E(t).

In order to get into Onsager’s explanation of how this might be possible, we
expand the velocity v in Fourier series:

v(x, t) =
∑
k∈Z3

ak(t)eik·x .

Obviously a−k = ak, because v is real-valued. Moreover the divergence-free con-
straint translates into the identity k · ak = 0. We then rewrite the remaining
equations of (2.2) as an infinite-dimensional system of ODEs for the ak:

dak
dt

= i
∑
`

ak−` · `
[
−a` +

(a` · k)k

|k|2

]
− ν|k|2ak (2.5)

Clearly the total kinetic energy is (up to constant factors)
∑
k |ak|2. Observe,

moreover, that L is essentially the smallest λ such that
∑
|k|=λ |ak|2 is comparable

to E.

We next derive the rate of change of the energy carried by a given wave number:

d

dt
|ak|2 = −2|k|2ν|ak|2 +

∑
`

Q(k, `) , (2.6)

where the term Q(k, `) is given by

Q(k, `) = −2Im ((ak+` · `)(ak · a`) + (a`−k · k)(ak · a`)) .

Note that Q(k, `) = −Q(`, k): this term accounts for the “energy exchange” be-
tween different Fourier modes. As long as −ν|k|2 is small (i.e. for sufficiently small
k), we can assume that the term Q(k, `) is the dominating one in (2.6).

The picture proposed by Onsager for a “typical” chaotic flow is the following:
in the infinite sum at the right hand side of (2.6) only the terms where ak, a`, ak+`

have a comparable size are dominating. So, the energy gets redistributed from
wave lengths of a certain size to wave length of, say, double that size. As λ grows
the redistribution process happens faster and faster, so that after a short time (i.e.
before E becomes too smal for the validity of (2.4)) the energy is redistributed at
all scales. If this transfer is a chaotic process, after few steps the information about
the low wave numbers (i.e. the macroscopic features of the flow). It is therefore
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plausible that the energy flux of the energy distribution depends only on the total
dissipation rate Q = −dEdt and on the modulus of the wave number |k|.

If we set f(λ) :=
∑
|k|≤λ |ak|2 the energy distribution E(λ) is “formally” df

dλ ,

so that E =
∫
E(λ)dλ. Since the frequency is measured in σ−1, E(λ) is measured

in σ3τ−2. The same dimensional analysis leading to (2.4) gives then

E(λ) = βQ
2
3λ−

5
3 (2.7)

where β is a dimensional constant. The last identity is the famous Kolmogorov’s
law.

3. Weak solutions

At the end of his note Onsager remarks that . . . in principle, turbulent dissipation
as described could take place just as readily without the final assistance of viscosity.
In the absence of viscosity the standard proof of conservation of energy does not
apply, because the velocity field does not remain differentiable! In fact it is possible
to show that the velocity field in such “ideal turbulence” cannot obey any Lipschitz
condition of the form |v(x) − v(y)| ≤ C|x|α for any α greater than 1

3 ; otherwise
the energy is conserved.

First of all, translated in modern PDE terminology, Onsager is simply proposing
to look at weak solutions. Again, quoting him directly ...Of course, under the cir-
cumstances, the ordinary formulation of the laws of motion in terms of differential
equations becomes inadequate and must be replaced by a more general description;
for example, the formulation (2.5) in terms of Fourier series will do. Thus he is
simply looking at functions with Fourier coefficients satisfying (2.5), where ν is set
equal to 0.

However, he is not assuming any differentiability of these solutions: the only
assumption is that the right hand side of (2.5) makes sense, or in other words that
the series: ∑

`

ak−` · `
[
−a` +

(a` · k)k

|k|2

]
converges. Recall that ak · k = 0. Thus the series above can be rewritten as

∑
`

ak−` · k
[
−a` +

(a` · k)k

|k|2

]
.

For the converge it is then sufficient to assume that
∑
|ak|2 < ∞, i.e. that the

velocity field is square summable. Summarizing, “Onsager’s solutions” are those
divergence free real valued fields

v(x, t) =
∑

ak(t)eik·x
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with Fourier coefficients satisfying

dak
dt

= i
∑
`

ak−` · k
[
−a` +

(a` · k)k

|k|2

]
(3.1)

and such that ∑
|ak|2(t) <∞ for every t.

