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Abstract. We characterize quasi-static rate-independent evolutions, by means of their graph parametriza-
tion, in terms of a couple of equations: the first gives stationarity while the second provides the energy balance.
An abstract existence result is given for functionals F of class C1 in reflexive separable Banach spaces. We
provide a couple of constructive proofs of existence which share commune features with the theory of mini-
mizing movements for gradient flows. Moreover, considering a sequence of functionals Fn a its Γ-limit F we
provide, under suitable assumptions, a convergence result for the associated quasi-static evolutions. Finally,
we apply this approach to a phase field model in brittle fracture.
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1 Introduction

In the last few years the analysis of quasi-static rate-independent evolutions has been the object of
several important advances. Theoretical and applied results have been developed essentially along
two alternatives lines: on the one hand the evolutions by global minima (usually named ”energetic
evolutions”) on the other the evolutions by critical points.

To illustrate the picture in a simple setting, consider a stored energy E : [t0, t1] × V → R,
where [t0, t1] is the time interval and V is a separable reflexive Banach space (either finite or infinite
dimensional) together with a dissipation functional ∆ : V ×V → [0,+∞]. Given an initial condition
v(0) = v0 (with v0 globally stable) a trajectory v : [t0, t1] → V is an energetic evolution [12] if the
following conditions hold

(S) for every t it holds

E(t, v(t)) ≤ E(t, φ) + ∆(φ, v(t)) for every φ ∈ V,

(E) for every t it holds

E(t, v(t)) = E(0, v(0))−∆(v(t), v(0)) +

∫ t

0
∂tE(s, v(s)) ds .

The letters (S) and (E) denote respectively (global) stability and energy balance. Assuming further
that there exists a dissipation ”potential” D : V → [0,+∞) such that ∆(v, w) = D(v) − D(w) and
introducing the energy functional F(t, v) = E(t, v) +D(v) the (S)-(E) conditions read

∗This material is based on work supported by ERC under Grant No. 290888 “Quasistatic and Dynamic Evolution
Problems in Plasticity and Fracture”.
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(S) for every t it holds
F(t, v(t)) ≤ F(t, φ) for every φ ∈ V,

(E) for every t it holds

F(t, v(t)) = F(0, v(0)) +

∫ t

0
∂tF(s, v(s)) ds.

Often a representation of the form ∆(v, w) = D(v) − D(w) holds under some constraint on the
admissible increment (it is indeed the case in brittle and cohesive fracture and in associative plas-
ticity), however, to keep the presentation clear, we will not introduce any constraint in the abstract
picture; we will see how to deal with a constrained problem in §7. It is important to highlight that
in the above definition there are no derivatives of the stored energy E with respect to the state
variable v, thanks to this fact it is possible to prove existence of energetic evolutions under (very)
low regularity assumptions on E , including the case of spaces without a vectorial structure, see for
instance [6] for an application to fracture. On the other hand, it may happen that the behaviour of
energetic solutions is not physically admissible: when a discontinuity occurs the evolution typically
”tunnels” under an energy barrier.

Let us turn to evolutions by critical points. In the literature there are several equivalent defi-
nitions, most of them formulated in terms of the trajectory t 7→ v(t), as the BV solutions of [13].
Here we will not adopt exactly this description, preferring a graph parametrization, similar to that
of [8]. The idea is to define the evolution by means of a (Lipschitz) parametrization of the extended
graph, of the type τ 7→ (t(τ), v(τ)) for τ ∈ [0, T ). This is a convenient choice to focus on disconti-
nuities, indeed with this parametrization jumps are represented by ”vertical parts” of the extended
graph, of the form τ 7→ (t, v(τ)) for τ ∈ [τ−, τ+] with t(τ) constant and v(τ−) 6= v(τ+). Adopting
graph parametrization, our goal is to provide a definition which resembles the (S)-(E) formulation
above and then to provide an existence result in separable reflexive Banach spaces. Let us see in
more detail our definition: let τ 7→ (t(τ), v(τ)) be a Lipschitz map with t′ ≥ 0 and ‖v′‖ ≤ 1 (t′

and v′ denote the derivatives with respect to τ). We will say that (t, v) is (a parametrization of) a
quasi-static evolution if

(S′) for every τ with t′(τ) > 0 it holds

‖∂vF(t(τ), v(τ))‖ = 0,

(E′) for every τ it holds

F(t(τ), v(τ)) = F(t(0), v(0))−
∫ τ

0
‖∂vF(t(s), v(s))‖ ds+

∫ τ

0
∂tF(t(s), v(s)) t′(s) ds ,

where ‖∂vF(t, v)‖ is the norm in the dual V ′, i.e.

‖∂vF(t, v)‖ = max {∂vF(t, v)[φ] : ‖φ‖ ≤ 1} .

Here the labels (S′) and (E′) stand respectively for stationarity and energy balance while the prime
symbol suggests the dependence on derivatives of the stored energy. Close to our definition of
evolutions by critical points are those of [8, 13, 18] while close to our existence proof are those on
minimizing movements for gradient flows, e.g. [7, 15, 17].

