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Abstract. It is well known that sets of finite perimeter can be strictly approximated by
smooth sets, while, in general, one cannot hope to approximate an open set Ω of finite
perimeter in R

n strictly from within. In this note we show that, nevertheless, the latter
type of approximation is possible under the mild hypothesis that the (n−1)-dimensional
Hausdorff measure of the topological boundary ∂Ω equals the perimeter of Ω. We also
discuss an optimality property of this hypothesis, and we establish a corresponding result
on strict approximation of BV-functions from a prescribed Dirichlet class.

1. Introduction and statement of the results

For arbitrary n ∈ N, the perimeter P(Ω) of a measurable set Ω in R
n is defined as

P(Ω) := sup

{∫

Ω

divϕdL
n : ϕ ∈ C∞

cpt(R
n,Rn), sup

Rn

|ϕ| ≤ 1

}
∈ [0,∞]

(with the n-dimensional Lebesgue measure L n). As a consequence of the divergence theorem,
this definition generalizes the more classical notions of perimeter, and in particular, for sets Ω
with smooth boundary, one has the identity P(Ω) = H n−1(∂Ω) with the (n−1)-dimensional
Hausdorff measure H n−1. Even for non-smooth sets Ω, the above notion of perimeter is very
reasonable and useful, but in general one only has the inequality (see [1, Proposition 3.62])

(1.1) P(Ω) ≤ H
n−1(∂Ω) .

Though a set Ω with finite perimeter P(Ω) < ∞ in R
n is in several regards well-behaved,

one often needs to approximate Ω with smooth sets in such a way that also the perimeters
converge, and indeed it is very well known (see [1, Theorem 3.42]) that this is always possible:
one can find open sets Ωε with smooth boundaries in R

n such that Ωε converges to Ω in
measure and

(1.2) H
n−1(∂Ωε) = P(Ωε) converges to P(Ω) for ε ց 0.

In this paper we are concerned with strict interior approximation: that means, we investigate
whether, for an open Ω, one can additionally take

(1.3) Ωε ⋐ Ω .

For bounded Lipschitz domains Ω, this requirement can be achieved by the constructions
described in [18, 17, 9]. For more general Ω, in contrast, some related problems have been
considered in [20, 23, 24, 19, 21, 22], but it seems that approximations with (1.2) and (1.3)
have not been found. The main obstacle in this regard is that the analogous approximation
is impossible for arbitrary bounded open sets with finite perimeter in R

n: indeed, when one
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considers Ω = (0, 1)n−1 ×
[
(0, 1) \ { 1

2}
]
, then it follows (using the lower semicontinuity [1,

Proposition 3.38(b)] of the perimeter on both halves of Ω) that for all approximations Ωε one
necessarily has lim infεց0 P(Ωε) ≥ 2n+2, but H n−1(∂Ω) = 2n+1 and P(Ω) = 2n are strictly
smaller.

Here, we will show that these and similar examples are ruled out and strict interior approx-
imation is again possible if one only imposes the mild extra assumption (1.4) below. This is
actually the first main result of the present paper, which will be proved in Section 3:

Theorem 1.1 (strict interior approximation of the perimeter). Suppose that Ω is a bounded

open set in R
n whose topological boundary is well-behaved in the sense of

(1.4) H
n−1(∂Ω) = P(Ω) .

Then, for every ε > 0, there exists an open set Ωε with smooth boundary in R
n and with

(1.5) Ωε ⋐ Ω , Ω \ Ωε ⊂ Nε(∂Ω) ∩ Nε(∂Ωε) , P(Ωε) ≤ P(Ω) + ε ,

where we have used the notation Nε( · ) for ε-neighborhoods of sets in R
n.

Several comments on this approximation theorem follow.
First of all, we remark that boundedness of Ω is not essential, but is just imposed in order to

simplify our statements and proofs. In fact, the extension of Theorem 1.1 (and of Theorem 1.2
stated below) to unbounded Ω is discussed in [5, Section 3.3].

Furthermore, by De Giorgi’s structure theorem [1, Theorem 3.59] (combined with [1, Propo-
sition 3.6]), whenever the perimeter P(Ω) is finite, then one has equality

(1.6) P(Ω) = H
n−1(FΩ)

with the measure of the reduced boundary FΩ of Ω. In this case, we can thus rephrase the
hypothesis (1.4) — also taking into account that FΩ ⊂ ∂Ω holds by definition — as the
requirement

(1.7) H
n−1(∂Ω \ FΩ) = 0 .

In this light, (1.4) yields a measure-theoretic control on the topological boundary ∂Ω, and it
seems plausible that such a condition may be relevant in order to incorporate the topological
condition (1.3) into the measure-theoretic theory of the perimeter. A more detailed discussion
of (1.4), including the proof of a restricted optimality property, is postponed to Section 5.

Turning from the hypothesis of Theorem 1.1 to its conclusion, we observe that (1.5) implies⋃
ε>0 Ωε = Ω and limεց0 ‖1Ωε−1Ω‖L1(Rn) = limεց0 L

n(Ω \ Ωε) = 0. Via the lower semicon-
tinuity of the perimeter (and the smoothness of ∂Ωε), we thus infer that (1.2) is valid for the
approximations of the theorem. Furthermore, whenever P(Ω) is finite, it equals the total varia-
tion |D1Ω|(Rn) of the gradient measure of 1Ω, so that the approximating sequence (1Ω1/k

)k∈N

converges strictly in BV(Rn) to 1Ω (in the sense of [1, Definition 3.14]). In addition, we also
record that the first two assertions in (1.5) imply the bounds

(1.8) dH(Ωε,Ω) ≤ ε and dH(∂Ωε, ∂Ω) ≤ ε

in the Hausdorff distance1 dH.
Last but not least, let us emphasize that the precise form of the last condition in (1.5) is

significant; indeed, if one requires only the weaker bound

(1.9) P(Ωε) ≤ CH
n−1(∂Ω)

with a certain dimensional constant C ∈ (1,∞), then the existence of interior approximations
Ωε with (1.9) can be concluded from a standard argument, which is based on a covering of ∂Ω

