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Abstract

We study the motion of discrete interfaces driven by ferromagnetic interactions in
a two-dimensional low-contrast periodic environment, by coupling the minimizing
movements approach by Almgren, Taylor and Wang and a discrete-to-continuum
analysis. As in a recent paper by Braides and Scilla dealing with high-contrast
periodic media, we give an example showing that in general the effective motion
does not depend only on the Γ-limit, but also on geometrical features that are not
detected in the static description. We show that there exists a critical value δ̃ of the
contrast parameter δ above which the discrete motion is constrained and coincides
with the high-contrast case. If δ < δ̃ we have a new pinning threshold and a new
effective velocity both depending on δ. We also consider the case of non-uniform
inclusions distributed into periodic uniform layers.

Keywords: discrete systems, minimizing movements, motion by curvature, crystalline
curvature, geometric motion, low-contrast media.

1 Introduction

In this paper we study a problem of homogenization for a discrete crystalline flow. The
analysis will be carried over by using the minimizing-movement scheme of Almgren,
Taylor and Wang [3]. This consists in introducing a time scale τ , iteratively defining a
sequence of sets Eτk as minimizers of

min
{
P (E) +

1

τ
D(E,Eτk−1)

}
, (1)

where P is a perimeter energy and D is a distance-type energy between sets, and Eτ0 is a
given initial datum, and subsequently computing a time-continuous limit E(t) of {Eτk}
as τ → 0, which defines the desired geometric motion related to the energy P .

In recent papers by Braides, Gelli and Novaga [9] and Braides and Scilla [11], the
Almgren-Taylor-Wang approach has been used coupled to a homogenization procedure.
In this case the perimeters and the distances depend on a small parameter ε (interpreted
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as a space scale), and consequently, after introducing a time scale τ , the time-discrete
motions are the Eτ,εk defined iteratively by

Eτ,εk is a minimizer of min
{
Pε(E) +

1

τ
Dε(E,E

τ,ε
k−1)

}
. (2)

The time-continuous limit E(t) of {Eτ,εk } then may depend how mutually ε and τ tend to
0 (see Braides [8]). In particular, if we have a large number of local minimizers then the
limit motion will be pinned if τ << ε suitably fast (in a sense, we can pass to the limit in
τ first, and then apply the Almgren-Taylor-Wang approach, which clearly gives pinning
when the initial data are local minimizers). On the contrary, if ε << τ fast enough and
Pε Γ-converge to a limit perimeter P (which is always the case by compactness) then
the limit E will be the evolution related to the limit P (again, in a sense, in this case
we can pass to the limit in ε first).

In [11] the energies Pε are inhomogeneous ferromagnetic energies defined on subsets
E ⊂ εZ2, of the form

Pε(E) =
1

2
ε
∑
{cij : i, j ∈ Z2, εi ∈ E, εj 6∈ E, |i− j| = 1},

(we use the notation
∑
{xa : a ∈ A} =

∑
a∈A xa) where the coefficients cij equal α > 0

except for some well-separated periodic square inclusions of size Nβ where cij = β > α.
The periodicity cell is pictured in Fig. 1, where continuous lines represent β-bonds,
dashed lines α-bonds. These inclusions are not energetically favorable (high-contrast

Nβ Nα

Figure 1: the periodicity cell.

medium) and they can be neglected in the computation of the Γ-limit, which is the
crystalline perimeter

P (E) = α

∫
∂E
‖ν‖1dH1,

where ν is the normal to ∂E and ‖(ν1, ν2)‖1 = |ν1|+ |ν2|.
The flat flow of this perimeter is the motion by crystalline curvature in dimension

two described by Taylor [17]. In the case of initial datum a coordinate rectangle, the
evolution by crystalline curvature is a rectangle with the same centre and sides of lengths
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L1, L2 governed by the system of ordinary differential equations
L̇1 = −4α

L2

L̇2 = −4α

L1
.

In [11] all possible evolutions have been characterized as ε, τ → 0 showing that
the relevant mutual scale is when τ/ε → γ. In the case of initial datum a coordinate
rectangle the resulting evolution is still a rectangle. In the case of a unique evolution
the side lengths L1(t), L2(t) of this rectangle are governed by a system of ‘degenerate’
ordinary differential equations 

L̇1 = −2

γ
f

(
γ

L2

)

L̇2 = −2

γ
f

(
γ

L1

)
,

(3)

where the effective velocity function f , obtained as solution of a one-dimensional homog-
enization problem, is a locally constant function on compact subsets of (0,+∞) which
depends on α, the period and size of the inclusions but not on γ (neither on the value
β). This function has been computed, by means of algebraic formulas, in the simpler
cases Nβ = 1 and Nβ = 2, with varying Nα. In particular, if Nα = Nβ = 1, then the
velocity function is given by

f(γ/L) = 2

⌊
αγ

L
+

1

4

⌋
,

while in case of no inclusion (i.e., α = β), it is given by

f̃(γ/L) =

⌊
2αγ

L

⌋
.