Consider now the (time-dependent) vector

b(t) := −i
∑
`

ak−` · ka` .

Observe that the right hand side of (3.1) is the vector b− (k·b)
|k|2 k, i.e. the projection

of b(t) on the vector space Vk orthogonal to k. Since t 7→ ak(t) is a curve in Vk,
(3.1) is satisfied if and only if

w · dak
dt
− w · b(t) = 0 for all w ∈ Vk.

In turn the last identity can be rewritten as

w · dak
dt

+ w ⊗ k :
∑
`

ak−` ⊗ a` = 0 . (3.2)

Introduce next the vector field ϕ(x) := weik·x and observe that, for w ∈ Vk, ϕ
is divergence-free. The identity (3.2) is simply∫

Tn

ϕ(x) · ∂v
∂t

(x, t) dx−
∫
Tn

∇ϕ(x) : v ⊗ v(x, t) dx = 0 (3.3)

A simple density argument shows then that (3.1) holds if and only if v is a weak
solution in the sense of distributions. We recall the latter notion for the reader’s
convenience.

Definition 3.1. A vector field v ∈ L2(Tn × I) is a weak solution of the incom-
pressible Euler equations if∫

∂tϕ · v +∇ϕ : (v ⊗ v) dxdt = 0 (3.4)

for all ϕ ∈ C∞c (Tn × I;Rn) with divϕ = 0 and∫
v · ∇ψ dxdt = 0 for all ψ ∈ C∞c (Tn × I). (3.5)
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4. The Onsager’s conjecture

The final sentence of Onsager’s note is then ...The detailed conservation of energy
(2.6) does not imply conservation of the total energy if the number of steps in the
cascade is infinite, as expected, and the double sum of Q(`, k) converges only con-
ditionally. Here, as implicit in the discussion, we are setting ν = 0. Thus Onsager
claims that a closer inspection of the identity (2.6) shows that the total conserva-
tion of the energy can be inferred from the weak formulation of the equation (3.1)
only when the solution is Hölder continuous with exponent larger than 1

3 , whereas
this might fail for smaller exponents.

Following this suggestion, the claim about the energy conservation has been
shown by Eyink in [27] under the assumption that

∑
k |k|α|ak| < ∞ (which does

imply the α-Hölder regularity, in space, of the function v, but it is obviously a
stronger condition). Onsager’s exact claim has then been sown by Constantin, E
and Titi with an elegant and fairly short argument (we refer also to [49] for more
precise results). However, much less is known on the other side of the conjecture,
namely on the existence of solutions with lower regularity which do not preserve
energy. This will be the main focus of the rest of the note, where we will explore
what has been proved up to now.

The exponent 1
3 has a direct significance in isotropic turbulence, since it is

related to another famous law of the Kolmogorov’s theory, namely the fact that,
in isotropic turbulent flows, the spatial variance of velocities is comparable to the
distance to the power 2

3 (see the discussion in the paper [28]). These laws are
always derived by scaling arguments and thus a proof of the Onsager’s conjecture
would give a first justification purely based on rigorous mathematical considera-
tions pertaining to the equations of motions.

5. Weak solutions with compact support in time

The first proof that weak solutions of the Euler’s equations might not be energy
conservative is due to Scheffer in his groundbreaking paper [46]. The main theorem
of [46] states the existence of a non-trivial weak solution in L2(R2×R) with compact
support in space and time. Later on Shnirelman in [47] gave a different proof of
the existence of a non-trivial weak solution in L2(T2 × R) with compact support
in time. In these constructions it is not clear if the solution belongs to the energy
space, i.e. whether each time-slice belongs to L2. In the note [48] Shnirelman gave
the first existence proof of a solution of the 3-dimensional Euler equations which
dissipates the energy: obviously this solution does belong to the energy space and
hence satisfies the requirement that the kinetic energy be finite at each time.

In the paper [20] we provided a relatively simple proof of the following stronger
statement.