1For non-empty, bounded subsets A and B of R
n, the Hausdorff distance is defined by dH(A,B) :=

max
{

supa∈A dist(a, B), supb∈B dist(A, b)
}

∈ [0,∞) .
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with suitable balls and obtains the Ωε by removing these balls from Ω (compare with [1, Proof of
Proposition 3.62]). The same argument has been used in connection with [7, Proposition 8.1],
where a statement similar to (1.5) has been claimed, but — as an inspection of the proof
reveals — only a statement of the type (1.9) has been established. Indeed, it seems that (1.5)
cannot be obtained via a covering of ∂Ω with balls, but that rather coverings with suitably flat
objects are needed. In the proof of Theorem 1.1 we will see that such refined coverings can be
constructed, when one involves ideas from the proof of De Giorgi’s structure theorem in order
to first decompose ∂Ω into a negligible set and countably many locally flat-looking pieces.

Next, for arbitrary n,N ∈ N, we turn to approximation results for R
N -valued functions

of bounded variation on an open subset Ω of R
n. We fix u0 ∈ W1,1(Rn,RN ), for every

u ∈ BV(Ω,RN) we set

u(x) :=

{
u(x) for x ∈ Ω

u0(x) for x ∈ R
n \ Ω

,

and we define

BVu0

(
Ω,RN

)
:= {u ∈ BV(Ω,RN ) : u ∈ BV(Rn,RN)} .

We observe that BVu0

(
Ω,RN

)
contains the Dirichlet class W1,1

u0
(Ω,RN ) := u0 Ω

+W1,1
0 (Ω,RN )

and is closed in the weak-∗ topology of BV(Ω,RN). Hence, BVu0

(
Ω,RN

)
may be seen as a nat-

ural replacement for W1,1
u0

(Ω,RN) in many regards, for instance when dealing with minimiza-
tion problems for variational integrals in Dirichlet classes (compare [5, Section 2.2]). If Ω has
sharp external cusps, then BVu0

(
Ω,RN

)
is strictly smaller than BV(Ω,RN ), but whenever Ω

has a bounded Lipschitz boundary, then [1, Corollary 3.89] yields BVu0

(
Ω,RN

)
= BV(Ω,RN );

thus, in general, functions in BVu0

(
Ω,RN

)
do not attain the boundary values of u0 in any

reasonable sense, but rather their derivative comprises some information about the deviation
from these boundary values.

We now focus on the strict approximation of functions u ∈ BVu0

(
Ω,RN

)
from W1,1

u0
(Ω,RN ).

Whenever this approximation is possible for all functions u in the class, then BVu0

(
Ω,RN

)

is in fact the sequential closure of W1,1
u0

(Ω,RN) in both the weak-∗ and the strict topology of

BV(Ω,RN) — and thus often the smallest possible replacement. Before stating our correspond-
ing result, we mention a variety of closely related approximation theorems in the literature:
first, the simpler case of functions u which do attain2 the boundary values u0 on ∂Ω is treated
in [12, Remark 2.12], [6, Lemma B.1], [14, Lemma 1] and does not depend on the regularity
of ∂Ω; generalized boundary conditions are considered in [3, Lemma 5.1] and [13, Lemma A.2]
under a C2-assumption on ∂Ω, and in [16, Theorem 3.1] for u0 ≡ 0 and Lipschitz boundaries;
finally, [2, Fact 3.3] deals with arbitrary generalized boundary data on bounded Lipschitz do-
mains, but it seems that a complete proof in this generality has only been published in [6,
Lemma B.2]. Our second main result, which will be established in Section 4, extends all these
statements to cases with possibly irregular boundaries as follows.

Theorem 1.2 (strict approximation of BV-functions from a given Dirichlet class). Sup-

pose that Ω is a bounded open set in R
n with H n−1(∂Ω) = P(Ω) < ∞. Then, for u0 ∈

W1,1(Rn,RN ), u ∈ BVu0

(
Ω,RN

)
, and every ε > 0 there exists a

uε ∈ u0 Ω
+C∞

cpt(Ω,R
N )

with

(1.10)

∫

Ω

|uε − u| dL
n ≤ ε and |(L n,Duε)|(Ω) ≤ |(L n,Du)|

(
Ω
)
+ ε .

2In our terminology, attainment of the boundary values means |Du|(∂Ω) = 0; compare also [15, Theorem 1]
for the construction of certain piecewise affine approximations in this situation.
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Here, (L n,Du) denotes the RNn+1-valued measure on R
n whose first component is L n and

whose other components are given by the RNn-valued gradient measure Du, and (L n,Duε) is
understood analogously. Writing Du = (∇u)L n +Dsu for the Lebesgue decomposition of Du
with respect to L n, the second inequality in (1.10) can thus be restated as

∫

Ω

√
1 + |∇uε|2 dL

n ≤

∫

Ω

√
1 + |∇u|2 dL

n + |Dsu|
(
Ω
)
+ ε .

Finally, we stress that — via the Reshetnyak continuity theorem [1, Theorem 2.39] — we can
also achieve variants of (1.10), as for instance |Duε|(Ω) ≤ |Du|

(
Ω
)
+ ε.

Acknowledgement. The author would like to thank Lisa Beck for several comments on a pre-
liminary version of the manuscript.

2. Some notation and terminology

We have tried to keep the notation of this paper as close as possible to the standard, and
most of our terminology follows the one in the monographs [1, 12]. Nonetheless, we comment
on some specific conventions:
Elementary geometry. First of all, B̺(x0) is the open ball with center x and radius ̺ in
R

n, and we set ωn := L n(B1(0)) (and ω0 := 1). For a vector subspace T of Rn and y ∈ R
n,

we write T (y) for the orthogonal projection of y on T , and we set T⊥(y) := y − T (y). With
this notation, the cone with axis T and opening parameter ε > 0 is defined as

(2.1) Cε(T ) := {y ∈ R
n : |T⊥(y)| ≤ ε|T (y)|} .