The dependence on the inclusions gives the pinning threshold (i.e., the critical value of
the side length above which it is energetically not favorable for a side to move)

L =
4αγ

2 +Nβ

depending on the size of the inclusion Nβ.
The inclusions can be considered as “obstacles” that can be bypassed when com-

puting minimizers of Pε; however their presence is felt in the minimizing-movement
procedure since they may influence the choice of Eτ,εk through the interplay between
the distance and perimeter terms. As a result the motion can be either decelerated or
accelerated with respect to the homogeneous case (i.e., the case α = β described in [9]).
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Scope of this work is to give another example showing that the periodic microstruc-
ture can affect the limit evolution without changing the Γ-limit. To this end we perform a
multi-scale analysis by introducing a contrast parameter δε and considering a low-contrast
medium, that is a periodic mixture of two homogeneous materials whose propagating
properties are close to each other (see e.g. [16]). One of them can be considered as a
fixed background medium (described by α-connections) and the other as a small (van-
ishing) perturbation from that one, that is with β = βε = β(ε) and βε − α = δε → 0 as
ε→ 0. With the same notation as in [11] we restrict ourselves to the case Nα = Nβ = 1
(see Fig. 1); despite of its simplicity, the choice of this particular geometry will suffice to
show new features of the motion. The main result is the existence of a threshold value of
the contrast parameter below which we have a new homogenized effective velocity, which
takes into account the propagation velocities in both the connections α and β; above
this threshold, instead, it is independent of the value of β and the motion is obtained
by considering only the α-connections. The dependence of the effective properties on
microstructure in low-contrast periodic media has been recently investigated for various
physical problems (see e.g. [12]).

We first determine the correct scaling for δε to have that a straight interface may stay
on β-connections. To this end we consider a coordinate rectangle whose sides intersect
only α-bonds (α-type rectangle), we write the variation of the energy Fα,βεε,γε (8) associated
to the displacement by ε of the upper horizontal side of length L (see Fig. 2) and we
impose it to be zero. We have that

−2αε+ (βε − α)L+
cL

γ
ε = −2αε+ δεL+

cL

γ
ε = 0,

where c = c(L) is a constant depending on L, from which we deduce that

δε =

(
2α

L
− c

γ

)
ε = O(ε) as ε→ 0.

This heuristic computation suggests that the correct scaling is

βε − α = δε = δε

for some constant δ > 0.
As in [11] we will assume that τ = γε and we will restrict the description of the motion

to the case of initial data coordinate rectangles, since all other cases can be reduced to the
study of this one. The evolution of a coordinate rectangle by minimization of the energy
is again a coordinate rectangle. We will show that there exists a threshold δ̃ = 1

2γ such

that if δ < δ̃ (subcritical regime) then the evolution is a rectangle that may have some
β-type side (that is, a side intersecting only β-connections), while if δ ≥ δ̃ (supercritical
regime) the β-connections are avoided as in the case β > α. Note that this result gives
information also for more general choices of the vanishing rate of δε: if δε <<ε we reduce
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Figure 2: Displacement of a side from α-connections to β-connections.

to the subcritical case, while if δε >>ε we are in the supercritical case. The limit motion
can still be described through a system of degenerate ordinary differential equations as
in (3) with a new effective velocity function f = fδ depending on δ. We also have a new
effective pinning threshold given by

Lδ = max

{
2αγ

δγ + 1
,
4

3
αγ

}
.

The paper is organized as follows. In Section 2 we define all the energies that we
will consider. We then formulate the discrete-in-time scheme analogous to the Almgren,
Taylor and Wang approach. Section 3 contains the description of the convergence of the
discrete scheme in the case of a rectangular initial set. We show that the minimizers
of this scheme are actually rectangles. Subsection 3.1 deals with the definition of the
effective velocity of a side by means of a homogenization formula resulting from a one-
dimensional ‘oscillation-optimization’ problem. This velocity can be expressed uniquely
(up possibly to a discrete set of values) as a function of the ratio of γ and the side length,
and of δ (Definition 3.6). Subsection 3.2 contains the computation of the effective pinning
threshold, showing that it is affected by microstructure because it also depends on the
parameter δ. In Subsection 3.3 we compute explicitly the velocity function showing a
comparison with the homogeneous case α = β and the high-contrast case β > α. The
description of the homogenized limit motion is contained in Subsection 3.4. Section 4
deals with the case of non-uniform inclusions distributed into periodic uniform layers.

2 Notation and setting of the problem

If x = (x1, x2) ∈ R2 we set ‖x‖1 = |x1| + |x2| and ‖x‖∞ = max{|x1|, |x2|}. If A
is a Lebesgue-measurable set we denote by |A| its two-dimensional Lebesgue measure.
The symmetric difference of A and B is denoted by A4B, their Hausdorff distance by
dH(A,B). If E is a set of finite perimeter then ∂∗E is its reduced boundary (see, for
example [6]). The measure-theoretical inner normal to E at a point x in ∂∗E is denoted
by ν = νE(x).
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Figure 3: the periodicity cell.

