
ON INDECOMPOSABLE SETS WITH APPLICATIONS

ANDREW LORENT

Abstract. In this note we show that the closure F̄ of an indecomposable set F in the plane has
the property that ‖11F − 11F̄‖BV(IR2) = 0. We show by example this is false in dimension three
and above. As a corollary to this result we show a set of finite perimeter S can be approximated
by a closed subset S with the property that H1(∂MS\∂MS) = 0 and ‖11S − 11S‖BV(IR2) < ε, for
any choice of ε > 0. We apply this corollary to give a short proof that locally quasiminimising
sets in the plane are BVl extension domains.

1. Introduction

Sets of finite perimeter are the largest class of sets that permit a broad theory of analysis.
They have wide application in the Calculus of Variations, PDE, image processing and fracture
mechanics. In some sense the theory of sets of finite perimeter is an analogue for sets of what
the theory of Sobolev funions is for functions. A very useful notion for Sobolev functions is
the notion of precise representative for a function f ∈ W1,p, this is a function f̃ ∈ W1,p with
‖ f − f̃ ‖W1,p = 0 and f̃ has additional smoothness and regularity properties. Another very
useful result is Whitney’s theorem that for any ε > 0 there exists a smooth function f̂ such
that ‖ f̂ − f ‖W1,p < ε. We prove analogues results for sets of finite perimeter in the plane and
we apply them to give a short proof that quasiminimizing sets are BVl extension domains.

Recall a set E is said to be of finite perimeter in domain Ω if

Per(E, Ω) := sup
{∫

E
divφ : φ ∈

[
C1

c (Ω)
]N

, ‖φ‖∞ ≤ 1
}

< ∞.

A set is simply called a set of finite perimeter if it is of finite perimeter in IRn and we define
Per(E) := Per(E, IRn).

A set of finite perimeter is called indecomposable iff for any disjoint subsets A, B ⊂ E such
that E = A ∪ B we have Per(E) = Per(A) + Per(B) then either |A| = 0 or |B| = 0.

The main theorem we will establish in this note is the following.

Theorem 1. If F ⊂ IR2 is an indecomposable set then the closure F̄ of F has the property

‖11F − 11F̄‖BV(IR2) = 0.

A straightforward corollary to this is:

Corollary 2. Suppose E ⊂ IR2 is a set of finite perimeter, then for any ε > 0 we can find a closed
subset E ⊂ E with finitely many indecomposable components such that H1(∂ME\∂ME) = 0 and

‖11E − 11E‖BV(IR2) < ε. (1)

We will show by example that Theorem 1 is false for indecomposable sets of finite perime-
ter in IRn for n ≥ 3. Our example also shows that Theorem 7 of [Am-Lu-Ca 01] for saturated
indecomposable sets in the plane does not hold true in dimension three and above. It is
unclear to us if Corollary 2 is true in dimension three and above.

Theorem 3. There exists a set of finite perimeter S ⊂ Q = (−1, 1)× (−1, 1)× (−1, 1) with the
following properties
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(i) S is connected and Sc is connected. Hence S is an indecomposable saturated set.
(ii)

∣∣S̄\S∣∣ > 3999
4000 .

(iii) H2 (∂MS\φ(S2)
)
> 0 for any Lipschitz map φ : S2 → IR3.

Our main application of Theorem 1 will be to show that local quasiminimisers in the plane
are BVl extension domains. This is already known as a consequence of the work of David-
Semmes, [Da-Se 98] however our proof is much shorter. Specifically we say a set E of finite
perimeter E is a K-quasiminimal set in Ω iff for all open U ⊂⊂ Ω and all Borel sets F, G ⊂ U
we have Per(E, U) ≤ KPer((E ∪ F)\G, U). And we say a set E of finite perimeter is locally
K-quasiminising if there exists δ > 0 such that for any x ∈ ∂E the set E is a K-quasiminimal
in Bδ(x). In the case where E is bounded δ can be chosen depending on x.

Finally a set E of finite perimeter is a BVl extension domain if and only if there are con-
stants c ≥ 1 and δ > 0 such that whenever u ∈ BV(E) is such that the diameter of the support
of u is smaller than δ, then there is a function Tu ∈ BV such that ‖DTu‖ ≤ c‖Du‖(E) and
Tu = u on E.

Corollary 4. If E ⊂ IR2 is a locally K-quasiminising set then it is a BVl extension domain.

Note also that if Corollary 2 were true in dimension three and above then the proof of
Corollary 4 would work in these dimensions too. A generalization of Corollary 2 to higher
dimensions could potentially be a useful technical tool in the study of sets of finite perimeter.

In addition we will obtain the following corollary which is also an easy corollary to Theo-
rem 7 [Am-Lu-Ca 01]. Firstly some definitions, Ambrosio et al. [Am-Lu-Ca 01] (Definition 2)
define a hole of a set of finite perimeter S to be an indecomposble component of Sc with finite
measure. A set S is called saterated (again see Defintion 2, [Am-Lu-Ca 01]) if it is the union of
itself and all its holes.

Corollary 5 (To Theorem 1). Suppose S ⊂ IR2 is a indecomposable saturated set then there exists
an open set S such that ‖11S − 11S‖BV(IR2) = 0.

Acknowledgements. I would thank N. Shanmugalingam; the application to quasimini-
mizing sets was worked out through discussions with her. In addition I thank R.L. Jerrard
who essentially provide me with the example constructed in Theorem 3.

2. Sketch of proof of main theorem

The proof of the Theorem 1 follows from three basic steps. Each follows from the last in a
fairly natural way. We will firstly state the steps then sketch the reasons they hold afterwards.

Note given an indecomposable set E we claim we can assume without loss of generality
that

|Br(x) ∩ E| > 0 for any x ∈ E, r > 0. (2)
If this were not true we could just remove the points of E for which it is false and the set we
are left with, call it Ẽ is such that

∣∣∣E4Ẽ
∣∣∣ = 0 and hence by Proposition 3.38 [Am-Fu-Pa 00],

‖11E − 11Ẽ‖BV(IR2) = 0. So the claim is established.

Step 1. Let Z :=
{

z ∈ R2 : lim supr→0
|E∩Br(x)|

πr2 ≥ 1
2

}
. We will show we can find a count-

able collection of balls {Brn(xn) : xn ∈ Z} with the following properties.

(i)
{

B rn
5
(xn) : n ∈N

}
are disjoint.

(ii) Z ⊂ ⋃n Brn(xn)

(iii) |Brn(xn) ∩ E| ≥ πr2
n

4 for each n.
(iv) Π :=

⋃
n Brn(xn) is connected.
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Step 2. We will show that for H1 a.e. x ∈ ∂E\Z there exists rx > 0 such that

H1(∂E ∩ Br(x)) >
r

1600
for all r ∈ (0, rx] . (3)

Step 3. We will show that H1(Z\∂E) = 0.