Several properties of the evolution follow from this definition. First of all, note that (S′) can be
written also in the (norm free) form

∂vF(t(τ), v(τ))[φ] = 0 for every φ ∈ V.
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Next, if t′(s) > 0 for every s ∈ [τ1, τ2] (and thus there are no jump discontinuities in [τ1, τ2]) then
(E′) yields

F(t(τ2), v(τ2)) = F(t(τ1), v(τ1)) +

∫ τ2

τ1

∂tF(t(s), v(s)) t′(s) ds ,

which, up to a change of variable, is equivalent to (E). On the contrary, if t′(s) = 0 for every
s ∈ [τ−, τ+] (and thus there is a jump discontinuity at time t = t(s)) then (E′) reads

F(t, v(τ+)) = F(t, v(τ−))−
∫ τ+

τ−
‖∂vF(t, v(s))‖ ds ,

and in particular F(t, v(τ2)) ≤ F(t, v(τ1)) for every τ− ≤ τ1 < τ2 ≤ τ+. Most important, the path
τ 7→ v(τ) between v(τ−) and v(τ+) is a curve of maximal (normalized) slope for the autonomous
functional F(t, ·); this property will follow from the optimality of v′(τ) described hereafter. By the
chain rule we can write

dτF(t(τ), v(τ)) = ∂vF(t(τ), v(τ)) [v′(τ)] + ∂tF(t(τ), v(τ))t′(τ) ,

and thus for τ1 < τ2

F(t(τ2), v(τ2)) = F(t(τ1), v(τ1)) +

∫ τ2

τ1

dτF(t(τ), v(τ)) ds

= F(t(τ1), v(τ1)) +

∫ τ2

τ1

∂vF(t(τ), v(τ)) [v′(τ)] dτ +

∫ τ2

τ1

∂tF(t(τ), v(τ)) t′(τ) dτ .

On the other hand, by (E′) we can write

F(t(τ2), v(τ2)) = F(t(τ1), v(τ1))−
∫ τ2

τ1

‖∂vF(t(τ), v(τ))‖ dτ +

∫ τ2

τ1

∂tF(t(τ), v(τ)) t′(τ) dτ .

Therefore, ∂vF(t(τ), v(τ)) [v′(τ)] = ‖∂vF(t(τ), v(τ))‖ for a.e. τ . Since ‖v′‖ ≤ 1 it follows that for
a.e. τ

v′(τ) ∈ argmin
{
∂vF(t(τ), v(τ)) [φ] : ‖φ‖ ≤ 1

}
.

If t′(τ) > 0 the above property is not of interest since ∂vF(t(τ), v(τ)) = 0 and thus any v′ is a
minimizer. On the contrary, on jump discontinuities, where ∂vF(t(τ), v(τ)) 6= 0, it says that v′(τ)
is the steepest descent direction. Roughly speaking, on jumps we have a normalized gradient flow

v′(τ) = −∇F(t, v(τ))/‖∇F(t, v(τ))‖,

where ∇F is the gradient of F (with respect to the norm ‖ · ‖), τ belongs to the jump interval
[τ−, τ+] and t = t(τ) is the discontinuity point. To understand the idea behind the normalization of
the gradient consider at time t a jump between the equilibrium configurations v(t−) and v(t+). In
the graph parametrization setting we have t = t(τ) for τ ∈ [τ1, τ2], v(t−) = v(τ1) and v(t+) = v(τ2).
Since v(t−) and v(t+) are equilibrium configurations a (non-normalized) gradient flow would provide
in general a transition in an infinite interval, say [τ1,+∞), and thus it would not be possible to extend
the evolution after the jump time t. On the contrary, a normalized gradient flow allows to find an
arc-length parametrization of the curve.

Under suitable conditions on the energy functional, we prove existence of such an evolution both
by means of a ”parametrized” minimizing movement and by means of a forward Euler scheme; the
proofs, based on sequences of incremental problems, do not employ viscosity arguments. The com-
mon structure of the existence results could be summarized as: construction of a discrete evolution,
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discrete stationarity, discrete energy inequality, construction of a continuum interpolation, compact-
ness, convergence of discrete stationarity and energy balance to their to continuum counterparts (E′)
and (S′).

Next, following the scheme of [16], we provide an approximation result of the following type.
Consider a sequence of functionals Fn together with the corresponding quasi-static evolutions, say
(tn, vn). Assume that Fn Γ-converge to F with respect to the strong convergence in t and the weak
convergence in v. Under suitable condition on the convergence of ‖∂vFh‖ and ∂tFh to ‖∂vF‖ and
∂tF respectively, we show that the quasi-static evolutions (tn, vn) converge (up to subsequences) to
a quasi-static evolution (t, v) for the Γ-limit F . The proof is based on the same arguments developed
for the convergence of discrete stationarity and energy balance, which appear in the existence result.
We could consider this result as the analogue of [14], developed for energetic evolutions.

Moreover, we consider the quasi-static evolution with respect to a weaker norm, induced by the
continuous immersion of V in a reflexive separable Banach space W. In this context the existence
result developed in the norm of V is not suitable, we follow instead a ”Galerkin approach” approx-
imating the evolution in finite dimensional spaces and then passing to the limit by virtue of the
approximation result.