Reduced boundaries. Following [1, Definition 3.54], we write FΩ for the reduced boundary
of any L n-measurable subset Ω of Rn, taken in the largest open set in which Ω has locally
finite perimeter. By νΩ(x) we denote the (generalized) exterior unit normal to Ω at x ∈ FΩ,
and we set B±

̺ (x) := {y ∈ B̺(x) : ±y · νΩ(x) ≥ 0} (where the relevant Ω is indicated by

the context). Finally, Tann−1(FΩ, x) is the approximate tangent space at x ∈ FΩ, that is an
(n−1)-dimensional subspace T of Rn such that, for ̺ ց 0, the measures H

n−1 FΩ−x
̺ locally

weak-∗ converge to H n−1 T on R
n; compare [1, Definition 2.79]. By [1, Theorem 3.59],

Tann−1(FΩ, x) exists and equals the orthogonal complement of νΩ(x) for x ∈ FΩ.

3. Strict interior approximation of the perimeter

We start this section with a lemma on the decomposition of FΩ into flat pieces.

Lemma 3.1. Consider an L n-measurable set Ω in R
n. For every ε > 0, the reduced boundary

FΩ can be decomposed into countably many disjoint Borel subsets R1, R2, R3, . . . such that

x ∈ Ri =⇒





L n(Ω ∩ B+
̺ (x)) ≤ ε2̺n for all ̺ ∈

(
0, 1

i

]
,

Ri ∩ B1/i(x) ⊂ x+Cε(Tan
n−1(FΩ, x)) .

Proof. For j ∈ N, we set inductively

Aj :=

{
x ∈ FΩ :

H n−1(FΩ ∩ B̺(x)) ≥
1
2ωn−1̺

n−1

L n(Ω ∩ B+
̺ (x)) ≤ ε2̺n

for all ̺ ≤ 1
j

}
\

j−1⋃

m=1

Am .

Evidently the Aj are disjoint, by Fubini’s theorem they are Borel sets, and by De Giorgi’s
structure theorem [1, Theorem 3.59] their union is all of FΩ. By a well-known argument,
taken from the proof of the structure theorem, one can moreover show that for every x ∈ Aj

there exists some rx > 0 (depending also on ε) with

(3.1) Aj ∩ Brx(x) ⊂ x+Cε(Tan
n−1(FΩ, x)) .
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The required argument for (3.1) is described in the proof of [1, Theorem 2.83(ii)], but
for the sake of clarity we sketch it in the following. Indeed, if (3.1) failed for arbitrarily
small radii, then, abbreviating T := Tann−1(FΩ, x), we could find a sequence (xℓ)ℓ∈N in
Aj \ [x+Cε(T )] such that ̺ℓ := |xℓ−x| converges to 0 for ℓ → ∞. By a straightforward
computation, we would get Bχ̺ℓ

(xℓ)∩ [x+Cε/2(T )] = ∅ for χ := ε/(2+2ε), and in combination

with the choice of Aj , this would in turn give (H n−1 FΩ)(B(1+χ)̺ℓ
(x) \ [x+Cε/2(T )]) ≥

H n−1(FΩ∩Bχ̺ℓ
(xℓ)) ≥

1
2ωn−1(χ̺ℓ)

n−1 for ℓ ≫ 1. Hence, for the rescalings Ωℓ := (Ω−x)/̺ℓ,

we would have (H n−1 FΩℓ)(B1+χ(0) \ Cε/2(T )) ≥ 1
2ωn−1χ

n−1 for ℓ ≫ 1, and every local

weak-∗ limit of the measures H n−1 FΩℓ would have positive mass in B1+χ(0) \ Cε/2(T ), but,

by [1, Theorem 3.59(b)], the limit measure is H n−1 T , which does not have this property.
This contradiction completes the derivation of (3.1).

Now the rx can moreover be taken3 as Borel functions of x, and when we choose an enu-
meration (j(1), k(1)), (j(2), k(2)), (j(3), k(3)), . . . of N × N with j(i) ≤ i and k(i) ≤ i for all
i ∈ N, then it is easy to see that the sets

Ri := {x ∈ Aj(i) : rx ≥ k(i)−1} \ (R1 ∪R2 ∪ . . . ∪Ri−1)

have the required properties. �

The following proof of Theorem 1.1 is essentially a special case of the argument used for
Proposition 4.1 below. Nevertheless, we will first carry out the details in the more geometric
and slightly less technical situation of the theorem.

Proof of Theorem 1.1. We first observe that it suffices to construct arbitrary measurable Ωε

with (1.5), not necessarily with smooth boundaries. Indeed, as soon as we achieve this, we
can mollify the characteristic functions of these sets and employ the coarea formula in order
to select smooth Ωε as superlevel sets of the mollifications. This reasoning is detailed in the
proof of the classical approximation property [1, Theorem 3.42], and we omit further details.

Furthermore, we claim that it suffices to establish the claim only with the weaker requirement

(3.2) Ω \ Ωε ⊂ Nε(∂Ω)

instead of the second condition in (1.5). To see this, we assume that the weaker form of

(1.5) holds for sets Ω̃1/k with k ∈ N (where 1/k replaces ε), and we show by an elementary
contradiction argument that, for every given ε > 0, we can choose the desired Ωε as one of

the Ω̃1/k with k ∈ N. Indeed, if this were not possible, we would necessarily have Ω \ Ω̃1/k 6⊂

Nε(∂Ω̃1/k) for all k ≥ ε−1. Then, we could choose xk ∈ (Ω \ Ω̃1/k) \ Nε(∂Ω̃1/k), and a

subsequence of the xk would converge to some x ∈ Ω with dist(x, Ω̃1/k) > dist(xk, Ω̃1/k)−ε/2 =

dist(xk, ∂Ω̃1/k) − ε/2 ≥ ε/2 for k ≫ 1 (where the last two steps exploit xk /∈ Ω̃1/k and xk /∈