2.1 Inhomogeneous ‘low-contrast’ ferromagnetic energies

The energies we consider are interfacial energies defined in an inhomogeneous low-
contrast environment as follows. Let α, δ > 0 and we fix ε > 0. We consider 2ε-periodic
coefficients cεij indexed on nearest-neighbors of εZ2 (i.e., i, j ∈ εZ2 with |i − j| = ε)
defined for i, j such that

0 ≤ i1 + j1
2

,
i2 + j2

2
< 2ε

by

cεij =

βε = α+ δε, if 0 ≤ i1 + j1
2

,
i2 + j2

2
≤ ε

α otherwise.
(4)

These coefficients label the bonds between points in εZ2, so that they describe a matrix
of α-bonds with 2ε-periodic inclusions of β-bonds grouped in squares of side length ε.
The periodicity cell is pictured in Fig. 3. Here the continuous lines represent β-bonds
while the dashed lines the α ones.

Correspondingly, to coefficients (4) we associate the energy defined on subsets I of
εZ2 by

Pα,βεε (I) =
∑
i,j

{
εcεij : |i− j| = ε, i ∈ I, j ∈ εZ2\I

}
, (5)

where, as remarked in the Introduction, we use the notation
∑
{xa : a ∈ A} =

∑
a∈A xa.

In order to study the continuous limit as ε → 0 of these energies, we will identify
each subset of εZ2 with a measurable subset of R2 in such a way that equi-boundedness
of the energies implies pre-compactness of such sets in the sense of the sets of finite
perimeter. This identification is as follows: if ε > 0 and i ∈ εZ2, we denote by Qε(i)
the closed coordinate square with side length ε and centered in i. To a set of indices
I ⊂ εZ2 we associate the set
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EI =
⋃
i∈I

Qε(i). (6)

The space of admissible sets related to indices in the two-dimensional square lattice is
then defined by

Dε := {E ⊆ R2 : E = EI for some I ⊆ εZ2}.

For each E = EI ∈ Dε we denote

Pα,βεε (E) = Pα,βεε (I).

We note that

Pα,βεε (E) ≥ εα
{

(i, j) : |i− j| = ε, i ∈ I, j ∈ εZ2\I
}

= αH1(∂E), (7)

which shows that sequences of sets Eε with supε Pα,βεε (Eε) < +∞ are pre-compact with
respect to the local L1-convergence in R2 of their characteristic functions and their
limits are sets of finite perimeter in R2. Hence, this defines a meaningful convergence
with respect to which compute the Γ-limit of Pα,βεε as ε→ 0. The energies Pα,βεε defined
by (5) Γ-converge, as ε→ 0, to the anisotropic cristalline perimeter functional

Pα(E) = α

∫
∂∗E
‖ν‖1 dH1.

This can be shown with an analogous computation as in Braides-Scilla [11].

2.2 A discrete distance

For I ⊂ εZ2 we define the discrete `∞-distance from ∂I as

dε∞(i, ∂I) =

{
inf{‖i− j‖∞ : j ∈ I} if i 6∈ I
inf{‖i− j‖∞ : j ∈ εZ2\I} if i ∈ I.

Note that we have dε∞(i, ∂I) = d∞(i, ∂EI)+
ε

2
, where d∞ denotes the usual `∞-distance.

The distance can be extended to all R2\∂EI by setting

dε∞(x, ∂I) = dε∞(i, ∂I) if x ∈ Qε(i).

In the following we will directly work with E ∈ Dε, so that the distance can be equiva-
lently defined by

dε∞(x, ∂E) = d∞(i, ∂E) +
ε

2
, if x ∈ Qε(i).

Note that this is well defined as a measurable function, since its definition is unique
outside the union of the boundaries of the squares Qε (that are a negligible set).
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2.3 Minimization scheme

We fix a time step τ > 0 and introduce a discrete motion with underlying time step
τ obtained by successive minimization. At each time step we will minimize an energy
Fα,βεε,τ : Dε ×Dε → R defined as

Fα,βεε,τ (F,E) = Pα,βεε (F ) +
1

τ

∫
F4E

dε∞(x, ∂E) dx. (8)

Note that the integral can be indeed rewritten as a sum on the set of indices εZ2∩(F4E).
More precisely, if I = E ∩ εZ2,J = F ∩ εZ2, then

Fα,βεε,τ (J , I) = Pα,βεε (J ) +
1

τ

∑
i∈J4I

ε2dε∞(i, ∂I)

= Pα,βεε (J ) +
1

τ

 ∑
i∈I\J

ε2d∞(i, I) +
∑
i∈I\J

ε2d∞(i, εZ2\I)

 .

Given an initial set E0
ε ∈ Dε, we define recursively a sequence Ekε,τ in Dε by requiring

the following:

(i) E0
ε,τ = E0

ε ;

(ii) Ek+1
ε,τ is a minimizer of the functional Fα,βεε,τ (·, Ekε,τ ).

The discrete flat flow associated to functionals Fα,βεε,τ is thus defined by

Eε,τ (t) = Ebt/τcε,τ . (9)

Assuming that the initial data E0
ε tend, in the Hausdorff sense, to a sufficiently regular set

E0, we are interested in identifying the motion described by any converging subsequence
of Eε,τ (t) as ε, τ → 0.

As remarked in the Introduction, the interaction between the two discretization pa-
rameters, in time and space, plays a relevant role in such a limiting process. More
precisely, the limit motion depends strongly on their relative decrease rate to 0. If
ε << τ then we may first let ε → 0, so that Pα,βεε (F ) can be directly replaced by the
limit anisotropic perimeter Pα(F ) and 1

τ

∫
F4E d

ε
∞(x, ∂E) dx by 1

τ

∫
F4E d∞(x, ∂E) dx.

