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1 Introduction

We study a class of upper semicontinuous functions f : Rd → R whose hypograph
hypo f (see Definition 1) satisfies a geometric regularity property, namely: there
exist c > 0, θ ∈]0, 1] such that for each P on the boundary of hypo f there exists
a unitary Fréchet (outer) normal v ∈ NF

hypo f (P ) ∩ Sd to hypo f with

〈v, P −Q〉 ≤ c‖P −Q‖1+θ for every Q ∈ hypo f. (1)

Geometrically speaking, this inequality expresses the fact that, in a neighborhood
of each point P on the boundary of hypo f , there exists a “subquadratic” smooth
hypersurface Γ (P ) whose intersection with hypo f reduces to P . One could also
say that Γ (P ) is supertangent to hypo f in a generalized sense. When θ = 1
condition (1) means that the open sphere of center P − v

2c and radius 1
2c lies

outside hypo f and touches the boundary of hypof at P . This property is also
called exterior sphere condition and was studied by several authors, mainly in
connection with regularity problems arising in the control theory.

If we strenghten the exterior sphere condition by requiring (1) to hold for
every v ∈ NF

hypo f (P ) ∩ Sd (while in its formulation this is required just for at
least one normal) with θ = 1, we are in the class of functions whose hypograph
has positive reach in the sense of Federer. In finite dimension, sets of positive
reach were introduced by Federer in [13] as a generalization of convex sets and
sets with C2-boundary. If moreover we are also allowed to take c = 0, then the
set is convex.

Upper semicontinuous functions whose hypograph has positive reach share
several regularity properties with concave functions: it was proved in [6] that
around a.e. points of their domain they are actually Lipschitz continuous, and
twice differentiable a.e. In [8], [9] and [10] some regularity results were proved
for the minimum time function of control problems; under suitable weak con-
trollability assumptions, the latter is proved to have epigraph or hypograph with
locally positive reach, thus generalizing the results of [4] and [5].



However, it is easy to give examples where the hypograph of the minimum
time function does not satisfy an exterior sphere property, so that the results of
[9, 15] can not be applied. Let us consider the constant control system

x′(t) = 0,

y′(t) = u(t) ∈ [0, 1],

(x(0), y(0)) = (x0, y0) ∈ R2,

(2)

together with the target T = {(x, β) | β ≥ f(x)}, where f(x) = 1 if x ≤ 0 and

f(x) = −x 2
3 if x > 0.

The minimum time to reach the target T subject to the above control system
is denoted by T . It can be proved (see the Appendix) that hypoT does not satisfy
an exterior sphere condition, but still enjoys the weaker uniformity regularity
property (1) with θ = 1/2.

The previous considerations motivate us to study the class F (Ω) of real
functions defined on Ω ⊂ Rd satisfying condition (1) in order to provide a
new regularity class which, hopefully, will cover the regularity properties for
the minimum time function of certain classes of nonlinear control systems and
differential inclusions (see [3]) that do not satisfy an exterior sphere condition.
We will refer to this property as N -regularity (see Definition 2). We state our
first general result, whose main ideas were presented in our recent paper [14],
for closed set K ⊂ Rd+1 concerning the structure and dimension of the set K(j)

of points on ∂K where the Fréchet normal cone to ∂K has dimension larger
than or equal to j. This result generalizes a similar result proved by Federer for
sets with positive reach. Indeed, it shows that K(j) can be covered by countably
many Lipschitz graphs of d− j + 1 variables.

Theorem 1. Let K ⊆ Rd+1 be closed; then K(j) is countably H d−j+1-rectifiable.

In particular, also K
(j)
± are countably H d−j+1-rectifiable.

The sets K
(j)
± are here defined in the same way of K(j) by taking the normal

cone to, respectively, K and Rd+1 \K; see Definition 5. Concerning the differen-
tiability properties of functions, we denote by Sf the set of non-differentiability
points of f and prove the following result:

Theorem 2. Let Ω ⊆ Rd be a nonempty open set and f : Ω → R be an
upper semicontinuous function with f ∈ L∞loc(Ω). Assume that the closed set
K := hypo f is N -regular in Ω × R. Then f ∈ BVloc(Ω) and L d(Sf ) = 0. In
particular, f is differentiable a.e.

