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ABSTRACT. Scope of this paper is to prove a Poincaré type inequality for a family of
non linear vector fields, whose coefficients are only Lipschitz continuous with respect to
the distance induced by the vector fields themselves.

1. INTRODUCTION

The Poincaré inequality is one of the main tools in the proof of regularity of solutions
of divergence form PDE’s equations. In particular, it is fundamental in the so called
Moser iteration technique used to obtain Harnack inequalities and Hélder continuity for
solutions. Indeed, the proof of the Harnack inequality by means of the Moser technique can
be reduced to verifying a suitable Poincaré inequality (see [30] for the details). Conversely,
a parabolic Harnack inequality implies a version of the Poincaré inequality as shown by
Saloff-Coste in [48]. It is well known (see [34] or [22], 25 [38]) that this type of inequality
is satisfied for smooth vector fields satisfying an Hormander type rank condition.

The Poincaré inequality for non smooth vector fields was first attached in [23]. Here
the authors considered vector fields in diagonal form

XZZAZ(.%')& ’i=1,...,n

and they only require that \;’s satisfy a reverse Holder type inequality (see also [24]).
Later on in [36], the authors developed a general approach to prove Poincaré inequalities
for (possibly nonsmooth) vector fields. In the recent paper [4I], the Poincaré inequality
is proved by developing the method described in [36] for Euclidean Lipschitz vector fields
with commutators which satisfy some additional structural conditions. We also quote the
paper [39] in which the author generalized the approach developed in [4I] to families of
Lipschitz continuous vector fields satisfying the Hormander condition of step two with low
regularity assumptions on the commutators. In [8] authors prove the Poincaré inequality
for a family of C"™~1! vector fields satisfying the Hérmander rank condition of step r > 2.
We point out that all these proofs are based on refinements of the so called Nagel-Stein-
Weinger’s Lemma proved in [44] and the doubling condition for the balls of the ambient
metric space.
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In [26] authors study the relationship between the validity of the Poincaré inequality and
the existence of representation formulas for functions as (fractional) integral transforms
of first-order vector fields. They show that Poincaré inequality leads (and in fact is often
equivalent to) to a suitable representation formula. This approach was later developed
in [I1] in which another proof of the representation formula relying on Jerison-Poincaré
inequality has been given. Finally, in [14] a general representation formula is proved in
terms of the fundamental solution of an Hormander type sublaplacian.

It is well known how to attack the regularity problem for solutions of non linear differ-

ential equations of the form
m
(1) Z Xi(aij(u) Xju) = f
ij=1

where X; are smooth vector fields, a;; are regular functions and f is a given source term.
The situation is tremendously different if the non linearity shows up in the vector fields,
rather than in the coefficients. Equations involving non linear vector fields naturally arise
while studying curvature equations ([15]), Monge-Ampére equation ([50]), mathematical
finance equation ([I8]) or some fine properties of surfaces in the sub-Riemannian setting
([2, @, 5, 16, 17, 27]).

In [15], while studying properties of graphs of functions u : @ € R® — R with pre-
scribed Levi curvature, authors were lead to study the following fully nonlinear and totally
degenerate equation

(14 a®+b?)%/2
(1+ uf)t/?

where X (p) := 0, + a(p)dy, Y (p) := 0y + b(p)0; and a = a(Vu), b = b(Vu) are suitable
bounded functions depending on the gradient of u. Since X,Y are not self-adjoint and
their coefficients are only bounded, then Poincaré and Sobolev inequalities for viscosity
solutions of a priori do not hold. To overcame these difficulties and in order to prove
regularity results for equation ([2)) authors implemented a suitable approximation procedure
which can be considered as an extension in this setting of the classical Schauder approach.
In particular an appropriate notion of Lipschitz continuity for the coefficients a and b was
introduced and approximate Poincaré and Sobolev inequalities were proved in term of this
notion.

Vector fields of the same type arise also while studying sub-Riemannian mean curvature
equation in the Heisenberg group H" for n > 2. We recall that H" can be identified with
(R27+1 ) where - is a suitable non commutative group operation. Moreover, the associated
Lie algebra b,, admits the stratification bh,, = b1 @ ho where h; and ho are subspaces of

(2) X2u+Y?%u = k(€ u)

B, of dimension 2n and 1 respectively and hy = [h1, h;1] and all the other commutators
vanish. From now on we will denote by Vi := (Vi,... Vi ) a basis of b;.

In this setting an intrinsic notion of regular hypersurface has been introduced, since the
classical Euclidean notion doesn’t work (see [27, [35]). More precisely an intrinsic regular
hypersurface M can be locally given as zero level set of Cf; function f, with non vanishing
gradient (VI{H, .. .,Vgﬂn), where by CI%H we will denote the set of functions f admitting
continuous horizontal distributional derivatives VEH fwithi=1,...,2n.
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It has been proved in [16] 28] that, up a change of variables, regular hypersurfaces can
be locally represented as graphs of the form:

(3) M = {(¢(z),z) € R .z € w c R*"},

where the function ¢ is regular with respect to the projection on R?" of the family V. A
possible choice of these projected vectors fields (see also [2], [16]) is the following one:

(4) V7 = 0y, — isnOpsns VY = 0y +20(2) Dy Vi) = Oy + 0y i =1,...,n— 1.

In the same papers a quasi-distance d associated to the function ¢ is defined. The relation
between this notion, the one introduced in [I5], and the exponential distance associated to
the vector fields (4) has been studied in [I7]. In addition, in [I6] a new notion of Lipschitz
continuous function with respect to the distance dg has been introduced. Precisely, in
their definition a function ¢ : w C R?™ — R is called intrinsic Lipschitz if (¢,d,) — R
is Lipschitz in the classical sense for the so called graph distance ds on w defined in .
In [27] the authors proposed an equivalent notion of Lipschitz continuous function, which
applies for surfaces of arbitrary codimension and in the particular setting of this paper it is
equivalent to the one given in [16]. We also refer to [17] for comparison of this distance and
the cc-distance. The class of Lipschitz continuous functions has been successfully applied
in the problem of rectifiability in H" (see [27]) and a lot of interesting properties of this
class have been recently studied (see [42], 51]). See also [2I] where the notions of intrinsic
graphs and of intrinsic Lipschitz graphs within general Carnot groups are studied.

Vector fields in have been recently applied for studying intrinsic minimal graphs in
H™ (see for istance [3, [13], @, 10, 20, 49] and the references therein). In particular, the
following mean curvature equation has been introduced for intrinsic minimal graphs

2n—1

(5) Z V(-b(vf(b) =0 inw
= \V14|Veg2

where ¢ : w C R?™ — R is a regular function and V%¢p := (v‘qu,...,vg’nfl ). We
note that equation is formally equivalent to the classical minimal surface equation.
Existence result of variational solutions are proven in [29] and [49]; approximation of a
minimal boundary by means of intrinsic Lipschitz functions has been recently made in
[43]. Nevertheless, as far as we known, regularity results for intrinsic minimal graphs are
known only under the additional assumption that |V9¢| + |y, ¢| is bounded, see [9] [T0].

The Poincaré inequality for intrinsic Lipschitz functions is the natural analogous in this
setting of the instrument used in classical Euclidean setting to fill this gap.

In the present paper we will prove a Poincaré type inequality for intrinsic Lipschitz
functions. More precisely, in view of some possible applications to the regularity of solu-
tions to (5)), we will prove the inequality for functions which belong to an intrinsic Sobolev
space, modeled on ¢ in a viscosity sense (see for example [9} [10]).