The last part of the paper is dedicated to the quasi-static evolution of a phase field approach
in brittle fracture [3]. Irreversibility is modelled with a constraint affecting both the formulation
and the existence result, these modifications do not change the core of the arguments and allow
to prove existence of a quasi-static evolutions that satisfy equilibrium and energy balance. The
reader interested in phase field models will find an energetic evolution in [9], an L2-gradient flow
(in the displacement) in [2], an L1-viscosity solution in [10] and a dynamic visco-elastic evolution in
[11]. Besides our interest for the specific application, this example shows that the formulation and
the existence result, both with some modifications, are suitable also in the case of problems with
irreversibility constraints.
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2 Definitions and statements of the main results

Let V be a reflexive, separable Banach space, with norm ‖ · ‖, and let [t0, t1] be a time interval. Let
F : [t0, t1]×V → [0,+∞) be an energy functional. Assume that F is of class C1. Within this setting
the quasi-static evolutions of interest in this work are characterized by the following definition.

Definition 2.1 Let (t, v) : [0, T ]→ [t0, t1]×V be a Lipschitz map with (t(0), v(0)) = (t0, v0), t′ ≥ 0
and ‖v′‖ ≤ 1; (t, v) is (a parametrization of) a quasi-static evolution if

(S′) the following stationarity condition holds: for every τ with t′(τ) > 0

‖∂vF(t(τ), v(τ))‖ = 0, (1)

(E′) the following energy balance holds: for every τ

F(t(τ), v(τ)) = F(t0, v0)−
∫ τ

0
‖∂vF(t(s), v(s))‖ ds+

∫ τ

0
∂tF(t(s), v(s)) t′(s) ds , (2)

where ‖∂vF(t, v)‖ denotes the norm in the dual space V ′.

According to the previous Definition if v0 is an equilibrium configuration the trivial parametriza-
tion τ 7→ (t0, v0) is an admissible quasi-static evolution. Following [8, Lemma 3.2], it is possible
to guarantee the existence of a non-trivial solution making a sort of ”coercivity condition” on the
dissipation functional, which actually does not enter in our picture. In our setting, it is instead
reasonable to assume that ‖∂vF(t0, v0)‖ 6= 0. Indeed, considering the case t(τ) = t0 (otherwise
there is nothing to show), (E′) reads

F(t0, v(T )) = F(t0, v0)−
∫ T

0
‖∂vF(t0, v(τ))‖ dτ.

If, by contradiction, v(τ) = v0 then we would have

F(t0, v0) = F(t0, v0)−
∫ T

0
‖∂vF(t0, v0)‖ dτ < F(t0, v0).

This condition, despite its simplicity, appears also in [7, Example 1.3] in the context of minimiz-
ing movements (and indeed we will show existence re-parametrizing the constrained incremental
problems suggested in [7]).

Note that the continuity of ∂tF and ∂vF are enough for integrability in (2) for every Lipschitz
parametrization.

To conclude, note that using parametrizations it may happen that the solution is a pure jump,
of the form (t0, v(τ)), where v solves the autonomous normalized gradient flow

v′(τ) = −∇F(t, v(τ))/‖∇F(t, v(τ))‖

for a.e. τ ∈ (0, T ). This is the only possible solution when there are no equilibrium configurations.

In the next two sections we will prove the following existence result by means of both a minimizing
movement and an explicit Euler scheme.
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Theorem 2.2 Let F : [t0, t1]× V → [0,+∞) be of class C1 with

F(t, v) ≤ lim inf
m
F(tm, vm) for tm → t and vm ⇀ v, (3)

‖∂vF(t, v)‖ ≤ lim inf
m
‖∂vF(tm, vm)‖ for tm → t and vm ⇀ v, (4)

∂tF(t, v) = lim
m
∂tF(tm, vm) for tm → t and vm ⇀ v. (5)

Moreover assume that there exists a modulus of continuity C s.t.

‖∂vF(t, v)− ∂vF(t, w)‖+ |∂tF(t, v)− ∂tF(t, w)| ≤ C(‖v − w‖) uniformly w.r.t. t ∈ [0, T ]. (6)

Under the above hypotheses there exists a quasi-static evolution in the sense of Definition 2.1.

First, note that coercivity of the functional F(t, ·) is not required for existence.
Next, in the spririt of [16, 17], Theorem 2.3 shows the connection between Γ-convergence [5, 4] of

energy functionals and the associated quasi-static evolutions. The proof is contained in §5. A typical
application of this Theorem are the finite element approximation. Noteworthy, this convergence
Theorem could be used also as an existence result (as we will see in the sequel).

Theorem 2.3 Let Fh : [t0, t1] × Vh → [0,+∞) of class C1 and let Vh ⊂ V be endowed with the
norm of V. Let (th, vh) be a quasi-static evolution (in the sense of Definition 2.1) for Fh with initial
conditions (t0, vh,0) and with t′h ≤ 1. Assume that

F(t, v) ≤ lim inf
h
Fh(th, vh) for th → t and vh ⇀ v in V, (7)

‖∂vF(t, v)‖ ≤ lim inf
h
‖∂vFh(th, vh)‖h for th → t and vh ⇀ v in V, (8)

∂tF(t, v) = lim
h
∂tFh(th, vh) for th → t and vh ⇀ v in V, (9)

where ‖∂vFh(th, vh)‖h is the norm in the dual V ′h. Assume also that the initial condition is ”well-
prepared”, i.e. that

vh,0 ⇀ v0 in V and that Fh(t0, vh,0)→ F(t0, v0) (10)

and that the power ∂tFh(th(s), vh(s)) is uniformly bounded. Then there exists a subsequence (not
relabelled) such that th(τ) → t(τ) and vh(τ) ⇀ v(τ), for every τ ∈ [0, T ); the limit (t, v) is a
quasi-static evolution for F (in the sense of Definition 2.1) with initial conditions (t0, v0).