2 Notation

Let K be a closed subset of Rd, S ⊆ Rd, x = (x1, . . . , xd) ∈ K, y = (y1, . . . , yd) ∈
Rd, r > 0. We denote by 〈·, ·〉, the usual scalar product in Rd; ∂S, int(S), S,
the topological boundary, interior and closure of S, respectively; P(S) := {B ⊆



Rd : B ⊆ S}, the power set of S; Bd := {w ∈ Rd : ‖w‖ < 1}, the unit open ball
(centered at the origin); Sd−1 := {w ∈ Rd : ‖w‖ = 1} = ∂Bd, the unit sphere
(centered at the origin); B(y, r) := {z ∈ Rd : ‖z − y‖ < r} = y + rBd, the open
ball of center y and radius r; dK(y) := dist(y,K) = min{‖z − y‖ : z ∈ K}, the
distance of y from K; πK(y) := {z ∈ K : ‖z−y‖ = dK(y)}, the set of projections
of y onto K: if πK(y) contains an unique element ξ, we will write πK(y) = ξ.
H p(S) and dimH (S), the p-dimensional Hausdorff measure and the Hausdorff
dimension of S. The characteristic function χS : Rd → {0, 1} of S is defined as
χS(x) = 1 if x ∈ S and χS(x) = 0 if x /∈ S. If V,W ⊆ Rd are two subset of Rd,
we will write V ⊂⊂ W if V is bounded and V ⊆ W . Given a set X, card(X)
denotes the number of its elements. The Fréchet normal cone and the Bouligand
tangent cone to K at x are defined respectively by

NF
K(x) :=

{
v ∈ Rd : lim sup

y→x
y∈K\{x}

〈
v,

y − x
‖y − x‖

〉
≤ 0

}
;

TFK (x) :=

{
λξ ∈ Rd : λ ≥ 0,∃{yn}n ⊆ K \ {x}, yn → x s.t. ξ = lim

n→∞

yn − x
‖yn − x‖

}
.

Definition 1. Let Ω ⊆ Rd and f : Ω → R ∪ {±∞} be a function. For x ∈ Ω
fixed we denote by f(x) := lim sup

y→x
y 6=x

f(y); f̃(x) := lim sup
y→x

f(y) = max{f(x), f(x)};

f(x) := lim inf
y→x
y 6=x

f(y); f˜(x) := lim inf
y→x

f(y) = min{f(x), f(x)}; dom(f) := {z ∈

Ω : f(z) ∈ R}, the domain of f ; hypo f := {(z, β) ∈ Ω × R : β ≤ f(z)},
the hypograph of f ; epi f := {(z, α) ∈ Ω × R : α ≥ f(z)}, the epigraph of f ;
∂F f(x) := {v ∈ Rd : (−v, 1) ∈ NF

hypo f (x, f(x))}; ∂F f(x) := {v ∈ Rd : (v,−1) ∈
NF

epi f (x, f(x))}. We say that f is upper (respectively, lower) semicontinuous if

f(x) ≥ f(x) (resp., if f(x) ≤ f(x)) for any x ∈ Ω. The sets ∂F f(x) and ∂F f(x)
are called respectively the Fréchet superdifferential and the Fréchet subdifferen-
tial of f at x.

If Ω ⊆ Rd is open , we denote by BV (Ω) the set of function of bounded
variation in Ω, and if u ∈ BV (Ω), we denote by ‖Du‖ the total variation of the
vector-valued measure Du. The perimeter of E in Ω is P (E,Ω) = ‖DχE‖(Ω).

Let A ⊆ Rd and 0 ≤ p ≤ d. Let k ∈ N, we say that A ⊆ Rd is countably

H k-rectifiable if A ⊆ N ∪
∞⋃
i=1

Si, where Si are suitable k-dimensional Lipschitz

surfaces and H k(N ) = 0.

3 Standing hypothesis and first consequences

Definition 2. Let U ⊆ Rd+1 be open and K ⊆ Rd+1 be nonempty and relatively
closed in U . We say that K is N -regular in U if there exists an upper semicon-
tinuous multifunction N : ∂K ∩ U ⇒ Sd such that for every x ∈ ∂K ∩ U the
following two properties hold:



(N1) ∅ 6= N(x) ⊆ NF
K(x) ∩ Sd;

(N2) there exist δx ∈ ]0, dist (x, ∂U)[ and a continuous function ωx : R+ → R+

with limr→0+ ωx(r)/r = 0 and satisfying the following uniformity property:
for every y1 ∈

(
x+ δxBd+1

)
∩ ∂K there exists ν(y1) ∈ N(y1) such that

〈ν(y1), y2 − y1〉 ≤ ωx(‖y2 − y1‖) for all y2 ∈
(
x+ δxBd+1

)
∩K.

