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Abstract. Scope of this paper is to prove a Poincaré type inequality for a family of
non linear vector fields, whose coefficients are only Lipschitz continuous with respect to
the distance induced by the vector fields themselves.

1. Introduction

The Poincaré inequality is one of the main tools in the proof of regularity of solutions
of divergence form PDE’s equations. In particular, it is fundamental in the so called
Moser iteration technique used to obtain Harnack inequalities and Hölder continuity for
solutions. Indeed, the proof of the Harnack inequality by means of the Moser technique can
be reduced to verifying a suitable Poincaré inequality (see [30] for the details). Conversely,
a parabolic Harnack inequality implies a version of the Poincaré inequality as shown by
Saloff-Coste in [48]. It is well known (see [34] or [22, 25, 38]) that this type of inequality
is satisfied for smooth vector fields satisfying an Hörmander type rank condition.

The Poincaré inequality for non smooth vector fields was first attached in [23]. Here
the authors considered vector fields in diagonal form

Xi = λi(x)∂i i = 1, . . . , n

and they only require that λi’s satisfy a reverse Hölder type inequality (see also [24]).
Later on in [36], the authors developed a general approach to prove Poincaré inequalities
for (possibly nonsmooth) vector fields. In the recent paper [41], the Poincaré inequality
is proved by developing the method described in [36] for Euclidean Lipschitz vector fields
with commutators which satisfy some additional structural conditions. We also quote the
paper [39] in which the author generalized the approach developed in [41] to families of
Lipschitz continuous vector fields satisfying the Hörmander condition of step two with low
regularity assumptions on the commutators. In [8] authors prove the Poincaré inequality
for a family of Cr−1,1 vector fields satisfying the Hörmander rank condition of step r ≥ 2.
We point out that all these proofs are based on refinements of the so called Nagel-Stein-
Weinger’s Lemma proved in [44] and the doubling condition for the balls of the ambient
metric space.
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In [26] authors study the relationship between the validity of the Poincaré inequality and
the existence of representation formulas for functions as (fractional) integral transforms
of first-order vector fields. They show that Poincaré inequality leads (and in fact is often
equivalent to) to a suitable representation formula. This approach was later developed
in [11] in which another proof of the representation formula relying on Jerison-Poincaré
inequality has been given. Finally, in [14] a general representation formula is proved in
terms of the fundamental solution of an Hörmander type sublaplacian.

It is well known how to attack the regularity problem for solutions of non linear differ-
ential equations of the form

(1)
m∑

i,j=1

Xi(aij(u)Xju) = f

where Xi are smooth vector fields, aij are regular functions and f is a given source term.
The situation is tremendously different if the non linearity shows up in the vector fields,
rather than in the coefficients. Equations involving non linear vector fields naturally arise
while studying curvature equations ([15]), Monge-Ampére equation ([50]), mathematical
finance equation ([18]) or some fine properties of surfaces in the sub-Riemannian setting
([2, 4, 5, 16, 17, 27]).

In [15], while studying properties of graphs of functions u : Ω ⊂ R3 −→ R with pre-
scribed Levi curvature, authors were lead to study the following fully nonlinear and totally
degenerate equation

X2u+ Y 2u = k(ξ, u)
(1 + a2 + b2)3/2

(1 + u2
t )

1/2
(2)

where X(p) := ∂x + a(p)∂t, Y (p) := ∂y + b(p)∂t and a = a(∇u), b = b(∇u) are suitable
bounded functions depending on the gradient of u. Since X,Y are not self-adjoint and
their coefficients are only bounded, then Poincaré and Sobolev inequalities for viscosity
solutions of (2) a priori do not hold. To overcame these difficulties and in order to prove
regularity results for equation (2) authors implemented a suitable approximation procedure
which can be considered as an extension in this setting of the classical Schauder approach.
In particular an appropriate notion of Lipschitz continuity for the coefficients a and b was
introduced and approximate Poincaré and Sobolev inequalities were proved in term of this
notion.

Vector fields of the same type arise also while studying sub-Riemannian mean curvature
equation in the Heisenberg group Hn for n ≥ 2. We recall that Hn can be identified with
(R2n+1, ·) where · is a suitable non commutative group operation. Moreover, the associated
Lie algebra hn admits the stratification hn = h1 ⊕ h2 where h1 and h2 are subspaces of
hn of dimension 2n and 1 respectively and h2 = [h1, h1] and all the other commutators
vanish. From now on we will denote by ∇H := (∇H

1 , . . . ,∇H
2n) a basis of h1.

In this setting an intrinsic notion of regular hypersurface has been introduced, since the
classical Euclidean notion doesn’t work (see [27, 35]). More precisely an intrinsic regular
hypersurface M can be locally given as zero level set of C1

H function f , with non vanishing

gradient (∇H
1 , . . . ,∇H

2n), where by C1
H we will denote the set of functions f admitting

continuous horizontal distributional derivatives ∇H
i f with i = 1, . . . , 2n.
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It has been proved in [16, 28] that, up a change of variables, regular hypersurfaces can
be locally represented as graphs of the form:

M = {(φ(x), x) ∈ R2n+1 : x ∈ ω ⊂ R2n},(3)

where the function φ is regular with respect to the projection on R2n of the family ∇H. A
possible choice of these projected vectors fields (see also [2, 16]) is the following one:

(4) ∇φi = ∂xi −xi+n∂x2n , ∇φn = ∂xn + 2φ(x)∂x2n ,∇
φ
i+n = ∂xi+n +xi∂x2n , i = 1, . . . , n− 1.

In the same papers a quasi-distance dφ associated to the function φ is defined. The relation
between this notion, the one introduced in [15], and the exponential distance associated to
the vector fields (4) has been studied in [17]. In addition, in [16] a new notion of Lipschitz
continuous function with respect to the distance dφ has been introduced. Precisely, in
their definition a function φ : ω ⊂ R2n −→ R is called intrinsic Lipschitz if (φ,dφ) −→ R
is Lipschitz in the classical sense for the so called graph distance dφ on ω defined in (12).
In [27] the authors proposed an equivalent notion of Lipschitz continuous function, which
applies for surfaces of arbitrary codimension and in the particular setting of this paper it is
equivalent to the one given in [16]. We also refer to [17] for comparison of this distance and
the cc-distance. The class of Lipschitz continuous functions has been successfully applied
in the problem of rectifiability in Hn (see [27]) and a lot of interesting properties of this
class have been recently studied (see [42, 51]). See also [21] where the notions of intrinsic
graphs and of intrinsic Lipschitz graphs within general Carnot groups are studied.

Vector fields in (4) have been recently applied for studying intrinsic minimal graphs in
Hn (see for istance [3, 13, 9, 10, 20, 49] and the references therein). In particular, the
following mean curvature equation has been introduced for intrinsic minimal graphs

2n−1∑
i=1

∇φi
( ∇φi φ√

1 + |∇φφ|2
)

= 0 in ω(5)

where φ : ω ⊂ R2n −→ R is a regular function and ∇φφ := (∇φ1φ, . . . ,∇
φ
2n−1φ). We

note that equation (5) is formally equivalent to the classical minimal surface equation.
Existence result of variational solutions are proven in [29] and [49]; approximation of a
minimal boundary by means of intrinsic Lipschitz functions has been recently made in
[43]. Nevertheless, as far as we known, regularity results for intrinsic minimal graphs are
known only under the additional assumption that |∇φφ|+ |∂x2nφ| is bounded, see [9, 10].

The Poincaré inequality for intrinsic Lipschitz functions is the natural analogous in this
setting of the instrument used in classical Euclidean setting to fill this gap.

In the present paper we will prove a Poincaré type inequality for intrinsic Lipschitz
functions. More precisely, in view of some possible applications to the regularity of solu-
tions to (5), we will prove the inequality for functions which belong to an intrinsic Sobolev
space, modeled on φ in a viscosity sense (see for example [9, 10]).

Definition 1.1. Let φ : ω ⊂ R2n −→ R be an intrinsic Lipschitz continuous function.
We say that a function ψ : ω ⊂ R2n −→ R belongs to the space Wφ(ω) if there exist

sequences {ψk}k∈N and {φk}k∈N in C∞(ω) such that

(i) ψk → ψ in L1
loc(ω) as k → +∞;

(ii) φk → φ uniformly in ω as k → +∞;
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(iii) |∇φkψk(x)| ≤M ∀x ∈ ω and k;
(iv) ∇φkψk ⇀∗ ∇φψ as k → +∞,

for some positive constant M .

Then, our main result is the following

Theorem 1.2. Let ω be a bounded and open subset of R2n with n ≥ 2, and let φ : ω → R
be an intrinsic Lipschitz function and ψ ∈ Wφ(ω). Then there exist positive constants
C1, C2 with C2 > 1 (depending continuosly on the Lipschitz constant Lφ of φ) such thatˆ

Uφ(x̄,r)
|ψ(y)− ψUφ(x̄,r)| dL2n(y) ≤ C1 r

ˆ
Uφ(x̄,C2 r)

|∇φψ(y)| dL2n(y),(6)

for every Uφ(x̄, C2 r) ⊂ ω, where

(7) Uφ(x, r) := {y ∈ ω : dφ(x, y) < r} .
Here ψUφ(x̄,r) denotes the mean of ψ on the ball Uφ(x̄, r) with respect to the Lebesgue
measure, i.e.

(8) ψUφ(x̄,r) :=
1

L2n(Uφ(x̄, r))

ˆ
Uφ(x̄,r)

ψ(y) dL2n(y) .