Finally, consider a Banach space V continuously embedded in a Banach space W and endowed
with the norm of W. (The prototype example is the inclusion of H1 in L2). Clearly ∂vF(t, v)[·] is
linear and continuous on V, endowed with the norm ‖ · ‖V and thus it is represented by an element
∇VF(t, v) of V ′. If ∂vF(t, v)[·] is also linear and continuous on V, endowed with the norm ‖ · ‖W , it
is possible to define also

‖∇WF(t, v)‖ = sup{∂vF(t, v)[φ] : φ ∈ V, ‖φ‖W ≤ 1}.

If ∂vF(t, v)[·] is not linear and continuous on V, endowed with the norm ‖·‖W , we set ‖∇WF(t, v)‖ =
∞. Within this framework we can define the quasi-static evolution with respect to the norm ‖ · ‖W
exactly as we did in Definition 2.1.

Definition 2.4 Let (t, v) : [0, T ]→ [t0, t1]×V be a Lipschitz map with (t(0), v(0)) = (t0, v0), t′ ≥ 0
and ‖v′‖W ≤ 1; (t, v) is (a parametrization of) a quasi-static evolution if
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(S′) for every τ with t′(τ) > 0
‖∇WF(t(τ), v(τ))‖ = 0, (11)

(E′) for every τ

F(t(τ), v(τ)) = F(t0, v0)−
∫ τ

0
‖∇WF(t(s), v(s))‖ ds+

∫ τ

0
∂tF(t(s), v(s)) t′(s) ds. (12)

In the weak norm setting the existence result provided by Theorem 2.2 is not really useful since
the uniform continuity of the derivatives, with respect to ‖ · ‖, is often too restrictive (think of the
Dirichlet energy with respect to the L2-norm). However, using a sequence of finite dimensional
approximations together with Theorem 2.3 we will prove in §6 the following existence result.

Theorem 2.5 Let F : [t0, t1]× V → [0,+∞) satisfy

F(t, v) ≤ lim inf
m
F(tm, vm) for tm → t and vm ⇀ v in V, (13)

∂vF(t, v)[φ] = lim
m
∂vF(tm, vm)[φ] for tm → t, vm ⇀ v in V and φ ∈ V, (14)

∂tF(t, v) = lim
m
∂tF(tm, vm) for tm → t and vm ⇀ v in V. (15)

Moreover assume that there exists a modulus of continuity C s.t.

‖∂vF(t, v)−∂vF(t, w)‖V ′ + |∂tF(t, v)−∂tF(t, w)| ≤ C(‖v−w‖V) uniformly w.r.t. t ∈ [0, T ]. (16)

Let V be continuously embedded in a separable reflexive Banach space W. Assume also that F is
coercive with respect to ‖ · ‖V and that for some A,B independent of t and v it holds

|∂tF(t, v)| ≤ AF(t, v) +B. (17)

Then there exists a quasi-static evolution in the sense of Definition 2.4.

Note that if ∂vF is weakly∗ continuous, i.e. if for every tm → t and vm ⇀ v in V

∂vF(tm, vm)[φ]→ ∂vF(t, v)[φ] for every φ ∈ V

then by Banach-Steinhaus Theorem we have

‖∂vF(t, v)‖ ≤ lim inf
m
‖∂vFε(tm, vm)‖.

Before proving the above results, it is fair to mention that the statements are far from being
sharp, for instance, (5) could be replaced by a limsup condition, the uniform continuity of (6) could
be made time dependent while conditions (7)-(9) could include the energy excess, as in [16]. Indeed,
in this work our goal is to present a scheme and the essential ingredients, rather then providing a
general framework.

3 Existence by a parametrized minimizing movement

3.1 Incremental problem

In this section we prove the existence result following the discretization used in [8]. Let ∆τn →
0+. For every n ∈ N we define a discrete in time evolution by means of constrained incremental
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minimization problems. Set the initial conditions tn,0 = t0 and vn,0 = v0; known tn,k < t1 and vn,k
define tn,k+1 and vn,k+1 as{

vn,k+1 ∈ argmin {Fε(tn,k, v) : ‖v − vn,k‖ ≤ ∆τn},
tn,k+1 = tn,k +

(
∆τn − ‖vn,k+1 − vn,k‖

)
.

(18)

Existence of a minimizer follows by the direct method of the calculus of variations: weak compactness
of the closed ball ‖v − vn,k‖ ≤ ∆τn is a consequence of V being reflexive while the lower semi-
continuity of F(tn,k, ·) is assumed in (3). (Note that a similar incremental problem, actually without
parametrization, appears in [7, Example 1.3]). Let k̄n = sup {k : tn,k < t1} where k̄n ∈ N ∪ {∞}
(the incremental construction can be finite or infinite). Note that 0 ≤ tn,k+1 − tn,k < ∆τn and thus
k̄n ≥ (t1 − t0)/∆τn.