We will say that K ⊆ Rd+1 is N -regular if K is N -regular in Rd+1. Possibly
replacing the set-valued map N with x 7→ N(x), when K is N -regular in U we
can always assume that N has closed graph.

Example 1. Every set K that is the closure of an open C1 domain is N -regular,
moreover a closed convex set C is N -regular with N(x) = NF

C (x) ∩ Sd

Definition 3. Let U ⊆ Rd+1 be open and K ⊆ Rd+1 be nonempty and relatively
closed in U ; let also z ∈ ∂K ∩ U, θ ∈]0, 1] and C ≥ 0. We define

N C,θ,U
K (z) :=

{
ζ ∈ Rd+1 : 〈ζ, z′ − z〉 ≤ C · ‖ζ‖ · ‖z′ − z‖1+θ (3)

for all z′ ∈ K ∩ U} .

If K is closed, U = Rd+1 and z ∈ ∂K we will simply write N C,θ
K (z) instead of

N C,θ,Rd+1

K (z). We notice that if ζ ∈ N C,θ,U
K (x), then µζ ∈ N C,θ,U

K (x) for all

µ ≥ 0 and the multifunction N C,θ,U
K : ∂K ∩ U ⇒ Rd+1 has closed graph.

Let now Ω ⊆ Rd be nonempty and open and f : Ω → R be upper semicontinu-
ous. By adapting the previous definition, for (x, βx) ∈ ∂hypo f∩(Ω×R) we define

N̂ C,θ
hypo f (x, βx) as the set of those (v, λ) ∈ Rd × R such that ∀(y, β) ∈ hypo f .

〈(v, λ), (y − x, β − βx)〉 ≤ C‖(v, λ)‖
(
‖y − x‖1+θ + |β − βx|1+θ

)
(4)

We notice that there exist constants c1, c2 > 0 depending only on d and θ such
that

N c1C,θ,Ω×R
hypo f (x, βx) ⊆ N̂ C,θ

hypo f (x, βx) ⊆ N c2C,θ,Ω×R
hypo f (x, βx).

It is clear from the definition that also N̂ c,θ
hypo f : ∂ hypo f ∩ (Ω×R) ⇒ Rd+1 has

closed graph.

We are ready now to introduce the classes of sets and functions subject of
our investigation.

Definition 4. Let U ⊆ Rd+1 and Ω ⊆ Rd be open. We define:

FU :={K ⊆ U : K is relatively closed in U and ∃C ≥ 0, 0 < θ ≤ 1 s.t.

N C,θ,U
K (z) 6= {0} for all z ∈ ∂K ∩ U}

F :=FRd+1

F (Ω) :={f : Ω → R : f u.s.c., hypo f ∈ FΩ×R}
={f : Ω → R : f u.s.c., ∃C ≥ 0, 0 < θ ≤ 1 such that

N̂ C,θ
hypo f (x, βx) 6= {0} ∀(x, βx) ∈ ∂ hypo f ∩ (Ω × R)}.



If K ∈ FU , then there exist C > 0, 0 < θ ≤ 1 such that K is N -regular in
U with

N(x) := N C,θ,U
K (x) ∩ Sd ⊆ NF

K(x), ωx(r) := r1+θ ∀x ∈ ∂K ∩ U.

The upper semicontinuity of N follows from the fact that N C,θ,U
K (x) has closed

graph.
We refer the reader to [13, 11] for a survey of the properties satisfied by sets

with positive reach, on which the class F is modeled.

4 Regularity results for sets

In this section we will prove regularity results for the boundary of a closed set
K ⊆ Rd+1 in a quite general setting. They will be used later to prove fine
regularity properties for functions in the class F (Ω).

The first result extends an analogous result for the class of sets with positive
reach proved by Federer in Remark 4.15 of [13]. Roughly speaking it states that
points with large normal cone are relatively few.