———————–
Sketch of Step 1. By definition of Z for any z ∈ Z we can find rz > 0 such that

|Br(z) ∩ Z| ≥ πr2

4 for all r ∈ (0, rz]. So by the 5r Covering Theorem we can find a subcollection{
Brzn (zn) : n ∈N

}
such that

{
B rzn

5
(zn) : n ∈N

}
are pairwise disjoint and Z ⊂ ⋃

n Brzn (zn).
The only remaining issue is to show that Π :=

⋃
n Brzn (zn) is connected. Suppose it is not, so

there are two non-empty disjoint connect components of Π1 and Π2 such that Π = Π1 ∪Π2.
Letting Q0 = E ∩Π0 and Q1 = E ∩Π1 it is possible to show that H1(∂MQ0 ∩ ∂MQ1) = 0 and
this implies E is not an indecomposable set, contradiction. Thus Π is connected.

Sketch of Step 2. Now we can assume without loss of generality that x ∈ E0. So we
can find px > 0 such that |E ∩ Br(x)| < r2

10000 for all r ∈ (0, px). Note also by (3) for any

x ∈ ∂E we have that
∣∣∣E ∩ B r

1000
(x)
∣∣∣ > 0 for any r > 0. So let r ∈ (0, px), by Step 1 we have

a countable collection of balls {Brn(xn) : n ∈N} that satisfy (i), (ii), (iii), (iv). A subcollec-
tion of these balls

{
Brpk

(xpk ) : k ∈N
}

is such that Brpk
(xpk ) ∩ Br(x) 6= ∅ for any k ∈ N,

E ∩ Br(x) ⊂ ⋃
k Brpk

(xpk ) and Π̃ :=
⋃

k Brpk
(xpk ) is a connected set. So Π̃ is a ‘tentacle’ of

balls that reaches from the outside of Br(x) to B r
1000

(x). And note that any ball Brpk
(xpk ) has

at least a quarter of its area is filled by E. On the otherhand most of Br(x) is empty of E.
So assume for the moment for simplicity that the tentacle reaches into B r

1000
(x) in something

like a line, pick a direction v that is roughly orthogonal to the line. Now there must be a
large set of lines in direction v running through Br(x) that start at some point in E ∩ Br(x)
and end in some point in Ec ∩ Br(x). The variation of 11E restricted to any of these lines
is at least 1, so integrating across these lines gives (3). Note the reason our proof works
in IR2 and does not work in higher dimension1 is that a ‘tentacle’ in higher dimension has
arbitrarily small surface area, where as in two dimension the surface area of a tentacle is O(1).

Sketch of Step 3. Suppose H1(∂E\Z) > 0. Assume for simplicity H1(∂E\Z) < ∞. Let
µ(A) := H1(∂ME ∪ (∂E\Z)). We can find an open set U with ∂ME ⊂ U and a compact
set C ⊂ ∂ME such that µ(U) ≤ µ(∂ME) + ε and µ(C) ≥ µ(∂ME) − ε. We can assume ε is

sufficiently small so that µ(∂E\U) > H1(∂E\Z)
2 .

Now since δ = dist(∂U, C) > 0 we can find a countable collection of pairwise disjoint balls
{Brn(xn) : xn ∈ ∂E\U, rn < δ} such that ∑n rn ≥ c0µ(∂E\U) some some constant c0 > 0. By
Step 2 we have that ∑n H1(∂ME ∩ Brn(xn)) ≥ c0

1600 µ(∂E\U). Since Brn(xn) ∩ C = ∅ for all n
we have

∑
n

H1(∂ME ∩ Brn(xn)) + H1(C) ≥ c0

1600
µ(∂E\U) + H1(∂ME)− ε

which is contradiction for small enough ε.

3. Sketch of proof of the application to quasiminising sets

As stated the main application of Theorem 1 is Corollary 4. So to establish this we will use
the criteria for BVl extension domains found in [Ba-Mo 08], [Bu-Ma 69]. Namely E is a BVl

1And recall indeed by the example constructed in Theorem 3 shows the result in false in higher dimension.
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extension domain if for every set of finite perimeter F ⊂ E with diam(F) < δ we can find F̂
with F ⊂ F̂ and Per(F̂, IR2) ≤ CPer(F, E). We will take F̂ to be equal to F and it will suffice
to show that

Per(F̂, IR2) ≤ (1 + K)Per(F, E) (4)

for any set of finite perimeter F ⊂ E with diam(F) < δ. We will achieve this by finding an
open set Ω with F ⊂⊂ Ω and

H1(∂ME ∩Ω) ≤ H1(∂ME ∩ ∂MF) + δ. (5)

Then by the fact that E is a local F-quasiminimiser Per(E, Ω) ≤ KPer(E\F, Ω). Now

H1(∂ME ∩ ∂MF) ≤ H1(∂ME ∩Ω)

= Per(E, Ω)

≤ KPer(E\F, Ω)

= K
(

H1(∂MF ∩ E) + H1
((

∂ME\∂MF
)
∩Ω

))
(5)
≤ KPer(F, E) + Kδ. (6)

As this holds for arbitrary δ > 0 we have inequality (4). Note this inequality can not work
unless we can show (5) and hence establish H1((∂ME\∂MF)∩Ω) < δ. Now for arbitrary sets
of finite perimeter F ⊂ E it is not true we can find Ω such that F ⊂⊂ Ω and (5) holds true.
For a counter example let E = B1(0) and pick z0 ∈ ∂E, let α ∈ (0, 1) and let ζk be the set of
points with rational coordinates in E∩ Bα(z0). Then the set F =

⋃
k Bα2−(1000+n)(ζn)∩ E is a set

of finite perimeter for which (5) is false for any open set Ω with F ⊂⊂ Ω.
However we will be able to carry out this argument by replacing F by the set F afforded

to us by Corollary 2. The set F has almost the same characteristics of F and we can find an
open set Ω with F ⊂⊂ Ω such that H1(∂ME ∩Ω) ≤ H1(∂ME ∩ ∂MF) + δ. So we can carry
out the chain of inequalities to establish (6). Having established (6) for F the same inequality
follows for F with arbitrarily small error by (1). See Lemma 10 and Section 6.2 for full details.

4. Preliminaries

As in Definition 3.60 [Am-Fu-Pa 00] we every t ∈ [0, 1] we let Et denote the set of points
of t density, i.e.

Et :=
{

x ∈ IRn : lim
r→0

|E ∩ Br(x)|
Γ(n)rn = t

}
(7)

where Γ(n) = |B1(0)|.
It is a fundamental result of Federer (see Theorem 3.61 [Am-Fu-Pa 00]) that if E is a set of

finite perimeter in Ω, Hn−1
(

Ω\
(

E0 ∪ E
1
2 ∪ E1

))
= 0.

The measure theoretic boundary is defined by

∂ME :=
{

x ∈ IRn : lim sup
r→0

|E ∩ Br(x)|
|Br(x)| > 0 and lim sup

r→0

|Ec ∩ Br(x)|
|Br(x)| > 0

}
.