Theorem 5.1. There exist infinitely many compactly supported bounded weak so-
lutions of the incompressible Euler equations in any space dimension.
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The proof in [20] is based on a suitable notion of subsolution and it embeds the
examples of Theorem 5.1 in a long tradition of (rather counterintuitive) construc-
tions in the theory of differential inclusions. As pointed out in the important paper
[38] by Müller and Šverak, these results (see, for instance, [10, 11, 19, 32, 33]) have
a close relation to Gromov’s h-principle. In particular the method of convex inte-
gration, introduced by Gromov and extended by Müller and Šverak to Lipschitz
mappings, provides a very powerful tool to construct such examples. In the paper
[20] these tools were suitably modified and used for the first time to explain Schef-
fer’s non-uniqueness theorem. It was also noticed immediately that this approach
allows to go way beyond the result of Scheffer. Indeed it has lead to new develop-
ments for several equations in fluid dynamics (see [12, 18, 50, 52, 53, 54, 57]), for
which we refer to the survey article [22].

We now motivate the definition of subsolution following [22]. Let us first recall
the concept of Reynolds stress. It is generally accepted that the appearance of
high-frequency oscillations in the velocity field is the main reason responsible for
turbulent phenomena in incompressible flows. One related major problem is there-
fore to understand the dynamics of the coarse-grained, in other words macroscop-
ically averaged, velocity field. If v denotes the macroscopically averaged velocity
field, then it satisfies

∂tv + div (v ⊗ v +R) +∇p = 0
div v = 0,

(5.1)

where
R = v ⊗ v − v ⊗ v .

The latter quantity is called Reynolds stress and arises because the averaging does
not commute with the nonlinearity v ⊗ v. On this formal level the precise defi-
nition of averaging plays no role, be it long-time averages, ensemble-averages or
local space-time averages. The latter can be interpreted as taking weak limits.
Indeed, weak limits of Leray solutions of the Navier-Stokes equations with vanish-
ing viscosity have been proposed in the literature as a deterministic approach to
turbulence (see [1], [2], [13], [37]). We are now ready to introduce our notion of
subsolution. In what follows we will use Sn×n for the space of n × n symmetric
matrices.

Definition 5.2 (Subsolutions). Let e ∈ L1
loc(Rn×(0, T )) with e ≥ 0. A subsolution

to the incompressible Euler equations with given kinetic energy density e is a triple

(v,R, p) : Rn × (0, T )→ Rn × Sn×n × R

with the following properties:

(i) v ∈ L2
loc, u ∈ L1

loc, p is a distribution;

(ii) (5.1) is satisfied in the sense of distributions

(iii) R ≥ 1
n (2ē− |v̄|2)Id ≥ 0 a.e..
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Remark 5.3. Though in the various reference [20, 21, 22] the notion of subsolution
is seemingly different from the one given above, the two concepts are easily shown
to be equivalent. Consider, for instance the triple (v, u, q) of [22, Definition 2.3]
and impose the relations

trR = 2ē− |v|2 , q = p+
2

n
ē and u = (R+ v ⊗ v)− 2

n
ē Id .

It is then obvious that (v,R, p) is a subsolution in the sense of Definition 5.2 if and
only if (v, u, q) is a subsolution in the sense of [22, Definition 2.3].

Observe that if R = 0, then the v component of the subsolution is in fact a weak
solution of the Euler equations. As mentioned above, in passing to weak limits (or
when considering any other averaging process), the high-frequency oscillations in
the velocity are responsible for the appearance of a non-trivial Reynolds stress.
Equivalently stated, this phenomenon is responsible for the inequality sign in (iii).

The key point in our approach to prove Theorem 5.1 is that, starting from
a subsolution, an appropriate iteration process reintroduces the high-frequency
oscillations. In the limit of this process one obtains weak solutions. However, since
the oscillations are reintroduced in a very non-unique way, in fact this generates
many solutions from the same subsolution. In the next theorem we give a precise
formulation of the previous discussion.

Theorem 5.4 (Subsolution criterion). Let e ∈ C(Rn × (0, T )) and (v,R, p) be a
smooth subsolution such that 2ē− |v̄|2 > 0. Then there exist infinitely many weak
solutions v ∈ L∞loc(Rn × (0, T )) of the Euler equations such that

1
2 |v|

2 = e

almost everywhere. Infinitely many among these belong to C((0, T ), L2).

This theorem corresponds to Proposition 2 of [21] (cp. with Theorem 2.4 of
[22]). From it we derived quite severe counterexamples to the uniqueness of so-
lutions to the Euler equations, even when imposing quite restrictive additional
constraints.