As a consequence, the approximated flat motions tend to the solution of the continuous
ones studied by Almgren and Taylor [2]. On the other hand, if ε>> τ then there is no
motion and Ekε,τ ≡ E0

ε . Indeed, for any F 6= E0
ε and for τ small enough we have

1

τ

∫
F4E0

ε

dε∞(x, ∂E0
ε ) dx ≥ c ε

τ
> Pα,βεε (E0

ε ).

In this case the limit motion is the constant state E0. The meaningful regime is the
intermediate case τ ∼ ε.
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3 Motion of a rectangle

As shown in [9] the relevant case is when ε and τ are of the same order and the initial
data are coordinate rectangles E0

ε , which will be the content of this section.
We assume that

τ = γε for some γ ∈ (0,+∞),

and, correspondingly, we omit the dependence on τ in the notation of

Ekε = Ekε,τ (= Ekε,γε).

Definition 3.1. A side intersecting only α-bonds (resp., β-bonds) will be called an
α-type side (resp., β-type side). A coordinate rectangle whose sides are α-type sides will
be called an α-type rectangle.

The first result is that coordinate rectangles evolve into coordinate rectangles. This
result will be more precise in the following. In fact, we will show that if δ < 1

2γ then

the evolution is a rectangle that may have some β-type side, while if δ ≥ 1
2γ it has only

α-type sides.

Proposition 3.2. Let E0
ε ∈ Dε be a coordinate rectangle. For all η > 0, if F is a

minimizer for the minimum problem for Fα,βεε,τ (·, Ekε ), k ≥ 0, the sides of Ekε are larger
than η and ε is small enough, then F is a coordinate rectangle.

Proof. It will suffice to show it for F = E1
ε . We subdivide the proof into steps.

Step 1: connectedness of F and α-rectangularization. The connectedness of F
can be showed as in Braides, Gelli and Novaga [9], because the microstructure does not
affect the argument therein. Now consider the maximal α-type rectangle Rα with each
side intersecting F . As in [11] we call the set F ′ = F ∪ Rα the α-rectangularization of
F . This set is either an α-type rectangle (and in this case we conclude) or it has some
protrusions intersecting β-bonds. In both cases Pα,βεε (F ′) ≤ Pα,βεε (F ), and the symmetric
difference with E0

ε decreases. To justify this, note that the α-rectangularization reduces
(or leaves unchanged) Pα,αε and it reduces the symmetric difference. Moreover, from this
fact we deduce the a priori estimate dH(∂E1

ε , ∂E
0
ε ) ≤ c(L)ε, where c(L) is a constant

depending on the length L of the smaller side of E0
ε .

Step 2: optimal profiles of protrusions on β-squares. Now we describe the form
of the optimal profiles of the boundary of F intersecting β-squares. As noted in [11],
F contains an α-type rectangle Rα = [εm1, εM1] × [εm2, εM2] and is contained in the
α-type rectangle

R̃α = [ε(m1 − 1), ε(M1 + 1)]× [ε(m2 − 1), ε(M2 + 1)],

whose sides exceed the ones of Rα by at most 2ε. We will analyze separately the possible
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Γ

F F

Figure 4: removal of an ε-square for δ ‘large’.

Γ

F F

Figure 5: adding of an ε-square for δ ‘small’.

profiles of F close to each side of Rα; e.g., in the rectangle [ε(m1 − 1), ε(M1 + 1)] ×
[εM2, ε(M2 + 1)] (i.e., close to the upper horizontal side of Rα).

We first consider the possible behavior of the boundary of F at a single β-square Q,
assuming that Q is not one of the two extremal squares. We claim that either F ∩Q = ∅
or ∂F ∩Q is a horizontal segment. In fact, if a portion Γ of ∂F intersects two adjacent
sides of Q as in Fig. 4, then we may remove the ε-square whose center is in Q ∩ F .
In this case, the variation of energy is

−2(βε − α)ε+
1

γ
c(L)ε2 =

(
−2δ +

1

γ
c(L)

)
ε2, (10)

which is negative, for ε small, if and only if δ > c(L)/2γ.
If we add an ε-square as in Fig. 5, instead, the variation of the energy is simply

−1

γ
c(L)ε2, (11)

which is negative. We note that the variation in (10) is less than the one in (11) if and
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R̃α

F

Figure 6: interaction of consecutive β-squares.

R̃α

R

F

Figure 7: the new profile after replacing F by F ∪R.

only if δ > c(L)/γ.
The same analysis applies to the extremal squares, for which we deduce that F ∩Q,

if non-empty, is a rectangle with one vertex coinciding with a vertex of R̃α.

We now consider the interaction of consecutive β-squares. Let Q1, . . . , QK a maximal
array of consecutive β-squares with F ∩Qk 6= ∅ for k = 1, . . . ,K and such that Q1 is not
a corner square. If the subsequent β-squares QK+1, . . . , QK+K′ are a maximal array not
intersecting F , andQK+K′+1, . . . , QK+K′+K′′ are another maximal array with F∩Qk 6= ∅
for k = K + K ′, . . . ,K + K ′ + 1 and such that QK+K′+K′′ is not a corner square (see
Fig. 6), then we may replace F by F ∪R (see Fig. 7), where R is the rectangle given by
the union of the ε-squares centered at the vertices of the β-squares QK+1, . . . , QK+K′ .