It is well known that Hn−1(∂ME\E 1
2 ) = 0 and |D11E| = Hn−1

∂ME, see Theorem 3.59, Theorem
3.61 [Am-Fu-Pa 00].
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5. Preliminary lemmas

Lemma 6. Suppose E ⊂ IR2 is BV indecomposable. Then we can find a countable collection

{Brn(xn) : xn ∈ E}
such that (⋃

n
Brn(xn)

)
is connected, (8)

|Br(xn) ∩ E| > πr2

4
for all r ∈ (0, rn] , n ∈N. (9)

As a consequence for H1 a.e. x ∈ ∂E\(E1 ∪ ∂ME) there exists rx > 0 such that

H1(∂E ∩ Br(x)) >
r

1600
for all r ∈ (0, rx] . (10)

Proof of Lemma 6. Let Z = E1 ∪ E
1
2 . By Theorem 3.61 [Am-Fu-Pa 00]

H1(E\Z) = 0. (11)

So for any x ∈ Z there exists rx > 0 such that

|Br(x) ∩ E| > πr2

4
for all r ∈ (0, rx] . (12)

Step 1. By the 5r Covering Theorem (see Theorem 2.11 [Ma 95]) we can find a disjoint
sub-collection

{
B rxn

5
(xn) : xn ∈ Z

}
such that Z ⊂ ⋃

n Brxn (xn) =: Π. We will show Π is
connected.

Proof of Step 1. We argue by contradiction. Suppose Π is disconnected. Let Π0 be a
connected non-empty component of Π and let Π1 = Π\Π0. Now define Q0 = E ∩Π0 and
Q1 = E ∩Π1. These are both the intersection of two sets of finite perimeter and hence are
sets of finite perimeter.

We claim
H1 ((E\Q0) \Q1) = 0. (13)

So let ω = E\Z, note H1(ω)
(11)
= 0 and E\(Q0 ∪Q1) = E\Π ⊂ (Z ∪ω)\Π ⊂ ω. So inequality

(13) follows. We also claim
Q1\(E\Q0) = ∅. (14)

Now (Q1 ∪Q0)\E = Π ∩ E\E = ∅ so (14) is immediate. So we actually have

H1 (Q14(E\Q0)) = 0. (15)

By Proposition 3.38 [Am-Fu-Pa 00] this is more than enough to conclude

Per(Q1) = Per(E\Q0). (16)

We will show

H1
(

Q
1
2
0 ∩Q

1
2
1

)
= 0. (17)

Now if x ∈ Q
1
2
1 we must have

lim
r→0

|E ∩Π1 ∩ Br(x)|
πr2 =

1
2

so

lim
r→0

|E ∩ Br(x)|
πr2 ≥ 1

2
. (18)
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Hence (18) together with Theorem 3.61 [Am-Fu-Pa 00] implies

H1
(

Q
1
2
1 \Z

)
= 0

so

H1(Q
1
2
1 \Π) = 0. (19)

Now note that if x ∈ Q
1
2
1 ∩Π we can not have x ∈ Π2 because Π2 is open and so Bδ(x) ⊂ Π2

for some δ > 0. By the fact x ∈ Q
1
2
1 also we must be able to find y ∈ Bδ(x) ∩ Q1 which

contradicts the fact Π1, Π2 are disjoint. Thus

Q
1
2
1 ∩Π ⊂ Q

1
2
1 ∩Π1. (20)

And in the same way since Π1 is open for all small enough r we have that Br(x) ⊂ Π1.

Thus if x ∈ Q
1
2
1 ∩Π1 by definition of Q

1
2
1 , limr→0

|(E∩Π1)
c∩Br(x)|

πr2 = 1
2 we actually have

lim
r→0

|Ec ∩ Br(x)|
πr2 =

1
2

hence x ∈ E
1
2 . Thus

Q
1
2
1 ∩Π1 ⊂ E

1
2 . (21)

Hence

H1(Q
1
2
1 \(E

1
2 ∩Π1))

≤ H1(Q
1
2
1 \Π) + H1(Q

1
2
1 ∩Π\Q

1
2
1 ∩Π1) + H1(Q

1
2
1 ∩Π1\E

1
2 ∩Π1)

(19),(20),(21)
= 0. (22)

Now going in the opposite direction if x ∈ E
1
2 ∩ Π1 again since Π1 is open for all small

enough r we have that

lim
r→0

|Br(x) ∩ E|
πr2 = lim

r→0

|Br(x) ∩ E ∩Π1|
πr2 =

1
2

and

lim
r→0

|Br(x) ∩ Ec|
πr2 = lim

r→0

|Br(x) ∩ (E ∩Π1)
c|

πr2 =
1
2

.

So E
1
2 ∩Π1 ⊂ (E ∩Π1)

1
2 = Q

1
2
1 hence putting this together with (22) we have established

H1
(

E
1
2 ∩Π14Q

1
2
1

)
= 0.

In exactly the same way we can show that H1(E
1
2 ∩Π24Q

1
2
2 ) = 0. Since Π1, Π2 are disjoint

this completes the proof of (17).

Now E = Q0 ∪ Q1 and Per(Q0) = H1(Q
1
2
0 ), Per(Q1) = H1(Q

1
2
1 ) and Per(E) = Per(Q0) +

Per(Q1)
(16)
= Per(Q0) + Per(E\Q0). So as Q0, E\Q0 are both sets of finite perimeter this con-

tradicts the fact E is indecomposable. This concludes the proof of Step 1.

Step 2. We will establish (10).
Proof of Step 2. Firstly by Theorem 3.61 [Am-Fu-Pa 00] we can assume x ∈ E0. Now recall

from the sketch of the proof (see property (2)), for any y ∈ E we have |Br(y) ∩ E| > 0 for any
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r > 0. Thus since x ∈ ∂E it has the same property. Now since x ∈ E0 we can find px > 0 such
that

|E ∩ Br(x)| < r2

100000
for all r ∈ (0, px). (23)

However we must also have that
∣∣∣E ∩ B r

1000
(x)
∣∣∣ > 0. So by property (i) we have established

in Step 1 we can find a countable collection{
Brk (xk) : xk ∈ E, rk <

r
1000

}
such that E1 ∪ E

1
2 ⊂ ⋃

k Brk (xk) and
(⋃

k Brk (xk)
)

is connected. Now pick a point x0 ∈
E1 ∩ B r

1000
(x) and a point y0 ∈ E1\Br(x). Since

⋃
k Brk (xk) is open and connected it is path

connected and so we must be able to find a path φ : [0, t] → ⋃
k Brk (xk) with φ(0) = x0,

φ(t) = y0. Let s ∈ (0, t) be the smallest number such that φ(s) ∈ ∂B r
4
(x), by compactness

clearly this number exists. So

{φ(w) : 0 ≤ w ≤ s} ⊂ B r
4
(x). (24)

Let v = φ(s)−x0
|φ(s)−x0|

. Note that for every k

H1
(

P〈v〉 (Br(xk) ∩ E)
)
≥ r

16
for all r ∈ (0, rk] (25)

since if this was not true we would have that |Br(xk) ∩ E| ≤ r2

8 which contradicts (9).

