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1 - Introduction

This note is about eigenfunctions of some nonlocal operators of fractional
order s € (0,1) and summability p > 1. Namely, we consider weak solutions u
of equation

(1) — Zru = MuPu
in a domain Q C R™ with the Dirichlet condition © = 0 on € = R™ \ 2, where
Zru(r) =2 | K@y)luly) - u(@)">(uly) - u(z))do
RW,

and K belongs to a class of singular symmetric kernels modeled on the case
K(z,y) = |z —y|~™*P). The integral is understood in the principal value
sense.
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Fractional eigenfunctions are related to the problem of minimizing the non-
local Rayleigh quotient

[ [ K@wloe) - owl dsdy
#(9) = Tt
[t da

among all smooth functions ¢ compactly supported in a Lipschitz domain (2.
In the case K = |z — y|~("**P) equation (1) becomes

3) (=A)u = Aul"?u,

(2)

where the symbol (fA); denotes the fractional p-Laplacian operator.

After being investigated first in potential theory and harmonic analysis, frac-
tional operators defined via singular integral are nowadays riveting great atten-
tion in different research fields related to PDEs with nonlocal terms. For an
elementary introduction to this wide topic and a large list of related references
we refer to [9, 10]. For a precise introduction about equation (3), the reader is re-
ferred to Lindgren and Lindqvist [13] who first studied this eigenvalue problem.
In their paper, several remarkable properties of eigenfunctions were proved for
suitably large values of p. The limit case as p goes to infinity was also derived.

Here, we discuss such problem for any p > 1. We prove that, similarly as in
the local case, also for the fractional p-Laplacian positive eigenfunctions uniquely
correspond to the first eigenvalue, the one that is obtained by minimizing the
Rayleigh quotient (see Theorem 4.1 below). Moreover, we deduce that all the
positive fractional p-eigenfunctions corresponding to the first eigenvalue \; are
proportional (see Theorem 4.2 below). Hopefully, that may turn out to be of
some interest in view of possible further results in this topic.

At variance with the usual linear fractional panorama, considering nonlocal
operators whose kernel K (z,v) is proportional to |z — y|~("**P) leads both to
nonlocal and to nonlinear difficulties. In particular, one can not benefit from
the strong s-harmonic extension of [5]. Tools as, for instance, the barriers and
density estimates provided in [21, 20], or the commutator and energy estimates
in [18, 19] make use of the linearity. An adaptation of such techniques to the case
p # 2 is not trivial. Even the mere Holder continuity of eigenfunctions is not a
clear consequence of the definition of weak solutions of (1), except for the trivial
case when p is so large to make possible the use of Morrey’s embedding. In fact,
despite the possibility of getting L? to L via classical comparison arguments,
the oscillation decay however is hardly under control with local estimates, due
to the nonlocal contributions in the integral.

On the other hand, the assumptions on the exponent p can be considerably
lowered preserving the uniqueness of positive eigenfunctions. In this note it is
shown how to circumvent difficulties presenting a proof which does not require
any significant information about the regularity of weak solutions of (1).

The idea dates back to [3] and its importance in homogeneous nonlinear
eigenvalue problems was noticed by Belloni and Kawohl in [1] (see also [2]).



What matters for uniqueness is the convexity of the Gagliardo-type seminorm
Il - lws» along suitable curves connecting pairs of positive functions. For a
detailed description of this mechanism in the local case s = 1, we refer to the
recent paper [4] by Brasco and the first author.

The paper is organized as follows. In Section 2 below, we fix the notation
by also providing some preliminary results. In Section 3 we discuss some local
and global estimates of eigenfunctions u to problem (1). Section 4 is devoted to
the proofs of our main results for the fractional p-eigenfunctions.

2 - Preliminaries

In this section we state the general assumptions on the quantities we are
dealing with. We keep these assumptions throughout the paper.