6. The Nash-Kuiper Theorem and Gromov’s h-principle

The origin of convex integration lies in the famous Nash-Kuiper theorem. In
this section we briefly recall some landmark results from the theory of isometric
embeddings.

Let Mn be a smooth compact manifold of dimension n ≥ 2, equipped with a
Riemannian metric g. An isometric immersion of (Mn, g) into Rm is a map u ∈
C1(Mn;Rm) such that the induced metric u]e agrees with g. In local coordinates
this amounts to the system

∂iu · ∂ju = gij (6.1)
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consisting of n
2 (n+ 1) equations in m unknowns. If in addition u is injective, it is

an isometric embedding. Assume for the moment that g ∈ C∞. The two classical
theorems concerning the solvability of this system are:

(A) if m ≥ 1
2 (n+ 2)(n+ 3), then any short embedding can be uniformly approx-

imated by isometric embeddings of class C∞ (Nash [40], Gromov [29]);

(B) if m ≥ n+ 1, then any short embedding can be uniformly approximated by
isometric embeddings of class C1 (Nash [39], Kuiper [36]).

Recall that a short embedding is an injective map u : Mn → Rm such that the
metric induced on M by u is shorter than g. In coordinates this means that

(∂iu · ∂ju) ≤ (gij) (6.2)

in the sense of quadratic forms. Thus, (A) and (B) are not merely existence
theorems, they show that there exists a huge (essentially C0-dense) set of solutions.
This type of abundance of solutions is a central aspect of Gromov’s h-principle,
for which the isometric embedding problem is a primary example (see [26, 29]).

There is a clear formal analogy between (6.1)-(6.2) and (1.1)-(5.1). First of all,
note that the Reynolds stress measures the defect to being a solution of the Euler
equations and it is in general a nonnegative symmetric tensor, whereas gij−∂iu·∂ju
measures the defect to being isometric and, for a short map, is also a nonnegative
symmetric tensor. More precisely (6.1) can be formulated for the deformation
gradient A := Du as the coupling of the linear constraint

curlA = 0

with the nonlinear relation
AtA = g.

In this sense short maps are “subsolutions” to the isometric embedding problem
in the spirit of Definition 5.2. Along this line of thought, Theorem 5.4 is then
the analogue for the Euler equations of the Nash-Kuiper result (B). However note
that, strictly speaking, the formal analog of statement (B) would be replacing L∞

by C0 in Theorem 5.4.

Statement (B) is rather surprising for two reasons. First of all, for n ≥ 3 and
m = n + 1, the system (6.1) is overdetermined. Moreover, for n = 2 we can
compare (B) to the classical rigidity result concerning the Weyl problem: if (S2, g)
is a compact Riemannian surface with positive Gauss curvature and u ∈ C2 is an
isometric immersion into R3, then u is uniquely determined up to a rigid motion
([14, 31], see also [51] Chapter 12 for a thorough discussion). Thus it is clear that
isometric immersions have a completely different qualitative behavior at low and
high regularity (i.e. below and above C2).

A strikingly similar phenomenon holds for the Euler equations since, when cou-
pled with the energy constraint |v|2 = 2ē, they are also formally overdetermined.
Moreover C1 solutions of the Cauchy problem are unique. There are further analo-
gies when we look at embeddings with Hölder regularity, as we will see in Section
8 below.
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7. Continuous and Hölder dissipative solutions

In the paper [23] we have succeeded in constructing the first example of a dissipative
continuous solutions of the Euler equations. More precisely, we can prove the
following statement.

Theorem 7.1. Assume e : [0, 1] → R is a positive smooth function. Then there
is a continuous vector field v : T3 × [0, 1] → R3 and a continuous scalar field
p : T3 × [0, 1]→ R which solve (1.1) in the sense of distributions and such that

e(t) =

∫
|v|2(x, t) dx ∀t ∈ [0, 1] . (7.1)

Moreover, in the more recent note [24] we have achieved a version of Theorem
7.1 which allows for a small Hölder exponent.