Definition 5. Let K ⊆ Rd+1 be closed; for j = 1, ..., d+ 1 we define

K(j) :=
{
x ∈ ∂K : dim

(
NF
∂K(x)

)
≥ j
}
, (5)

K
(j)
+ :=

{
x ∈ ∂K : dim

(
NF
K(x)

)
≥ j
}
, (6)

K
(j)
− :=

{
x ∈ ∂K : dim

(
NF

Rd+1\K(x)
)
≥ j
}
. (7)

We notice that K(j1) ⊇ K(j2), K
(j1)
+ ⊇ K

(j2)
+ , K

(j1)
− ⊇ K

(j2)
− if 1 ≤ j1 ≤ j2 ≤

d+ 1, and that K
(j)
± ⊆ K(j). Clearly, K(1) = {x ∈ ∂K : NF

∂K(x) 6= {0}}.

In order to use local arguments, we will need the following estimate which
gives some uniformity with respect to the elements of the normal cone, which
can be proved exploiting compactness of NF

∂K(x) ∩ Sd: for every x ∈ K(1) and
0 < ε ≤ 1 we have

δ(x, ε) :=
1

2
sup

{
δ ∈ R : 〈v, y − x〉 ≤ ε‖y − x‖, (8)

for all y ∈ ∂K ∩
(
x+ δBd+1

)
, v ∈ NF

∂K(x) ∩ Sd
}
> 0

We are now ready to prove the first main result of the paper.

Proof (Proof of Theorem 1.). We begin by constructing a countable covering

{K(j)
n,m,h,l}n,m,h,l∈N of K(j); we will prove later that each element of the covering

is rectifiable and this will establish our result.
Define the function w : (Rd+1)j → [0, 1]

w(v1, . . . , vj) := min

{∥∥∥∥∥
j∑
i=1

αivi

∥∥∥∥∥ : αi ∈ R,
j∑
i=1

|αi| = 1

}
.



We notice that w is continuous and invariant under permutations of its argu-
ments, so if V = {v1, . . . , vj} we will write w(V ) instead of w(v1, ..., vj) . We
have that w(V ) = 0 iff the elements of V are linearly dependent.

Let {al}l∈N be a countable dense set in Rd+1. For every x ∈ K(j) choose

Vx ⊆ NF
∂K(x)∩Sd with cardVx = j and w(Vx) > 0, Vx = {v(i)x }i=1,...,j . Consider

the countable set

A(j) :=
{
V ′ ⊆ Qd+1 : card(V ′) = j, w(V ′) > 0

}
,

Being A(j) countable, we can order its elements and write A(j) = {V ′n}n∈N.

We set V
(j)
n = Span(V ′n) and consider the countable set of j-dimensional planes

V(j) := {V (j)
n }n∈N. Define also W

(j)
n := (V

(j)
n )⊥, n ∈ N, and W (j) := {W (j)

n }n∈N.
Given n,m, h, l ∈ N, let v1, . . . , vj ∈ Qd+1 be such that V ′n = {v1, . . . , vj} and
set

K
(j)
n,m,h,l :=

x ∈ K(j) ∩
(
al + 1

2(h+1)B
d+1
)

:
w(Vx) ≥ 1

m+3 , δ
(
x, 1

2(m+3)2

)
≥ 1

h+1 ,∥∥v(i)x − vi∥∥ ≤ 1
2(m+3)2 for i = 1, . . . , j

 ,

where δ(x, 1
2(m+3)2 ) is as in (8) with ε = (2(m+ 3)2)−1.

It turns out that K(j) ⊆
⋃

n,m,h,l∈N
K

(j)
n,m,h,l: given x ∈ K(j), we choose in this

sequence the indexes: m, n, h, l, to fulfill the properties yielding x ∈ K(j)
n,m,h,l.

We prove now that for any x1, x2 ∈ K(j)
n,m,h,l the orthogonal projection π

W
(j)
n

:

K
(j)
n,m,h,l →W

(j)
n satisfies

‖π
W

(j)
n

(x2 − x1)‖2 ≥ m+ 1

m+ 3
‖x2 − x1‖2. (9)

Indeed, we notice that if V ′n = {v1, . . . , vj}, then each vi is near to a normal

vector both at x1, and at x2. By exploiting the definition of K
(j)
n,m,h,l, this fact

yields:

|〈vi, x2 − x1〉| ≤
1

(m+ 3)2
‖x2 − x1‖ for every i = 1, . . . , j.