We know φ([0, t]) ⊂ ⋃k Brk (xk), let
{

Brpk
(xpk ) : k ∈N

}
be a subcollection defined by

{φ(w) : 0 ≤ w ≤ s} ∩ Brpk
(xpk ) 6= ∅ for any k. (26)

So

{φ(w) : 0 ≤ w ≤ s} ⊂
⋃
k

Brpk
(xpk ). (27)

And ⋃
k

Brpk
(xpk )

(26),(24)
⊂ B r

3
(x). (28)

Now since

P〈v〉 ({φ(w) : w ∈ [0, s]})
(27)
⊂
⋃
k

P〈v〉
(

Brpk
(xpk )

)
(29)

by the 5r Covering Theorem (see Theorem 2.11 [Ma 95]) we can find a subcollection{
Brqk

(xqk ) : k ∈N
}

such that {
P〈v〉

(
Brpk

(xpk )
)

: k ∈N
}
⊂
{

P〈v〉
(

Brqk
(xqk )

)
: k ∈N

}
(30)

and {
P〈v〉

(
B rqk

5
(xqk )

)
: k ∈N

}
are disjoint. (31)
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Now as H1
(

P〈v〉 ({φ(w) : w ∈ [0, s]})
)
≥ r

5 so putting this together with (29), (31) we have

∑
k

rqk

(31)
= ∑

k
2−1H1

(
P〈v〉(Brpk

(xpk ))
)

(29)
≥ 2−1H1

(
P〈v〉({φ(w) : w ∈ [0, s]})

)
≥ r

10
. (32)

So let O :=
⋃

k B rqk
5
(xqk ) ∩ E. By (25), (31) and (32) we have

H1
(

P〈v〉(O)
)

(31)
= ∑

k
H1
(

P〈v〉

(
B rqk

5
(xqk ) ∩ E

))
(25)
≥ ∑

k

rqk

80

(32)
≥ r

800
. (33)

Now by (28) O ⊂ B r
3
(x). We claim we can find a subset Π ⊂ P〈v〉(O) with |Π| ≥ r

1600 such
that

H1
(

P−1
〈v〉 (ω) ∩ Ec ∩ A

(
x,

r
3

, r
))

> 0 for any ω ∈ Π. (34)

Suppose this is not true. So there is a set Λ ⊂ P〈v〉(O) where |Λ| ≥ r
1600 such that

H1(P−1
〈v〉 (ω) ∩ Ec ∩ A(0, r

3 , r)) = 0 for all ω ∈ Λ. Let Ξ =
⋃

ω∈Λ P−1
〈v〉 (ω) ∩ E ∩ A(0, r

3 , r) and

by Fubini |Ξ| ≥ |Λ| 2r
3 ≥

r2

2400 and |Ξ ∩ Ec| = 0 and this contradicts (23). We have established
(34).

Now by Theorem 3.103 [Am-Fu-Pa 00] we know that
r

1600
≤

∫
w∈Π

V
(

11E, P−1
〈v〉 (w) ∩ Br(x)

)
dw

≤ V (11E, Br(x))

= H1
(

∂ME, Br(x)
)

.

So this establishes (10). 2

Proof of Theorem 1. Firstly as before, without loss of generality we can assume that for any
x ∈ F, |F ∩ Bδ(x)| > 0 for all δ > 0.

Step 1. We will show H1(F̄\(∂MF ∪ FI)) = 0.
Proof of Step 1. Suppose

H1(F̄\(∂MF ∪ FI)) > 0. (35)
Let Z = F̄\(∂MF ∪ FI). Note that Z ∩ Int(F) = ∅ because if x ∈ Z ∩ Int(F) then x ∈ FI which
contradicts the definition of Z. So as Z ⊂ F̄ we know that Z ⊂ ∂F and thus Z ⊂ ∂F\∂MF.

Let ε > 0. If H1(Z) = ∞ pick B ⊂ Z with H1(B) = 1 and define S = B ∪ ∂MF otherwise
define S = (F̄\FI) ∪ ∂MF. Let µ(A) := H1(A ∩ S). Note

µ(∂F\∂MF) ≥ min
{

H1(F̄\(FI ∪ ∂MF)), H1(B)
}
= β > 0. (36)

Measure µ is Radon so we can find an open set U such that ∂MF ⊂ U such that

µ(U) < µ(∂MF) + ε (37)
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and we can find a compact set C ⊂ ∂MF such that

µ(C) > µ(∂MF)− ε. (38)

And so
dist(C, ∂U) = δ > 0. (39)

We can take v > 0 and a subset Γ0 ⊂ ∂F\U with

H1((∂F\U)\Γ0) < ε (40)

and for any r ∈ (0, v), x ∈ Γ0 we have that µ(Br(x)) = H1(Br(x) ∩ S) ≤ 2r. By Lemma 6 we
can find σ > 0, Γ1 ⊂ Γ0 such that

H1(∂MF ∩ Br(x)) >
r

1600
for all x ∈ Γ1, r ∈ (0, σ). (41)

And
H1(Γ0\Γ1) < ε. (42)

Now by Vitali covering theorem (see Theorem 2.8 [Ma 95]) we can find a pairwise disjoint
collection {

Brk (xk) : xk ∈ Γ1
}

such that

µ(Γ1\(
∞⋃

k=1

Brk (xk))) = 0 (43)

and

sup {rk : k ∈ IN} < min
{

δ

2
, v, σ

}
. (44)

Note

β ≤ µ(∂F\∂MF)

= µ(∂F\U) + µ(∂F ∩U\∂MF)

≤ µ(∂F\U) + µ(U\∂MF)
(37)
≤ µ(∂F\U) + ε.

So µ(∂F\U) > β− ε. Now

∑
k

µ(Brk (xk))
(43),(42),(40)
≥ µ(∂F\U)− 2ε

(37)
≥ µ(∂F\∂MF)− 3ε. (45)

By (41) and the fact xk ∈ Γ1, rk < σ we have

1600H1(∂MF ∩ Brk (xk)) ≥ rk for all k.

Since we choose rk < v and xk ∈ Γ1 ⊂ Γ0 be definition of Γ0, µ(Brk (xk)) ≤ 2rk so

µ(Brk (xk)) ≤ 3200H1(∂MF ∩ Brk (xk)) (46)

thus putting this together with (45) we have

∑
k

3200H1(∂MF ∩ Brk (xk)) ≥ µ(∂F\∂MF)− 3ε
(36)
≥ β

2
. (47)

Now since xk ∈ Γ1 ⊂ ∂F\U by (39) and (44) we know that C ∩ Brk (xk) = ∅ for any k, so

H1(∂MF) ≥ H1(C) + ∑
k

H1(Brk (xk) ∩ ∂MF)

(47),(38)
≥ H1(∂MF) +

β

6400
− ε (48)
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which is a contradiction assuming k is small enough.

Step 2. We will show that F̄ is a set of finite perimeter and D11F̄ = D11F.
Proof of Step 2. By Step 1

∣∣F̄\∂MF ∪ FI
∣∣ = |F̄\F| = 0. So by Proposition 3.38 [Am-Fu-Pa 00]

we have Per(F̄) = Per(F) and hence F̄ is a set of finite perimeter and D11F̄ = D11F. 2
————————————————————————–

6. The Applications

6.1. Quasiminimising sets. The following lemmas hold true in IRn without additional com-
plexity, so we state them in IRn.