Nε(∂Ω̃1/k), respectively). Consequently, we could also find a y ∈ Ω with dist(y, Ω̃1/k) ≥ ε/2

for k ≫ 1, but this would result in a contradiction, as we started with Ω \ Ω̃1/k ⊂ N1/k(∂Ω)

and would thus have y ∈ Ω̃1/k for k > dist(y, ∂Ω)−1.
In view of the preceding reduction steps, the case P(Ω) = ∞ can be concluded by the simple

choice Ωε := {x ∈ Ω : dist(x, ∂Ω) > ε/2}, and in the following we assume P(Ω) < ∞. We
further work with a given ε ≤ 1

2 and the corresponding sets Ri of Lemma 3.1. By definition of

3For instance, fixing a dense subset {̺m : m ∈ N} of (0,∞), one can choose rx = supm∈N rmx , where rmx
equals ̺m in the case Aj ∩ B̺m(x) ⊂ x+ Cε(Tann−1(FΩ, x)) and equals 0 otherwise.
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the Hausdorff measure4, there exist xi,j ∈ R
n and ri,j ∈

(
0,∞) with 3ri,j ≤ min

{
1
i , ε

}
,

Ri ⊂
∞⋃

j=1

Bri,j (xi,j) , and

∞∑

j=1

ωn−1r
n−1
i,j ≤ H

n−1(Ri) + 2−iε .

Evidently, we can assume Ri ∩ Bri,j (xi,j) 6= ∅ so that this intersection contains at least one

point x̃i,j , for all i, j ∈ N. Abbreviating Ti,j := Tann−1(FΩ, x̃i,j) and taking 3ri,j ≤ 1
i into

account, the assertions of Lemma 3.1 imply

L
n(Ω ∩ B+

3ri,j
(x̃i,j)) ≤ 3nε2rni,j ,(3.3)

Ri ∩ Bri,j (xi,j) ⊂ Ri ∩ B1/i(x̃i,j) ⊂ x̃i,j +Cε(Ti,j) .

Recalling the notations introduced around (2.1), we infer that Ri∩Bri,j (xi,j) is also contained
in the (quite flat) cylinder

{y ∈ R
n : |Ti,j(y−xi,j)| < ri,j and |T⊥

i,j(y−x̃i,j)| < 2εri,j} .

We will slightly enlarge this cylinder in order to get control on a part of its boundary. To this
end we take some hi,j ∈ [2εri,j , 3εri,j ] with

H
n−1

(
{y ∈ Ω : |Ti,j(y−xi,j)| < ri,j and T⊥

i,j(y−x̃i,j) = hi,jνΩ(x̃i,j)}
)
≤ 3nεrn−1

i,j .

Such a choice is possible by (3.3) and a Fubini type argument, as in view of ε ≤ 1
2 all the

relevant sets are indeed contained in Ω ∩ B+
3ri,j

(x̃i,j). We now introduce

Ci,j := {y ∈ R
n : |Ti,j(y−xi,j)| < ri,j and |T⊥

i,j(y−x̃i,j)| < hi,j} ⋐ Bε(x̃i,j) ,

and record that top and bottom of Ci,j have each H
n−1-measure ωn−1r

n−1
i,j , while the side

has measure 2hi,j(n−1)ωn−1r
n−2
i,j . Involving also the preceding choice of hi,j , we get

(3.4) H
n−1(Ω ∩ ∂Ci,j) ≤

[
ωn−1 + 3nε+ 6ε(n−1)ωn−1

]
rn−1
i,j .

Now we exploit the reformulation (1.7) of (1.4), and we cover also ∂Ω \ FΩ by countably
many balls B̺1

(y1),B̺2
(y2),B̺3

(y3), . . . with radii ̺k ≤ ε/2 such that B̺k
(yk) ∩ ∂Ω 6= ∅ and∑∞

k=1 ̺
n−1
k ≤ ε. Since the Ci,j cover FΩ, the Ci,j and B̺k

(yk) together form an open cover of
∂Ω. Exploiting boundedness of Ω, we choose a finite sub-cover

S := Ci1,j1 ∪Ci2,j2 ∪ . . . ∪ CiM ,jM ∪ B̺k1
(yk1

) ∪ B̺k2
(yk2

) ∪ . . . ∪ B̺kN
(ykN )

of ∂Ω, and we take

Ωε := Ω \ S .

Then, Ωε is an open set with Ωε ⋐ Ω and Ω \ Ωε ⊂ S ⊂ Nε(∂Ω). Thus, the first condition in
(1.5) and the weaker form (3.2) of the second condition are valid. In order to verify the third
condition in (1.5), we exploit in turn (1.1), the preceding definition of Ωε, (3.4), the choices of

4At this point, we work with the spherical Hausdorff measure, but we also use results from [1], formulated
with the standard Hausdorff measure. Nevertheless, our argument is consistent, as we only evaluate these
measures on H n−1-rectifiable sets, where they coincide by [11, Theorem 3.2.26]. Notice in addition that the
theory of the perimeter can also be developed using only the spherical measure from the very beginning.
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the Ci,j and B̺k
(yk), the fact that the Ri are disjoint in FΩ, and (1.6). In this way we deduce

P(Ωε) ≤ H
n−1(∂Ωε) ≤

∞∑

i,j=1

H
n−1(Ω ∩ ∂Ci,j) +

∞∑

k=1

H
n−1(∂B̺k

(yk))

≤ (1+Anε)

∞∑

i,j=1

ωn−1r
n−1
i,j +An

∞∑

k=1

̺n−1
k

≤ (1+Anε)

∞∑

i=1

[
H

n−1(Ri) + 2−iε
]
+Anε

= (1+Anε)[H
n−1(FΩ) + ε] +Anε

≤ P(Ω) + (1+2An+AnP(Ω))ε

with the dimensional constant An := max{3n/ωn−1+6(n−1), nωn}. The same reasoning ap-
plies with the smaller quantity ε/(1+2An+AnP(Ω)) in place of ε. Thus, we obtain the last
assertion of (1.5), and the proof is complete. �

4. Strict approximation of BV-functions from a given Dirichlet class

For a BV-function w, defined near FΩ, we write w+
FΩ for the exterior trace and w−

FΩ for the
interior trace on FΩ (with orientation given by the exterior normal νΩ); see [1, Theorem 3.77].
With this notation, Theorem 1.1 corresponds essentially to the special case of a constant w in
the next proposition.