Corollary 1.3. If φ : ω → R is an intrinsic Lipschitz function then there exist positive
constants C1, C2 with C2 > 1 (depending continuosly on the Lipschitz constant Lφ of φ)
such that ˆ

Uφ(x̄,r)
|φ(y)− φUφ(x̄,r)| dL2n(y) ≤ C1 r

ˆ
Uφ(x̄,C2 r)

|∇φφ(y)| dL2n(y),(9)

for every Uφ(x̄, C2 r) ⊂ ω.

In order to clarify the statement in what follow we briefly describe our approach. As
proved in [2] an intrinsic Lipschitz function can have a low Euclidean regularity ( at most
1/2-Hölder continuous) and this lack of regularity prevent us to apply in our setting the
classical techniques for proving Poincaré inequality with respect to a family of vector fields.

Nevertheless the explicit expression of the vector fields ∇φ1 , . . . ,∇
φ
2n−1 ensures the validity

of the Hörmander condition. Indeed we have

[∇φ1 ,∇
φ
n+1] = ∂x2n .

Hence, even though the vector field ∇φn has only intrinsic Lipschitz coefficients, the family
∇φ spans the whole tangent space at every point. Moreover, always exploiting the explicit
structure of the family ∇φ we can approximate it by a suitable family of smooth vector
fields. If the vector fields had C1 coefficients this reduction can be made in very general
setting, with the so called freezing method of Rothschild and Stein introduced in [46]
and slightly simplified in [19]. In our case the lack of regularity of the coefficients does
not allow to apply directly the freezing method and hence an ad hoc method has to be
introduced. Precisely, if ω ⊂ R2n, n ≥ 2 and φ : ω −→ R is an intrinsic Lipschitz function
then for every x0 ∈ ω we define

(10) ∇φ(x0)
i := ∇φi for i = 1, . . . , 2n− 1, i 6= n, ∇φ(x0)

n := ∂xn + 2φ(x0)∂x2n .
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The main advantage of working with the family of vector fields defined in (10) is that they
have C∞ coefficients, they satisfy an Hörmander type condition analogous to the one sat-
isfied by the family ∇φ and they can be considered as a zero order approximation family
of ∇φ. In particular, every ψ ∈ C∞(ω) can be represented by means of a suitable repre-

sentation formula (proved in [7, 14]) in terms of the vector fields ∇φ(x0)
i , the fundamental

solution Γx0 of the Laplacian operator

Lφ(x0) :=

2n−1∑
i=1

(∇φ(x0)
i )2

and the superlevel sets Ωφ(x0)(x0, r) of Γx0 , which are equivalent to the balls Uφ(x0, r).
In order to prove Theorem 1.2 in Section 3 we will first modify the aforementioned

representation formula to obtain another representation formula in terms of the family
∇φ. Successively, using an approximation result for intrinsic Lipschitz functions contained
in [42] (see also [17] for a refinement) we prove that the representation formula proved in
Section 3 still holds for intrinsic Lipschitz functions. Finally, in Section 4 we will provide
the proof of Theorem 1.2 using an approach similar to the one proposed in [30].

2. Preliminaries

2.1. Lipschitz continuous functions with respect to nonlinear vector fields. Let
ω ⊂ R2n, with n ≥ 2 be open and let φ : ω −→ R be a continuous function. Let us
introduce the following family of vector fields

∇φi (x) = ∂xi − xi+n∂x2n , i = 1, . . . , n− 1,

∇φn(x) = ∂xn + 2φ(x)∂x2n ,

∇φi (x) = ∂xi + xi−n∂x2n , i = n+ 1 . . . , 2n− 1.

(11)

These vector fields have been introduced in [2] and in [16] in the context of intrinsic graphs
in the Heisenberg group and successively studied in [4, 5]. Similar vector fields show up
in many other contexts both geometric [15], [50] and of mathematical finance [18]. The

Lie algebra generated by the family ∇φ := (∇φ1 , . . . ,∇
φ
2n−1) has maximum rank at every

point, hence it is possible to connect each couple of points in ω with an integral curve,
and the Carnot-Carathéodory distance dcc associated to ∇φ is well defined, see [17]. It
has been proved in [17] that if φ is Lipschitz continuous with respect to the dcc distance
then dcc is locally equivalent to the following function, introduced in [2] and [16]:

dφ(x, y) =
1

2
max

{
|x̂− ŷ|R2n−1 , σφ(x, y)

}
+

1

2
max

{
|x̂− ŷ|R2n−1 , σφ(y, x)

}
,(12)

where for every x = (x1, . . . , x2n) ∈ R2n we denote by x̂ := (x1, . . . , x2n−1) ∈ R2n−1,

(13) σφ(x, y) := |y2n − x2n − 2φ(x)(yn − xn) + σ(x, y)|1/2 x, y ∈ ω
and

σ(x, y) :=

n−1∑
i=1

(yi+nxi − xi+nyi).(14)

Since the distance dφ is explicit, we will always prefer it instead of the dcc one.
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Definition 2.1. We say that φ : ω ⊂ R2n −→ R is an intrinsic Lipschitz continuous
function in ω and we write φ ∈ Lip(ω), if there is a constant L > 0 such that:

|φ(x)− φ(y)| ≤ Ldφ(x, y) ∀x, y ∈ ω.(15)

The Lipschitz constant of φ in ω is the infimum of the numbers L such that (15) holds
and we write Lφ,ω (or simply Lφ) to denote it. We also say that φ is a locally intrinsic
Lipschitz function, and we write φ ∈ Liploc(ω) if φ ∈ Lip(ω′) for every ω′ b ω.

Remark 2.2. It immediately follows from the explicit expression of dφ (see also [15]) that,
if φ ∈ Lip(ω) then dφ is a quasi-distance on ω. Precisely,

dφ(x, y) = 0⇐⇒ x = y;

dφ(x, y) = dφ(y, x);

and for each x, y, z ∈ ω:

(16) dφ(x, y) ≤

≤ dφ(x, z) + dφ(y, z) + |φ(x)− φ(z)|1/2|xn − zn|1/2 + |φ(y)− φ(z)|1/2|yn − zn|1/2

so that

dφ(x, y) ≤ (1 + Lφ)1/2(dφ(x, z) + dφ(y, z)) .

Remark 2.3. It is easy to see that, if φ ∈ Lip(ω), then

σφ(y, x) ≤ σφ(x, y) + |φ(x)− φ(y)|1/2|xn − yn|1/2 ∀x, y ∈ ω

whence, by (12),

(17) dφ(x, y) ≤ |x̂− ŷ|R2n−1 + σφ(x, y) + |φ(x)− φ(y)|1/2|xn − yn|1/2 ∀x, y ∈ ω.

A detailed analysis of Lip(ω) can be found in [17, 27], here we recall only the properties
that we will need for the proof of Theorem 1.2.

Note that Lip(ω) does not turn to be a vector space (see [49, Remark 4.2]). Nevertheless,
the intrinsic Lipschitz functions amount to a thick class of functions. Indeed, it holds that
([27, Propositions 4.8 and 4.11])

LipE(ω) ( Liploc(ω) ( C
1/2
loc (ω) ,(18)

where, LipE(ω) and C
1/2
loc (ω) denote the classes of real-valued Euclidean Lipschitz and

locally 1/2-Euclidean-Hölder continuous functions on ω respectively.

Theorem 2.4. ([28]) If φ ∈ Lip(ω) then φ is ∇φ-differentiable for L2n-a.e x ∈ ω, in the
sense defined in [2]. Besides, for L2n-a.e x ∈ ω there is a unique vector ∇φφ(x) ∈ R2n−1

called ∇φ−gradient of φ such that

φ(x) = φ(y) +
〈
∇φφ(x), π̃(y)

〉
+ o(dφ(x, y)) as y → x

where 〈·, ·〉 denotes the Euclidean scalar product in R2n−1 and π̃(x1, . . . , x2n−1, x2n) :=
(x1, . . . , x2n−1) , ∀x ∈ R2n−1.



POINCARÉ-TYPE INEQUALITY FOR LIPSCHITZ CONTINUOUS VECTOR FIELDS 7

In [17] the following estimates for Lφ are proved. Precisely, for each x̄ ∈ ω and each

r > 0 sufficiently small there is c1 > 0 depending only on ‖∇φφ‖L∞(ω) such that

Lφ,Uφ(x̄,r) ≤ c1‖∇φφ‖L∞(ω),

and there is c2 = c2(n) > 0 such that

‖∇φφ‖L∞(ω) ≤ c2Lφ(Lφ + 1)

where Uφ(x, r) is defined in (7).
It has been recently proved in [42] the following approximation result for intrinsic Lip-

schitz functions:

Theorem 2.5. Let ω ⊂ R2n be a bounded open set and let φ ∈ Lip(ω). Then there exists
a sequence {φk} with φk ∈ C∞(ω) such that

(i) φk → φ uniformly in ω as k →∞,
(ii) |∇φkφk(x)| ≤ ‖∇φφ‖L∞(ω) ∀x ∈ ω.

We also quote the paper [17] where we proved that every φ ∈ Lip(ω) can be approxi-
mated by a sequence {φk}k∈N of smooth functions satisfying (i), (ii) and also

∇φkφk(x)→ ∇φφ(x) L2n − a.e in ω.

A detailed analysis and further properties of Lip(ω) can be found in [27].

2.2. Local approximation of the vector fields. By (18) if φ : ω ⊂ R2n −→ R is
an intrinsic Lipschitz function then the family ∇φ has coefficients which are, from an
Euclidean point of view, only Hölder continuous. To overcome this lack of regularity on
the coefficients we use the approach introduced in [44] and subsequently refined in [19].
The idea is to associate to the family ∇φ a new family of Hörmander vector fields with
regular coefficients. Precisely, for each x0 ∈ ω we consider the family of vector fields

∇φ(x0) = (∇φ(x0)
1 , . . . ,∇φ(x0)

2n−1) introduced in (10). We will also call

∇̂φ(x0)
i = ∇φ(x0)

i , i = 1, · · · , 2n− 1, ∇̂φ(x0)
2n = ∂x2n ,

and we will denote by ∇̂φ(x0) the family
(
∇̂φ(x0)

1 , . . . , ∇̂φ(x0)
2n

)
.