Definition 1.1. Let ¢ : w C R?*® — R be an intrinsic Lipschitz continuous function.
We say that a function ¥ : w C R*® — R belongs to the space Wy (w) if there exist
sequences {Vx}ken and {¢p}ren in C°(w) such that
(i) ¢ — ¥ in L} (w) as k — +oo;
(ii) ¢ — ¢ uniformly in w as k — +oo;
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(ili) |[VPqp(x)| < M Vo € w and k;
(iv) V% —* V) as k — 400,
for some positive constant M.

Then, our main result is the following

Theorem 1.2. Let w be a bounded and open subset of R?™ with n > 2, and let ¢ : w — R
be an intrinsic Lipschitz function and ¢ € Wy(w). Then there exist positive constants
C1, Cy with Cy > 1 (depending continuosly on the Lipschitz constant Ly of ¢) such that

(6) /U(b(j,r) W)(y) - ¢U¢(§:,T)| d£2n(y) <C; 7’/ |V¢¢)(y)| dL"Qn(y)7

Uy (z,Car)

for every Uy(z,Car) C w, where

(7) Up(x,r) :={y € w:dg(z,y) < r}.

Here Yy, (z,) denotes the mean of ¥ on the ball Uy(Z,7) with respect to the Lebesgue
measure, i.e.

1
(8) YUy () = W/Ué(m) D(y) AL (y).

Corollary 1.3. If ¢ : w — R is an intrinsic Lipschitz function then there exist positive
constants Cy,Cy with Co > 1 (depending continuosly on the Lipschitz constant Ly of ¢)
such that

9) /IJ¢(x,r) lo(y) — ¢U¢(j;7r)’ dﬁQn(y) < C 7“/ lv¢¢<y)’ d£2”(y),

Uy(Z,C27)
for every Ug(z,Car) C w.

In order to clarify the statement in what follow we briefly describe our approach. As
proved in [2] an intrinsic Lipschitz function can have a low Euclidean regularity ( at most
1/2-Hélder continuous) and this lack of regularity prevent us to apply in our setting the
classical techniques for proving Poincaré inequality with respect to a family of vector fields.
Nevertheless the explicit expression of the vector fields V‘f, ey Vgnfl ensures the validity
of the Hormander condition. Indeed we have

[v¢7 V¢+1] = aﬂmn‘

n

Hence, even though the vector field V2 has only intrinsic Lipschitz coefficients, the family
V¢ spans the whole tangent space at every point. Moreover, always exploiting the explicit
structure of the family V? we can approximate it by a suitable family of smooth vector
fields. If the vector fields had C! coefficients this reduction can be made in very general
setting, with the so called freezing method of Rothschild and Stein introduced in [46]
and slightly simplified in [19]. In our case the lack of regularity of the coefficients does
not allow to apply directly the freezing method and hence an ad hoc method has to be
introduced. Precisely, if w C R?", n > 2 and ¢ : w — R is an intrinsic Lipschitz function
then for every xy € w we define

10) V=Vl fori=1,....2n—1,i £n, V) =0, +20(20)0n,,.
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The main advantage of working with the family of vector fields defined in is that they
have C*° coeflicients, they satisfy an Hormander type condition analogous to the one sat-
isfied by the family V¢ and they can be considered as a zero order approximation family
of V. In particular, every 1) € C*°(w) can be represented by means of a suitable repre-
sentation formula (proved in [7], 14]) in terms of the vector fields Vf(m)
solution I';, of the Laplacian operator

, the fundamental

2n—1
Lo = D (VI

i=1

and the superlevel sets Q4 (,,)(z0,7) of I'z,, which are equivalent to the balls Uy (zo,7).
In order to prove Theorem in Section 3 we will first modify the aforementioned

representation formula to obtain another representation formula in terms of the family
V?. Successively, using an approximation result for intrinsic Lipschitz functions contained
in [42] (see also [17] for a refinement) we prove that the representation formula proved in
Section 3 still holds for intrinsic Lipschitz functions. Finally, in Section 4 we will provide
the proof of Theorem using an approach similar to the one proposed in [30].

2. PRELIMINARIES

2.1. Lipschitz continuous functions with respect to nonlinear vector fields. Let
w C R?" with n > 2 be open and let ¢ : w — R be a continuous function. Let us
introduce the following family of vector fields

V?($) :awl _xi-i-naxznv 1= 1,-..,7’1—1,
(11) V(@) = O,y + 20(2)Das,
VO(2) = Oy, + TinOpy,, i=n-+1...,2n—1.

These vector fields have been introduced in [2] and in [16] in the context of intrinsic graphs
in the Heisenberg group and successively studied in [4, [5]. Similar vector fields show up
in many other contexts both geometric [15], [50] and of mathematical finance [I§]. The
Lie algebra generated by the family V¢ := (V‘f, ey Vg)n_l) has maximum rank at every
point, hence it is possible to connect each couple of points in w with an integral curve,
and the Carnot-Carathéodory distance d.. associated to V¢ is well defined, see [17]. It
has been proved in [I7] that if ¢ is Lipschitz continuous with respect to the d.. distance
then d.. is locally equivalent to the following function, introduced in [2] and [16]:

1 . R 1 . .
(12)  dglay) = 5 max{[&— glaz1,00(z,) } + 5 max { | = G, 05(y,2) }

where for every x = (r1,...,22,) € R?*™ we denote by & := (x1,...,29,_1) € R?"71,
(13) O-¢(‘T’y) = ‘an — T2p — 2¢(‘T)(yn - ‘/L‘n) + U(I)y)‘1/2 z,y cw
and
n—1
(14) o(z,y) ==Y (Witn®i — Titnli).
i=1

Since the distance dy is explicit, we will always prefer it instead of the d.. one.
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Definition 2.1. We say that ¢ : w C R*® — R is an intrinsic Lipschitz continuous
function in w and we write ¢ € Lip(w), if there is a constant L > 0 such that:

(15) 6(a) — 6(y)] < Ldyla,y) Vo, € w.

The Lipschitz constant of ¢ in w is the infimum of the numbers L such that holds
and we write Ly, (or simply Ly) to denote it. We also say that ¢ is a locally intrinsic
Lipschitz function, and we write ¢ € Lipye(w) if ¢ € Lip(w') for every ' € w.

Remark 2.2. It immediately follows from the explicit expression of dg (see also [15]) that,
if ¢ € Lip(w) then dg is a quasi-distance on w. Precisely,

dg(z,y) =0<= 2z =1y;
dy(z,y) = dg(y, 2);
and for each x,y,z € w:

(16) dg(z,y) <

< dg(,2) + dg(y. 2) + [(x) = S|z — 2l + 10(y) = S [yn — 2al'/?
so that
dg(z,y) < (14 Lg)*(dg(x, 2) + dy(y, 2))
Remark 2.3. It is easy to see that, if ¢ € Lip(w), then
ooy, ) < 0(x,y) + 6(x) — W)V ln — yu|'? Vz,y € w
whence, by ,
(17) dg(@,y) < |2 = Glren-r +04(2,y) + [0(2) = o) Plen =yl 12 Va,y € w.