This operation leaves unchanged the Pα,βεε and reduces the symmetric difference with
E0
ε . We can repeat this procedure for any tern of such arrays. At this point, if we replace

F by F ∪ [εm1, εM1] × [εM2, ε(M2 + 1)], this strictly reduces Pα,βεε and the symmetric
difference (see Fig. 8).

R̃α

F

Figure 8: the new profile after replacing F by F ∪ [εm1, εM1]× [εM2, ε(M2 + 1)].
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R̃α

F

Figure 9: the case of a single maximal array of intersecting β-squares.

R̃α

F

Figure 10: the profile after removing all the ε-squares.

Note that, if the intersection of F and the left (resp., right) corner square is not
empty, then we can consider as a competitor F ∪ [ε(m1 − 1), εM1] × [εM2, ε(M2 + 1)]
(resp., F ∪ [εm1, ε(M1 + 1)] × [εM2, ε(M2 + 1)]); if F has non empty intersection with
both the corner squares, then we consider F ∪ [ε(m1− 1), ε(M1 + 1)]× [εM2, ε(M2 + 1)].

If there exists only one maximal array Q1, . . . , QK and the intersection of F and both
the corner squares is empty (see Fig. 9), then we may remove all the ε-squares centered
at vertices of Q1, . . . , QK and the variation of energy is

−2αε+ 2K(βε − α)ε+
1

γ
2c(L)Kε2 = −2αε− 2Kδε2 +

1

γ
2c(L)Kε2, (12)

which is negative for ε ≤ αγ
K(c(L)−δγ) if δ < c(L)/γ, any ε if δ ≥ c(L)/γ.

Another possibility is that F has a β-type side, that is the portion of ∂F intersecting
the β-squares is a horizontal segment, as in Fig. 11.
Step 3: conclusion. We can repeat this procedure for each side, and finally, again
by α-rectangularization, we obtain that either F is an α-type rectangle or it has some

R̃α

F

Figure 11: F has a β-side.
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β-type side. In both cases, F is a coordinate rectangle. We note that all the estimates
above can be iterated at each step and hold uniformly as long as the sides of Ekε are
larger than η (just to avoid that the length of any side vanishes), since they depend only
on c(η).

As shown in [9], the motion of each side of Ekε can be studied separately remarking
that the bulk term due to the small corner rectangles in Fig. 12 is negligible as ε → 0.
As a consequence, we can describe the motion in terms of the length of the sides of Ekε .

Ekε Ek+1
ε

asymptotically negligible sets

Figure 12: picture of Ek+1
ε inside Ekε

This will be done in the following sections.

3.1 A velocity function depending on δ

By the previous remark, we can reduce to a one-dimensional problem. Let xk represents
the projection of the left-hand vertical side of Ek = Ekε on the horizontal axis. The
location of xk+1 depends on a minimization argument involving xk and the length Lk of
the corresponding side of Ek. However, we will see that this latter dependence is locally
constant, except for a discrete set of values of Lk. Indeed, for all Y > 0 consider the
minimum problems

min {g(N) : N ∈ N} (13)

where

g(N) =


−2αN +

N(N + 1)

2Y
, N even,

−2αN +
δγ

Y
+
N(N + 1)

2Y
, N odd.

(14)

Then the set of Y > 0 for which (13) does not have a unique solution is discrete. To check
this it suffices to remark that the function to minimize is represented (up to multiplying
by 2Y ) by two parabolas
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−4αY X +X(X + 1) and − 4αY X +X(X + 1) + 2δγ

with minimum at

X = 2αY − 1

2
.

The minimizers in (13) are not unique in the case that

g(N − 1) = g(N) or g(N) = g(N + 1), (15)

that is for Y =
N + δγ

2α
or Y =

N + 1− δγ
2α

if N is odd, while for Y =
N − δγ

2α
or

Y =
N + 1 + δγ

2α
if N is even.

Definition 3.3. We define the singular set Sδ for problems (13) as

Sδ =
1

2α
[(2Z + 1 + δγ) ∪ (2Z− δγ)] . (16)

Proposition 3.4. Let Y ∈ (0,+∞)\Sδ be fixed and Ñ be the solution of the corre-
sponding minimum problem (13). Then there exists a threshold value of the contrast
parameter

δ̃ :=
1

2γ
(17)

such that if δ ≥ δ̃ then Ñ is even, while if δ < δ̃ then Ñ is any integer.

Proof. Let Ñ be odd. Ñ is the solution in (13), so that it satisfies

Ñ − 1

2
< 2αY − 1

2
< Ñ +

1

2
,

g(Ñ) < g(Ñ − 1)

g(Ñ) < g(Ñ + 1)

(18)

that is,
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

Ñ

2α
< Y <

Ñ + 1

2α

Y >
Ñ + δγ

2α

Y <
Ñ + 1− δγ

2α
.

We note that it is

Ñ + δγ

2α
<
Ñ + 1− δγ

2α
,

so that the system (18) has solutions, if and only if δ < δ̃.