Firstly, we recall that, for any s € (0,1) and any p > 1, the fractional Sobolev
spaces W*P(R™) is defined through the norm

u(y)|”
||UH€VS,P(]Rn) = / |’U,|p dx‘i‘/ﬂ/n ‘Jj— |n+sp de'dy

For a bounded domain 2 C R"™ (here always assumed with Lipschitz boundary),
the space WP () can be defined similarly. The homogeneous fractional Sobolev
spaces WP (Q) is given by the closure of C§°(Q2) with respect to the norm
| - lwer(q). For further details on the fractional Sobolev spaces, we refer to [9]
and the references therein.

The kernel K : R™ x R™ — [0, 00) is a measurable function such that
K(z,y) = K(y,x) for almost z,y € R",
(4) A < K(z,y)|z — y|"*P < A for almost z,y € R,
for some s € (0,1), p> 1, \,A > 1.1

For any u, v € W§"(Q2) we consider the functional

() €(u,v) ::/n o K (z,y)lu(@) —u(y) "> (u(@) - u(y))(v(z) —v(y)) dedy,

and the corresponding energy

(© #w) = [ [ Kl - u)P sy,

L As noticed in [11], the assumption in (4) can be weakened as follows
A< K(z,y)|lz —y|™ TP < A for almost z,y € R" s.t. |z —y| < 1,
0 < K(z,y)|z —y|" ™" < M for almost z,y € R" s.t. |[x —y| > 1,

for some s, A\, A as above, n > 0 and M > 1. Also, the kernel symmetry can be dropped, as
seen in [6, 7].



Moreover, we define a linear operator . such that, for any v and 7 sufficiently
smooth, say e. g. u, n € C§°(€) such that u =7 =0 in €1,

_<$uv 77> = éa(u’ 77)7

where (-, -) denotes, as usual, the dual product in the distributional sense. Thus,
assuming the kernel K to be regular enough, for any v € W;'?(2) we have

(1) Zu(z)=P.V. - K(z,y)lu(y) — w(@)P~*(u(y) — u(z))dy, = €R",

up to a multiplicative constant. As usual, the symbol P. V. means “in the
principal value sense”.

Let A > 0, we are interested in the weak solutions u € W;?(Q) to the
following class of integro-differential problems

(8) — Lu= NuP"?u in Q,

where the zero boundary condition is given in the whole complement of €), as
usual when dealing with nonlocal operators. To fix the ideas, one can keep
in mind the case when .Z coincides with the fractional p-Laplacian operator
—(—A)5, which, omitting a multiplicative constant ¢ = c(n,p, s), is given by

u(z) — u(y) [P~ (u(z) — uly))

o g

(=A)u(z) = P.V./n dzdy,

for any s € (0,1) and any p > 1; so that the equation in (8) becomes

(9) (=A)pu = NulP~2u.

A function u € W;*() is a weak solution to (8) if it satisfies

E(un) =X [ Jufundz,
RVL
for all test function n € C§°(2) such that n = 0 in €€, where & is defined
in (5). Notice that weak solutions are defined in the whole space, since they
are considered to be extended to zero outside 2. Such weak solutions deserved
a special name in the case when .Z coincides with the fractional p-Laplacian
operator (see [13, Definition 6]).

Definition 2.1. Let s € (0,1) andp € (1,00). A real number X is said to be
a “fractional p-eigenvalue” if equation (9) admits a non-trivial weak solution u €

WP (Q). If that is the case, u is called a “fractional p-eigenfunction” associated
with .



Note that eigenvalues are positive numbers. To see that, just plug the eigen-
function u itself in the weak formulation of (9) and note that the corresponding
eigenvalue A\ equals the Rayleigh quotient Z(u). By the same argument, eigen-
values are bounded from below, up to a power, by the best constant for the
embedding of W;"(Q2) into LP(f2). Since the latter is compact if p > 1, we
can conclude this section by recalling that there exists a nonnegative minimizer
u # 0 of (6); see [13, Theorem 5] and, also, [6, Theorem 2.3].

Lemma 2.1. Let s € (0,1) and p > 1. Then there exists a nonnegative
minimizer u of (6) in W3'*(Q) such that u =0 in €Q. Moreover, u is a weak
solution to problem (8).