A detailed analysis of Lip(w) can be found in [I7, 27], here we recall only the properties
that we will need for the proof of Theorem

Note that Lip(w) does not turn to be a vector space (see [49, Remark 4.2]). Nevertheless,
the intrinsic Lipschitz functions amount to a thick class of functions. Indeed, it holds that
([27, Propositions 4.8 and 4.11])

(18) Lipp(w) € Lipre(w) € C2(w),

loc

where, Lipg(w) and Cllo/f(w) denote the classes of real-valued Euclidean Lipschitz and
locally 1/2-Euclidean-Hélder continuous functions on w respectively.

Theorem 2.4. ([28]) If ¢ € Lip(w) then ¢ is V?-differentiable for L*"-a.e x € w, in the
sense defined in [2]. Besides, for L™-a.e x € w there is a unique vector V®¢(z) € R?"~1
called V?®—gradient of ¢ such that

o) = 6ly) + (V6(2), 7(y) ) +o(dy(w,y) asy -z

where (-,-) denotes the Euclidean scalar product in R*™ and 7 (x1,. .., Ton_1,T2,) =
(1,...,29n_1) , Vo € R2"—L,
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In [I7] the following estimates for L4 are proved. Precisely, for each z € w and each
r > 0 sufficiently small there is ¢; > 0 depending only on ||V?¢)| (w) such that

Ly v, @r) < VP8l oo )
and there is ca = ca2(n) > 0 such that
V90| oo (wy < c2Lg(Lg + 1)

where Ugy(z,7) is defined in (7).
It has been recently proved in [42] the following approximation result for intrinsic Lip-
schitz functions:

Theorem 2.5. Let w C R?" be a bounded open set and let ¢ € Lip(w). Then there exists
a sequence {¢r} with ¢, € C>°(w) such that

(i) ¢r — ¢ uniformly in w as k — oo,

(ii) [V r(2)| < IV99l poo(w) Vo € w.

We also quote the paper [17] where we proved that every ¢ € Lip(w) can be approxi-
mated by a sequence {¢}ren of smooth functions satisfying (i), (ii) and also

V% ¢p(x) = Vop(z) L* —a.ein w.

A detailed analysis and further properties of Lip(w) can be found in [27].

2.2. Local approximation of the vector fields. By if :wcCc R™ — Ris
an intrinsic Lipschitz function then the family V¢ has coefficients which are, from an
Euclidean point of view, only Hélder continuous. To overcome this lack of regularity on
the coefficients we use the approach introduced in [44] and subsequently refined in [19].
The idea is to associate to the family V¢ a new family of Hérmander vector fields with
regular coefficients. Precisely, for each g € w we consider the family of vector fields

olan) _ (V(f(m), o ,ng(:ﬂ)) introduced in . We will also call
@?(IO) — v?(-’ﬂo)’z — 1’ P ’2n _ 1’ @2?5270) = 8x2n7

and we will denote by V#(#0) the family (@(f(xo), . ,@gr(fo)).

Since the point zg € w is fixed, then the vector fields V#(#0) are € and nilpotent whose
generated Lie algebra is isomorphic to G = H" ! x R. We denote by Q the homogeneous
dimension of G and by

(19) 5 » : G — G the dilation family canonically associated to G.

We can repeat for the family V(@) the general procedure known for nilpotent vector
fields. Namely, for each x € R?" we use the exponential mapping:

2n
Emp(ﬁ(ﬂ?o),x : g — Rzn, Emp¢(x0),x(g) = eXp(Z gzv;b(l’o)> ((L‘),
=1
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where we have identified the element § € G with its coordinates on the basis vo@o)  In
coordinates we get:

(20)  Expg(sy).(U) = ($1 + 01, Ton1 + Pon—1, Tan + Jon + 2000 (20) — o (7, $)>
where o(+,-) is as in . The inverse mapping of Expg (s, Will be denoted by

Logg(wy),z R — @G
and an easy computations provides
(21)
LoGg(zp) oY) = <y1 =Tl Y201 = T2n—1, Y2n — T2n — 20(70)(Yn — Tn) — o (, y))7

where as before we have identified the element Logy(,,).(y) € G with its coordinates on
the basis V¢(*0). We will define for every z,y € R?"

d¢($0)(l’,y) = HL09¢(10),93(:’J)H,

where ||(Z1, ..., T2 := max{[(Z1,...,Ton—1)|R2n—1, |i'2n’%} and | - |gzn—1 denotes the Eu-
clidean norm in R?"~1,

Remark 2.6. Let w C R* be open and bounded and ¢ € Lip(w) then dy(x,y) can be
expressed as follows:

1
indeed, by
(28)  dygey(w,y) = max{[& = Glanr, [gan — w20 — 20(2)(yn — 20) + oy, )| }.

Moreover, by a simple calculation we obtain that the functions dg(,) and dg are equivalent.
Precisely, there exist C1,Cy > 1 depending only on Ly such that for each x,y € w

(24) CquS(y) (y,x) < dd)(x?y) < Cld¢(y) (y,x),
Besides, there exists a positive constant C' = C(Lg) such that for each x,y,z € w
(26) dg () (@, y) < C<d¢($) (@, 2) + dg(z) (2, y))-

In order to study the dependence of the vector fields V(@) on the variable ro we
recognize that the map

Logqﬁ(ﬂﬁo),xo : RQn — g
changes the families V#(*0) and V(0 into the family V and v respectively, where:
27)  Vi=Vi v =0 forie {1, 2n -1} € {1,..., 2n},0,5 £,
Vn = Oz, ﬁn = Oz, -
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Precisely, for each ¢ € C*°(R"), if we define

(28) 1;(5%) = w(LOQ;&O),xO ('%))7
then
V(@) = Vit(Logy(mg) o (), Vi€ {1,...,2n}.
Obviously, the exponential distance d associated to the vector fields V is smooth, inde-

pendent of zg and such that

d(0,#) = ||z|, VieR>™,

(29) d(b(xo) (.’E, y) = d(Log¢(a}0),x0 (I’), LOg(b(xo),xo (y)) Vx? Y, To € W.
2.3. Sub-Laplacian and fundamental solution. Let us call sub-Laplacian the second

order differential operator defined as

2n—1
(30) Loy = 3 (VT2

i=1
It is well known that Lg(,,) admits a fundamental solution which we will denote by I'g(,)
(see for [7] for the details). This operator is changed by the map Logs(zy)q, into the
sub-Laplacian operator

»Z0

2n—1

L= (V)2

i=1
That is, for each ¢ € C>°(R?")

(Lp(wg)¥)(x) = (&;)(LO%(%)JO (x)) Yz eR™,
where 1; is defined in .

Clearly the operator £ has a fundamental solution I" of clagss C'*° far from the pole Z = 7,
which is homogeneous of degree 2 — Q with respect to the dilation family 4y, defined in
(19) (see [7] and the references therein). This means that there exist positive constants
C1,Cy such that for every Z and 7 in R?", & # §

C
< T(3,§) € =
d(z,9)°2 d(z,9)22
o Cy
31 Vil(Z,9)| < =—=—————;
(3 VLG € 5o
L Co
V.V.I(2,9)] < —5—,
VI < 5
for every i,j = 1,...,2n — 1 (see [7, [47]). Besides, the fundamental solution Iy, of
L2y can be explicitly written in terms of I' as
#(xo0)
(32) F¢($0)('ra y) = F(Log¢(zo),wo (1:)3 Logd)(a:o),xo (y))v
and
Vf(xO)F¢(mo)(fE, y) = Vil (Logg(z0) 20 (), LOGe(w0) 0 (¥))5
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fori=1,...,2n—1. It follows that the inequalities in are satisfied also for T'g(,0) (7, y)
and dg(,,)(7,y) with the same constants. In particular it is clear that these constants are
independent of zo. Using the estimates on I'y,,) it follows that the sphere of the metric
dy (o) are equivalent to the superlevels of the fundamental solution I'g(,):

(33) Q¢(m0) (ZL‘,T) = {y € RQn | F¢(x0)(x7y) > TQ_Q} y T > Oa

and that for every fixed rg € w the set Qy,)(w0,7) has regular boundary ( see [14]). In
particular, from (25)), and (31)), there exists rg,a > 0 with a = a(Lg) such that for
any rg € w and r < rg

(34) Qo (wo) (T, 7/a) C Ug(0,7) C Q15 (w0, ¢ 7),

where

(35) Ug(@o,r) :={y € w | dg(wo,y) <r}.