Since the point x0 ∈ ω is fixed, then the vector fields ∇φ(x0) are C∞ and nilpotent whose
generated Lie algebra is isomorphic to G = Hn−1 × R. We denote by Q the homogeneous
dimension of G and by

(19) δ̃λ : G −→ G the dilation family canonically associated to G.

We can repeat for the family ∇̂φ(x0) the general procedure known for nilpotent vector
fields. Namely, for each x ∈ R2n we use the exponential mapping:

Expφ(x0),x : G −→ R2n, Expφ(x0),x(ỹ) := exp
( 2n∑
i=1

ỹi∇̂φ(x0)
i

)
(x),
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where we have identified the element ỹ ∈ G with its coordinates on the basis ∇̂φ(x0). In
coordinates we get:

Expφ(x0),x(ỹ) =
(
x1 + ỹ1, . . . , x2n−1 + ỹ2n−1, x2n + ỹ2n + 2ỹnφ(x0)− σ(ỹ, x)

)
(20)

where σ(·, ·) is as in (14). The inverse mapping of Expφ(x0),x will be denoted by

Logφ(x0),x : R2n −→ G

and an easy computations provides

Logφ(x0),x(y) =
(
y1 − x1, . . . , y2n−1 − x2n−1, y2n − x2n − 2φ(x0)(yn − xn)− σ(x, y)

)
,

(21)

where as before we have identified the element Logφ(x0),x(y) ∈ G with its coordinates on

the basis ∇̂φ(x0). We will define for every x, y ∈ R2n

dφ(x0)(x, y) := ‖Logφ(x0),x(y)‖,

where ‖(x̃1, . . . , x̃2n)‖ := max{|(x̃1, . . . , x̃2n−1)|R2n−1 , |x̃2n|
1
2 } and | · |R2n−1 denotes the Eu-

clidean norm in R2n−1.

Remark 2.6. Let ω ⊂ R2n be open and bounded and φ ∈ Lip(ω) then dφ(x, y) can be
expressed as follows:

dφ(x, y) =
1

2

(
dφ(x)(x, y) + dφ(y)(y, x)

)
,(22)

indeed, by (21)

dφ(x)(x, y) = max
{
|x̂− ŷ|R2n−1 , |y2n − x2n − 2φ(x)(yn − xn) + σ(y, x)|

1
2

}
.(23)

Moreover, by a simple calculation we obtain that the functions dφ(x) and dφ are equivalent.
Precisely, there exist C1, C2 > 1 depending only on Lφ such that for each x, y ∈ ω

(24) C2dφ(y)(y, x) ≤ dφ(x, y) ≤ C1dφ(y)(y, x),

(25) C2dφ(x)(x, y) ≤ dφ(x, y) ≤ C1dφ(x)(x, y).

Besides, there exists a positive constant C = C(Lφ) such that for each x, y, z ∈ ω

(26) dφ(x)(x, y) ≤ C
(

dφ(x)(x, z) + dφ(z)(z, y)
)
.

In order to study the dependence of the vector fields ∇̂φ(x0) on the variable x0 we
recognize that the map

Logφ(x0),x0
: R2n −→ G

changes the families ∇φ(x0) and ∇̂φ(x0) into the family ∇ and ∇̂ respectively, where:

∇i := ∇φ(x0)
i , ∇̂j := ∇φ(x0)

j for i ∈ {1, . . . , 2n− 1}, j ∈ {1, . . . , 2n}, i, j 6= n,(27)

∇n := ∂xn , ∇̂n = ∂xn .
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Precisely, for each ψ ∈ C∞(Rn), if we define

(28) ψ̃(x̃) := ψ(Log−1
φ(x0),x0

(x̃)),

then

∇̂φ(x0)
i ψ(x) = ∇̂iψ̃(Logφ(x0),x0

(x)), ∀i ∈ {1, . . . , 2n}.

Obviously, the exponential distance d̃ associated to the vector fields ∇ is smooth, inde-

pendent of x0 and such that

d̃(0, x̃) = ‖x̃‖, ∀x̃ ∈ R2n,

dφ(x0)(x, y) = d̃(Logφ(x0),x0
(x), Logφ(x0),x0

(y)) ∀x, y, x0 ∈ ω.(29)

2.3. Sub-Laplacian and fundamental solution. Let us call sub-Laplacian the second
order differential operator defined as

Lφ(x0) :=

2n−1∑
i=1

(∇φ(x0)
i )2.(30)

It is well known that Lφ(x0) admits a fundamental solution which we will denote by Γφ(x0)

(see for [7] for the details). This operator is changed by the map Logφ(x0),x0
into the

sub-Laplacian operator

L :=
2n−1∑
i=1

(∇i)2.

That is, for each ψ ∈ C∞(R2n)

(Lφ(x0)ψ)(x) = (Lψ̃)(Logφ(x0),x0
(x)) ∀ x ∈ R2n,

where ψ̃ is defined in (28).
Clearly the operator L has a fundamental solution Γ of class C∞ far from the pole x̃ = ỹ,

which is homogeneous of degree 2 − Q with respect to the dilation family δ̃λ, defined in
(19) (see [7] and the references therein). This means that there exist positive constants
C1, C2 such that for every x̃ and ỹ in R2n, x̃ 6= ỹ

C1

d̃(x̃, ỹ)Q−2
≤ Γ(x̃, ỹ) ≤ C2

d̃(x̃, ỹ)Q−2
;

|∇iΓ(x̃, ỹ)| ≤ C2

d̃(x̃, ỹ)Q−1
;(31)

|∇j∇iΓ(x̃, ỹ)| ≤ C2

d̃(x̃, ỹ)Q
,

for every i, j = 1, . . . , 2n − 1 (see [7, 47]). Besides, the fundamental solution Γφ(x0) of
Lφ(x0) can be explicitly written in terms of Γ as

(32) Γφ(x0)(x, y) = Γ(Logφ(x0),x0
(x), Logφ(x0),x0

(y)),

and

∇φ(x0)
i Γφ(x0)(x, y) = ∇iΓ(Logφ(x0),x0

(x), Logφ(x0),x0
(y)),
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for i = 1, . . . , 2n−1. It follows that the inequalities in (31) are satisfied also for Γφ(x0)(x, y)
and dφ(x0)(x, y) with the same constants. In particular it is clear that these constants are
independent of x0. Using the estimates on Γφ(x0) it follows that the sphere of the metric
dφ(x0) are equivalent to the superlevels of the fundamental solution Γφ(x0):

(33) Ωφ(x0)(x, r) =
{
y ∈ R2n | Γφ(x0)(x, y) > r2−Q} , r > 0,

and that for every fixed x0 ∈ ω the set Ωφ(x0)(x0, r) has regular boundary ( see [14]). In
particular, from (25), (29) and (31), there exists r0, α > 0 with α = α(Lφ) such that for
any x0 ∈ ω and r ≤ r0

(34) Ωφ(x0)(x0, r/α) ⊂ Uφ(x0, r) ⊂ Ωφ(x0)(x0, α r),

where

Uφ(x0, r) := {y ∈ ω | dφ(x0, y) < r}.(35)

By (32) we have that

(36) Ωφ(x0)(x, r) =
{
y ∈ R2n | Γ(Logφ(x0),x0

(x), Logφ(x0),x0
(y)) > r2−Q} ,

in particular the sets Ωφ(x0)(x0, r) can be expressed in terms of the superlevels of the
fundamental solution Γ as follows:

Ωφ(x0)(x0, r) =
{
y ∈ R2n | Γ(0, Logφ(x0),x0

(y)) > r2−Q}(37)

= Expφ(x0),x0
(Ω̃(0, r)),

where

(38) Ω̃(0, r) :=
{
ỹ ∈ R2n | Γ(0, ỹ) > r2−Q} .

We will also denote

K(ỹ) := Γ
− 1

(Q−2) (0, ỹ), ỹ ∈ R2n,(39)

so that, we can rewrite Ω̃(0, r) as:

(40) Ω̃(0, r) =
{
ỹ ∈ R2n | K(ỹ) < r

}
.

3. A representation formula in terms of the intrinsic gradient

Let us fix ω ⊂ R2n open and bounded, n ≥ 2 and φ, ψ ∈ C∞(ω). The aim of this
section is to prove a representation formula for ψ in terms of its intrinsic gradient ∇φψ
on the superlevels Ωφ(x0)(x0, r) of Γφ(x0). To obtain this result we use an already known
representation formula for general operators in Lie groups which can be found in [7, 14].
In our case the aforementioned result can be stated as follow:
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Proposition 3.1. For every x0 ∈ ω and R > 0 such that Ωφ(x0)(x0, R) ⊂ ω we have

ψ(x0) =
Q

(Q− 2)(1− 1
2Q

)RQ

ˆ
Ωφ(x0)(x0,R)\Ωφ(x0)(x0,

R
2

)

|∇φ(x0)Γφ(x0)(x0, y)|2

Γ
2(Q−1)/(Q−2)
φ(x0) (x0, y)

ψ(y) dL2n(y)

(41)

+
Q

(1− 1
2Q

)RQ

ˆ R

R
2

rQ−1

ˆ
Ωφ(x0)(x0,r)

〈
∇φ(x0)Γφ(x0)(x0, y),∇φ(x0)ψ(y)

〉
dL2n(y)dr.

Here 〈·, ·〉 denotes the standard Euclidean scalar product in R2n−1.