Now we examine the iterated minimizing scheme for γ/Lk = γ/L ∈ (0,+∞)\Sδ
fixed, which reads {

xLk+1 = xLk +N, k ≥ 0

xL0 = x0
(19)

with x0 ∈ {0, 1} and N ∈ N the minimizer of

min


−2αN +

1

γ

N(N + 1)

2
L, N even,

−2αN + δL+
1

γ

N(N + 1)

2
L, N odd,

(20)

which is unique up to the requirement that γ/L 6∈ Sδ.

Remark 3.5. As an easy remark, after at most two steps {xLk }k≥0 is periodic modulo
2, that is, there exist integers k̄,M ≤ 2 and n ≥ 1 such that

xLk+M = xLk + 2n for all k ≥ k̄. (21)

For this, we note that {xLk }k≥0 is an arithmetic sequence and the conclusion depends
whether N is odd or even. Moreover, the quotient n/M depends only on γ/L and δ. In
particular, if δ ≥ 1/2γ then k̄ = M = 1. By Proposition 3.4, this is a straightforward
consequence of Proposition 3.6 in [11] with Nα = Nβ = 1.
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Definition 3.6 (effective velocity). We define the effective velocity function
fδ : (0,+∞) \ Sδ −→ [0,+∞) by setting

fδ(Y ) =
2n

M
, (22)

with M and n in (21) defined by L and γ such that Y = γ/L. By Remark 3.5 this is a
good definition.

We recall some properties of the velocity function (for the proof see [11]).

Remark 3.7 (properties of the velocity function fδ). The velocity function fδ has
the following properties:

(a) fδ is constant on each interval contained in its domain;

(b) fδ(Y ) = 0 if

Y < Y δ := min

{
3

4α
,
δγ + 1

2α

}
,

where Y δ = γ/Lδ and Lδ is the pinning threshold (see Subsection 3.2).
In particular,

lim
γ→0+

1

γ
fδ

( γ
L

)
= 0 ;

(c) fδ(Y ) is an integer value;

(d) fδ(Y ) is a non decreasing function of Y ;

(e) we have

lim
γ→+∞

1

γ
fδ

( γ
L

)
=

2α

L
.

3.2 The effective pinning threshold

We now examine the case when the limit motion is trivial; i.e., all Ek = Ekε are the same
after a finite number of steps. This will be done by computing the pinning threshold ;
i.e., the critical value of the side length L above which it is energetically not favorable
for a side to move.

If 0 ≤ δ < δ̃ to compute it we have to impose that it is not energetically favorable
to move inward a side by ε. We then write the variation of the energy functional Fα,βεε,τ

from configuration A to configuration B in Fig. 13, regarding a side of length L. If we
impose it to be positive, we have

−2αε+ L(βε − α) +
1

τ
Lε2 = ε

[
−2α+ L

(
δ +

1

γ

)]
≥ 0

and we obtain the pinning threshold

16



A

B

Figure 13: If δ < δ̃ the motion is possible if the side can move at least by ε.

A

B

Figure 14: If δ ≥ δ̃ the motion is possible if the side can move at least by 2ε.

L̃δ :=
2αγ

δγ + 1
. (23)

Note that if δ = 0 (i.e., βε = α), then we recover the threshold of the homogeneous case

L̃0 = 2αγ.

If δ ≥ δ̃, instead, by the condition that Ek be an α-type rectangle, we have to impose
that it is not energetically favorable to move inward a side by 2ε (see Fig. 14). As shown
in [11], in this way we obtain the pinning threshold

L̃
δ̃

=
4

3
αγ.

Hence, the effective pinning threshold (see Fig. 15) is given by

Lδ = max

{
2αγ

δγ + 1
,
4

3
αγ

}
. (24)

3.3 Computation of the velocity function

In this section we compute explicitly the velocity function fδ assuming, without loss of
generality, that γ = 1. We restrict ourselves to the case δ < 1/2, because if δ ≥ 1/2 the
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1

2γ

2αγ

4

3
αγ

δ

Lδ

Figure 15: Effective pinning threshold.

velocity function is given by (see [11], Section 4)

f(Y ) = 2

⌊
αY +

1

4

⌋
. (25)

We denote by N the minimizer of the problem (20) and subdivide the computation into
different cases:

(a) xn is even and Y ∈
(

2k + 1 + δ

2α
,
2k + 2− δ

2α

)
for some k ≥ 0; in this case N = 2k+1

and xn+1 = xn + N is odd. The next point is xn+2 = xn+1 + N = xn + 2N , which is
even, so that the sequence {xm} oscillates between even and odd numbers (that is, the
side is alternatively α-type and βε-type). In this case,

fδ(Y ) =
xn+2 − xn

2
=

2N

2
= 2k + 1 = b2αY c;

(b) xn is odd and Y ∈
(

2k + 1 + δ

2α
,
2k + 2− δ

2α

)
for some k ≥ 0; in this case xn+1 =

xn +N is even and xn+2 = xn + 2N , is odd, so that as before

fδ(Y ) = 2k + 1 = b2αY c;

(c) xn is even and Y ∈
(

2k − δ
2α

,
2k + 1 + δ

2α

)
for some k ≥ 0; in this case N = 2k and

xn+1 = xn + N is even. Therefore the sequence {xm} consists of only even numbers
(that is, at each step the side is α-type) and in this case the velocity function is given
by

18



fδ(Y ) = xn+1 − xn = N = 2k;

(d) xn is odd and Y ∈
(

2k − δ
2α

,
2k + 1 + δ

2α

)
for some k ≥ 0; in this case xn+1 = xn+N

is also odd. Therefore the sequence {xm} consists of only odd numbers (that is, at each
step the side is β-type) and in this case the velocity function is given again by

fδ(Y ) = xn+1 − xn = N = 2k.