By we have that

(36) (o) (@,7) = {y € R | T(L0Gy(a0),00 (), LOGo(w0) w0 (4)) > 7777},

in particular the sets Q¢>(x0)(35077‘) can be expressed in terms of the superlevels of the
fundamental solution I' as follows:

(37) Qd)(zo)(anT) = {y € RQn | F(O’ Logqﬁ(mo),xo (y)) > T27Q}

= EPg(g) 0 (20, 7)),
where
(38) Q(0,r) == {§ € R*" | T(0,9) > r*~<}.
We will also denote
(39) K(j) =T @2(0,7), j € B>,
so that, we can rewrite Q(0,7) as:

(40) Q0,r) = {geR™ | K(§) <7} .

3. A REPRESENTATION FORMULA IN TERMS OF THE INTRINSIC GRADIENT

Let us fix w C R?" open and bounded, n > 2 and ¢,v € C®(w). The aim of this
section is to prove a representation formula for 7 in terms of its intrinsic gradient V%1
on the superlevels €24,y (70,7) of T4,y To obtain this result we use an already known
representation formula for general operators in Lie groups which can be found in [7, [14].
In our case the aforementioned result can be stated as follow:
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Proposition 3.1. For every xo € w and R > 0 such that Qg (70, R) C w we have

(41)
Q [VEEOT 0y (0, y)|? 9
Y(z0) = 7o Y(y) AL (y)
(Q = 2)(1 = 50)R2 S0y (00, 0\ (e (w0, 5) T D197 (g, 1)
ot | VOEIT, 0 (0, 4), VO (y) ) L2 (y)dr
(1-50) RQ / Q) (z0,7 ) >

Here (-,-) denotes the standard Euclidean scalar product in R?>"~1,

Remark 3.2. We explicitly note that, if we choose ¢ = 1, then from we get:
Voo, Ik
(42) () | (o) (70, Y)]

RS /Qd>(oc0)(w07R)\Q¢(a:0)($0’1;) Fi((foi)l)/(gﬁ)(xo,?/)

4L (y)

U)he’re C(Q) . m

This remark allows to say that represents a function v as the sum of its mean
on a suitable set and the gradient V#(*0)¢). Hence, it seems natural to give the following
definition

Definition 3.3. For every xo € w and R > 0 such that Qy(,,)(z0, R) C w we define the

following mean of 1, on the set Qu(py (20, R) \ oz (20, £), in terms of the fundamental
#(z0) ¢(wo) 2
solution T ()

C(9Q) |V F¢>(m0)(ﬂfo, y)?

R /Qé(wo)(;to’R)\th(xo)(xo 2) FQ((Q)I)/(Q 2)($0,y)

m(v, ¢, R)(xo) := P(y) AL (y).

In the sequel we will need another mean of 1 on the same set Qo) (w0, R) \ Qg2 (To, 1;)
precisely we denote:

R
(13) (6, R)(wo) = 3 [, m(w.6.7)(a0) dr

The following remark will be fundamental later in this section.

Remark 3.4. Let g € C1(R?"), r > 0 and c1,co > 0 we define:

Averey ={y €R™ 1 < g(y) < cor}.
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Then, for every f,ip € CYR?®") and Ry,Ry € R with Ry < Ra, using the fact that

Oon (V¢(x°)vn+1 Viff)v(f) and integrating by part we have:

Q 1 2n r —
/R / T4 )
Vo) g(y)

1/ re- 1/ o 1 2n—1
=5 TV, by —5— dH y) dr
2 Jr, {y:9(y)/ca=r} W)V 0) IVEg(y)] )
1 /R2 Ql/ @ Vf(xo)g(y) 2n—1
-5 T FTWV () —=—— dH™" " (y)dr
2R, {y:9(y)/c1=r} W)V v 0) Veg(y)| )

1 oo v g(y) ~
- 2/ re 1/ F@) V() 2l AR (y)dr
{ya(y)/ca=r}

R VEg(y)]
#(x0)
1/R2 Q—l/ @ Vit 9(y) 2n—1
+ = r fVIY(y) =~ dH" " (y)dr
2 Ry {y:9(y)/c1=r} ! !VEg(y)\
1 [fe o-1 ¢(z0) ) 2n
-3 / r / VI (@) Vi (y) AL (y)dr
Rl Ar,cl,c2
1 [fe o-1 #(z0) o 2
by [t [ R s ete) ac ),
2 Rl A'rcl,c2

where Vg denotes the Euclidean gradient. By the coarea formula we infer that:

/ ro-t / 62 AL ) =
o1
=1 gcg—(f’)ﬂ V) VE g y) AL ()
;/ g l_(f’)f() Vo)V g (y) AL (y)
;/ ° iﬁ”f( VT Vi g () AL (v)
+§/ s - ST ) 9L

+3 / o / O PR A
Rl A'r,cl,CQ

If in addition c1 = 0 then the integrals on A, . R, R, are not present.

In the following Proposition we will slightly modify the mean formula in Proposition
which contains derivatives in the direction of the vector fields V#(0) of 4, in order
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to obtain a mean representation formula which contains derivatives with respect to the
vector fields V.

Proposition 3.5. For every zo € w and R > 0 such that Qg (70, R) C w we have

w 6, B)(o) =
2 / (g [ B o) e

2 [ (Koo, y,7), 90(y) ) AL (y)dr,
2 Qg (20,7)\Qg(ag) (20, 5)

where fi € C°([3,1]) and the vector valued functions K1 and Ko are defined in and
respectively. Moreover,

(44) 1K1 (20, 9)| < CrlLg.0y, (wo.8) + 12 dgoe (@0,9) Yy € Qy(ay) (20, R)

and
(45)

i ) R
|K2($0, Y, 7’)| < CQ(L(;$ + 1)2d;§(x%)(x07 ) vy € Qd)(xo (‘T07 ) \Q¢ (zo) (Z’O,R/2) re (2 R)

where Ly means L¢7Q¢(IO>(xO7R)\Q¢(IO)(IO7R/2) and C1,Co > 0 are suitable constants depend-
ing only on the homogeneous dimension Q and on the structure constants C1 and Co in

BY).