Proposition 4.1. Suppose that Ω is a bounded open set in R
n with H n−1(∂Ω) = P(Ω) < ∞.

Then, for w ∈ BV(Rn,RN ) ∩ L∞(Rn,RN ) and every ε > 0, there exists an open set Ωε with

finite perimeter in R
n such that

Ωε ⋐ Ω , L
n(Ω \ Ωε) ≤ ε ,

∫

FΩε

|w−
FΩε

| dH
n−1 ≤

∫

FΩ

|w−
FΩ| dH

n−1 + ε .

Proof. We assume ε ≤ 1
2 and take L := max{1, ‖w‖L∞(Rn,RN )}. Working with the sets Ri

from Lemma 3.1, we pass on to the sets R∗
i of all x ∈ Ri such that, for some rx > 0 and all

̺ ∈ (0, rx], we have

H
n−1(Ri ∩ B̺(x)) ≥

1
1+εωn−1̺

n−1 ,(4.1)
∫

B−

̺ (x)

|w − w−
FΩ(x)| dL

n ≤ ε2̺n ,(4.2)

∫

Ri∩B̺(x)

|w−
FΩ − w−

FΩ(x)| dH
n−1 ≤ εH n−1(Ri ∩ B̺(x)) .(4.3)

With this terminology we have H n−1(Ri \ R∗
i ) = 0 for the following reasons: the almost-

everywhere validity of the first property is guaranteed by (one implication of) the Besicovitch-
Marstrand-Mattila theorem [1, Theorem 2.63, Theorem 2.83(i)]; similarly, for the second prop-
erty we rely on the defining property of traces [1, Theorem 3.77], and in connection with the
third one we exploit the fact that H n−1-a. e. point of Ri is a Lebesgue point of the L

∞-function
w−

FΩ with respect to the finite Radon measure H n−1 Ri. The family
{
B̺(x) : x ∈ R∗

i , 0 < 2̺ ≤ min{rx,
1
i } , H

n−1(Ri ∩ ∂B̺(x)) = 0
}

is a fine cover of R∗
i , and by the Vitali covering theorem (see [1, Theorem 2.19]) for the Radon

measure H n−1 Ri we can find a countable subfamily
{
Bri,j (xi,j) : j ∈ N

}
, consisting of
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disjoint balls with xi,j ∈ R∗
i and 2ri,j ≤ min{rxi,j ,

1
i }, such that

(4.4) H
n−1

(
Ri \

∞⋃

j=1

Bri,j (xi,j)

)
= 0

holds. As a consequence of Lemma 3.1, we have

L
n(Ω ∩ B+

2ri,j
(xi,j)) ≤ 2nε2rni,j ,(4.5)

Ri ∩ Bri,j (xi,j) ⊂ xi,j +Cε(Ti,j)(4.6)

with the abbreviation Ti,j := Tann−1(FΩ, xi,j). Next we introduce the cylinders

Ci,j := {y ∈ R
n : |Ti,j(y−xi,j)| < ri,j and |T⊥

i,j(y−xi,j)| < hi,j} ,

where hi,j ∈ (εri,j , 2εri,j ] will now be chosen such that we get good estimates for parts of ∂Ci,j .
Indeed, via (4.5), (4.2), the observation that Ci,j ⋐ B2ri,j (xi,j) holds (whenever hi,j ≤ 2εri,j),
and Fubini’s theorem we can fix hi,j ∈ (εri,j , 2εri,j ] such that, for

∂+Ci,j := {y ∈ R
n : |Ti,j(y−xi,j)| < ri,j and T⊥

i,j(y−xi,j) = hi,jνΩ(xi,j)} ,

we have

H
n−1(Ω ∩ ∂+Ci,j) ≤ 2n+1εrn−1

i,j ,(4.7)

such that H n−1-a. e. point in

∂−Ci,j := {y ∈ R
n : |Ti,j(y−xi,j)| < ri,j and T⊥

i,j(y−xi,j) = −hi,jνΩ(xi,j)}

is a Lebesgue point of w, and such that we have
∫

∂−Ci,j

|w − w−
FΩ(xi,j)| dH

n−1 ≤ 2n+1εrn−1
i,j .(4.8)

From (4.4), (4.6), and hi,j > εri,j we infer

(4.9) H
n−1

(
Ri \

∞⋃

j=1

Ci,j

)
= 0 ,

and via the boundedness of w, via the fact that the side FCi,j \ (∂+Ci,j ∪ ∂−Ci,j) of Ci,j has

H n−1-measure 2hi,j(n−1)ωn−1r
n−2
i,j , and via (4.8), (4.7), (4.1), (4.3) we arrive at

(4.10)

∫

Ω∩FCi,j

|w+
FCi,j

| dH
n−1

≤

∫

∂−Ci,j

|w| dH
n−1 + LH

n−1(Ω ∩ ∂+Ci,j) + 2hi,j(n−1)Lωn−1r
n−2
i,j

≤ |w−
FΩ(xi,j)|H

n−1(∂−Ci,j) +
[
2n+1 + 2n+1L+ 4(n−1)Lωn−1

]
εrn−1

i,j

≤ |w−
FΩ(xi,j)|ωn−1r

n−1
i,j + 1

2

(
L̂−2

)
εωn−1r

n−1
i,j

≤ |w−
FΩ(xi,j)|(1+ε)H n−1(Ri ∩ Bri,j (xi,j)) +

(
L̂−2

)
εH n−1(Ri ∩ Bri,j (xi,j))

≤ (1+ε)