Note that, collecting all the cases, we can write the velocity function as

fδ(Y ) =



0 if Y <
δ + 1

2α
,

2k if Y ∈
(

2k − δ
2α

,
2k + 1 + δ

2α

)
, k ≥ 0

2k + 1 if Y ∈
(

2k + 1 + δ

2α
,
2k + 2− δ

2α

)
.

(26)

It can be rewritten equivalently as

fδ(Y ) =



b2αY c+ 1 if Y ∈
(

2k − δ
2α

,
2k

2α

)
,

b2αY c if Y ∈
(

2k

2α
,
2k + 1

2α

)
,

b2αY c − 1 if Y ∈
(

2k + 1

2α
,
2k + 1 + δ

2α

)
,

b2αY c if Y ∈
(

2k + 1 + δ

2α
,
2k + 2− δ

2α

)
.

Therefore we notice accelerating and decelerating effects (due to the microstructure
through δ) with respect to the velocity function f̃ obtained in the homogeneous case [9],
that is

f̃(Y ) =


0 if Y <

1

2α
,

b2αY c if Y ∈
(
k

2α
,
k + 1

2α

)
, k ≥ 1.
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Moreover, we recover f̃ computing fδ for δ = 0. If we choose δ = 1/2 (actually, any
δ ≥ 1/2), we recover the velocity function f (equation (25)) which corresponds to the
high-contrast case.

We conclude this section by writing the general formula of the velocity function fδ
valid for any δ and γ:

fδ(Y ) =



0 if Y <
min{δγ, 1/2}+ 1

2α
,

2k if Y ∈
(

2k −min{δγ, 1/2}
2α

,
2k + 1 + min{δγ, 1/2}

2α

)
,

2k + 1 if Y ∈
(

2k + 1 + min{δγ, 1/2}
2α

,
2k + 2−min{δγ, 1/2}

2α

)
, k ≥ 0.

3.4 Description of the homogenized limit motion

The following characterization of any limit motion holds (see Theorem 3.11 in [11]).

Theorem 3.8. For all ε > 0, let E0
ε ∈ Dε be a coordinate rectangle with sides S0

1,ε, . . . , S
0
4,ε.

Assume also that
lim
ε→0+

dH(E0
ε , E0) = 0

for some fixed coordinate rectangle E0. Let δ, γ > 0 be fixed and let Eε(t) = Eε,γε(t)
be the piecewise-constant motion with initial datum E0

ε defined in (9). Then, up to a
subsequence, Eε(t) converges as ε→ 0 to E(t), where E(t) is a coordinate rectangle with
sides Si(t) and such that E(0) = E0. Each Si moves inward with velocity vi(t) satisfying

vi(t) ∈

[
1

γ
fδ

(
γ

Li(t)

)−
,

1

γ
fδ

(
γ

Li(t)

)+
]
, (27)

where fδ is given by Definition 3.6, Li(t) := H1(Si(t)) denotes the length of the side
Si(t), until the extinction time when Li(t) = 0, and fδ(Y )−, fδ(Y )+ are the lower and
upper limits of the effective-velocity function at Y ∈ (0,+∞).

In case of a unique evolution, the limit motion is described as follows (see Theorem
3.12 in [11]).

Theorem 3.9 (unique limit motion). Let Eε, E0 be as in the statement of Theorem
3.8. Assume in addition that the lengths L0

1, L
0
2 of the sides of the initial set E0 satisfy

one of the following conditions (we assume that L0
1 ≤ L0

2):

(a) L0
1, L

0
2 > Lδ, Lδ given by (24) (total pinning);
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(b) L0
1 < Lδ and L0

2 ≤ Lδ (vanishing in finite time);

then Eε(t) converges locally in time to E(t) as ε → 0, where E(t) is the unique rect-
angle with sides of lengths L1(t) and L2(t) which solve the following system of ordinary
differential equations 

L̇1(t) = −2

γ
fδ

(
γ

L2(t)

)

L̇2(t) = −2

γ
fδ

(
γ

L1(t)

) (28)

for almost every t, with initial conditions L1(0) = L0
1 and L2(0) = L0

2.

4 The periodic case with K contrast parameters

In this section we study the same problem as before in a more general framework. We
consider a medium with inclusions distributed into periodic uniform layers as follows.

Let ε > 0 be fixed and δ1, δ2, . . . , δK ,K ∈ N be positive. We consider 2Kε-periodic
coefficients cεij indexed on nearest-neighbors of εZ2 and defined for i, j such that

0 ≤ i1 + j1
2

,
i2 + j2

2
< 2Kε

by

cεij =


α+ δrε, if

i1 + j1
2

,
i2 + j2

2
=

(
2r − 1

2

)
ε, r = 1, . . . ,K

α, otherwise.