Proof. We will always denote by C' a positive constant depending only on Q which can be
different from line to line. By Proposition for all € (0, R)

Y(zo) —m(y, ¢,7)(z0) =

C [" o_ - * n
- / 501 / (VOO ) (w0,0), TP (y) ) AL (y)ds
5 Qp(ag) (€0,5)
_ "ot é(x0) ¢ 2n
= S \Y% Loy (@0, y), VPU(y) ) AL (y)ds
ro 3 /Q<Z>(zo)(l"0: )< “ 0)( ) ( )> ( )

C " - X n
+-—5 [ 52 1/ VOO 400y (@0, y) (6(20) — D(y))Dentd (y) AL (y)ds.
r Qg () (20,5)
1
Using Remark (3.4 with g(y) := F;(’fo)(:co, y) we obtain:

(16) (o) — m(,6,7) / (K, V) ac s
6(2) (0,5)

/ <K (20, 1) V20 () ) AL (1)
Qg (20) (£0,7)\Lg(a) (%0:5)
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where
(47) Ki(zo,y) ;:CV¢(x0)F¢(xO)(x0,y)
Cvfb(fvo)vqﬁ(wwr( o) (@0, 1) (¢(z0) — d(y))enta
+ OV, (20, y)(B(w0) — d(y))er,
and

g vg(aco)l-\(b(xo)(xo7 y)

Y
v¢($0)r

C n ¢(a:0)(x07 y)

e wo.y)

(48)  Ka(wo,y,r) = (é(@0) — d(¥) VLT g (o, y)ex

(6(20) — d() VT yia0) (20, y)ent1,

where ¢; is the i-th element of the canonical basis of R?"~ 1.
Integrating from E to R we get

U(wo) = m(w. 6, R)(zo
/2 / o /Q) (a0, v0)) aL™ardy

2
= (Koo, v.p). V0(0) ) AL ().
£ I %) (£0,0)\Qg(ag) (70, 5)

Exchanging the order of integration in the first integral and setting:

1-Q Q-1 o-1
At =2 1 _(QQt) itee (14,12, fu(t) = 7:1_Q1 it e [1/2,1),

we get the thesis. Finally, the estimates on K1 and K» are direct consequences of .

In order to compare m(y, ¢, r)(z) and m(y, ¢,r)(y) when z # y we will first express
them as integrals on the same sphere:

Lemma 3.6. For each zo € w and each R > 0 such that Qg (70, R) C w there exists a
kernel
Q [VL(0,7)?

K3(0,7) := (Q—2)(1— %) (0, 5)X@ /(@)

such that
1 - - "~
M6, R)w0) = g [ Kal0. DBt (9) AL (D)
(0,R)\2(0

where Q(O, R) is defined in @ Moreover, there exist constants Cs, Cy depending only Q
and on the structure constants C7 and Cy in such that

vy € 90, 7)\ 20, %)
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Proof. By we have that
Qzﬁ(xo) (.1‘0, R) = Equﬁ(xo),xo (Q(Oa R))
So that, by Definition and we have:

m (i, ¢, R)(wo) =
C(Q) V2T 4oy (20, )2

__CQ —_#zo P(y) AL (y)
(Q—2)R () (€0, R)\ () (€0, %) Fi((fo)l)/(g ? (0,9)
s VI(0,9)P 7)) AL
N E dc
(@~ 2R Joomaos) T D@2 (g, )V ErPotenan(9)) AETD)

where in the last equality we have applied a change of variables and the fact that the
determinant of the Jacobian matrix of Expy(y).., 18 equal to 1. Finally, we observe that
follows directly from the estimates on I' in . O

Proposition 3.7. For every T € w there exists Ry > 0 such that, if 0 < R < Ry then
Q@) (T, R) € w and for every x,xz9 € Qy(z) (T, R) and

RS Lagd)(zo),a:o (Q¢>(i) (ia R))QLquﬁ(x),x(Q(Z)(i) (1_"7 R))

defined
(50) h = h(z,20;7) = LOGs(0), Expy(ag) o (5) (Efqus(x),x@))
and

(51) 15 (1) i= exp (V) ) (exp(GVA) (@0)) ¢ € [0,1],
il holds

(52) v(t) €w Vit e [0,1].

Moreover, we have

(53) V(Erpg(2),2(T) — Y(EXPy(20),20 (7)) =
1 2n

-/ 3 (Lot @) Ty )t + Kta,0.5) | Ona gl
where
(54) Ky(z, w0, 9) := 2(¢(x) — ¢(0))Jn — 20(§, x — @0).
The kernel Ky is of class C*° with respect to § and the following estimates hold:
(55) (K, 20, )| < 2L 51 + V(2071
(56) IVE (2, 20,9)| < 2(Lg0, 0 @R + Dde(z, 20),

where x, 70 € Qy(z)(T, R) and § € Logy(z) w0 (Qe(z) (T, R))NLOGy(2) 2(Qe(z) (T, R))-
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Proof. Let us fix & € w and 0 < R < R where R := sup{R > 0 | Q43 (Z, R) € w}. For
every T, zo € Qg(z) (T, R) since Logy(z) e, (T0) = L0y (a)«(7) =0 € G then

L0gp(z0),20 (Rg(z) (T R)) N Logg ()« Qo) (2, R)) # 0.
By we get
Expg(r).(9) = (931 + 315+ T20-1 + Yon—1, Tan + Jon + 20n0(x) — 0 (7, fﬁ)),
Expy(z0)m0(F) = <$0,1 + 1,520,201+ Y2n—1, T0,2n + Y2n + 20nP(x0) — o (7, xo)>,
then using and we obtain
(57) hi=(x—x0); i=1,...,2n—1,
han = (& = 20)2n — 20(20)(x — 20)n + 20n((x) — d(0)) — 20(7, © — @) + 0 (, x0)

and calling

(58) T = Lo.gd)(aco),xo (33‘),
we realize that
(59) b=+ (20u(6(x) — dlx0)) — 20(7, 7)) ean.

By and the Baker-Campbell-Hausdorff formula we have
() = exp (twmaso)) (exp (gw(wo)) ($0)>

= exp (2t (6(@) — 6(20))0zn + 240§, 7)an — t0(§,8)Dn + (15 + V) (20).
From this and using we get
(60) (vg@)i=tlx —z0)i+(J+z0)i i=1,...,2n—1

(v(t))2n = t(x — 20)2n + (J + 0)2n + 2tTn(d(x) — d(20))
+ 2¢(x0)¥n + o (t(x — x0) + T0, 7).
Therefore, the following estimate holds
(61) dgao) (@0, 75 (1)) < 17l + 1121 + VIFNIZ] + /117 llle(2) — e(xo)l,
where T is as in . Indeed, using and we get
dg(z0) (70, 735(t)) < ‘(tfl +G1s - t 21 + Pon-1)

+
R2n—1

-

2

|t + on + 210 (6(2) — 9(20)) + 10 (3, 5)
and follows using the triangle inequality. Since, z, 7o € Q47 (7, R) and
Y € L0gg (o) 20 (Lp(z) (T, R)) N LGy 2 (QLp(z) (T, R))

then by and we get
(62) 12l < CR, [|g] <CR and dg(z,20) < CR
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for some constant C' = C(qu,%(i)(gz, #)) > 0. Finally, by (61), and we conclude
that

”yg(t) S qu(xo)(.%'o, CR) YVt € [0, 1]
for some C' = C(LQQM@@,R)) > 0 and follows taking Ro := max{R, dy(y) (0, dw)/C}.