∫

Ri∩Bri,j
(xi,j)

|w−
FΩ| dH

n−1 + L̂εH n−1(Ri ∩ Bri,j (xi,j)) ,

where we abbreviated L̂ := (2n+3/ωn−1+8n)L. Via (1.7), Lemma 3.1, and (4.9), we get

H
n−1

(
∂Ω \

∞⋃

i,j=1

Ci,j

)
= 0 .
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Then, as in the proof of Theorem 1.1, we cover ∂Ω \
⋃∞

i,j=1 Ci,j by countably many balls

B̺1
(y1),B̺2

(y2),B̺3
(y3), . . . with radii ̺k ≤ 1 such that

∑∞
k=1 ̺

n−1
k ≤ ε. The Ci,j and B̺k

(yk)
form an open cover of the compactum ∂Ω, and we can choose a finite sub-cover

S := Ci1,j1 ∪ Ci2,j2 ∪ . . . ∪CiM ,jM ∪ B̺k1
(yk1

) ∪ B̺k2
(yk2

) ∪ . . . ∪ B̺kN
(ykN ) .

Then
Ωε := Ω \ S ⋐ Ω

is an open set with finite perimeter in R
n (this follows, for instance, from the fact that the

multiplication of BV ∩ L∞-functions is still in BV ∩ L∞). Next we employ (4.10), where we
control the right-hand side of this estimate via the fact that (Bri,j (xi,j))j∈N is a disjoint family
of balls (for fixed i ∈ N). Exploiting that also the Ri are disjoint, we deduce

∫

FΩε

|w−
FΩε

| dH
n−1 ≤

∞∑

i,j=1

∫

Ω∩FCi,j

|w+
FCi,j

| dH
n−1 + Lnωn

∞∑

k=1

̺n−1
k

≤
∞∑

i=1

[
(1+ε)

∫

Ri

|w−
FΩ| dH

n−1 + L̂εH n−1(Ri)

]
+ Lnωnε

≤ (1+ε)

∫

FΩ

|w−
FΩ| dH

n−1 + L̂εH n−1(FΩ) + Lnωnε .

Finally, relying on ri,j ≤ 1 and ̺k ≤ 1, on (4.1), and on the fact that all Ri ∩ Bri,j (xi,j) are
disjoint, we have

L
n(Ω \ Ωε) ≤

∞∑

i,j=1

L
n(Ci,j) +

∞∑

k=1

L
n(B̺k

(yk))

≤ 4ε

∞∑

i,j=1

ωn−1r
n
i,j + ωn

∞∑

k=1

̺nk

≤ 4ε(1+ε)

∞∑

i,j=1

H
n−1(Ri ∩ Bri,j (xi,j)) + ωn

∞∑

k=1

̺n−1
k

≤
[
6H n−1(FΩ) + ωn

]
ε .

Possibly decreasing ε suitably, the last two estimates yield the claims. �

Next we apply Proposition 4.1 with suitable truncations of u−u0 in place of w. Involving
also a mollification procedure, this leads to a

Proof of Theorem 1.2. We fix ε > 0, for L ≥ 0 we set

uL :=

{
u if |u| ≤ L

L u
|u| if |u| > L

and uL
0 :=

{
u0 if |u0| ≤ L

L u0

|u0|
if |u0| > L

,

and we start with the observation that uL equals uL
0 outside Ω and satisfies

(4.11) |(L n,DuL)|
(
Ω
)
≤ |(L n,Du)

(
Ω
)
| .

Now we fix also L (depending on ε) so large that we have
∫

Ω

|uL−u| dL
n ≤ ε and

∫

Ω

(
|uL

0−u0|+ |∇uL
0−∇u0|

)
dL

n ≤ ε .

Then we apply Proposition 4.1 to the bounded function uL−uL
0 , finding open sets Ωε ⋐ Ω with

P(Ωε) < ∞,
L

n(Ω \ Ωε) ≤ ε ,
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and

(4.12)

∫

FΩε

|(uL)−FΩε
−uL

0 | dH
n−1 ≤

∫

FΩ

|(uL)−FΩ−uL
0 | dH

n−1 + ε = |DuL|(FΩ) + ε

(where we have just written uL
0 , as all one- or both-sided sided traces of the W1,1-function uL

0

coincide). Now we use that, by the absolute continuity of the Lebesgue integral, there exists
an increasing η : [0,∞) → [0,∞) with limδց0 η(δ) = 0 and

∫

A

(
|u|+|u0|+|∇u0|

)
dL

n ≤ η(L n(A)) for all measurable subsets A of Ω .

We also introduce the notation Mε for a smoothing operator, based on mollification with a
radius rε < dist(Ωε,R

n \ Ω) which is taken small enough that
∫

Ω

|Mε(1Ωεu
L)−1Ωεu

L| dL
n ≤ ε ,

∫

Ω

(
|Mε(1Ωεu

L
0 )−1Ωεu

L
0 |+ |Mε(1Ωε∇uL

0 )−1Ωε∇uL
0 |
)
dL

n ≤ ε

hold. Consequently, we can estimate

(4.13)

∫

Ω

|Mε(1Ωεu
L)−u| dL

n ≤

∫

Ω

(
|Mε(1Ωεu

L)−1Ωεu
L|+ |uL−u|

)
dL

n +

∫

Ω\Ωε

|u| dL
n

≤ 2ε+ η(ε)

and, very similarly,

(4.14)

∫

Ω

|Mε(1Ωεu
L
0 )−u0| dL

n +

∫

Ω

|Mε(1Ωε∇uL
0 )−∇u0| dL

n ≤ 2ε+ η(ε) .

At this stage, we define uε as the restriction of u0 + Mε(1Ωε(u
L−uL

0 )) to Ω. Then, by the
choice of rε, we have uε ∈ u0 Ω

+C∞
cpt(Ω,R

N ), and (4.13) and (4.14) imply
∫

Ω

|uε−u| dL
n ≤

∫

Ω

|Mε(1Ωεu
L)−u| dL

n +

∫

Ω

|u0−Mε(1Ωεu
L
0 )| dL

n ≤ 4ε+ 2η(ε) .