Lemma 7. Given as set of finite perimeter S, suppose Hn−1(A) = 0 then Per(S, A) = 0.

Proof Lemma 7. By Theorem 1.9 (2), Corollary 1.11 [Ma 95] measure µ defined by

µ(H) := Hn−1(∂MS ∩ H)

is a Radon measure.
Suppose set A has the property Hn−1(A) = 0. Then µ(A) = 0, so

0 = inf {µ(V) : A ⊂ V, V is open }
= inf {Per(S, V) : A ⊂ V, V is open }
= Per(S, A).

Using the fact A→ Per(S, A) is also Radon measure, see Proposition 3.38(a), Proposition 1.43
[Am-Fu-Pa 00].

Lemma 8. Let E, F be a sets of finite perimeter in IRn, F ⊂ E. Then

Per(F, ∂ME) = Hn−1(∂MF ∩ ∂ME). (49)

and
Per(E, ∂MF) ≥ Hn−1(∂MF ∩ ∂ME). (50)

Hence
Per(F, ∂ME) ≤ Per(E, ∂MF). (51)

Proof of Lemma 8. Note that the measure ν(A) := Hn−1(∂MF ∩ A) is a Radon measure.
Letting σ > 0 be some small number. Pick open Ω with

∂ME ∩ ∂MF ⊂ Ω (52)

such that

ν(Ω) = Hn−1(∂MF ∩Ω) < Hn−1(∂ME ∩ ∂MF) + σ = ν(∂ME) + σ. (53)

Step 1. We will establish (49).
Proof of Step 1. Define

B :=
{

x ∈ (∂MF)c : lim sup
r→0

Hn−1(∂MF ∩ Br(x))
rn−1 > 0

}
(54)

and

D :=
{

x ∈ ∂ME : lim inf
r→0

Hn−1(∂ME ∩ Br(x))/rn−1 < 1
}

.

By Theorem 6.2 [Ma 95] we have that Hn−1(B) = 0 and since ∂ME is rectifiable by Theorem
16.2 [Ma 95] Hn−1(D) = 0.
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So using Lemma 7 for the last equality

Per(F, ∂ME) = Per(F, ∂ME ∩ ∂MF) + Per(F, ∂ME\∂MF)

= Per(F, ∂ME ∩ ∂MF) + Per(F, ∂ME\(∂MF ∪ B ∪ D)). (55)

Note Hn−1(∂ME) < C. Let ε > 0. We can find a decreasing sequence of number δm → 0
such that the sets

Um :=

{
x ∈ ∂ME\(∂MF ∪ B ∪ D) : Hn−1(∂M F∩Br(x))

rn−1 < ε

and Hn−1(∂ME∩Br(x))
rn−1 ≥ 1

2 for all r ∈ (0, δm)

}
(56)

have the property that ∂ME\(∂MF ∪ B ∪ D) ⊂ ⋃∞
m=1 Um.

Let U1 = U1\ (
⋃∞

i=2 Ui), U2 = U2\ (
⋃∞

i=3 Ui), ... Uk = Uk\
(⋃∞

i=k+1 Ui
)
. Now Ul , Uk are

disjoint for any l, k and

∂ME\(∂MF ∪ B ∪ D) =
∞⋃

i=1

Ui =
∞⋃

i=1

Ui. (57)

Since {U1, U2, . . .} are pairwise disjoint

∑
m

Hn−1(Um)
(57)
< Hn−1(∂ME\∂MF). (58)

Pick m. Since by Section 5.1 [Ma 95] we have S1(Um) ≤ 2H1(Um) where S1 denotes
Spherical Hausdorff measure. So we can find a collection

{
B rk

2
(zk) : rk < δm

}
such that

Um ⊂
⋃

k B rk
2
(zk) and ∑k Γ(n − 1)

( rk
2
)n−1 ≤ 2S1(Um). Now for each k we can pick xk ∈

B rk
2
(zk) ∩Um and then we have a collection of balls

{
Brk (xk) : xk ∈ Um, rk < δm

}
(59)

such that

Um ⊂
⋃
k

Brk (xk) =: Vm (60)

and

∑
k

rn−1
k ≤ cS1(Um) ≤ cH1(Um). (61)

Hence using the fact that xk ∈ Um ⊂ Um we have

Hn−1(Vm ∩ ∂MF)
(60)
≤ ∑

k
Hn−1(∂MF ∩ Brk (xk))

(59),(56)
≤ c ∑

k
εrn−1

k

(61)
≤ cεHn−1(Um). (62)
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Now

Per(F, ∂ME\(∂MF ∪ B ∪ D))
(57),(60)
≤ Per

(
F,
⋃
m

Vm

)
≤ ∑

m
Hn−1(Vm ∩ ∂MF)

(62)
≤ ∑

m
cεHn−1(Um)

(58)
≤ cεHn−1(∂ME\∂MF). (63)

Taking the limit as ε → 0 we have Per(F, ∂ME\(∂MF ∪ B ∪ D)) = 0. So putting this together
(55) we have

Per(F, ∂ME) = Per(F, ∂ME ∩ ∂MF). (64)
And

Per(F, ∂ME ∩ ∂MF)
(52)
≤ Per(F, Ω)

≤ Hn−1(∂MF ∩Ω)

(53)
≤ Hn−1(∂MF ∩ ∂ME) + σ. (65)

Now as σ is arbitrary, from (65) and (64), Per(F, ∂ME) ≤ Hn−1(∂MF ∩ ∂ME). Conversely for
any open set Ω with ∂ME ⊂ Ω we have Per(F, Ω) ≥ Hn−1(∂MF ∩ ∂ME). Thus by taking the
infimum over all such open sets we have Per(F, ∂ME) ≥ Hn−1(∂MF ∩ ∂ME) and this com-
pletes the proof of Step 1.

Step 2. We will establish (50).
Proof of Step 2. First note that ∂ME ∩ ∂MF is an (n− 1) rectifiable set. Let δ > 0, for Hn−1

a.e. x ∈ ∂ME ∩ ∂MF there exists rx > 0 such that∣∣∣Hn−1(∂MF ∩ ∂ME ∩ Bh(x))− nΓ(n)hn−1
∣∣∣ < δhn−1 for any h ∈ (0, rx). (66)

Let α > 0. Defining Γ0 :=
{

x ∈ ∂MF ∩ ∂ME : α < rx
}

for all small enough α > 0 we have that

Hn−1(∂MF ∩ ∂ME\Γ0) < δ. (67)

Since A → Per(E, A) is a Radon measure we can extract a compact subset Γ1 ⊂ Γ0 such
that

Per(E, Γ1) + δ > Per(E, Γ0).