Since 1) € C*°(w) and ~; is horizontal with respect to the family of vector fields {V¢(@0)},
we obtain

1
wLExp¢@»@<g>>—-¢<Emp¢@m%mxg>>::/C (0 75)’ (1)t

2n 1
~ 2oz
zzémeWWMu
=1

so that immediately follows using . In order to prove it suffices to observe
that o(z — xo,7) < dg(x,z0)||g||. Moreover, since 9, K4(x,x0,7) = 0 it follows that
to prove it is enough to estimate the Euclidean gradient of K, (with respect to the
variable §). By a direct computation and using the expression of K, in we obtain

8@2.K4(x, Zo, ]j) = —2(56 — mO)n-{-i if 1= 1, ceey,— 1,
8QnK4(x7 Zo, g) = 2(¢($) - (25(.’170)),
8@2.K4(x,$0,g) :2($—$0)i if i=n+1,...,2n—1.
Hence [VE4(z,20,9)| < 2(Lg,q, ., (z,r) + 1)de(z, o), which is the thesis. O
Let us now prove the following proposition.

Lemma 3.8. Let T € w and Ry > 0 be as Proposition [3.7. For each 0 < R < Ry,
7,70 € Qg(z)(Z, R) and
U € Wragz = L0Gg(z0),20 (Lg(z) (T, R)) N LGy () o (Qgz) (T, R)),
let us denote by v;(t) the curve introduced in Proposition . Then the function
H:[0,1] X wgzp:z — [0,1] X w

(t,9) = (t,75(1))

has inverse function (t, F(z,t)) and the map z — (t, F(z,t)) is C> and its Jacobian matriz
has determinant equal to 1.

Proof. Using (60)), and setting (t, z) = (¢,v5(¢)), F can be expressed as
(63)  Fi(z,t) =(z —xz0)i —t(x —x0); i=1,...,2n—1,
Fon(z,t) =(2 = x0)an — t(z — 0)2n — 2t((2 = 20)n — t(x — 0)n) ($() — P(20))+
—2¢(x0)((z — zo)n, — t(x — x0)n) + o (2, t(x — o) + x0).
In particular it is clear from that 1:': is of class C'*° as a function of the variable z and
that the Jacobian determinant of z — F'(z,t) is equal to 1 for each ¢ € [0, 1]. O
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Lemma 3.9. Let g € C°(R") and F(z,t) as in Lemma § then
(64)

i (V3 9)(F(z,1)) ] i=1,...n—1,
V) (G(F(z,8)) = (Vg0) (F(z,1)) — 26(0(x) — 6(20)) (050 ) (F(2,8)) i =,

(V9)(F(z,1)) i=n+1,...,2n—

where (V1,...,Van_1) is the family of vector fields defined in (27).
Proof. Let us start computing Vfi(xo)(g(ﬁ(z,t))) with i =1,...,n — 1, that is

(65) (02 = 240020, ) (9(F(2,1))),
To this end, we calculate

0:,(g(F(2,1))) and 0., (9(F(2,1))).
By the explicit expression of F(z,t) we obtain:
(66) 02, (9(F(2,1))) = (83,9) (F(2,1)) + (95, 9) (F(2,)) Dz, Fon (2, 1),
(67) Dz (9(F (2, t))) (052, 9) (F(2, 1)),
hence by @ and (67) we get:

VI (B (2 1)) = (agig Pz 005,,0) (1))
 (Fuan(2) =z + 02 Pan(2.0) ) 0, 9 (F (2,1).
Since
(68)  Fi(z,t) =(z —z0)i —t(x —x0); i=1,...,2n—1
Fon(z,t) =(2 — 20)an — t(x — 20)2n — 2t((2 — 20)n — t(x — z0)n) ($(x) — ¢(z0))+
—20(x0)((z — x0)n — t(x — 20)n) + o(2,t(x — 0) + x0)

this implies

V) (g(F(2,1) = (Vg.9)(F(z,1)).

The computations for Vd)( )( (F(z,t))) when i =n+1,...,2n — 1 are similar.
Finally, let us compute V2" (g(F(z,t))). By definition:
)

(69) VD) (g(F(2,1))) = (020 +20(20)0, ) (9(F (2, 1))

and since

(10) 0., (g(F(z, t>>> (95,9) (F(2,1)) — 2[t(6(x) — 6(0)) + 6(@0))(Dyang) (F (2, 1))
by , and ( we get:

V?ﬁx‘))g(ﬁ(% 1)) = (V5.9)(F(2,1) = 2t(é(x) — ¢(20))(9g,,9) (F (2, 1)).

L,
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Proposition 3.10. For every t € [0,1],¢1,c2 > 0 and r > 0 let us define
(1) Diorns i= {2 € B c1r < K(F(2,1)) < car),

where K is as in (@) Let & € w and Ry > 0 be as in Proposition then for every
0 < R < Rg and z,70 € Qy(z) (T, R) with x # xq it holds:

1 R
m(y, ¢, R)(x) — m(¥, ¢, R)(xo) :12%/0 /R /D < K5(x,$o,t,z,r),v¢1/}(z) > d£2"(z)drdt

/ / < Ko(z,x0,t, 2, R), VPi(2) > AL (2)dt
D,

AR

—/ / < K7(x,a:o,t,z,R),V¢1/z(z) > d£2"(z)dt
0 D

11
t,1,5.R

for suitable kernels K5, Kg, K7 defined in (@, and (@ respectively. Moreover,
there are positive constants Cs, Cg independent of Ly such that

2d¢>(900)( , )

(72) |K5(2, 0, t,2,7)| < C5(Lg + 1) 0 on Dt7%71’r,Vt € [0,1],
- d (o, )
73 Ko(x, 0., 2, R)| < Cg(Ly + 1)2—2@0) 1702 D Yt e [0,1],
13) 1o a0,t 2, R < ol 1) 0 on Dy € 0.1
(74) |K7(x, 0, t, 2, R)| < Ce(L —i—l)Zd()—(m’) on D, 11 p,Vte|0,1]
T\&, L0,y Ly <, >~ Lol HF(Z t)HQ 1 t,1,2 R s L.

Proof. By Lemma for every 0 < r < Rp such that Qg (2, 7), Qy(z,) (T0,7) € W, We
have

m(lﬁ, ¢7 7”‘) (x) - m(d& ¢7 T)(‘TO) =
1

-= oot K3OD (B0 0) ~ Y E D220 (31)) AL )

by Proposition

1 N 5 (e -
- ?”Q/ B KS(an)/ < Logqb(xo),xo (LL’), V¢( O)T/f(Vg(t)) > dtd£2 (y)
Q(0,r)\Q(0 0

1 N . .
T / O E(0.9) / K i(, 20, §)Banth(v3(1)) AL (§).
r Q(0,7)\Q(0,%) 0



20 G. CITTI, M. MANFREDINI, A. PINAMONTI, AND F. SERRA CASSANO

The change of variable z = ~;(t), changes Q(0,7) \ ©(0,%) in the set D, 1, and the
301
inverse mapping has Jacobian determinant equal to 1. Hence:

(75)
m(, ¢, R)(x) —m(, ¢, R)(wo) =
_2 / / / 30, F(2,8)) < Logg(an).an (), T20)(2) > dL2(2)drdt+
D
/ / /D 3(0, F(2, 1)) Ky(z, 20, F(2,1)) 0200 (2)d L™ (2)drdt.