Next, let τn,k = k∆τn for 0 ≤ k ≤ k̄n and denote Tn = k̄n∆τn ≥ (t1 − t0). Now we consider the
affine interpolation of tn,k and vn,k in the points τn,k; in this way we define the discrete evolutions
(tn, vn) : [0, Tn)→ [t0, t1]×V. It is important to remark that the map (tn, vn) is Lipschitz continuous
with t′n ≥ 0 and t′n + ‖v′n‖ = 1 a.e. in [0, Tn).

Now, let us see the two properties which will provide the base to get (S′) and (E′) in the limit
as ∆τn → 0+.

Proposition 3.1 If tn,k+1 > tn,k then vn,k+1 satisfies the equilibrium condition

‖∂vF(tn,k, vn,k+1)‖ = 0. (19)

Proof. If tn,k+1 > tn,k then by (18) we have ‖vn,k+1− vn,k‖ < ∆τn. Since vn,k+1 is a minimizer the
Euler-Lagrange equation (19) holds.

Proposition 3.2 The following incremental energy estimate holds

F(tn,k+1, vn,k+1) ≤ F(tn,k, vn,k)−
∫ τn,k+1

τn,k

‖∂vF(tn,k, vn(τ))‖ dτ

+

∫ τn,k+1

τn,k

∂tF(tn(τ), vn(τ)) t′n(τ) dτ + 3 C(‖vn,k − vn,k+1‖) ∆τn, (20)

where C(·) is the modulus of continuity appearing in (6).

Proof. Given (tn,k, vn,k) let

φn,k ∈ argmin{∂vF(tn,k, vn,k)[φ] : ‖φ‖ ≤ 1} .

Now, we write

F(tn,k+1, vn,k+1) = F(tn,k, vn,k+1) +

∫ tn,k+1

tn,k

∂tF(t, vn,k+1) dt

≤ F(tn,k, vn,k + ∆τnφn,k) +

∫ τn,k+1

τn,k

∂tF(tn(τ), vn,k+1) t′n(τ) dτ

= F(tn,k, vn,k) +

∫ τn,k+1

τn,k

∂vF(tn,k, vn,k + (τ − τn,k)φn,k)[φn,k] dτ +

+

∫ τn,k+1

τn,k

∂tF(tn(τ), vn,k+1) t′n(τ) dτ .
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We consider separately the two integrals on the right hand side.
For every τ ∈ [τn,k, τn,k+1] by (6) we can write

∂vF(tn,k, vn,k + (τ − τn,k)φn,k)[φn,k] ≤ ∂vF(tn,k, vn,k)[φn,k] + C(‖vn,k − vn,k+1‖)
= −‖∂vF(tn,k, vn,k)‖+ C(‖vn,k − vn,k+1‖)
= −‖∂vF(tn,k, vn(τ))‖+ 2 C(‖vn,k − vn,k+1‖) .

Thus ∫ τn,k+1

τn,k

∂vF(tn,k, vn,k + (τ − τn,k)φn,k)[φn,k] dτ ≤ −
∫ τn,k+1

τn,k

‖∂vF(tn,k, vn(τ))‖ dτ

+2 C(‖vn,k − vn,k+1‖) ∆τn.

Similarly, again by (6), for every τ ∈ [τn,k, τn,k+1]

∂tF(tn(τ), vn,k+1) ≤ ∂tF(tn(τ), vn(τ)) + C(‖vn,k − vn,k+1‖).

As 0 ≤ t′n ≤ 1 we get∫ τn,k+1

τn,k

∂tF(tn(τ), vn,k+1) t′n(τ) dτ ≤
∫ τn,k+1

τn,k

∂tF(tn(τ), vn(τ)) t′n(τ) dτ

+ C(‖vn,k − vn,k+1‖) ∆τn

which concludes the proof.

3.2 Compactness and convergence

Proposition 3.3 Let (tn, vn) : [0, Tn)→ [t0, t1]×V be given by §3.1. Let 0 < T < lim infn Tn. There

exists a subsequence (not relabelled) such that tn
∗
⇀ t in W 1,∞(0, T ) and vn

∗
⇀ v in W 1,∞(0, T ;V).

In particular tn(τn) → t(τ) and vn(τn) ⇀ v(τ) in V if τn → τ . Moreover 0 ≤ t′ ≤ 1 and ‖v′‖ ≤ 1
a.e. in (0, T ).