Remark 3.2. We explicitly note that, if we choose ψ ≡ 1, then from (41) we get:

(42) 1 =
C(Q)

RQ

ˆ
Ωφ(x0)(x0,R)\Ωφ(x0)(x0,

R
2

)

|∇φ(x0)Γφ(x0)(x0, y)|2

Γ
2(Q−1)/(Q−2)
φ(x0) (x0, y)

dL2n(y)

where C(Q) := Q
(Q−2)(1− 1

2Q
)
.

This remark allows to say that (41) represents a function ψ as the sum of its mean

on a suitable set and the gradient ∇φ(x0)ψ. Hence, it seems natural to give the following
definition

Definition 3.3. For every x0 ∈ ω and R > 0 such that Ωφ(x0)(x0, R) ⊂ ω we define the

following mean of ψ, on the set Ωφ(x0)(x0, R) \Ωφ(x0)(x0,
R
2 ), in terms of the fundamental

solution Γφ(x0):

m̄(ψ, φ,R)(x0) :=
C(Q)

RQ

ˆ
Ωφ(x0)(x0,R)\Ωφ(x0)(x0,

R
2

)

|∇φ(x0)Γφ(x0)(x0, y)|2

Γ
2(Q−1)/(Q−2)
φ(x0) (x0, y)

ψ(y) dL2n(y).

In the sequel we will need another mean of ψ on the same set Ωφ(x0)(x0, R)\Ωφ(x0)(x0,
R
2 ),

precisely we denote:

m(ψ, φ,R)(x0) :=
2

R

ˆ R

R
2

m̄(ψ, φ, r)(x0) dr.(43)

The following remark will be fundamental later in this section.

Remark 3.4. Let g ∈ C1(R2n), r > 0 and c1, c2 > 0 we define:

Ar,c1,c2 := {y ∈ R2n : c1r < g(y) < c2r}.
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Then, for every f, ψ ∈ C1(R2n) and R1, R2 ∈ R with R1 < R2, using the fact that

∂2n = 1
2(∇φ(x0)

1 ∇φn+1 −∇
φ(x0)
n+1 ∇

φ
1 ) and integrating by part we have:

ˆ R2

R1

rQ−1

ˆ
Ar,c1,c2

f(y)∂2nψ(y) dL2n(y)dr =

=
1

2

ˆ R2

R1

rQ−1

ˆ
{y:g(y)/c2=r}

f(y)∇φn+1ψ(y)
∇φ(x0)

1 g(y)

|∇Eg(y)|
dH2n−1(y) dr

− 1

2

ˆ R2

R1

rQ−1

ˆ
{y:g(y)/c1=r}

f(y)∇φn+1ψ(y)
∇φ(x0)

1 g(y)

|∇Eg(y)|
dH2n−1(y)dr

− 1

2

ˆ R2

R1

rQ−1

ˆ
{y:g(y)/c2=r}

f(y)∇φ1ψ(y)
∇φ(x0)
n+1 g(y)

|∇Eg(y)|
dH2n−1(y)dr

+
1

2

ˆ R2

R1

rQ−1

ˆ
{y:g(y)/c1=r}

f(y)∇φ1ψ(y)
∇φ(x0)
n+1 g(y)

|∇Eg(y)|
dH2n−1(y)dr

− 1

2

ˆ R2

R1

rQ−1

ˆ
Ar,c1,c2

∇φ(x0)
1 f(y)∇φn+1ψ(y) dL2n(y)dr

+
1

2

ˆ R2

R1

rQ−1

ˆ
Ar,c1,c2

∇φ(x0)
n+1 f(y)∇φ1ψ(y) dL2n(y)dr,

where ∇E denotes the Euclidean gradient. By the coarea formula we infer that:ˆ R2

R1

rQ−1

ˆ
Ar,c1,c2

f(y)∂2nψ(y) dL2n(y)dr =

=
1

2

ˆ
Ar,c2R1,c2R2

gQ−1(y)

cQ−1
2

f(y)∇φn+1ψ(y)∇φ(x0)
1 g(y) dL2n(y)

− 1

2

ˆ
Ar,c1R1,c1R2

gQ−1(y)

cQ−1
1

f(y)∇φn+1ψ(y)∇φ(x0)
1 g(y) dL2n(y)

− 1

2

ˆ
Ar,c2R1,c2R2

gQ−1(y)

cQ−1
2

f(y)∇φ1ψ(y)∇φ(x0)
n+1 g(y) dL2n(y)

+
1

2

ˆ
Ar,c1R1,c1R2

gQ−1(y)

cQ−1
1

f(y)∇φ1ψ(y)∇φ(x0)
n+1 g(y) dL2n(y)

− 1

2

ˆ R2

R1

rQ−1

ˆ
Ar,c1,c2

∇φ(x0)
1 f(y)∇φn+1ψ(y) dL2n(y)dr

+
1

2

ˆ R2

R1

rQ−1

ˆ
Ar,c1,c2

∇φ(x0)
n+1 f(y)∇φ1ψ(y) dL2n(y)dr.

If in addition c1 = 0 then the integrals on Ar,c1R1,c1R2 are not present.

In the following Proposition we will slightly modify the mean formula in Proposition
3.1, which contains derivatives in the direction of the vector fields ∇φ(x0) of ψ, in order
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to obtain a mean representation formula which contains derivatives with respect to the
vector fields ∇φ.

Proposition 3.5. For every x0 ∈ ω and R > 0 such that Ωφ(x0)(x0, R) ⊂ ω we have

ψ(x0)−m(ψ, φ,R)(x0) =

=
2

R

ˆ R

R
4

f1

( r
R

) ˆ
Ωφ(x0)(x0,r)

〈
K1(x0, y),∇φψ(y)

〉
dL2n(y)dr

+
2

R

ˆ R

R
2

ˆ
Ωφ(x0)(x0,r)\Ωφ(x0)(x0,

r
2

)

〈
K2(x0, y, r),∇φψ(y)

〉
dL2n(y)dr,

where f1 ∈ C0([1
4 , 1]) and the vector valued functions K1 and K2 are defined in (47) and

(48) respectively. Moreover,

(44) |K1(x0, y)| ≤ C̃1(Lφ,Ωφ(x0)(x0,R) + 1)2d1−Q
φ(x0)(x0, y) ∀y ∈ Ωφ(x0)(x0, R)

and

|K2(x0, y, r)| ≤ C̃2(Lφ + 1)2d1−Q
φ(x0)(x0, y), ∀y ∈ Ωφ(x0)(x0, R) \ Ωφ(x0)(x0, R/2), r ∈

(R
2
, R
)(45)

where Lφ means Lφ,Ωφ(x0)(x0,R)\Ωφ(x0)(x0,R/2) and C̃1, C̃2 > 0 are suitable constants depend-

ing only on the homogeneous dimension Q and on the structure constants C1 and C2 in
(31).

Proof. We will always denote by C a positive constant depending only on Q which can be
different from line to line. By Proposition 3.1 for all r ∈ (0, R)

ψ(x0)− m̄(ψ, φ, r)(x0) =

=
C

rQ

ˆ r

r
2

sQ−1

ˆ
Ωφ(x0)(x0,s)

〈
∇φ(x0)Γφ(x0)(x0, y),∇φ(x0)ψ(y)

〉
dL2n(y)ds

=
C

rQ

ˆ r

r
2

sQ−1

ˆ
Ωφ(x0)(x0,s)

〈
∇φ(x0)Γφ(x0)(x0, y),∇φψ(y)

〉
dL2n(y)ds

+
C

rQ

ˆ r

r
2

sQ−1

ˆ
Ωφ(x0)(x0,s)

∇φ(x0)
n Γφ(x0)(x0, y)(φ(x0)− φ(y))∂2nψ(y) dL2n(y)ds.

Using Remark 3.4 with g(y) := Γ
1

2−Q
φ(x0)(x0, y) we obtain:

ψ(x0)− m̄(ψ, φ, r)(x0) =
1

rQ

ˆ r

r
2

sQ−1

ˆ
Ωφ(x0)(x0,s)

〈
K1(x0, y),∇φψ(y)

〉
dL2n(y)ds(46)

+

ˆ
Ωφ(x0)(x0,r)\Ωφ(x0)(x0,

r
2

)

〈
K2(x0, y, r)∇φψ(y)

〉
dL2n(y)
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where

K1(x0, y) :=C∇φ(x0)Γφ(x0)(x0, y)(47)

− C∇φ(x0)
1 ∇φ(x0)

n Γφ(x0)(x0, y)(φ(x0)− φ(y))en+1

+ C∇φ(x0)
n+1 ∇

φ(x0)
n Γφ(x0)(x0, y)(φ(x0)− φ(y))e1,

and

K2(x0, y, r) :=
C

rQ
∇φ(x0)
n Γφ(x0)(x0, y)

Γ
2(Q−1)/(Q−2)
φ(x0) (x0, y)

(φ(x0)− φ(y))∇φ(x0)
n+1 Γφ(x0)(x0, y)e1(48)

− C

rQ
∇φ(x0)
n Γφ(x0)(x0, y)

Γ
2(Q−1)/(Q−2)
φ(x0) (x0, y)

(φ(x0)− φ(y))∇φ(x0)
1 Γφ(x0)(x0, y)en+1,

where ei is the i-th element of the canonical basis of R2n−1.
Integrating (46) from R

2 to R we get

ψ(x0)−m(ψ, φ,R)(x0) =

=
2

R

ˆ R

R
2

1

ρQ

ˆ ρ

ρ
2

rQ−1

ˆ
Ωφ(x0)(x0,r)

〈
K1(x0, y),∇φψ(y)

〉
dL2n(y)drdρ

+
2

R

ˆ R

R
2

ˆ
Ωφ(x0)(x0,ρ)\Ωφ(x0)(x0,

ρ
2

)

〈
K2(x0, y, ρ),∇φψ(y)

〉
dL2n(y)dρ.