(29)

In Fig. 16 the periodicity cell is pictured in the case K = 2. Here the red lines
represent the bonds with parameter δ1, the blue ones the bonds with parameter δ2 and
the dashed lines the α-bonds.

Correspondingly, to these coefficients we associate the energy Pα,βεε (I) defined on
subsets I of εZ2 as in (5). We consider the same discrete-in-time minimization scheme

for the energy Fα,βεε,τ with τ = γε as in Subsection 2.3 and we restrict our analysis to
rectangular evolutions as in Section 3. We will see that the minimization problem and
the velocity function depend on the choice of δr, r = 1, . . . ,K; in particular, on their
relative position with respect to the critical value δ̃ defined by equation (17).

We will treat only the cases

δ̃ ≤ δr for some r ∈ {1, . . . ,K} (30)
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δ1

δ2

2Kε

Figure 16: The periodicity cell for K = 2.

and

0 ≤ δr < δ̃, ∀r = 1, . . . ,K, (31)

because if δ̃ ≤ δr for all r then we are in the high-contrast case already described in [11].

4.1 The pinning threshold

For the computation of the pinning threshold we refer to Subsection 3.2.
Under assumption (30), after a finite number of steps the side is pinned if it cannot

move inward by 2ε. In this case, the pinning threshold is given by

L̃
δ̃

=
4

3
αγ.

If (31) holds, instead, after a finite number of steps the side is pinned if it cannot
move inward by ε. In particular, the pinning threshold now depends on δr̄ = min

1≤r≤K
{δr}

and it is given by

L̃δr̄ =
2αγ

δr̄γ + 1
.

Hence, collecting the two cases we obtain the pinning threshold

Lδ1,...,δK = max{L̃δr̄ , L̃δ̃}. (32)
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4.2 The effective velocity function

We adopt the same notation as in Subsection 3.1. For all Y > 0 we consider the minimum
problems

min {g(N) : N ∈ N} (33)

where

g(N) =


−2αN +

N(N + 1)

2Y
, if [N ]2K ∈ {[0]2K , [2]2K , . . . , [2K − 2]2K},

−2αN +
δrγ

Y
+
N(N + 1)

2Y
, if [N ]2K = [2r − 1]2K , r = 1, . . . ,K.

(34)

Then the set of Y > 0 for which (33) does not have a unique solution is discrete. For
this we remark that the function to minimize is represented by K + 1 parabolas

−4αY X +X(X + 1) and − 4αY X +X(X + 1) + 2δrγ r = 1, . . . ,K

with minimum at

X = 2αY − 1

2
.

As a consequence of (16) we have that the minimizers in (33) are not unique in the case
that Y ∈ Sδr , r = 1, . . . ,K where

Sδr :=
1

2α
[(2(2r − 1)KZ + Cδrγ) ∪ ((2(2r − 1)KZ + 1− Cδrγ)] (35)

and Cδrγ = min{δrγ, 1/2}, r = 1, . . . ,K.

Definition 4.1. We define the singular set Sδ1,...,δK for problems (33) as

Sδ1,...,δK =
K⋃
r=1

Sδr (36)

where Sδr is defined by (35).

We now examine the iterated minimizing scheme for γ/L ∈ (0,+∞)\Sδ1,...,δK fixed,
which reads
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{
xLk+1 = xLk +N, k ≥ 0

xL0 = x0
(37)

with x0 ∈ {0, 1, 2, . . . , 2K − 1} and N ∈ N the minimizer of

min


−2αN +

1

γ

N(N + 1)

2
L, if [N ]2K ∈ {[0]2K , [2]2K , . . . , [2K − 2]2K},

−2αN + δrL+
1

γ

N(N + 1)

2
L, if [N ]2K = [2r − 1]2K , r = 1, . . . ,K,

(38)

which is unique up to the requirement that γ/L 6∈ Sδ1,...,δK . With an analogous argument
as in Section 3.1 we can prove that, after at most 2K steps, {xLk }k≥0 is periodic modulo
2K. Hence, we can define the effective velocity function f = fδ1,...,δK as in Definition 3.6.

4.3 Computation of the velocity function

In this section we give the expression of the velocity function without proof, which follows
by analogous computations as in Subsection 3.3.

For any γ, δ1, . . . , δK , the velocity function f = fδ1,...,δK is given by

fδ1,...,δK (Y ) =



0, if Y < γ/Lδ1,...,δK ,

2Kk, if Y ∈
(

2Kk − CδKγ
2α

,
2Kk + 1 + Cδ1γ

2α

)
,

2Kk + 1, if Y ∈
(

2Kk + 1 + Cδ1γ
2α

,
2Kk + 2− Cδ1γ

2α

)
,

2Kk + 2, if Y ∈
(

2Kk + 2− Cδ1γ
2α

,
2Kk + 3 + Cδ2γ

2α

)
,

...
...

...

2Kk + 2K − 1, if Y ∈
(

2Kk + 2K − 1 + CδKγ
2α

,
2K(k + 1)− CδKγ

2α

)
,

with k ≥ 0.
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