Proof. By Sobolev’s inequality and assumption (4) on the kernel K, any min-
imizing sequence is bounded in W;*(Q). Since p > 1, up to relabeling the
sequence is converging to a limit function u strongly in LP(R"™) and weakly in
WyP(€2). The fact that u is a minimizer follows then by the weak lower semi-
continuity of norms. Moreover, by possibly passing to a subsequence, one can
assume the convergence to hold pointwise almost everywhere, thus the bound-
ary condition is also satisfied. To see that u must not change sign, it is sufficient
to notice that the inequality

|u(y) —u(@)] > [lu(y)| - u()]]

is strict at almost all points x, y such where u(z)u(y) < 0. The last statement is
standard, since (8) is the Euler-Lagrange equation for the minimization of the
Rayleigh quotient. O

3 - Local and global estimates

Fractional eigenfunctions are bounded. A way of seeing that is to obtain the
decay estimate for the level sets

+oo
(10) /k Hu >t} dt < ckl{u> k}'"

for all k& > 0 with the exponent ¢ = sp/n(p — 1) and a constant ¢ > 0 which
depends on n,p, s, A, Q. Even if an account for estimate (10) seems not to be
present anywhere in the literature, we prefer to skip the details of the proof, since
they follow verbatim the technique at one’s disposal in the eigenvalue problem
for the p-Laplacian, for which we refer to [14, 15]. Due to (10), a quantitative
bound of the form

[ull L~ < Clluflzr

can be obtained, see [12, Lemma 5.1, p. 71].
This kind of global bounds owe a lot to the very special features of the
eigenvalue problem. Moreover, the bounds are inherited from the Dirichlet



condition v = 0 on the complement of 2. When dealing with equations like
(11) - gKu = fa

having right hand-side different from the nonlinearity considered in this note,
one can however hope for L? to L™ estimates. In passing, we mention a result
in this direction.

Theorem 3.1. Let 0 < s < 1, sp <n, Q2 C R™ be a bounded open set and
[ € LY(Q) for some v >n/sp. If u € Wi (Q) solves equation (11) then

/ / K(z,y)luly) - u(z)|? dady
{u>k}NB, (o) Y {u>k}NB,(x0)

C / 1-3
< (u— k) da + C|| fll ey [{u > K} N Bg|' ™7
(R— o) Br(x0)\By (o) i o )|

for all k > 0 and all balls By(x9) C Br(xo) € Q.

We skip the proof of Theorem 3.1, which follows a classical path based on
Stampacchia’s truncations and comparison with constants. Namely, one con-
siders the weak formulation of equation (11) and plugs in as a test function
nP(u — k)4, where 7 is a standard cut-off. For a more detailed account about
this topic and related questions in the fractional framework, we refer to the
recent papers [6, 7]. Actually, fractional Caccioppoli estimates turned out re-
cently to be of nice use in a slightly different context. The interested reader is
referred to [16, 17, 8].

Let us now turn to the matter. We want to prove the boundedness of eigen-
functions. The proof below is much in the spirit of classical elliptic regularity.
We point out that the linear case p = 2 has been considered in [23, Proposition
7]; see, also, the paper [22] where some properties of the linear fractional eigen-
functions are discussed. For the sake of simplicity, from now on we suppose that
K(z,y) = |x —y|~(™*P); that is, the case when the operator coincides with the
fractional p-Laplacian. The general case with K satisfying (4) will follow with
no severe modification.

Theorem 3.2. Let s € (0,1), p > 1, and u € W5P(Q) be a solution to (8).
Then u € L>®(R").

Proof. If sp > n the conclusion is a consequence of Morrey-Sobolev embedding
(see [9, Theorem 8.2]). Thus, from now on, we are supposing that sp < n.
In order to prove the theorem, it suffices to bound the positive part us of u.
Indeed, since —u is also a solution, the same argument will give a bound for the
negative part, too. It is enough to prove that

(12) Juslpm <1 i Jugllze <56,



where § > 0 will be determined. Note that there is no restriction in that.
Indeed, the general case follows by a scaling argument, since equation (8) is
homogeneous.