Exchanging the order of integration in the first integral and setting:

f1(t) :=
21−Q − (2t)Q−1

1−Q
if t ∈ [1/4, 1/2], f1(t) :=

tQ−1 − 1

1−Q
if t ∈ [1/2, 1],

we get the thesis. Finally, the estimates on K1 and K2 are direct consequences of (31). �

In order to compare m̄(ψ, φ, r)(x) and m̄(ψ, φ, r)(y) when x 6= y we will first express
them as integrals on the same sphere:

Lemma 3.6. For each x0 ∈ ω and each R > 0 such that Ωφ(x0)(x0, R) ⊂ ω there exists a
kernel

K3(0, ỹ) :=
Q

(Q− 2)(1− 1
2Q

)

|∇Γ(0, ỹ)|2

Γ(0, ỹ)2(Q−1)/(Q−2)

such that

m̄(ψ, φ,R)(x0) =
1

RQ

ˆ
Ω̃(0,R)\Ω̃(0,R

2
)
K3(0, ỹ)ψ(Expφ(x0),x0

(ỹ)) dL2n(ỹ),

where Ω̃(0, R) is defined in (38). Moreover, there exist constants C̃3, C̃4 depending only Q
and on the structure constants C1 and C2 in (31) such that

(49) |K3(0, ỹ)| ≤ C̃3, |∇K3(0, ỹ)| ≤ C̃4

‖ỹ‖
∀ỹ ∈ Ω̃(0, R) \ Ω̃

(
0,
R

2

)
.
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Proof. By (37) we have that

Ωψ(x0)(x0, R) = Expφ(x0),x0
(Ω̃(0, R)).

So that, by Definition 3.3 and (32) we have:

m̄(ψ, φ,R)(x0) =

=
C(Q)

(Q− 2)RQ

ˆ
Ωφ(x0)(x0,R)\Ωφ(x0)(x0,

R
2

)

|∇φ(x0)Γφ(x0)(x0, y)|2

Γ
2(Q−1)/(Q−2)
φ(x0) (x0, y)

ψ(y) dL2n(y)

=
C(Q)

(Q− 2)RQ

ˆ
Ω̃(0,R)\Ω̃(0,R

2
)

|∇Γ(0, ỹ)|2

Γ2(Q−1)/(Q−2)(0, ỹ)
ψ(Expφ(x0),x0

(ỹ)) dL2n(ỹ),

where in the last equality we have applied a change of variables and the fact that the
determinant of the Jacobian matrix of Expφ(x0),x0

is equal to 1. Finally, we observe that
(49) follows directly from the estimates on Γ in (31). �

Proposition 3.7. For every x̄ ∈ ω there exists R0 > 0 such that, if 0 < R < R0 then
Ωφ(x̄)(x̄, R) b ω and for every x, x0 ∈ Ωφ(x̄)(x̄, R) and

ỹ ∈ Logφ(x0),x0
(Ωφ(x̄)(x̄, R))∩Logφ(x),x(Ωφ(x̄)(x̄, R))

defined

h̃ = h̃(x, x0; ỹ) := Logφ(x0),Expφ(x0),x0
(ỹ)

(
Expφ(x),x(ỹ)

)
(50)

and

(51) γỹ(t) := exp
(
th̃∇̂φ(x0)

)(
exp(ỹ∇̂φ(x0))(x0)

)
t ∈ [0, 1],

il holds

γỹ(t) ∈ ω ∀t ∈ [0, 1].(52)

Moreover, we have

ψ(Expφ(x),x(ỹ))− ψ(Expφ(x0),x0
(ỹ)) =(53)

=

ˆ 1

0

2n∑
i=1

(Logφ(x0),x0
(x))i∇̂i

φ(x0)
ψ(γỹ(t))dt+K4(x, x0, ỹ)

ˆ 1

0
∂2nψ(γỹ(t))dt

where

K4(x, x0, ỹ) := 2(φ(x)− φ(x0))ỹn − 2σ(ỹ, x− x0).(54)

The kernel K4 is of class C∞ with respect to ỹ and the following estimates hold:

|K4(x, x0, ỹ)| ≤ 2(Lφ,Ωφ(x̄)(x̄,R) + 1)dφ(x, x0)‖ỹ‖,(55)

|∇K4(x, x0, ỹ)| ≤ 2(Lφ,Ωφ(x̄)(x̄,R) + 1)dφ(x, x0),(56)

where x, x0 ∈ Ωφ(x̄)(x̄, R) and ỹ ∈ Logφ(x0),x0
(Ωφ(x̄)(x̄, R))∩Logφ(x),x(Ωφ(x̄)(x̄, R)).
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Proof. Let us fix x̄ ∈ ω and 0 < R < R̄ where R̄ := sup{R > 0 | Ωφ(x̄)(x̄, R) b ω}. For
every x, x0 ∈ Ωφ(x̄)(x̄, R) since Logφ(x0),x0

(x0) = Logφ(x),x(x) = 0 ∈ G then

Logφ(x0),x0
(Ωφ(x̄)(x̄, R)) ∩ Logφ(x),x(Ωφ(x̄)(x̄, R)) 6= ∅.

By (20) we get

Expφ(x),x(ỹ) =
(
x1 + ỹ1, . . . , x2n−1 + ỹ2n−1, x2n + ỹ2n + 2ỹnφ(x)− σ(ỹ, x)

)
,

Expφ(x0),x0
(ỹ) =

(
x0,1 + ỹ1, . . . , x0,2n−1 + ỹ2n−1, x0,2n + ỹ2n + 2ỹnφ(x0)− σ(ỹ, x0)

)
,

then using (50) and (21) we obtain

h̃i = (x− x0)i i = 1, . . . , 2n− 1,(57)

h̃2n = (x− x0)2n − 2φ(x0)(x− x0)n + 2ỹn(φ(x)− φ(x0))− 2σ(ỹ, x− x0) + σ(x, x0)

and calling

x̃ := Logφ(x0),x0
(x),(58)

we realize that

h̃ = x̃+
(

2ỹn(φ(x)− φ(x0))− 2σ(ỹ, x̃)
)
e2n.(59)

By (51) and the Baker-Campbell-Hausdorff formula we have

γỹ(t) = exp
(
th̃∇̂φ(x0)

)(
exp
(
ỹ∇̂φ(x0)

)
(x0)

)
= exp

(
2tỹn(φ(x)− φ(x0))∂2n + 2tσ(ỹ, x̃)∂2n − tσ(ỹ, x̃)∂2n + (tx̃+ ỹ)∇̂φ(x0)

)
(x0).

From this and using (20) we get

(γỹ(t))i = t(x− x0)i + (ỹ + x0)i i = 1, . . . , 2n− 1(60)

(γỹ(t))2n = t(x− x0)2n + (ỹ + x0)2n + 2tỹn(φ(x)− φ(x0))

+ 2φ(x0)ỹn + σ(t(x− x0) + x0, ỹ).

Therefore, the following estimate holds

dφ(x0)(x0, γỹ(t)) ≤ ‖ỹ‖+ ‖x̃‖+
√
‖ỹ‖‖x̃‖+

√
‖ỹ‖|φ(x)− φ(x0)|,(61)

where x̃ is as in (58). Indeed, using (23) and (60) we get

dφ(x0)(x0, γỹ(t)) ≤
∣∣∣(tx̃1 + ỹ1, . . . , tx̃2n−1 + ỹ2n−1)

∣∣∣
R2n−1

+

+
∣∣∣tx̃2n + ỹ2n + 2tỹn(φ(x)− φ(x0)) + tσ(x̃, ỹ)

∣∣∣ 1
2

and (61) follows using the triangle inequality. Since, x, x0 ∈ Ωφ(x̄)(x̄, R) and

ỹ ∈ Logφ(x0),x0
(Ωφ(x̄)(x̄, R)) ∩ Logφ(x),x(Ωφ(x̄)(x̄, R))

then by (58) and (26) we get

‖x̃‖ ≤ CR, ‖ỹ‖ ≤ CR and dφ(x, x0) ≤ CR(62)
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for some constant C = C(Lφ,Ωφ(x̄)(x̄,R̄)) > 0. Finally, by (61), (62) and (31) we conclude

that

γỹ(t) ∈ Ωφ(x0)(x0, CR) ∀t ∈ [0, 1]

for some C = C(Lφ,Ωφ(x̄)(x̄,R̄)) > 0 and (52) follows takingR0 := max{R̄,dφ(x0)(x0, ∂ω)/C}.
Since ψ ∈ C∞(ω) and γỹ is horizontal with respect to the family of vector fields {∇̂φ(x0)},
we obtain

ψ(Expφ(x),x(ỹ))− ψ(Expφ(x0),x0
(ỹ)) =

ˆ 1

0
(ψ ◦ γỹ)′(t)dt

=

2n∑
i=1

ˆ 1

0
h̃i∇̂

φ(x0)
i ψ(γỹ(t))dt,

so that (53) immediately follows using (57). In order to prove (55) it suffices to observe
that σ(x − x0, ỹ) ≤ dφ(x, x0)‖ỹ‖. Moreover, since ∂ỹ2n

K4(x, x0, ỹ) = 0 it follows that
to prove (56) it is enough to estimate the Euclidean gradient of K4 (with respect to the
variable ỹ). By a direct computation and using the expression of K4 in (54) we obtain

∂ỹiK4(x, x0, ỹ) = −2(x− x0)n+i if i = 1, . . . , n− 1,

∂ỹnK4(x, x0, ỹ) = 2(φ(x)− φ(x0)),

∂ỹiK4(x, x0, ỹ) = 2(x− x0)i if i = n+ 1, . . . , 2n− 1.