Proof. As Tn ≥ (t1− t0) we have lim infn Tn > 0. Then, for n sufficiently large Tn > T and we can
consider (tn, vn) to be defined in (0, T ). Since |t′n(τ)| ≤ 1 there exists a subsequence (not relabelled)

with tn
∗
⇀ t in W 1,∞(0, T ). As tn is non-decreasing the limit t is non-decreasing, moreover we have

0 ≤ t′ ≤ 1.
Being V reflexive and separable its dual V ′ is reflexive and separable, thus the space L1(0, T ;V ′)

is separable and its dual is L∞(0, T ;V). The sequence v′n is bounded in L∞(0, T ;V) and thus there

exists a subsequence (not relabelled) such that v′n
∗
⇀ v′ in L∞(0, T ;V). Denoting by 〈 , 〉 the duality

pairing between V and V ′ and by ( , ) the corresponding duality between L1(0, T ;V ′) and L∞(0, T ;V),
we can write

〈vn(τn), ψ〉 = 〈v0 +

∫ τn

0
v′n(s) ds, ψ〉 = 〈v0, ψ〉+

∫ τn

0
〈v′n(s), ψ〉 ds

from which it follows that 〈vn(τn), ψ〉 → 〈v(τ), ψ〉 for every ψ ∈ V ′. By the lower semi-continuity of
the norm with respect to weak∗ convergence in L∞(0, T ;V) it follows that ‖v′(τ)‖ ≤ 1 for a.e. τ ∈
(0, T ).

Theorem 3.4 Let (tn, vn) and (t, v) be as in Proposition 3.3; then (t, v) is a quasi-static evolution,
i.e. it satisfies (t(0), v(0)) = (t0, v0), t′ ≥ 0, ‖v′‖ ≤ 1. Moreover
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(S′) for every τ > 0 with t′(τ) > 0 it holds

‖∂vF(t(τ), v(τ))‖ = 0,

(E′) for every τ it holds

F(t(τ), v(τ)) = F(t0, v0)−
∫ τ

0
‖∂vF(t(s), v(s))‖ ds+

∫ τ

0
∂tF(t(s), v(s)) t′(s) ds.

Proof. If t′(τ) > 0 then t(τ) < t(τ + δ) for every δ > 0, further, since tn converges to t pointwise,
for n sufficiently large there exists an index k (depending on n) such that τ < τn,k < τ + δ and
tn,k = tn(τn,k) < tn(τn,k+1) = tn,k+1. Since tn,k < tn,k+1 by Lemma 3.1 we get

‖∂vF(tn,k, vn,k+1)‖ = 0.

By the arbitrarity of δ it follows that there exists a sequence kn with τn,kn → τ such that tn,kn <
tn,kn+1 and ‖∂vF(tn,kn , vn,kn+1)‖ = 0. By Proposition 3.3 we known that tn,kn = tn(τn,kn) → t(τ)
and that vn,kn+1 = vn(τn,kn+1) ⇀ v(τ) weakly in V. Then, by (4)

‖∂vF(t(τ), v(τ))‖ ≤ lim inf
n
‖∂vF(tn,kn , vn,kn+1)‖ = 0

which is (S′).
For the proof of (E′) it is more convenient to have τ as the integration variable, so we will show

that for every s

F(t(s), v(s)) = F(t0, v0)−
∫ s

0
‖∂vF(t(τ), v(τ))‖ dτ +

∫ s

0
∂tF(t(τ), v(τ)) t′(τ) dτ .

For every n ∈ N let k ∈ N (depending on n) such that s ∈ [τn,k, τn,k+1). Iterating the incremental
energy estimate of Lemma 3.2 yields

F(tn,k, vn,k) ≤ F(t0, v0)−
k−1∑
m=0

∫ τn,m+1

τn,m

‖∂vF(tn,m, vn(τ))‖ dτ

+

∫ τn,k

0
∂tF(tn(τ), vn(τ)) t′n(τ) dτ + 3 C(∆τn)T.

Taking the limsup we get

lim sup
n
F(tn,k, vn,k) ≤ F(t0, v0)− lim inf

n

k−1∑
m=0

∫ τn,m+1

τn,m

‖∂F(tn,m, vn(τ))‖ dτ

+ lim sup
n

∫ τn,k

0
∂tF(tn(τ), vn(τ)) t′n(τ) dτ.

Given τ , let τn,m ≤ τ < τn,m+1, since tn,m = t(τn,m)→ t(τ) and vn(τ) ⇀ v(τ) by (4) we get

‖∂vF(t(τ), v(τ))‖ ≤ lim inf
n
‖∂vF(tn,m, vn(τ))‖

and by Fatou’s Lemma we get∫ s

0
‖∂vF(t(τ), v(τ))‖ dτ ≤ lim inf

n

k−1∑
m=0

∫ τn,m+1

τn,m

‖∂vF(tn,m, vn(τ))‖ dτ.
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By (5) we known that ∂tF(tn(τ), vn(τ)) converge to ∂tF(t(τ), v(τ)). Since ‖v′n‖ ≤ 1 it follows
that ‖vn(τ) − v0‖ ≤ T for every τ ∈ (0, T ). Then (6) implies that ∂tF(tn(·), vn(·)) is uniformly
bounded from above; therefore by dominated convergence ∂tF(tn(·), vn(·)) converge to ∂tF(t(·), v(·))
strongly in L1(0, T ). We already known that t′n

∗
⇀ t′ in L∞(0, T ). As a consequence

lim
n

∫ τn,k

0
∂tF(tn(τ), vn(τ)) t′n(τ) dτ =

∫ s

0
∂tF(t(τ), v(τ)) t′(τ) dτ.

Therefore

lim sup
n
F(tn,k, vn,k) ≤ F(t0, v0)−

∫ τ

0
‖∂vF(t(τ), v(τ))‖ dτ +

∫ τ

0
∂tF(t(τ), v(τ)) t′(τ) dτ.