Now, for any integer k > 1, consider the function wj defined as follows
wy, = (u—(1—27%)),.
By construction, wy, € W5P(Q) and wy,, = 0 a.e. in €. Notice also that the

following inequalities

wit1(x) < wg(z) a.e. in R™,
(13)
u(z) < (28 — Dwy(z) for z € {wis1 > 0},
and the inclusions
{wk_H > O} - {wk > 27(k+1)}
hold true for all k£ € IN.
The following general elementary fact is also helpful: if v € W;*(£2), then

(14)  Jo(z) = w72 (04 (2) = ve () (v(@) = v(y)) = |vi (@) —vi ()P,

for all z,y € R™. To check this, assume that v(z) > v(y). There is no loss
of generality in that, since the roles of x and y can be interchanged. Then,
one can reduce to the case when x € {v > 0} and y € {v < 0}, as otherwise
inequality (14) is trivial. In such a case, (14) reads as

(v(z) = v(y)" o(z) = v(x)?
which is correct since v(y) < 0 and v(z) > 0.

Now, (12) will be proved by a standard argument based on estimating the
decay of the quantity Uy := ||wg||},. On the one hand, in view of (14) with
v=u—(1-27F),

HwkﬂHIV)V;m

u(z) — u(y)lP 2 (u(z) — u(y)) (Wit () — Wi (y))
<[ L

o=yl

dzdy.
Thus, by plugging wi11 as a test function in (8) and using (13), one obtains

(19) funsalfygr <A [ (@) 2u(@)wp () de < A@HT — 17710
{wr+1>0}

On the other hand, the left hand-side of the latter can be estimated from below
by Ug41 if (fractional) Sobolev embeddings are called into play. At this stage, it
is convenient to separately consider the case when sp < n and that when sp = n.
We first consider the former, since the limiting case sp = n only requires minor



modifications. By Holder’s Inequality (with exponents p*/p and n/(sp)) and
fractional Sobolev imbedding (see, for instance, [9, Theorem 6.7])

(16) U1 < C||wk+1||€vg’z’|{wk+1 > OH%’

where the constant ¢ > 0 only depends on n, p,s. Note that the mere juxtapo-
sition of inequalities (15) and (16) is not enough to conclude, since Uj41 and
Uk both appear with the same exponent but the latter has a big factor in front.
On the other hand, by (13) and Chebychev’s inequality, one has

{wrr1 > 0} < [{wg > 27FFDY < 22D,
Thus, ,
Uk+1 S C)\(Qp(k+1)Uk)l+7p.

A similar conclusion can be drawn if sp = n. In this case Holder inequality with
different exponents and the limit embedding W;* < L% (with ¢ > 1) should
be used. Hence, whenever sp < n, an estimate of the form

Uit < CFUM, for all ke NN,
holds for a suitable constant C' > 1 and some « > 0. This will imply that
(17) lim U, =0
k—o0

provided that
1
luils, =Up < C7 a2 =: 6P,
+1IL

as it is easily checked. Since wy, converges to (u — 1) pointwise almost every-
where in R™, from (17) we infer that that (12) holds as desired. O

To conclude this section, we point out that the proof above is based on the
competition between LP and WP norms of the truncated eigenfunctions, just
as in the local case. At variance with that, no energy inequality was involved,
though. This was possible due to the very special structure of the problem,
which allows for a control on the energy via the simple arithmetic relation (14).
Moreover, no localization was needed, due to the peculiar boundary conditions.

4 - Uniqueness of fractional p-eigenfunctions

As mentioned in the introduction, the geodesic convexity property presented
in [4] holds true for the fractional Gagliardo seminorm .# defined by (6) when
K = |z — y|~ (™) Indeed, we state and prove the following

Lemma 4.1. Let s € (0,1), p > 1, and let & be the functional defined
by (6). For any nonnegative functions u,v € Wi(2), consider the function oy
defined by

(18) ou(x) = (1 — P () + tuP (z)) 7, Vi € [0,1].