And we can find a compact subset Γ2 ⊂ Γ0 such that Hn−1(Γ2) + δ > Hn−1(Γ0). Let
Γ3 = Γ1 ∪ Γ2. So Γ3 is compact and has the properties

Per(E, Γ3) + δ > Per(E, Γ0) and Hn−1(Γ3) + δ > Hn−1(Γ0). (68)

And
Γ3 ⊂ Γ0 ⊂ ∂MF ∩ ∂ME. (69)

Again since we are dealing with a Radon measure we can find an open set U with Γ3 ⊂ U
and

Per(E, U) < Per(E, Γ3) + δ. (70)
Now dist(Γ3, U) =: β > 0 by Vitali covering theorem we can find a collection of pairwise

disjoint balls
{

Brk (xk) : xk ∈ Γ3, k ∈ IN
}

where

sup {rk : k ∈ IN} < min {β, α}
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and

Hn−1(Γ3\(
∞⋃

k=1

Brk (xk))) = 0. (71)

Now since
⋃∞

k=1 Brk (xk) ⊂ U we know

Per

(
E,

∞⋃
k=1

Brk (xk)

)
≤ Per(E, U)

(70)
< Per(E, Γ3) + δ. (72)

But as Γ3 ⊂ Γ0

Per

(
E,

∞⋃
k=1

Brk (xk)

)
=

∞

∑
k=1

Per
(
E, Brk (xk)

)
=

∞

∑
k=1

Hn−1(∂ME ∩ Brk (xk))

(66)
≥

∞

∑
k=1

(nΓ(n)− δ)rn−1
k . (73)

Now recall Γ3 ⊂ Γ0 ⊂ ∂ME ∩ ∂MF so
∞

∑
k=1

nΓ(n)(1 + δ)rn−1
k

(66)
≥

∞

∑
k=1

Hn−1(∂ME ∩ ∂MF ∩ Brk (xk))

(69)
≥

∞

∑
k=1

Hn−1(Γ3 ∩ Brk (xk))

(71)
= Hn−1(Γ3)

(68)
≥ Hn−1(Γ0)− δ

(67)
≥ Hn−1(∂ME ∩ ∂MF)− 2δ. (74)

Now putting (72), (73), (74) together we have

Per (E, Γ3) ≥ Hn−1(∂ME ∩ ∂MF)− 3δ− c
∞

∑
k=1

δrn−1
k . (75)

Now since the collection of balls
{

Brk (xk) : xk ∈ Γ3, k ∈ IN
}

are pairwise disjoint and xk ∈

Γ3 we know by (66) we know Per(E, Brk (xk)) ≥
nΓ(n)rn−1

k
2

nΓ(n)
2 ∑

k
rn−1

k ≤ ∑
k

Per(E, Brk (xk))

≤ Per(E, IRn).

So

∑
k

rn−1
k ≤ cPer(E, IRn). (76)

Now putting (75) and (76) together we have

Per (E, Γ3) ≥ Hn−1(∂ME ∩ ∂MF)− 3δ− cδPer(E, IRn). (77)

Since Per
(
E, ∂MF

)
≥ Per (E, Γ3) and δ is arbitrarily small this establishes (50).
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Proof of Lemma completed. By applying Step 1 and Step 2 we have

Per(E, ∂MF)
(50)
≥ Hn−1(∂ME ∩ ∂MF)
(49)
= Per(F, ∂ME) 2 (78)

Lemma 9. We will show that if E ⊂ IRn is an open set of finite perimeter and F ⊂ E is a relatively
closed set of finite perimeter, then

∂M(E\F) = (∂MF∩ E) ∪ (∂ME\∂MF). (79)

Proof. The lemma above holds true for an arbitrary sets of finite perimeter E and F ⊂ E,
we will only need it for open set E and relatively closed set F and as the proof is easier in
this case we argue only this result.

Let
Γ1 = ∂M(E\F) ∩F and Γ2 = ∂M(E\F)\F. (80)

Since F is relatively closed, if x ∈ Γ2 then for some small enough δ > 0, (Bδ(x) ∩ E) ∩F =
∅ so

lim
r→0

|Br(x) ∩ (E\F)|
Γ(n)rn = lim

r→0

|Br(x) ∩ E|
Γ(n)rn =

1
2

and thus Γ2 ⊂ ∂ME and hence Γ2 ⊂ (∂ME\F) ⊂ ∂ME\∂MF. On the otherhand Γ1 ⊂ F ⊂ E
and E is open. By definition of ∂M(E\F) for any x ∈ Γ1, for all small enough r we
have |Br(x) ∩ (E\F)| ≈ Γ(n)rn

2 and |Br(x) ∩ (E\F)c| ≈ Γ(n)rn

2 . But as E is open Br(x) ⊂ E
for all small enough r so we must have x ∈ ∂MF. Thus Γ1 ⊂ ∂MF ∩ E and hence as
Γ1 ∪ Γ2 = ∂M(E\F) this establishes (79). 2

Lemma 10. Let E ⊂ IRn be a locally quasiminising set and let F ⊂ E be a relatively closed subset of
finite perimeter. Then

Per(F, ∂ME) ≤ KPer(F, E). (81)

Proof of Lemma 10. First note by Theorem 4.2 [Ki 13] we know the topological boundary ∂E
is equal to the measure theoretic boundary ∂ME.

Step 1. We will show there exists open set Ω with F ⊂ Ω such that

Hn−1((∂E\∂MF) ∩Ω) ≤ ε. (82)

Proof of Step 1. Let µ(A) := Hn−1(A ∩ ∂E). So µ is a Radon measure on IRn and hence we
must be able to find open set U with ∂E ∩ ∂F ⊂ U such that µ(U) ≤ Hn−1(∂E ∩ ∂F) + ε.

Note ∂F ∩ ∂E is a closed set. So δ = inf {|x− y| : x ∈ ∂F∩ ∂E, y 6∈ U} > 0. Let Π =⋃
x∈∂F∩∂E Bδ(x). Note

µ(Π) ≤ µ(U) ≤ Hn−1(∂E ∩ ∂MF) + ε. (83)
Note by compactness there exists λ > 0 such that Nλ(∂E)∩F ⊂ Π. Let Λ =

⋃
x∈F\Nλ(∂E) B λ

2
(x).

Note Λ ∩ ∂E = ∅. And

F = (F∩ Nλ(∂E)) ∪ (F\Nλ(∂E)) ⊂ Π ∪Λ.

Now

µ(Λ ∪Π) = µ((Λ ∪Π) ∩ ∂E) = µ(Π ∩ ∂E)
(83)
≤ Hn−1(∂E ∩ ∂MF) + ε.