Now applying Remark [3.4] - we get the thesis calling:

1 ~
(76) Ks(z,zo,t,2,7) ::T—QKg(O, F(2,t))L0Gg(z0),z0 (2)+

1 . N 5
+ 52 Vi (Ka(0, Pz 1) Kalw, w0, F(2,) ) ensrt

1 e N 5
+ 5o Vot (Ka(0.F (2, t) Ka(w, w0, F(2, 1) exs

1 V™K (F (2, 1))
R KO(F(:,1))
1 VK (F (=, 1)
R OK9(F(z1)

(77)  Kg(x,w0,t,2,R) = K3(0, F(z, 1)) Ka(z, w0, F (2, 1) Jens1—

K3(0, ﬁ'(z, t))K4(x, o, F(z, t))er;

1 VIR (F(z, 1)
R 2QK9(F(z,1))
1 VOO K (F(z,t)
R 29K Q(F(z,1))

where as usual e; denotes the i-th element of the canonical basis of R?*~!. To prove
we observe that by Lemma [3.9]

(78) Kq(z,xo0,t,2,R) = — K3(0, F(2,t))K4(x, x0, F(2,1))ens1

)K3(0, F(Z, t))K4(a:, xo, F(Z, t))el,

1 ~
Ks5(z,xo,t,z,7) = —QKg(O, F(2,t))Logg o),z ()

+ 2162 ((V1K3)(O F(z 1) Ky(x, xo,F( t)) + (V1K4)(a;,:1;0,ﬁ(z,t))K3(0,F(z,t)))enﬂ
+ 27% ((Vn+1K3)(0,F(Z,t))K4(a:,xo, F(z,t)) + (Va1 K1) (z, 20, F (2, 1)) K3(0, F(z,t)))el

hence using , and we get

Ca(Lg +1 (L + 1
\K5(x,x0,t,z,r)]§%d¢(xo)(x0’x)+204( s+ )d¢(:n,:z:o)+203( ¢ + 1)dy(x, z0)

r@ rQ
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and the conclusion follows using . Finally, and are direct consequences of
,, and Lemma O

4. POINCARE INEQUALITY

Aim of this section is to prove Theorem [1.2] The Poincaré inequality we prove here is
partially inspired to the Sobolev type inequality for vector fields with non regular coeffi-
cients contained in [I5] and successively extended to a more general class of vector fields
in [40]. The key point in our strategy is to establish a representation formula for intrinsic
Lipschitz continuous functions. To this end we use Theorem and the representation
formula proved in Theorem for C*° functions.

In all this section we denote by w an open and bounded subset of R?" with n > 2 and
by ¢ an intrinsic Lipschitz function defined on w with Lipschitz constant equal to L.

Let 1 € Wy and let {41 }ren, {@k}ren smooth functions on w which satisfy conditions
(1) — (iv) of Deﬁnition We denote by dg, () the distance introduced in , by Ly, (z0)
the fundamental solution of the operator Ly, () defined in and by Qg, (z0)(z0,7) the
superlevel set of I'y, () defined in (33).

Lemma 4.1. Let xg € w and R > 0 such that Qg (70, R) C w. Then

(i) X4, (0)(@0,R) " XQp(ag) (z0,R) uniformly in w as k — 400;
(ii) m(Yk, or, R)(x0) — m(¥, ¢, R)(xg) uniformly in R > 0 as k — +00.

Here x4 denotes the characteristic function of A.
Proof. We recall that

Q(0,R) = {7 € R™ | T(0,9) > R* <},
then, by , for each k£ € N we have:

Qg (20) (20, R) = ETDy, (19).20 (20, R)).

Using the explicit form of Expg, (1),z, and ETpy(sg) .z, stated in we easily conclude
that (ETpg, (z0),z)ken uniformly converges to Expy(yy) ., in w as k — +oo. In order to
prove (i) we observe that it is sufficient to prove that for all € > 0 there exists k = k(e) > 0
such that for all k > k

(79) Q¢($0)(x0ﬂ R) - (Q¢k(xo)(x07 R))e
where
(80) (g (o) (T05 R))e := {y € w | g (0) (02, (w0) (T0, ), Y) < €}

For simplify the notation we define

Ek(Q(Ov R)) = E$p¢k(zo),xo (Q(Oa R))’ E(Q(Ov R)) = Ewp(i)(a:o),zo (Q(O7 R))

Suppose by contradiction that there exists e > 0 such that for every k there are k > k
and y € E(Q(0, R)) such that y;, ¢ E(Q(0, R))e. Then, there exist (k;);, kj — 400 as
J — +oc and (z,); in Q(0, R) such that E(zy;) ¢ Ey, (Q(0, R))c. So that, the distance
between FE(zry;) and Ej,(zy,) is greater than e and this is absurd being Ej, uniformly

convergent to E. Then, follows and hence (7).
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To prove (ii) we observe that by Definition
lim m(¢x, ok, R)(20) =

k—+
= lim C(Q)l/ Vo) Fd’k(ﬁfo)(xovy”

2
2n
2 wk( )Xﬂ¢k 10)(x07 )\Q¢>k(zo)(x072)( )dc ( )

By @) and
V(@) Y2 Voo, . .y)|?

(1) i | ou(ao) (@0, Y)I* | (z0) (70, V)] <C Wy

therefore, (i) follows from () and the fact that ¢k — ¢ in L} (w). O

In what follows we prove that the representation formulas obtained in Proposition
and in Proposition for C*° functions still hold if ¢ is intrinsic Lipschitz and ¢ € Wg(w).

Lemma 4.2. Let ¢ be a Lipschitz continuous function and ¢ € Wy(w). For each xy € w
and each R > 0 such that Q) (70, R) C w, the following formula holds:

¢(x0) = m(, ¢, R)(zo) + Ir(zo)
where m(v, ¢, R)(xo) is as in and

() Inlw) = ﬁfl (%) /Q (Ko, V0 ac mar
1 #(zg) \L0,T

2 (R ,
/| (Koo, ), ¥6(a) ) 422 (y)abr
2 Q¢(zo)(x077')\9¢(mo)(ac(),%)

where K1, Ky are as in Proposition[3.5, Let & € w and Ry > 0 be as in Proposition [3.7,
then for every 0 < R < Ry and x,xg € Qd)(—)(i R) with x # x¢ it holds:

(83)  m(y, ¢, R)(x) — m(v, 6, R)(xo) =
R/ / /D < Ks(z,z0,t, 2,7), VOip(2) > AL (2)drdt

/ / < K¢(z,x0,t, 2, R), Vo1 (2) > dL>™(2)dt
D

AR

/ / < Ky(z,x0,t, 2, R), VPi(2) > dL?(2)dt,

D, A1R
where Dy ¢, cor 05 as in (71) and K5, K¢, K7 are as in , and respectively and
they satisfy the same estimates proved in Proposition[3.10 with possibly different constants.

Proof. By Deﬁnitionthere are {1 }ren, {Pk }ren sequences of smooth functions defined
on w satisfying conditions (i) — (iv). By Proposition and the thesis is true for
every ¢, ¥, as above. Passing to the limit as in the previous proposition, it holds true
also for the limit functions ¢ and 1. O
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As it is well known (see for example [25], [26]) the key step for the proof of a Poincaré
inequality, is a representation formula as the one proved in Lemma which is indeed
equivalent to the Poincaré inequality itself. For further applications, we note that we can
now derive this formula on any family of balls, equivalent to the superlevels 4z (Z, R),
which can be Q47 (Z, R) or Uy(Z, R), defined respectively in and (35).