Then
(19) H (o) < (1 =) (v) +t# (u), Vte]0,1].
Proof. The proof is straightforward. Notice that

o= ||(t7u, (1= 1)70) |,

where || - ||¢» denotes the ¢P-norm in R?. Then, (19) follows by the triangle
inequality

lEller = lnller| < 1l€ = nller,

by taking £ = (tl/pu(y), (1- t)l/”v(y)) and n = (tl/pu(x), (1- t)l/px(y)) for
any z,y € R™ and integrating the resulting inequality against the fractional
kernel on R™ x R". O

Now, we are in the position to prove our main result, stated in the following

Theorem 4.1. Let s € (0,1), p > 1 and v € WyP(R2) be a solution to (8)
such that v > 0 in . Then
A= 1 p(Q)

where A] p(Q) denotes the minimum of the fractional Rayleigh quotients % on
Wg’p(ﬂ), as defined in (2).

Proof. Assume that v € W;*(Q) is a strictly positive solution of (9). There is
no loss of generality if we assume that the function v is normalized in LP(S2).
Let u € W3P(Q2) be a solution of the minimum problem

X;(Q) = min {Ji/(u,Q) L ue WS”’(Q),/Q ()P dz = 1}

To simplify the notation a little, let u. and v. denote the functions u + ¢
and v + ¢, respectively. Set

1

oi(@) = (tuc(@)” + (1= Due@))”, wete)

By Lemma 4.1, t — o¢ is a curve of functions belonging to W*? () along which
the the energy is convex. Hence

|Ut |
fo f R e [ [ R
|u(z) — uly) [P |v(z) —v(y)[?
</n/n |x—y|”+€1’ dzdy — /ﬂ/n \J;—y|"+SP dxdy)

— ¢ (x;,p(sz) - A),

\ /\



for all ¢ € [0,1] and all e < 1. By the (standard) convexity of the map 7 +— |7|?,
the left hand-side in the latter can be estimated from below as follows

log(z) —oi(y)| |v(z) —v(y) P
// |x— |n+sp dedy // |:c— |n+sp dedy

> [ [ e —eO o) —vla) o,
e o=y
% (07 (y) = o5 (2) = (v(y) — v(a) ) dady,

for all t € [0,1] and ¢ < 1. Moreover, since u,v € W;*(Q), the function of
also belong to W*P(2). Thus, it does take sense to plug ¢ = 0§ — v, as a test
function into the Euler-Lagrange equation which holds for the eigenfunction v,
whence the identity

/ ) / ) |x pyTMg) —v(x)) (ﬁ(y) — ot (x) — (vely) — ve(m))) dady,
= )\/Qv(z)P—l (gf(z) - U(z)) dz,

follows for all € < 1. Here the fact that v(y) — v(z) = ve(y) — ve(x) was used.
Thus,

)\/ plat t()d2<)‘())‘7

for all t € [0,1], and all ¢ < 1. Note that by the concavity of the p-th root,
the integrand in the latter is estimated pointwise almost everywhere in 2 from

below by the function
U(Z)pil (UE(Z) - UE(Z)),

which does belong to L'(2). Hence, by Fatou’s Lemma,

A /Q (&)pl ((u() + 2 — (wlz) +)7) a2

< /\liminf/ v(z)p_lw dz < A7 ,(Q) = A,
Q

t—0+

for all € small enough. Since v > 0, by dominated convergence Theorem and
the normalization in LP(2) of both the functions u,v, sending ¢ — 0% yields

0 < A5, () — A

The desired conclusion now follows, since Aj ,(€2) is the least possible fractional
p-eigenvalue and the converse inequality is obvious. O

As a consequence, one can prove the following

Theorem 4.2. Let s € (0,1) and p > 1. Then all the positive eigenfunctions
corresponding to \i ,(2) are proportional.

10



Proof. Let u,v be two positive normalized functions W;*(Q) and o, denote the
usual constant speed geodesic connecting u to v. Recall the convexity inequality
of Lemma 4.1

H (o) < (1 =) (v) + t (u).
If the equality holds, then for almost all z,y € R™ the triangle inequality

€ller = Ninlles| < 1IE = ller,
holds as an inequality with the choice
1 1 1 1
¢ = (thuw), (1= 7 oly)), 0= (Ful@), (1 -HFe()).
Since p > 1 there exists a(x,y) € R such that

uy) = alz,yu(z),  v(y) = alz,y)v(@),

for almost all z,y € R™. Therefore

u(y) _ ul)
v(y)  v(z)
and there is a constant 8 such that u = Sv almost everywhere. O
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