Given v ∈ V (j)
n , v 6= 0, we can find (in a unique way) αi ∈ R, i = 1, . . . , j such

that v =
∑j
i=1 αivi; therefore∣∣∣∣〈 v

‖v‖
, x2 − x1

〉∣∣∣∣ ≤ ∑j
i=1 |αi| · |〈vi, x2 − x1〉|∥∥∑j

i=1 αivi
∥∥ ≤ ‖x2 − x1‖

(m+ 3)2

∑j
i=1 |αi|∥∥∑j
i=1 αivi

∥∥ .
Set βi := αi/

∑j
s=1 |αs|; we have

∑j
i=1 |βi| = 1 and thus∣∣∣∣〈 v

‖v‖
, x2 − x1

〉∣∣∣∣ ≤ ‖x2 − x1‖(m+ 3)2
1∥∥∑j

i=1 βivi
∥∥ ≤ ‖x2 − x1‖(m+ 3)2

1

w(v1, . . . , vj)

≤ 2

m+ 3
‖x2 − x1‖



because w(v1, . . . , vj) ≥ (2(m+ 3))−1. Therefore,

‖π
W

(j)
n

(x2 − x1)‖2 = ‖x2 − x1‖2 − 〈πV (j)
n

(x2 − x1), x2 − x1〉 ≥
m+ 1

m+ 3
‖x2 − x1‖2.

By (9), for each n,m, h, l the inverse map π−1
W

(j)
n

: π
W

(j)
n

(K
(j)
n,m,h,l) → K

(j)
n,m,h,l.

is Lipschitz continuous and, by Kirszbraun’s Theorem, it can be extended to a

Lipschitz function defined on the whole W
(j)
n . This ends the proof.

5 Application to functions: BV regularity and structure
of singular set

In this section we will apply the results obtained in the previous one to closed sets
that can be written as hypographs of upper semicontinuous functions possessing
at least one normal direction at a.e. point of the boundary of their hypograph;
our goal is to obtain regularity results for such functions.

Definition 6. Let Ω be a nonempty open subset of Rd and f : Ω → R be a
function. For each x ∈ Ω, we define

Jf := {x ∈ Ω : f̃(x) 6= f˜(x)} = {x ∈ Ω : f is not continuous at x},

Sf := {x ∈ Ω \ Jf :
(
Sd−1 × {0}

)
∩NF

hypo f (x, f(x)) 6= ∅},
Sf := Jf ∪ Sf .

We begin with a trivial corollary of Theorem 1, dealing with the singularities
corresponding to large dimension of the normal cone.

Corollary 1. Let Ω be a nonempty open subset of Rd and f : Ω → R be an upper
semicontinuous function. Set K = hypo f and assume that NF

K(x, β) 6= {0} for
H d-a.e. (x, β) ∈ ∂K ∩ (Ω × R). Then for L d-almost every x ∈ Ω there exists
ζx ∈ Sd such that NF

K(x, β) ⊆ Rζx for all β with (x, β) ∈ ∂K ∩ (Ω × R).

Proof. By Theorem 1, K(2) is H d−1-rectifiable and hence H d-negligible. If
π : Ω×R→ Ω denotes the canonical projection on Ω, then Ω∩

(
π(∂K \K(1))∪

π(K(2))
)

is L d-negligible, hence E := Ω \
(
π(∂K \K(1)) ∪ π(K(2))

)
has the

same measure of Ω. The results follows.

We recall the following result, proved in Theorem 1.2 of [14]:

Theorem 3. Let Ω be a nonempty open subset of Rd and let f ∈ BVloc(Ω) be
an upper semicontinuous function; set K := hypo f . Assume that for H d-a.e.
(x, βx) ∈ ∂K ∩ (Ω × R) it holds NF

K(x, βx) 6= {0}. Then L d(Sf ) = 0.

We are going to study the regularity properties of upper semicontinuous
functions f such that hypof is N -regular. One of our primary goals is to estimate
the size of the singular set Sf ; to this aim it will be important to assume that
f is of class BV .

We can now prove the second main result of the paper:



Proof (of Theorem 2). Let us prove that f ∈ BV (U) for any open set U such
that U ⊂⊂ Ω. According to Theorem 1, we have that ∂K is rectifiable, whence
P (K,U × R) = P (K,U× ] − 2‖f‖L∞ , 2‖f‖L∞ [) < ∞. According to Theorem 4
in [2], we have that f ∈ BVloc(Ω), so we can apply Theorem 3.
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