Theorem 7.2. There is θ ∈]0, 1
3 [ with the following property. For every smooth

positive function e : S1 → R there is a vector field v ∈ Cθ(T3×S1,R3) and a scalar
field p ∈ Cθ(T3 × S1) which solve the incompressible Euler equations in the sense
of distributions and such that

e(t) =

∫
|v|2(x, t) dx ∀t ∈ S1 . (7.2)

This represents obviously the first instance that Onsager’s suggestion might
indeed be correct. The construction in [23] is much more complicated and more
surprising than the one in [20]. Note indeed that by a simple approximation
argument continuous weak solutions of (1.1) satisfy the much stronger balance
laws (1.2) and (1.3) for any C1 open domain Ω.

Clearly, Theorem 7.1 is not the C0 counterpart of Theorem 5.4. The way the
theorem is derived share, however, several similarities with the Nash-Kuiper ap-
proach to the approximation of short maps with C1 isometric embeddings. Indeed,
Theorem 7.1 is achieved through an iteration procedure: the final product of this
scheme can be seen as a superposition of infinitely many (perturbed) and weakly
interacting Beltrami flows. Curiously, the idea that turbulent flows can be under-
stood as a superposition of Beltrami flows has already been proposed almost 30
years ago in the fluid dynamics literature: see the work of Constantin and Majda
[16].

Along the iteration the maps will be subsolutions of the Euler equations in the
sense of Definition 5.2. In what follows S3×3

0 denotes the vector space of symmetric
trace-free 3× 3 matrices.

Definition 7.3. Assume v, p, R̊ are smooth functions on T3 × [0, 1] taking values,
respectively, in R3,R,S3×3

0 . We say that they solve the Euler-Reynolds system if ∂tv + div (v ⊗ v) +∇p = div R̊

div v = 0 .
(7.3)
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Clearly, the tensor −R̊ is just the traceless part of the Reynolds stress R intro-
duced in (5.1). We are now ready to state the main proposition of [23], of which
Theorem 7.1 is a simple corollary.

Proposition 7.4. Let e be as in Theorem 7.1. Then there are positive constants
η and M with the following property.

Let δ ≤ 1 be any positive number and (v, p, R̊) a solution of the Euler-Reynolds
system (7.3) such that

3δ
4 e(t) ≤ e(t)−

∫
|v|2(x, t) dx ≤ 5δ

4 e(t) ∀t ∈ [0, 1] (7.4)

and
sup
x,t
|R̊(x, t)| ≤ ηδ . (7.5)

Then there is a second triple (v1, p1, R̊1) which solves as well the Euler-Reynolds
system and satisfies the following estimates:

3δ
8 e(t) ≤ e(t)−

∫
|v1|2(x, t) dx ≤ 5δ

8 e(t) ∀t ∈ [0, 1] , (7.6)

sup
x,t
|R̊1(x, t)| ≤ 1

2ηδ , (7.7)

sup
x,t
|v1(x, t)− v(x, t)| ≤M

√
δ (7.8)

and
sup
x,t
|p1(x, t)− p(x, t)| ≤Mδ . (7.9)

Proof of Theorem 7.1. We start by setting v0 = 0, p0 = 0, R̊0 = 0 and δ := 1.
We then apply Proposition 7.4 iteratively to reach a sequence (vn, pn, R̊n) which
solves (7.3) and such that

3

4

e(t)

2n
≤ e(t)−

∫
|vn|2(x, t) dx ≤ 5

4

e(t)

2n
for all t ∈ [0, 1] (7.10)

sup
x,t
|R̊n(x, t)| ≤ η

2n
(7.11)

sup
x,t
|vn+1(x, t)− vn(x, t)| ≤ M

√
1

2n
(7.12)

sup
x,t
|pn+1(x, t)− pn(x, t)| ≤ M

2n
. (7.13)

Then {vn} and {pn} are both Cauchy sequences in C(T3 × [0, 1]) and converge
uniformly to two continuous functions v and p. Similarly R̊n converges uniformly
to 0. Moreover, by (7.10)∫

T3

|v|2(x, t) dx = e(t) ∀t ∈ [0, 1] .

Passing into the limit in (7.3) we therefore conclude that (v, p) solves (1.1).
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The proof of Proposition 7.4 shares several similarities with Nash’s scheme.
The most important one, common to all instances of the h principle, is that the
map v1 consists of adding two perturbations to v:

v1 = v + wo + wc =: v + w. (7.14)

where the leading term of the perturbation has the form

wo(x, t) = W (x, t, λx, λt)

with W smooth and λ very large. Thus v1 is derived from v by adding very fast
oscillations.