So letting Ω = Λ ∪Π, open set Ω satisfies (82).
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Proof of Lemma completed. Note that for any open set O with E ⊂ O,

Hn−1(∂MF∩ E ∩Ω) ≤ Hn−1(∂MF∩ E) ≤ Per(F,O).
Thus

Per(F, E) ≥ Hn−1(∂MF∩ E ∩Ω). (84)
So using Lemma 8

Per(E\F, Ω)
(79)
= H1(∂MF∩ E ∩Ω) + H1((∂ME\∂MF) ∩Ω)

(84),(82)
≤ Per(F, E) + ε. (85)

Now since F ⊂⊂ Ω and E is a quasiminimiser

Per(E, Ω) ≤ KPer(E\F, Ω)

(85)
= K(Per(F, E) + ε) (86)

And since F is closed, ∂MF ⊂ F so

Per(F, ∂ME)
(51)
≤ Per(E, ∂MF) ≤ Per(E, F), (87)

thus

Per(F, ∂ME) + Per(E, Ω\F)
(87)
≤ Per(E, F) + Per(E, Ω\F)
= Per(E, Ω)

(86)
≤ KPer(F, E) + Kε. (88)

Since this gives
Per(F, ∂ME) ≤ KPer(F, E) + Kε.

And as ε is arbitrary this establishes (81). 2

6.2. Proof of Theorem 4. As stated in Section 3 by the criteria for BVl extension domain of
[Ba-Mo 08], [Bu-Ma 69], E is a BVl extension domain if for every set of finite perimeter F ⊂ E
with diam(F) < δ we can find F̂ with F ⊂ F̂ with Per(F̂, IRn) ≤ (1 + K)Per(F, E). We will
take F̂ = F and we will show

Per(F, IR2) ≤ (1 + K)Per(F, E). (89)

So start using Corollary 2 we can take closed subset F ⊂ F with H1(∂MF\∂MF) = 0 and

‖11F − 11F‖BV < ε. (90)

Now by Lemma 10
Per(F, ∂ME) ≤ KPer(F, E). (91)

Note since F is closed, Per(F, Fc) = 0. And note since F ⊂ E we know H1(E0 ∩ F) = 0 and
so Per(F, E0 ∩F) = 0 by Lemma 7. So

Per(F, E0) = Per(F, E0 ∩Fc) + Per(F, E0 ∩F) = 0. (92)

Now again by Lemma 7

Per(F, IR2) ≤ Per(F, E1) + Per(F, ∂ME) + Per(F, E0)
(91),(92)
≤ (1 + K)Per(F, E). (93)

Hence

Per(F, IR2)
(90)
≤ Per(F, IR2) + ε

(93)
≤ (1 + K)Per(F, E) + ε. (94)
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For any open set O with E ⊂ O we have

Per(F, E) ≤ Per(F,O) = H1(∂MF,O) ≤ H1(∂MF,O) = Per(F,O).
As this is true for all open sets O with E ⊂ O we have Per(F, E) ≤ Per(F, E) thus putting
this into (94) we have Per(F, IR2) ≤ (1 + K)Per(F, E) + ε and this holds for all ε > 0, so this
establishes (89). 2

6.3. Saturated indecomposable sets.

Proof of Corollary 5.
Step 1. First we show that |S| < ∞.
Proof of Step 1. By the isopermetric inequality (see Theorem 3.46 [Am-Fu-Pa 00]) we have

that
min

{
|S| ,

∣∣∣IR2\S
∣∣∣} ≤ (4π)−1

(
Per(S, IR2)

)2

Now if
∣∣∣IR2\S

∣∣∣ ≤ (4π)−1
(

Per(S, IR2)
)2

then IR2\S must have an indecomposable component
with finite measure which contradicts the definition of saturated, so this can not happen.

Step 2. Let

a = inf {τ > 0 : |D11S| (Bτ(0)) > 0} and b = sup
{

ω > 0 : |D11S| (IR2\Bω(0)) > 0
}

.

We will show
H1(∂MS ∩ ∂Bs) > 0 or H1(S ∩ ∂Bs) > 0 for all s ∈ (a, b). (95)

Proof of Step 2. Suppose not, so for some s ∈ (a, b) we have that

H1(∂MS ∩ ∂Bs) = 0 and H1(S ∩ ∂Bs) = 0. (96)

Now by definition of a, b we know Per(S, Bs) > 0 and Per(S, B̄s
c) > 0. Now let A = S ∩ Bs

and B = S ∩ B̄s
c. So A, B are both sets of finite perimeter.

Now for H1 a.e. x ∈ ∂M A\∂MS, since A ⊂ S we must have x ∈ S1 (recall defintion (7)) and
so x ∈ ∂Bs. Thus

H1(∂M A\(∂MS ∩ B̄s ∪ (S ∩ ∂Bs))) = 0.
In the same way

H1(∂MB\(∂MS ∩ Bc
s ∪ (S ∩ ∂Bs))) = 0.

Thus by (96) we have that H1(∂M A ∩ ∂MB) = 0 and as |A ∩ B| = 0 by Proposition 1
[Am-Lu-Ca 01] we have Per(A) + Per(B) = Per(S) which contradicts the fact that S is in-
decomposable.

Now suppose b = ∞, then letting

H1 :=
{

s > a : H1(∂MS ∩ ∂Bs) > 0
}

. (97)

and
H2 :=

{
s > a : H1(S ∩ ∂Bs) > 0

}
.

We have two cases to consider. Either |H1| = ∞ or |H2| = ∞. We will deal with each in
turn. Firstly we will use a standard adaption of Theorem 3.103 [Am-Fu-Pa 00] we have that
for any u ∈ L1(BR(0))

V(u, BR(0)) =
∫ R

0
V(u, ∂Bs(0))ds (98)

where

V(u, ∂Bs(0)) = sup
{∫ 2πs

0
u
(

s cos
(

θ

s

)
, s sin

(
θ

s

))
φ′(θ)dθ : φ ∈ C∞

0 ([0, 2πs])
}

. (99)
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Now suppose |H1| = ∞ then

V(11S, IR2)
(98),(97)
≥

∫
H1

V(11S, ∂Bs(0))ds = ∞. (100)

Which contradicts the fact that S a set of finite perimeter. Now suppose |H2| = ∞. Let
B2 :=

{
s ∈ H2 : H1(∂Bs(0) ∩ S) ≥ πs

}
then by the Coarea formula

∞ > |S| ≥
∫

s∈B2

H1(∂Bs(0) ∩ S)ds ≥
∫

s∈B2

πsds ≥ |B2 ∩ {x : x ≥ 1}| . (101)

Hence |B2| < ∞. Now for any t ∈ H2\B2 we must have V(11S, ∂Bs(0)) ≥ 1. Thus as in (100),
V(11S, IR2) ≥ |H2\B2| = ∞ which contradicts the fact S has finite perimeter. So in either case
we have a contradiction, thus b < ∞.

Step 3. We will show
∣∣∣Bb(0)

c ∩ S
∣∣∣ = 0.

Proof of Step 3. Since |D11S| (Bb(0)
c
) = 0 either

∣∣∣Bb(0)
c ∩ S

∣∣∣ = 0 or
∣∣∣Bb(0)

c ∩ Sc
∣∣∣ = 0 in the

latter case Sc has an indecomposable component of finite measure which contradicts the fact
that S is stratified.