Hence |∇K4(x, x0, ỹ)| ≤ 2(Lφ,Ωφ(x̄)(x̄,R) + 1)dφ(x, x0), which is the thesis. �

Let us now prove the following proposition.

Lemma 3.8. Let x̄ ∈ ω and R0 > 0 be as Proposition 3.7. For each 0 < R < R0,
x, x0 ∈ Ωφ(x̄)(x̄, R) and

ỹ ∈ ωx,x0;x̄ := Logφ(x0),x0
(Ωφ(x̄)(x̄, R)) ∩ Logφ(x),x(Ωφ(x̄)(x̄, R)),

let us denote by γỹ(t) the curve introduced in Proposition 3.7. Then the function

H : [0, 1]× ωx,x0;x̄ −→ [0, 1]× ω
(t, ỹ) 7→ (t, γỹ(t))

has inverse function (t, F̃ (z, t)) and the map z → (t, F̃ (z, t)) is C∞ and its Jacobian matrix
has determinant equal to 1.

Proof. Using (60), (20) and setting (t, z) := (t, γỹ(t)), F̃ can be expressed as

F̃i(z, t) =(z − x0)i − t(x− x0)i i = 1, . . . , 2n− 1,(63)

F̃2n(z, t) =(z − x0)2n − t(x− x0)2n − 2t((z − x0)n − t(x− x0)n)(φ(x)− φ(x0))+

− 2φ(x0)((z − x0)n − t(x− x0)n) + σ(z, t(x− x0) + x0).

In particular it is clear from (63) that F̃ is of class C∞ as a function of the variable z and

that the Jacobian determinant of z → F̃ (z, t) is equal to 1 for each t ∈ [0, 1]. �
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Lemma 3.9. Let g ∈ C∞(Rn) and F̃ (z, t) as in Lemma 3.8 then
(64)

∇φ(x0)
zi (g(F̃ (z, t)) =


(∇ỹig)(F̃ (z, t)) i = 1, . . . , n− 1,

(∇ỹng)(F̃ (z, t))− 2t(φ(x)− φ(x0))(∂ỹ2ng)(F̃ (z, t)) i = n,

(∇ỹig)(F̃ (z, t)) i = n+ 1, . . . , 2n− 1,

where (∇1, . . . ,∇2n−1) is the family of vector fields defined in (27).

Proof. Let us start computing ∇φ(x0)
zi (g(F̃ (z, t))) with i = 1, . . . , n− 1, that is(
∂zi − zi+n∂z2n

)
(g(F̃ (z, t))).(65)

To this end, we calculate

∂zi(g(F̃ (z, t))) and ∂z2n(g(F̃ (z, t))).

By the explicit expression of F̃ (z, t) we obtain:

∂zi(g(F̃ (z, t))) = (∂ỹig)(F̃ (z, t)) + (∂ỹ2ng)(F̃ (z, t))∂ziF̃2n(z, t),(66)

∂z2n(g(F̃ (z, t))) = (∂ỹ2ng)(F̃ (z, t)),(67)

hence by (65), (66) and (67) we get:

∇φ(x0)
zi (g(F̃ (z, t))) =

(
∂ỹig − F̃i+n(z, t)∂ỹ2ng

)
(F̃ (z, t))+

+
(
F̃i+n(z, t)− zi+n + ∂ziF̃2n(z, t)

)
∂ỹ2ng(F̃ (z, t)).

Since

F̃i(z, t) =(z − x0)i − t(x− x0)i i = 1, . . . , 2n− 1(68)

F̃2n(z, t) =(z − x0)2n − t(x− x0)2n − 2t((z − x0)n − t(x− x0)n)(φ(x)− φ(x0))+

− 2φ(x0)((z − x0)n − t(x− x0)n) + σ(z, t(x− x0) + x0)

this implies

∇φ(x0)
zi (g(F̃ (z, t))) = (∇ỹig)(F̃ (z, t)).

The computations for ∇φ(x0)
zi (g(F̃ (z, t))) when i = n+ 1, . . . , 2n− 1 are similar.

Finally, let us compute ∇φ(x0)
zn (g(F̃ (z, t))). By definition:

∇φ(x0)
zn (g(F̃ (z, t))) =

(
∂zn + 2φ(x0)∂z2n

)
(g(F̃ (z, t)))(69)

and since

∂zn(g(F̃ (z, t))) = (∂ỹng)(F̃ (z, t))− 2[t(φ(x)− φ(x0)) + φ(x0)](∂ỹ2ng)(F̃ (z, t))(70)

by (69), (67) and (70) we get:

∇φ(x0)
zn g(F̃ (z, t)) = (∇ỹng)(F̃ (z, t))− 2t(φ(x)− φ(x0))(∂ỹ2n

g)(F̃ (z, t)).

�
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Proposition 3.10. For every t ∈ [0, 1], c1, c2 > 0 and r > 0 let us define

Dt,c1,c2,r := {z ∈ R2n : c1r ≤ K(F̃ (z, t)) < c2r},(71)

where K is as in (39). Let x̄ ∈ ω and R0 > 0 be as in Proposition 3.7, then for every
0 < R < R0 and x, x0 ∈ Ωφ(x̄)(x̄, R) with x 6= x0 it holds:

m(ψ, φ,R)(x)−m(ψ, φ,R)(x0) =
2

R

ˆ 1

0

ˆ R

R
2

ˆ
D
t, 12 ,1,r

< K5(x, x0, t, z, r),∇φψ(z) > dL2n(z)drdt

+

ˆ 1

0

ˆ
D
t, 12 ,1,R

< K6(x, x0, t, z, R),∇φψ(z) > dL2n(z)dt

−
ˆ 1

0

ˆ
D
t, 14 ,

1
2 ,R

< K7(x, x0, t, z, R),∇φψ(z) > dL2n(z)dt

for suitable kernels K5, K6, K7 defined in (76), (77) and (78) respectively. Moreover,

there are positive constants C̃5, C̃6 independent of Lφ such that

|K5(x, x0, t, z, r)| ≤ C̃5(Lφ + 1)2 dφ(x0)(x0, x)

rQ
on Dt, 1

2
,1,r, ∀t ∈ [0, 1],(72)

|K6(x, x0, t, z, R)| ≤ C̃6(Lφ + 1)2 dφ(x0)(x0, x)

R‖F̃ (z, t)‖Q−1
on Dt, 1

2
,1,R,∀t ∈ [0, 1],(73)

|K7(x, x0, t, z, R)| ≤ C̃6(Lφ + 1)2 dφ(x0)(x0, x)

R‖F̃ (z, t)‖Q−1
on Dt, 1

4
, 1
2
,R, ∀t ∈ [0, 1].(74)

Proof. By Lemma 3.6 for every 0 < r < R0 such that Ωφ(x)(x, r),Ωφ(x0)(x0, r) b ω, we
have

m̄(ψ, φ, r)(x)− m̄(ψ, φ, r)(x0) =

=
1

rQ

ˆ
Ω̃(0,r)\Ω̃(0, r

2
)
K3(0, ỹ)

(
ψ(Expφ(x),x(ỹ))− ψ(Expφ(x0),x0

(ỹ))
)

dL2n(ỹ)

by Proposition 3.7

=
1

rQ

ˆ
Ω̃(0,r)\Ω̃(0, r

2
)
K3(0, ỹ)

ˆ 1

0
< Logφ(x0),x0

(x), ∇̂φ(x0)ψ(γỹ(t)) > dtdL2n(ỹ)

+
1

rQ

ˆ
Ω̃(0,r)\Ω̃(0, r

2
)
K3(0, ỹ)

ˆ 1

0
K4(x, x0, ỹ)∂2nψ(γỹ(t))dtdL2n(ỹ).
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The change of variable z = γỹ(t), changes Ω̃(0, r) \ Ω̃(0, r2) in the set Dt, 1
2
,1,r and the

inverse mapping has Jacobian determinant equal to 1. Hence:

m(ψ, φ,R)(x)−m(ψ, φ,R)(x0) =

(75)

=
2

R

ˆ 1

0

ˆ R

R
2

1

rQ

ˆ
D
t, 12 ,1,r

K3(0, F̃ (z, t)) < Logφ(x0),x0
(x), ∇̂φ(x0)ψ(z) > dL2n(z)drdt+

+
2

R

ˆ 1

0

ˆ R

R
2

1

rQ

ˆ
D
t, 12 ,1,r

K3(0, F̃ (z, t))K4(x, x0, F̃ (z, t))∂2nψ(z)dL2n(z)drdt.