On the other hand there are several points where our method departs dramat-
ically from Nash’s, due to some issues which are typical of the Euler equations
and are not present for the isometric embeddings. We just highlight the two ones
which are, in our opinion, the most relevant.

First of all, our scheme has to deal with a “transport term” which arises,
roughly speaking, as the linearization of the first equation in (1.1). This term
is typical of an evolution equation, whereas, instead, the equations for isometric
embeddings are “static”. At a first glance this transport term makes it impossible
to use a scheme like the one of Nash to prove Theorem 7.1. To overcome this
obstruction we need to introduce a phase-function that acts as a kind of discrete
Galilean transformation of the (stationary) Beltrami flows, and to introduce an
“intermediate” scale along each iteration step on which this transformation acts.

Secondly, convex integration heavily relies on one-dimensional oscillations - the
simple reason being that these can be “integrated”, hence the name convex inte-
gration. As already mentioned, the main building blocks of our iteration scheme
are Beltrami flows, which are truly three-dimensional oscillations. The issue of
going beyond one-dimensional oscillations has been raised by Gromov (p219 of
[29]) as well as Kirchheim-Müller-Šverák (p52 of [33]), but as far as we know, there
have been no such examples in the literature so far. In fact, it seems that with
one-dimensional oscillations alone one cannot reach a proof of Proposition 7.4.

8. C1,α isometric embeddings

The question of a sharp regularity threshold has been the object of investigation for
the isometric embedding of surfaces as well (see for instance [29], [58]). Consider a
smooth Riemannian 2-dimensional manifold M = (S2, g) with positive curvature.
As already mentioned, the isometric embeddings of M into R3 are rigid in the
class C2, whereas the h-principle holds for C1. Borisov investigated embeddings
of class C1,α and proved the rigidity for α > 2

3 (as a culminating result of the
investigations in [3, 4, 5, 6, 7]) and the local h-principle for α < 1

13 (although the
latter was announced in 1965, see [8], a partial proof only appeared in 2004 [9]).
In [17] we returned to this problem, and gave a more modern PDE proof of the
loca h-principle for α < 1

7 , together with more general statements in all dimensions
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(here by locality we mean that the h-principle holds in this form for Riemannian
2-dimensional manifolds diffeomorphic to R2: for purely technical reasons, when
the topology is more complicated the proofs yield a lower treshold, cp. with [17,
Corollaries 1 and 2]).

The arguments of [3, 4, 5, 6, 7] for the rigidity when α > 2
3 are geometric

but quite involved. A short proof of Borisov’s rigidity result was provided in [17].
Note that if u ∈ C3 one can compute the area distorsion of the Gauss map from
the Riemann-curvature tensor, which in turn depends only on the metric. When
the curvature is positive, the image u(M) is therefore locally convex. Even if the
metric g is smooth, this is nonetheless false in general when the isometry is not
regular enough, as shown precisely by the Nash-Kuiper theorem. However, by a
result of Pogorelov (see [43] and [44]), the convexity of u(M) holds even for C1

maps u, provided one could show that the area distortion is always “positive”
(cp. with [17] for the exact definition). The theory developed by Borisov in
[3, 4, 5, 6, 7] shows that this positivity holds when the isometric immersion u is

of class C1, 23 +ε. In [17] we recover Borisov’s statement expressing the equality
between the Riemann-curvature tensor and the area distortion of the Gauss map
with a suitable integrable formula. The latter resenbles, in structure, the integral
identity leading to the energy conservation for the Euler equations. Indeed our
computations in [17] bear striking similarities with those used in [15] for proving

the energy conservation of C1, 13 +ε solutions of Euler.

In the case of isometric embeddings there does not seem to be a universally
accepted critical exponent (see Problem 27 in [58]), even though 1

2 and 1
3 seem

both relevant (compare with the discussion in [9] and with that in [22]).
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[53] L. Székelyhidi, Jr., Relaxation of the incompressible porous medium equation, to
appear in Ann. Sci. Ec. Norm. Sup. (2012).
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