With the help of [1, Theorem 3.84], we compute, L n-a. e. on Ω,

∇uε = ∇u0 +MεD(1Ωε(u
L−uL

0 ))

= ∇u0 −Mε(1Ωε∇uL
0 ) +Mε(DuL Ωε)−Mε

(
[(uL)−FΩε

−uL
0 ]⊗νΩεH

n−1 FΩε

)

(where we understand, as usual, the mollification of a measure as a function). Starting from
this formula, we now use (4.14) and the inequality ‖Mε(µ)‖L1(Rn,Rm) ≤ |µ|(Rn) (which holds
for every R

m-valued Radon measure on R
n) to deduce

|(Mε(1Ω)L
n,Duε)|(Ω) ≤

∫

Ω

|∇u0−Mε(1Ωε∇uL
0 )| dL

n +
∥∥Mε(L

n Ω,DuL Ωε)
∥∥
L1(Ω,RNn+1)

+ ‖Mε([(u
L)−FΩε

−uL
0 ]⊗νΩεH

n−1 FΩε)‖L1(Ω,RNn)

≤ 2ε+ η(ε) + |(L n,DuL)|(Ω) +

∫

FΩε

|(uL)−FΩε
−uL

0 | dH
n−1

≤ 3ε+ η(ε) + |(L n,DuL)|(Ω ∪ FΩ) ≤ 3ε+ η(ε) + |(L n,Du)|
(
Ω
)
,

where we also involved (4.12) and (4.11) in the last steps. Combining the preceding estimate
with

|L n−Mε(1Ω)L
n|(Ω) =

∫

Ω

|1−Mε(1Ω)| dL
n ≤ L

n(Ω \ Ωε) ≤ ε ,

we conclude
|(L n,Duε)|(Ω) ≤ |(L n,Du)|(Ω) + 4ε+ η(ε) .
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Decreasing ε suitably, we have established (1.10), and the proof is complete. �

5. On the hypothesis H n−1(∂Ω) = P(Ω)

In this section, we are concerned with the basic assumption H n−1(∂Ω) = P(Ω), which we
have imposed in Theorems 1.1 and 1.2. We emphasize that this hypothesis is actually not
completely new, but has already occurred in a related context, namely in the trace theorems
[4, Teoremi 5, 7, 10]. In the following, we prove some optimality of the assumption in the
2-dimensional case, and we discuss a refined example for its necessity.

Theorem 5.1 (optimality property in R
2). Consider a bounded open set Ω in R

2 such that Ω
has finitely many connected components, while ∂Ω has at most countably many path-connected

components. If, for every ε > 0, there exists an open set Ωε with smooth boundary in R
2 and

with (1.5), then we already have H 1(∂Ω) = P(Ω).

Proof. For Ω 6= ∅, we denote the number of connected components of Ω by M ∈ N, and we
write Ω1, Ω2, . . . , ΩM for these components. We record that the open and connected sets Ωi

are automatically path-connected, and we fix one point pi in each Ωi. For sufficiently large
k (and only those we will consider), (1.5) implies that all pi are contained in Ω1/k, and we

can define Ωi
k as the path-connected component of Ω1/k which contains pi. For the open set

Ω♯
k :=

⋃M
i=1 Ω

i
k ⋐ Ω we will now show

(5.1) lim
k→∞

dH(∂Ω♯
k, ∂Ω) = 0 .

Indeed, from ∂Ω♯
k ⊂ ∂Ω1/k and the observations (1.8) we deduce

sup
x∈∂Ω♯

k

dist(x, ∂Ω) ≤ sup
x∈∂Ω1/k

dist(x, ∂Ω) ≤ dH(∂Ω1/k, ∂Ω)
k→∞
−→ 0 .

Hence, the claim (5.1) could only fail if we had

γ := lim sup
k→∞

sup
x∈∂Ω

dist(x, ∂Ω♯
k) > 0

and thus liml→∞ dist(xl, ∂Ω
♯
kl
) = γ for some subsequence (kl)l∈N and some sequence (xl)l∈N

in ∂Ω which converges to x∞ ∈ ∂Ω. Now, on one hand, we would have dist(x∞, ∂Ω♯
kl
) ≥ γ/2

for l ≫ 1, while on the other hand we could find an x ∈ Ω with |x−x∞| < γ/2 and a path
from x to an pi in Ω. For sufficiently large l, the whole path would be contained in Ω1/kl

,

therefore we would have x ∈ Ωi
kl

⊂ Ω♯
kl

and dist(x∞, ∂Ω♯
kl
) ≤ |x−x∞| < γ/2. The latter

estimate contradicts the previously observed lower bound for dist(x∞, ∂Ω♯
kl
), and thus (5.1) is

proved.
Next we write (Rj)j∈N for the family of path-connected components of ∂Ω (where, in case

of finitely many components, we understand Rj = ∅ for large j). For the moment we will work

with R1, R2, . . . , RN , where N ∈ N is arbitrary, but fixed. We define Ej
k as the path-connected

component of Rn \ Ω♯
k which contains Rj , we set

Ri,j
k := ∂Ωi

k ∩ ∂Ej
k ,

and we claim:

Ri,j
k is path-connected,(5.2)

lim inf
k→∞

dH

( M⋃

i=1

N⋃

j=1

Ri,j
k , XN

)
= 0 for some closed XN with

N⋃

j=1

Rj ⊂ XN .(5.3)



12 THOMAS SCHMIDT

In order to prove (5.2) we take arbitrary y, ỹ ∈ Ri,j
k . As ∂Ω1/k is smooth and bounded, we

can write the path-connected component of Ri,j
k which contains y as the image of a smooth

closed curve ℓ. Moreover, by the path-connectedness of Ωi
k and Ej

k we can connect y and ỹ by
curves cint : [0, 1] → R

2 and cext : [0, 1] → R
2 with cint(0) = cext(0) = y and cint(1) = cext(1) =

ỹ such that cint remains inside Ω♯
k and cext remains outside Ω♯

k (apart from the endpoints).