Since ‖v′‖ ≤ 1 we can write

−‖∂vF(t(τ), v(τ))‖ ≤ ∂vF(t(τ), v(τ))[v′(τ)]

and by the chain rule

lim sup
n
F(tn,k, vn,k) ≤ F(t0, v0)−

∫ τ

0
‖∂vF(t(τ), v(τ))‖ dτ +

∫ τ

0
∂tF(t(τ), v(τ)) t′(τ) dτ

≤ F(t0, v0) +

∫ s

0
∂vF(t(τ), v(τ))[v′(τ)] dτ +

∫ s

0
∂tF(t(τ), v(τ)) t′(τ)dτ

≤ F(t0, v0) +

∫ s

0
dτF(t(τ), v(τ)) dτ = F(t(s), v(s)) . (21)

Thus lim supnF(tn,k, vn,k) ≤ F(t(s), v(s)). On the other hand, tn,k → t(s) and vn,k ⇀ v(s) by
Proposition 3.3, thus by (3) we can write F(t(s), v(s)) ≤ lim infnF(tn,k, vn,k). It follows that

lim sup
n
F(tn,k, vn,k) = lim

n
F(tn,k, vn,k) = F(t(s), v(s)) (22)

and all the inequalities in (21) becomes equality, which gives (E′).

As a by-product of the previous results we get the convergence of energies, stated in the next
Corollary.

Corollary 3.5 F(tn(τ), vn(τ))→ F(t(τ), v(τ)) for every τ ∈ [0, T ].

Proof. For τ ∈ [τn,k, τn,k+1) both ‖vn(τ)− vn,k‖ ≤ ∆τn and |tn(τ)− tn,k| ≤ ∆τn therefore by (22)
together with the uniform continuity of F we get the pointwise convergence of the energy.

Finally, note that, without further assumptions, it is not obvious that the limit (t, v) (provided
by Proposition 3.3) is not the trivial evolution (t(τ), v(τ)) = (t0, v0). For instance, consider the
energy

F(t0, v) =

{
0 if ‖v‖ ≤ 1,

(‖v‖ − 1)2 otherwise.

The unit ball is the set of minimizers of this functional. If ∆τn ≤ 1 and if v0 = 0 it is possible
to choose a sequence vn,k with ‖vn,k‖ ≤ ∆τn and with ‖vn,k+1 − vn,k‖ = ∆τn. As a consequence
tn,k = t0 and vn,k → v0, therefore the limit is the trivial solution. In the applications irreversibility
conditions are usually helpful to rule out this solution, see [8].
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4 Existence by a forward Euler scheme

4.1 Incremental problem

In applications and in numerical simulations sometimes it is not feasible to minimize (even locally)
the energy of a non-convex function, as in the previous scheme, while it is more feasible to employ a
forward scheme, based on descent directions. Let us see how to define the evolution in this setting.

Let ∆τn be positive with ∆τn → 0 and denote again by τ the parametrization variable. As
before, we will provide a sequence converging to (the parametrization of) a quasi-static evolution,
according to Definition 2.1. Let the initial conditions (for τn,0 = 0) be tn,0 = t0 and vn,0 = v0. Given
tn,k and vn,k we will employ a further sequence, denoted by vn,k,i for i ∈ N, in order to define vn,k+1

and then tn,k+1. For convenience we will also introduce a sequence τn,k,i which actually depends
on vn,k,i. Let vn,k,0 = vn,k and τn,k,0 = τn,k; given vn,k,i and τn,k,i consider the steepest descent
direction

φn,k,i ∈ argmin{∂vF(tn,k, vn,k,i)[φ] : ‖φ‖ ≤ 1}. (23)

Existence of φn,k,i is straightforward. Uniqueness holds for instance when ∂vF(tn,k, vn,k,i) 6= 0 and
V is uniformly convex: indeed, if ∂vF(tn,k, vn,k,i) 6= 0 then ‖φn,k,i‖ = 1, thus if

ζ, ξ ∈ argmin{∂vF(tn,k−1, vn,k−1)[φ] : ‖φ‖ ≤ 1}

then by linearity (ζ + ξ)/2 is a minimizer and thus ‖(ζ + ξ)/2‖ = 1; the uniform convexity of V
implies that ζ = ξ. On the contrary, if ∂vF(tn,k, vn,k,i)[φ] = 0 then every φ is a minimizers, in this
case it is convenient to choose again a direction φn,k,i with ‖φn,k,i‖ = 1 in order to avoid any trouble
in the following construction. Of course, in any case

∂vF(tn,k, vn,k,i)[φn,k,i] = −‖∂vF(tn,k, vn,k,i)‖.