Step 4. We will show Sc has only one indecomposable component.
Proof of Step 4. Let U1, U2, . . . be the indecomposable components of Sc. Since S is satu-

rated, |Uk| = ∞ for any k ∈ N. Thus
∣∣Uk ∩ Bc

b

∣∣ > 0 for all k. Since H1(∂MUk ∩ Bc
b) = 0, thus∣∣D11Uk

∣∣ (Bc
b) = 0 so either 11Uk ≡ 1 on Bc

b or 11Uk ≡ 0 on Bc
b. As

∣∣Uk ∩ Bc
b

∣∣ > 0 the former is
true and so

∣∣Bc
b\Uk

∣∣ = 0. Thus for every k, l we have |Uk ∩Ul | > 0 which is a contradiction.
So there is only one indecomposable component.

Proof of Corollary completed. By Theorem 1, Sc can be represented by an indecomposable
component Π̃ which is closed. So S := (Π̃)c then S is open and D11S = D11S. 2

7. Example: Proof of Theorem 3

.
The construction. Let {ζk : k ∈N} be an enumeration of the points in the unit square in the

e1, e2 plane with rational coordinates, i.e. points in the set Q1 := {xe1 + ye2 : x, y ∈ [−1, 1]}
that can be written as xe1 + ye2 for some x, y ∈ [−1, 1] ∩Q.

We will define a thin column in direction e3 around ζk by

Πk :=
{

xe1 + ye2 + ze3 + ζk :
√
(x− ζk · e1)2 + (y− ζk · e2)2 < 2−10000−k, 0 < z ≤ 1

}
.

And we define O =
⋃

k∈N Πk. Let

U = {(x, y, z) : −1 ≤ x ≤ 1,−1 ≤ y ≤ 1,−1 ≤ z ≤ 0} .

Finally let
S = O ∪ U .

Step 1. We will show S is path connected.
Proof of Step 1. From the construction it is clear that for any p ∈ S , the line interval[

p, (p · e1)e1 + (p · e2)e2 − e3
2
]
⊂ U . Thus for any p1, p2 ∈ O

L1 =
[

p1, (p1 · e1)e1 + (p1 · e2)e2 −
e3

2

]
⊂ S (102)

and
L2 =

[
p2, (p2 · e1)e1 + (p1 · e2)e2 −

e3

2

]
⊂ S . (103)
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Finally

L3 =
[
(p1 · e1)e1 + (p1 · e2)e2 −

e3

2
, (p2 · e1)e1 + (p1 · e2)e2 −

e3

2

]
⊂ U ⊂ S . (104)

So
L1 ∪ L2 ∪ L3 ⊂ S .

Thus p1 and p2 are connected in S .

Step 2. We will show S c is connected.
Proof of Step 2. Let Q = (−1, 1) × (−1, 1) × (−1, 1). If p ∈ Q\S then p + λe3 6∈ S for

any λ > 0. Thus given any two points p1, p2 ∈ Q\S we have [p1, p2 + 2e3] ⊂ S c and
[p1, p2 + 2e3] ⊂ S c and thus the path

P = [p1, p1 + 2e3] ∪ [p1 + 2e3, p2 + 2e3] ∪ [p2 + 2e3, p2] ⊂ S c,

thus P is connected.

Step 3. We will show S is a set of finite perimeter.
Proof of Step 3. Let ON =

⋃N
k=1 Πk and define

SN = ON ∪ U .

Note that SN is a set of finite perimeter and

Per(SN) ≤
N

∑
k=1

2π2−10000−k + 17 ≤ 18.

Now SN converges in measure to S (see Remark 3.36 [Am-Fu-Pa 00]) so by Proposition 3.37
(b) we know Per(S) ≤ 18 and thus S is a set of finite perimeter.

Step 4. For a.e. p ∈ Q\S there exists rp > 0 such that

|S ∩ Br(p)| > 0, |S c ∩ Br(p)| > 0 for all r ∈ (0, rp) (105)

and
Per(S , Br(p)) > 0 for any r ∈ (0, rp). (106)

Proof of Step 4. By Lebesgue density theorem for a.e. p ∈ Q\S there exists rp > 0 such that

|Br(p) ∩ S c|
|Br(p)| >

1
2

for any r ∈
(
0, rp

]
. (107)

Now for any r ∈
(
0, rp

]
we can find x, y ∈ Q such that (x, y, p · e3) ∈ O ∩ B r

4
(p) and as O is

an open set for some ρ ∈ (0, r
4 ) we know∣∣Bρ(p) ∩O

∣∣ > 0. (108)

So (108) and (107) together establish (105).
Now arguing by contradiction and assuming Per(S ∩ Br(x)) = 0 then as this means

|D11S| (Br(x)) = 0 so by Theorem 3.42, [Am-Fu-Pa 00] we have that
∫

Br(x)

∣∣∣11S − (11S)Br(x)

∣∣∣ dz =

0. However by (108), (107) and this is a contradiction. Thus (106) is established.

Step 5. We will show that Q\O ⊂ S̄ .
Proof of Step 5. For any p ∈ Q\O either we have p ∈ U or p ∈ (Q\U )\S . So using (105)

of Step 4 for the latter case we know that for a.e. p ∈ Q\O, p ∈ S̄ . So there exists a subset
G ⊂ Q\O with |(Q\O)\G| = 0 and G ⊂ S̄ . Thus Ḡ ⊂ S̄ and since Q\O ⊂ Ḡ this completes
the proof of Step 5.
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Proof of Theorem completed. By Step 1 and Step 2, S and S c are connected. Since S is a set
of finite perimeter by Proposition 2 [Am-Lu-Ca 01] we have that S is an indecomposable set.
Since H2(∂MS c) = H2(∂MS) < ∞ in the same way by Proposition 2, S c is indecomposable.
Thus it is its own only indecomposable component. Hence (i) is established.

Now note by Step 5, Q\O ⊂ S̄ and

|Q\S| = 4−
∞

∑
k=1

π(2−10000−k)2 ≥ 3999
4000

,

so (ii) is established.
Finally by Step 4 we can find a set G ⊂ Q\S with |(Q\S)\G| = 0 and for every p ∈ G

there exists rp > 0 such that (106) holds true. So arguing by contradiction suppose there
exists a Lipschitz map φ : S2 → IR3 such that H2(∂MS\φ(S2)) = 0. Now by Theorem 3.59,
Theorem 3.61 [Am-Fu-Pa 00],

H2(φ(S2) ∩ Br(p)) = H2(∂MS ∩ Br(p)) = Per(S , Br(p)) > 0 for all r ∈ (0, rp).

So p ∈ ¯φ(S2) = φ(S2). Thus G ⊂ φ(S2) but this is a contradiction because H2(φ(S2)) =
(Lip(φ))2H2(S2) = 4π(Lip(φ))2. Thus we have established (iii) and completed the proof of
the theorem. 2

Remark. The example constructed in Theorem 3 also shows that Theorem 7 of [Am-Lu-Ca 01]
has no analogue in higher dimension. Note by property (i) there are no bounded components
of S c so S has no holes and is therefor saturated. Thus the set S constructed is an example
of a set Ambrosio et al. define as simple (see Definition 3, Definition 2 [Am-Lu-Ca 01]). And
by property (iii) ∂MS can not be almost everywhere covered by the Lipschitz image of the
sphere.
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