Now applying Remark 3.4 we get the thesis calling:

K5(x, x0, t, z, r) :=
1

rQ
K3(0, F̃ (z, t))Logφ(x0),x0

(x)+(76)

+
1

2rQ
∇φ(x0)

1

(
K3(0, F̃ (z, t))K4(x, x0, F̃ (z, t))

)
en+1+

+
1

2rQ
∇φ(x0)
n+1

(
K3(0, F̃ (z, t))K4(x, x0, F̃ (z, t))

)
e1;

K6(x, x0, t, z, R) :=
1

R

∇φ(x0)
1 K(F̃ (z, t))

KQ(F̃ (z, t))
K3(0, F̃ (z, t))K4(x, x0, F̃ (z, t))en+1−(77)

− 1

R

∇φ(x0)
n+1 K(F̃ (z, t))

KQ(F̃ (z, t))
K3(0, F̃ (z, t))K4(x, x0, F̃ (z, t))e1;

K7(x, x0, t, z, R) :=− 1

R

∇φ(x0)
1 K(F̃ (z, t))

2QKQ(F̃ (z, t))
K3(0, F̃ (z, t))K4(x, x0, F̃ (z, t))en+1(78)

+
1

R

∇φ(x0)
n+1 K(F̃ (z, t))

2QKQ(F̃ (z, t))
K3(0, F̃ (z, t))K4(x, x0, F̃ (z, t))e1,

where as usual ei denotes the i-th element of the canonical basis of R2n−1. To prove (72)
we observe that by Lemma 3.9

K5(x, x0, t, z, r) =
1

rQ
K3(0, F̃ (z, t))Logφ(x0),x0

(x)

+
1

2rQ

(
(∇1K3)(0, F̃ (z, t))K4(x, x0, F̃ (z, t)) + (∇1K4)(x, x0, F̃ (z, t))K3(0, F̃ (z, t))

)
en+1

+
1

2rQ

(
(∇n+1K3)(0, F̃ (z, t))K4(x, x0, F̃ (z, t)) + (∇n+1K4)(x, x0, F̃ (z, t))K3(0, F̃ (z, t))

)
e1

hence using (49), (55) and (56) we get

|K5(x, x0, t, z, r)| ≤
C̃3

rQ
dφ(x0)(x0, x) + 2

C̃4(Lφ + 1)dφ(x, x0)

rQ
+ 2

C̃3(Lφ + 1)dφ(x, x0)

rQ



POINCARÉ-TYPE INEQUALITY FOR LIPSCHITZ CONTINUOUS VECTOR FIELDS 21

and the conclusion follows using (24). Finally, (73) and (74) are direct consequences of
(31),(49), (55) and Lemma 3.9. �

4. Poincaré inequality

Aim of this section is to prove Theorem 1.2. The Poincaré inequality we prove here is
partially inspired to the Sobolev type inequality for vector fields with non regular coeffi-
cients contained in [15] and successively extended to a more general class of vector fields
in [40]. The key point in our strategy is to establish a representation formula for intrinsic
Lipschitz continuous functions. To this end we use Theorem 2.5 and the representation
formula proved in Theorem 3.10 for C∞ functions.

In all this section we denote by ω an open and bounded subset of R2n with n ≥ 2 and
by φ an intrinsic Lipschitz function defined on ω with Lipschitz constant equal to Lφ.

Let ψ ∈ Wφ and let {ψk}k∈N, {φk}k∈N smooth functions on ω which satisfy conditions
(i)−(iv) of Definition 1.1. We denote by dφk(x0) the distance introduced in (23), by Γφk(x0)

the fundamental solution of the operator Lφk(x0) defined in (32) and by Ωφk(x0)(x0, r) the
superlevel set of Γφk(x0) defined in (33).

Lemma 4.1. Let x0 ∈ ω and R > 0 such that Ωφ(x0)(x0, R) ⊂ ω. Then

(i) χΩφk(x0)(x0,R) → χΩφ(x0)(x0,R) uniformly in ω as k → +∞;

(ii) m̄(ψk, φk, R)(x0)→ m̄(ψ, φ,R)(x0) uniformly in R > 0 as k → +∞.

Here χA denotes the characteristic function of A.

Proof. We recall that

Ω̃(0, R) =
{
ỹ ∈ R2n | Γ(0, ỹ) > R2−Q} ,

then, by (37), for each k ∈ N we have:

Ωφk(x0)(x0, R) = Expφk(x0),x0
(Ω̃(0, R)).

Using the explicit form of Expφk(x0),x0
and Expφ(x0),x0

stated in (20) we easily conclude
that (Expφk(x0),x0

)k∈N uniformly converges to Expφ(x0),x0
in ω as k → +∞. In order to

prove (i) we observe that it is sufficient to prove that for all ε > 0 there exists k̄ = k̄(ε) > 0
such that for all k > k̄

Ωφ(x0)(x0, R) ⊆ (Ωφk(x0)(x0, R))ε(79)

where

(Ωφk(x0)(x0, R))ε := {y ∈ ω | dφk(x0)(∂Ωφk(x0)(x0, R), y) < ε}.(80)

For simplify the notation we define

Ek(Ω̃(0, R)) := Expφk(x0),x0
(Ω̃(0, R)), E(Ω̃(0, R)) := Expφ(x0),x0

(Ω̃(0, R)).

Suppose by contradiction that there exists ε > 0 such that for every k̄ there are k > k̄
and yk ∈ E(Ω̃(0, R)) such that yk /∈ Ek(Ω̃(0, R))ε. Then, there exist (kj)j , kj → +∞ as

j → +∞ and (xkj )j in Ω̃(0, R) such that E(xkj ) /∈ Ekj (Ω̃(0, R))ε. So that, the distance
between E(xkj ) and Ekj (xkj ) is greater than ε and this is absurd being Ek uniformly
convergent to E. Then, (79) follows and hence (i).
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To prove (ii) we observe that by Definition 3.3:

lim
k→+∞

m̄(ψk, φk, R)(x0) =

= lim
k→+∞

C(Q)

Q− 2

1

RQ

ˆ
ω

|∇φk(x0)Γφk(x0)(x0, y)|2

Γφk(x0)(x0, y)2(Q−1)/(Q−2)
ψk(y)χΩφk(x0)(x0,R)\Ωφk(x0)(x0,

R
2

)(y) dL2n(y).

By (31) and (32)

lim
k→+∞

|∇φk(x0)Γφk(x0)(x0, y)|2

Γφk(x0)(x0, y)2(Q−1)/(Q−2)
=
|∇φ(x0)Γφ(x0)(x0, y)|2

Γφ(x0)(x0, y)2(Q−1)/(Q−2)
≤ C ∀y 6= x0(81)

therefore, (ii) follows from (i) and the fact that ψk → ψ in L1
loc(ω). �

In what follows we prove that the representation formulas obtained in Proposition 3.5
and in Proposition 3.10 for C∞ functions still hold if φ is intrinsic Lipschitz and ψ ∈Wφ(ω).

Lemma 4.2. Let φ be a Lipschitz continuous function and ψ ∈ Wφ(ω). For each x0 ∈ ω
and each R > 0 such that Ωφ(x0)(x0, R) ⊂ ω, the following formula holds:

φ(x0) = m(ψ, φ,R)(x0) + IR(x0)

where m(ψ, φ,R)(x0) is as in (43) and

IR(x0) :=
2

R

ˆ R

R
4

f1

( r
R

)ˆ
Ωφ(x0)(x0,r)

〈
K1(x0, y),∇φψ(y)

〉
dL2n(y)dr(82)

+
2

R

ˆ R

R
2

ˆ
Ωφ(x0)(x0,r)\Ωφ(x0)(x0,

r
2

)

〈
K2(x0, y, r),∇φψ(y)

〉
dL2n(y)dr,

where K1,K2 are as in Proposition 3.5. Let x̄ ∈ ω and R0 > 0 be as in Proposition 3.7,
then for every 0 < R < R0 and x, x0 ∈ Ωφ(x̄)(x̄, R) with x 6= x0 it holds:

m(ψ, φ,R)(x)−m(ψ, φ,R)(x0) =(83)

=
2

R

ˆ 1

0

ˆ R

R
2

ˆ
D
t, 12 ,1,r

< K5(x, x0, t, z, r),∇φψ(z) > dL2n(z)drdt

+

ˆ 1

0

ˆ
D
t, 12 ,1,R

< K6(x, x0, t, z, R),∇φψ(z) > dL2n(z)dt

−
ˆ 1

0

ˆ
D
t, 14 ,

1
2 ,R

< K7(x, x0, t, z, R),∇φψ(z) > dL2n(z)dt,

where Dt,c1,c2,r is as in (71) and K5,K6,K7 are as in (76),(77) and (78) respectively and
they satisfy the same estimates proved in Proposition 3.10 with possibly different constants.

Proof. By Definition 1.1 there are {ψk}k∈N, {φk}k∈N sequences of smooth functions defined
on ω satisfying conditions (i) − (iv). By Proposition 3.5 and 3.10, the thesis is true for
every φk, ψk as above. Passing to the limit as in the previous proposition, it holds true
also for the limit functions φ and ψ. �
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As it is well known (see for example [25], [26]) the key step for the proof of a Poincaré
inequality, is a representation formula as the one proved in Lemma 4.2, which is indeed
equivalent to the Poincaré inequality itself. For further applications, we note that we can
now derive this formula on any family of balls, equivalent to the superlevels Ωφ(x̄)(x̄, R),
which can be Ωφ(x̄)(x̄, R) or Uφ(x̄, R), defined respectively in (33) and (35).

Precisely, let us denote with Bφ(x̄, R) a family of spheres with centre in x̄ and radius
R, equivalent to the family Ωφ(x̄)(x̄, R). Let us denote ψBφ(x̄,R) the mean of ψ on the set

Bφ(x̄, R) with respect to the Lebesgue measure, i.e.

(84) ψBφ(x̄,R) :=
1

L2n(Bφ(x̄, R))

ˆ
Bφ(x̄,R)

ψ(x) dL2n(x) .

We will prove

Theorem 4.3. For every φ ∈ Lip(ω) and ψ ∈Wφ(ω) there exist positive constants C1, C2

with C2 > 1 (depending continuosly on the Lipschitz constant Lφ of φ) such thatˆ
Bφ(x̄,R)

|ψ(y)− ψBφ(x̄,R)| dL2n(y) ≤ C1R

ˆ
Bφ(x̄,C2R)

|∇φψ(y)| dL2n(y),(85)

for every Bφ(x̄, C2R) ⊂ ω.