Precisely, let us denote with By4(Z, R) a family of spheres with centre in Z and radius
R, equivalent to the family Qyz)(Z, R). Let us denote Vp,(z,r) the mean of ¢ on the set
By (z, R) with respect to the Lebesgue measure, i.e.

1
84 VB, (z :—/ x) dL?(x) .
( ) By (z,R) ,CQn(B(;s(x,R)) By(.R) Tﬂ( ) ( )
We will prove

Theorem 4.3. For every ¢ € Lip(w) and i € Wy(w) there exist positive constants Cy, Ca
with Co > 1 (depending continuosly on the Lipschitz constant Ly of ¢) such that

69 [ W) - bnenl A7) <G R V()| AL (y).
B(j)(i’,R) B¢(f,02R)
for every By(z,CoR) C w.
Our representation formula can be stated as follows:

Proposition 4.4. Let ¢ : w — R be an intrinsic Lipschitz function and ¢ : w — R
be a Wy function. Let T € w and Ry > 0 be as in Proposition [3.7 Let 0 < R < Ry,

x,x9 € By(T, R). Then there are C, C1,Cy, with C > 1 and Cy,Cy > 0 depending only on
Ly, Q and the structure constants in such that By(Z,CR) € w and

(86)  |vb(x0) = ¥py@,m| <

< dly~ (w0, y)[VPP(y) AL (y)+
By(2,CR)
ST 7 oy
L2"(By(Z, R)) JB,z.cR) JByz.CR)
Proof. By Lemma 4.2 for each x,x¢ € By(Z, R) we have:
U(xo) = m(1, ¢, R)(wo) + Ir(x0),
U(x) =m(y, ¢, R)(z) + Ir(),

dy %z, y)|VOP(y) AL (y)dL> (z).

hence
(87) Y(zo) — Y(z) = m(Y, ¢, R)(wo) — m(¢, ¢, R)(z) + Ir(20) — Ir(z).
Integrating equation with respect to the variable x on a sphere By (7, R) and recalling
the definition of VB, (z,r) We get:

1
L(By(3, R))

. o) — Ir(x My
+§W&@ﬂwémmhdw In(z) AL (z).

(20) — i, o) memwwﬁmm—mm¢mmmﬁ%w
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Hence:
(88)
1

a0) = V00| < g ) o OO 0, )] 02

RO+ g,y g T 6

Now, by Lemma [4.2] we have:
|m(¢, ¢7 R) (ZL‘(])—TTL(’(]Z), ¢a R) (‘T)‘

2 L rR
< / / / | < K5(1’,.’B0,t,z,r)’v¢¢(z) > |d£2n(2)d7“dt
R 0 R D 1 .

/ / | < Ko(z,x0,t,2, R), VP(2) > |dL>(2)dt
D,

3 1,R

/ / | < Kr(z,20,t, 2, R), VP9(2) > [dL2(2)dL.

We claim that there exists C' = C’(L¢) > 1 such that for all » € (R/2, R), t € [0, 1] it holds
(89) D 1, C Qd)(wo)(CCQ,CR) € w.

727 ’
To this end let us fix ¢ € [0,1] and € (R/2, R) then for each § € Q(0,7) \ Q(0,7/2) we
have

M'—‘

(90) 5 <lil<r<mr

and, by , it also holds

(91) (a0 (0, 75(1)) < 170 + 12+ VIglIZ ] + VIFlll¢(z) — ¢lo)l.
Since z, 7o € Qy(z)(Z, R) by and we have

(92) dg(z,20) <CR and |z|| <CR

for some C' = C(Lg) > 1. Using , and we immediately get with possibly
smaller R.

By Lemma we know that the estimates for K5, K¢, K7 proved in Proposition [3.10
also hold for ¢ € Lip(w). Hence, by and for each z € Dt’;lﬂ, and t € [0, 1] we

have
)(an l’) < C",dqb(:co)(wOa l‘)

T P A1
for some C' = C'(Ly) > 0. Moreover, using and we get

dy(ao) (20, ) = ||l < CR < 2Cr < C|F(2,1)]
for a suitable constant C' = C'(Lg4) > 0. Then

-d
K5 (2, 20,t, 2,7)| < C—220

1
|K5(x, o, t,2,7)| < C——.
1F(z,t)[[<
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Moreover, by , 2 € Qy(g) (70, CR) and
0 < dg(ao)(z0,2) < CR < 2Cr < C||F(z,1)].

So that
(93) |K5(x, o, t,2,7)| < Cdd)(z())(xo,z)l*g.
Analogously, we can prove that there exists C' = C'(Lg) > 0 such that
(94) |K¢(x, zo,t, 2,7)|, | K7(x, 20, t, 2,7)| < C’d¢($0)(xg,z)1_9.
In conclusion we proved that:
(95) |m(¥, ¢, R)(xo) — m(¢, ¢, R) ()| <

: @1/ dj) (20, 2)| VO(2)|dL™ (2).
Vutog) (#0.CR) ¢(zo0)

Furthermore, by Lemma and we have:

(96) Tn(a0)| < CoL, /Q o D G0 DT ),
#(zg) (L0,

(97) Ir(@)] < CoLy /Q oy S T AL" )
o(z)\Ls

Finally, since the integrals can be extended on the sphere By(Z, C'R) which are equivalent
to Q4 (2, R), and by Remark we can replace d;(ig(:z:,y) with d;;Q(:n,y), then the

thesis follows by , , and . O

The proof of Theorem [4.3|follows from the representation formula in Proposition[£.4, We
recall it here for reader convenience, providing a proof on any family of spheres equivalent
to Q4 (). Hence in particular on the spheres Uy we obtain Theorem

Proof of Theorem[{.3 As in the previous proof we denote by C, C positive constants de-
pending only on Ly, Q and the constants defined in which could be different from line
to line. Integrating both members of on By(Z, R) we get

(98) /| o ) A ) <

<G ] ) V)L ()AL ()
Bd,(f,CR) B¢ (E,CR)

wCf [ ARy VL ()AL o).
By(z,CR) J B4(z,CR)
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This implies:

(99) /B o ) A ) =

<c VoswI( [ a )t ) ) ),
By(z,CR) By(z,CR)
where
/ d(lisig(ya‘r(]) d£2n(m0) < éRa
By(%,CR)

since the space is homogeneous of dimension ). Finally, using we get .

By the approximation result in Theorem we can chose 1) = ¢ and get the Proof of
Corollary [I.3

We point out, or reader’s convenience, the relation between Poincaré’s inequality and
p-p-Poincaré and Sobolev inequalities. By Corollary and the doubling condition for
the balls Ug(Z,r) proved in [27], the following corollary directly follows applying Theorem
13.1 in the monograph [32]:

Corollary 4.5 (p-p-Poincaré and Sobolev inequalities). Let ¢ : w — R be an intrinsic
Lipschitz function and p > 1. Then there exist positive constants Cq,Cy with Cy > 1
(depending on the Lipschitz constant Ly of ¢) such that

! PqL2 o <
</32”(U¢(fﬂ”)) /l]¢(5:,7") |9(y)— v, (@) (y)> <

1 1/p
<Cir - / Veo(y)[PdL ) :
1 <£2”(U¢(96, Cor)) Ua(:Car) V2(y)| (y)

for every Ug(z,Car) C w. Moreover, there is a constant p* > p such that

1 P l/p* <
(w7 fyo 000 <
<O ( e | Ve )>1/p
s 01 L2(Uy(z, Cor)) Ug(,Cor) ’ ’ |
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