Now, as Im ℓ locally separates Ω♯
k and R

n\Ω♯
k, this means that cint(t) and cext(t) lie on different

sides of the loop Im ℓ for 0 < t ≪ 1. As neither cint nor cext can cross Im ℓ ⊂ ∂Ω♯
k, we infer

that the common endpoint ỹ is contained in Im ℓ. But then a part of ℓ connects y and ỹ in
Ri,j

k , and we have shown that Ri,j
k is path-connected.

Turning to (5.3), we first observe that the validity of the convergence for some closed set XN

is immediate by the Blaschke selection theorem (see [1, Theorem 6.1] or [10, Theorem 3.16]),

so it only remains to justify the claimed inclusion of
⋃N

j=1 R
j in XN . To this end, we fix

j0 ∈ {1, 2, . . . , N} and consider an arbitrary x ∈ Rj0 ⊂ ∂Ω. By the compactness of ∂Ω♯
k, we can

find xk ∈ ∂Ω♯
k with |xk−x| = dist(x, ∂Ω♯

k); then the line segment from xk to x does not intersect

Ω♯
k, hence this segment is contained in Ej0

k , and we have xk ∈ ∂Ej0
k . In view of ∂Ω♯

k =
⋃M

i=1 ∂Ω
i
k

we can also fix an i0 ∈ {1, 2, . . . ,M} such that xk ∈ ∂Ωi0
k and therefore xk ∈ Ri0,j0

k hold for

infinitely many k ∈ N. Taking into account |xk−x| = dist(x, ∂Ω♯
k) ≤ dH(∂Ω, ∂Ω♯

k) and (5.1),

the xk converge to x, and hence x is contained in the Hausdorff limit XN of
⋃M

i=1

⋃N
j=1 R

i,j
k .

We have thus shown Rj0 ⊂ XN , and the derivation of (5.3) is complete.

In view of (5.2), the number of connected components of
⋃M

i=1

⋃N
j=1 R

i,j
k is bounded by

MN , and then [8, Corollary 35.15] (that is essentially Golab’s theorem; compare also [10,
Theorem 3.18]) guarantees lower semicontinuity of H 1 along the convergence in (5.3). We can
thus deduce

H
1(XN ) ≤ lim sup

k→∞
H

1

( M⋃

i=1

N⋃

j=1

Ri,j
k

)
.

Using the inclusion
⋃N

j=1 R
j ⊂ XN from (5.3) on the left-hand side and Ri,j

k ⊂ ∂Ω1/k on the
right-hand side, we infer

H
1

( N⋃

j=1

Rj

)
≤ lim sup

k→∞
H

1(∂Ω1/k) .

Finally, we take into account that H 1(∂Ω1/k) = P(Ω1/k) ≤ P(Ω)+1/k holds by the smoothness
of ∂Ω1/k and (1.5) so that we end up with

H
1

( N⋃

j=1

Rj

)
≤ P(Ω) .

As N is arbitrary and
⋃∞

j=1 R
j equals ∂Ω, this shows H 1(∂Ω) ≤ P(Ω). As observed in (1.1),

the opposite inequality is always valid, and thus the proof is complete. �

In the introduction we have given a concrete example for the failure of the boundary hy-
pothesis H n−1(∂Ω) = P(Ω), but in that case the problematic set is — in some sense — quite
negligible. Indeed, in the mentioned example and in many similar situations, one may pass to

an open set Ω̃ which satisfies H n−1
(
∂Ω̃

)
= P

(
Ω̃
)
, allows strict interior approximation, and is

equivalent in the sense of L
n(Ω̃∆Ω) = 0. To some extent, this concept of equivalence seems

reasonable, as it leaves the perimeter and the related measure-theoretic notions invariant, but
— evidently — it changes the topological notions of interior approximation and boundary.
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Anyhow, every equivalence class of open sets contains a maximal (with respect to set inclu-
sion) representative Ω∗ := {x ∈ R

n : L n(B̺(x) \ Ω) = 0 for some ̺ > 0}, which moreover
has minimal topological boundary in the class. Whenever the boundary hypothesis holds or
strict interior approximation is possible for an open set Ω, then this is a fortiori the case for
Ω∗. Nonetheless, in the following we show that these assertions may fail even for Ω∗.

Example 5.2. For n ≥ 2, we take

Ω := (0, 1)n \
∞⋃

i=1

B̺i

(
yi,

1
2

)
⊂ R

n ,

where the ̺i > 0 and yi ∈ R
n−1 are chosen such that the (n−1)-dimensional balls B̺i(yi) are

disjoint with dense union in [0, 1]n−1 and such that we have
∑∞

i=1 ωn−1̺
n−1
i < 1. Then, the

Cantor type set

A := [0, 1]n−1 \
∞⋃

i=1

B̺i(yi) ⊂ R
n−1

has positive L n−1-measure, Ω∗ equals Ω, and we have

P(Ω) ≤ H
n−1(∂Ω) = 2n+ nωn

∞∑

i=1

̺n−1
i + L

n−1(A) .

In addition, the lower semicontinuity of the perimeter, applied on Ω± := {x ∈ Ω : ±(xn−
1
2 ) >

0}, shows that interior approximations Ωε necessarily fulfill

lim inf
εց0

P(Ωε) ≥ 2n+ nωn

∞∑

i=1

̺n−1
i + 2L n−1(A) .

Hence, strict interior approximation of Ω, in the sense of (1.5), is impossible.

To close this section, we remark that the situation may change for non-open sets. Looking
at the representative Ω1 := {x ∈ R

n : lim̺ց0 ̺
−nL n(B̺(x) \ Ω) = 0} (which is even larger

than Ω∗, has even smaller boundary, but is not necessarily open), for instance, one may still
hope to find strict approximations Ωε ⋐ Ω1. However, we stress that such Ωε may potentially
touch ∂Ω and even ∂Ω1; thus, this type of approximation seems vaguely related to ideas of
[23, 24, 19], but quite different from the considerations of the present paper.
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