Our representation formula can be stated as follows:

Proposition 4.4. Let φ : ω → R be an intrinsic Lipschitz function and ψ : ω → R
be a Wφ function. Let x̄ ∈ ω and R0 > 0 be as in Proposition 3.7. Let 0 < R < R0,

x, x0 ∈ Bφ(x̄, R). Then there are C, C̃1, C̃2, with C > 1 and C̃1, C̃2 > 0 depending only on
Lφ,ω,Q and the structure constants in (31) such that Bφ(x̄, CR) b ω and

|ψ(x0)− ψBφ(x̄,R)| ≤(86)

≤ C̃1

ˆ
Bφ(x̄,CR)

d1−Q
φ (x0, y)|∇φψ(y)|dL2n(y)+

+
C̃2

L2n(Bφ(x̄, R))

ˆ
Bφ(x̄,CR)

ˆ
Bφ(x̄,CR)

d1−Q
φ (x, y)|∇φψ(y)|dL2n(y)dL2n(x).

Proof. By Lemma 4.2 for each x, x0 ∈ Bφ(x̄, R) we have:

ψ(x0) = m(ψ, φ,R)(x0) + IR(x0),

ψ(x) = m(ψ, φ,R)(x) + IR(x),

hence

ψ(x0)− ψ(x) = m(ψ, φ,R)(x0)−m(ψ, φ,R)(x) + IR(x0)− IR(x).(87)

Integrating equation (87) with respect to the variable x on a sphere Bφ(x̄, R) and recalling
the definition of ψBφ(x̄,R) we get:

ψ(x0)− ψBφ(x̄,R) =
1

L2n(Bφ(x̄, R))

ˆ
Bφ(x̄,R)

m(ψ, φ,R)(x0)−m(ψ, φ,R)(x) dL2n(x)

+
1

L2n(Bφ(x̄, R))

ˆ
Bφ(x̄,R)

IR(x0)− IR(x) dL2n(x).
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Hence:

|ψ(x0)− ψBφ(x̄,R)| ≤
1

L2n(Bφ(x̄, R))

ˆ
Bφ(x̄,R)

∣∣∣m(ψ, φ,R)(x0)−m(ψ, φ,R)(x)
∣∣∣ dL2n(x)

(88)

+ |IR(x0)|+ 1

L2n(Bφ(x̄, R))

ˆ
Bφ(x̄,R)

|IR(x)| dL2n(x).

Now, by Lemma 4.2, we have:

|m(ψ, φ,R)(x0)−m(ψ, φ,R)(x)|

≤ 2

R

ˆ 1

0

ˆ R

R
2

ˆ
D
t, 12 ,1,r

| < K5(x, x0, t, z, r),∇φψ(z) > |dL2n(z)drdt

+

ˆ 1

0

ˆ
D
t, 12 ,1,R

| < K6(x, x0, t, z, R),∇φψ(z) > |dL2n(z)dt

+

ˆ 1

0

ˆ
D
t, 14 ,

1
2 ,R

| < K7(x, x0, t, z, R),∇φψ(z) > |dL2n(z)dt.

We claim that there exists C = C(Lφ) > 1 such that for all r ∈ (R/2, R), t ∈ [0, 1] it holds

Dt, 1
2
,1,r ⊆ Ωφ(x0)(x0, CR) b ω.(89)

To this end let us fix t ∈ [0, 1] and r ∈ (R/2, R) then for each ỹ ∈ Ω̃(0, r) \ Ω̃(0, r/2) we
have

r

2
< ‖ỹ‖ < r ≤ R(90)

and, by (61), it also holds

dφ(x0)(x0, γỹ(t)) ≤ ‖ỹ‖+ ‖x̃‖+
√
‖ỹ‖‖x̃‖+

√
‖ỹ‖|φ(x)− φ(x0)|.(91)

Since x, x0 ∈ Ωφ(x̄)(x̄, R) by (24) and (31) we have

dφ(x, x0) ≤ CR and ‖x̃‖ ≤ CR(92)

for some C = C(Lφ) > 1. Using (90), (91) and (92) we immediately get (89) with possibly
smaller R.

By Lemma 4.2 we know that the estimates for K5,K6,K7 proved in Proposition 3.10
also hold for φ ∈ Lip(ω). Hence, by (72) and (90) for each z ∈ Dt, 1

2
,1,r and t ∈ [0, 1] we

have

|K5(x, x0, t, z, r)| ≤ C̃
dφ(x0)(x0, x)

rQ
≤ C̃

dφ(x0)(x0, x)

‖F̃ (z, t)‖Q

for some C̃ = C̃(Lφ) > 0. Moreover, using (89) and (92) we get

dφ(x0)(x0, x) = ‖x̃‖ ≤ CR ≤ 2Cr ≤ C‖F̃ (z, t)‖
for a suitable constant C = C(Lφ) > 0. Then

|K5(x, x0, t, z, r)| ≤ C
1

‖F̃ (z, t)‖Q−1
.
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Moreover, by (89), z ∈ Ωφ(x0)(x0, CR) and

0 < dφ(x0)(x0, z) ≤ CR ≤ 2Cr ≤ C‖F̃ (z, t)‖.

So that

(93) |K5(x, x0, t, z, r)| ≤ Cdφ(x0)(x0, z)
1−Q.

Analogously, we can prove that there exists C = C(Lφ) > 0 such that

(94) |K6(x, x0, t, z, r)|, |K7(x, x0, t, z, r)| ≤ Cdφ(x0)(x0, z)
1−Q.

In conclusion we proved that:

|m(ψ, φ,R)(x0)−m(ψ, φ,R)(x)| ≤(95)

≤ C̃1

ˆ
Ωφ(x0)

(
x0,CR

) d1−Q
φ(x0)(x0, z)|∇φψ(z)|dL2n(z).

Furthermore, by Lemma 4.2, (44) and (45) we have:

|IR(x0)| ≤ C̃2Lφ

ˆ
Ωφ(x0)(x0,R)

d1−Q
φ(x0)(x0, y)|∇φψ(y)|dL2n(y),(96)

|IR(x)| ≤ C̃2Lφ

ˆ
Ωφ(x)(x,R)

d1−Q
φ(x) (x, y)|∇φψ(y)|dL2n(y).(97)

Finally, since the integrals can be extended on the sphere Bφ(x̄, CR) which are equivalent

to Ωφ(x̄)(x̄, R), and by Remark 2.6 we can replace d1−Q
φ(x) (x, y) with d1−Q

φ (x, y), then the

thesis follows by (88), (95), (96) and (97). �

The proof of Theorem 4.3 follows from the representation formula in Proposition 4.4. We
recall it here for reader convenience, providing a proof on any family of spheres equivalent
to Ωφ(x). Hence in particular on the spheres Uφ we obtain Theorem 1.2.

Proof of Theorem 4.3. As in the previous proof we denote by C, C̃ positive constants de-
pending only on Lφ,Q and the constants defined in (31) which could be different from line
to line. Integrating both members of (86) on Bφ(x̄, R) we get

ˆ
Bφ(x̄,R)

|ψ(x0)− ψBφ(x̄,R)|dL2n(x0) ≤(98)

≤ C̃1

ˆ
Bφ(x̄,CR)

ˆ
Bφ(x̄,CR)

d1−Q
φ (x0, y)|∇φψ(y)|dL2n(y)dL2n(x0)

+ C̃2

ˆ
Bφ(x̄,CR)

ˆ
Bφ(x̄,CR)

d1−Q
φ (x, y)|∇φψ(y)|dL2n(y)dL2n(x).
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This implies:ˆ
Bφ(x̄,R)

|ψ(x0)− ψBφ(x̄,R)|dL2n(x0) ≤(99)

≤ C
ˆ
Bφ(x̄,CR)

|∇φψ(y)|
(ˆ

Bφ(x̄,CR)
d1−Q
φ (y, x0)dL2n(x0)

)
dL2n(y),

where ˆ
Bφ(x̄,CR)

d1−Q
φ (y, x0) dL2n(x0) ≤ C̃R,

since the space is homogeneous of dimension Q. Finally, using (99) we get (85).
�

By the approximation result in Theorem 2.5 we can chose ψ = φ and get the Proof of
Corollary 1.3.

We point out, or reader’s convenience, the relation between Poincaré’s inequality and
p-p-Poincaré and Sobolev inequalities. By Corollary 1.3 and the doubling condition for
the balls Uφ(x̄, r) proved in [27], the following corollary directly follows applying Theorem
13.1 in the monograph [32]:

Corollary 4.5 (p-p-Poincaré and Sobolev inequalities). Let φ : ω → R be an intrinsic
Lipschitz function and p > 1. Then there exist positive constants C1, C2 with C2 > 1
(depending on the Lipschitz constant Lφ of φ) such that(

1

L2n(Uφ(x̄, r))

ˆ
Uφ(x̄,r)

|φ(y)−φUφ(x̄,r)|pdL2n(y)

)1/p

≤

≤ C1 r

(
1

L2n(Uφ(x̄, C2r))

ˆ
Uφ(x̄,C2r)

|∇φφ(y)|pdL2n(y)

)1/p

,

for every Uφ(x̄, C2 r) ⊂ ω. Moreover, there is a constant p∗ > p such that(
1

L2n(Uφ(x̄, r))

ˆ
Uφ(x̄,r)

|φ(y)|p∗dL2n(y)

)1/p∗

≤

≤ C1 r

(
1

L2n(Uφ(x̄, C2r))

ˆ
Uφ(x̄,C2r)

|∇φφ(y)|pdL2n(y)

)1/p

.
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[31] M. Gromov, Carnot-Carathéodory spaces seen from within, in Subriemannian Geometry, Progress in

Mathematics, 144. ed. by A.Bellaiche and J.Risler, Birkhauser Verlag, Basel, 1996.
[32] P. Hajlasz, P. Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc., 688, (2000).
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Carathéodory spaces, to appear on Ann. Scuola Norm. Sup. Pisa Cl. Sci.

Giovanna Citti: Dipartimento di Matematica, Università di Bologna, Piazza di Porta
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