Once the direction φn,k,i is found the step sn,k,i is given by a gradient descent in the direction φn,k,i.
To this end, for s ∈ [0,∆τn − τn,k,i], let us introduce the function

f(s) = F(tn,k, vn,k,i + sφn,k,i)

and the associated ode {
s′(·) = (−f ′(s(·)))+,
s(0) = 0,

(24)

where (·)+ denotes the positive part (the independent variable in the ode is purely auxiliary and
has no physical meaning). Since

f ′(s) = ∂vF(tn,k, vn,k,i + sφn,k,i)[φn,k,i]

it follows by the assumptions on ∂vF that the right hand side is continuous and therefore there
exists a solution s of the ode (the solution is unique if the right hand side is Lipschitz continuous).
By definition, the solution s is positive, non-decreasing and bounded from above by ∆τn− τn,k,i. In
particular it makes sense to take sn,k,i = sup s(·) ≤ (∆τn − τn,k,i) and then to define

vn,k,i+1 = vn,k,i + sn,k,i φn,k,i,

τn,k,i+1 = τn,k,i + sn,k,i = τn,k,i + ‖vn,k,i+1 − vn,k,i‖ ≤ ∆τn.

Note that with this definition

‖vn,k,i+1 − vn,k,i‖ = τn,k,i+1 − τn,k,i = sn,k,i. (25)
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Moreover, thank to the positive part in the ode the energy f(s) is non-increasing in [0, sn,k,i]. Next,
let us define

vn,k+1 = lim
i
vn,k,i = vn,k +

∞∑
i=0

(vn,k,i+1 − vn,k,i) and τ̄n,k = lim
i
τn,k,i = τn,k +

∞∑
i=0

sn,k,i.

Note that the sequence τn,k,i is non-decreasing, with respect to i, and bounded from above by ∆τn,
thus the limit exists and is bounded by the same constant. Moreover, the limit of vn,k,i exists
because

∞∑
i=0

‖vn,k,i+1 − vn,k,i‖ =
∞∑
i=0

sn,k,i = τ̄n,k − τn,k .

In particular ‖vn,k+1 − vn,k‖ ≤ ∆τn. Finally, let

tn,k+1 = tn,k + (∆τn − τ̄n,k). (26)

As in the previous section, let k̄n = sup {k : tn,k < t1} and denote Tn = k̄n∆τn ≥ (t1 − t0). Now
we define the sequences vn : [0, Tn) → V and tn : [0, Tn) → [t0, t1]. In the subinterval [τn,k, τ̄n,k) we
define vn to be the piecewise affine interpolation of vn,k,i in the points τn,k,i while in the subinterval
[τ̄n,k, τn,k+1] we set vn = vn,k+1. The definition of tn is somehow complementary: in the subinterval
[τn,k, τ̄n,k) we define tn = tn,k while in the subinterval [τ̄n,k, τn,k+1] we take the affine interpolation
of tn,k and tn,k+1. In this way in the subinterval [τn,k, τ̄n,k) we have ‖v′n‖ = 1, thank to (25), and
t′n = 0; in the subinterval [τ̄n,k, τn,k+1] we have v′n = 0 and t′n = 1, thank to (26). Therefore we still
have t′n + ‖v′n‖ = 1.

Proposition 4.1 If tn,k+1 > tn,k then vn,k+1 satisfies the equilibrium condition

‖∂vF(tn,k, vn,k+1)‖ = 0. (27)

Proof. If tn,k+1 > tn,k then τ̄n,k < ∆τn. If τ̄n,k = τn,k then vn,k+1 = vn,k and ∂vF(tn,k, vn,k+1) [φn,k,i] =
0 by (24), therefore by (23)

∂vF(tn,k, vn,k+1) [φ] = 0 for every φ ∈ V .

Otherwise, if 0 < τ̄n,k < ∆τn then vn,k = limi vn,k,i and sn,k,i < ∆τn − τn,k,i for every i, hence again
by (24)

∂vF(tn,k, vn,k,i+1) [φn,k,i] = 0 .

By the uniform continuity (6) of ∂vF it follows that

‖∂vF(tn,k, vn,k,i)‖ = |∂vF(tn,k, vn,k,i) [φn,k,i]| ≤ C(‖vn,k,i+1 − vn,k,i‖).

Then, by the lower semi-continuity (4) of ‖∂vF‖ and by the convergence of vn,k,i we get

‖∂vF(tn,k, vn,k+1)‖ ≤ lim inf
i
‖∂vF(tn,k, vn,k,i)‖ ≤ lim inf

i
C(‖vn,k,i+1 − vn,k,i‖) = 0,

which is (27).

Proposition 4.2 The following incremental energy estimate holds

F(tn,k+1, vn,k+1) ≤ F(tn,k, vn,k)−
∫ τn,k+1

τn,k

‖∂vF(tn,k, vn,k)‖ dτ

+

∫ τn,k+1

τn,k

∂tF(tn(τ), vn(τ)) t′n(τ) dτ + 3 C(‖vn,k − vn,k+1‖) ∆τn, (28)

where C(·) is the modulus of continuity appearing in (6).
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Proof. Arguing as in the proof of Proposition 3.2 we obtain

F(tn,k+1, vn,k+1) = F(tn,k, vn,k+1) +

∫ tn,k+1

tn,k

∂tF(t, vn,k+1) dt

= F (tn,k, vn,k) +

∫ τn,k+1

τn,k

∂vF(tn,k, vn(τ))[v′n(τ)] dτ +

+

∫ τn,k+1

τn,k

∂tF(tn(τ), vn,k+1) t′n(τ) dτ

but this time we cannot use minimality for vn,k+1. Thus, for τ ∈ [τn,k,i, τn,k,i+1] we have v′n(τ) =
φn,k,i ∈ argmin{∂vF(tn,k, vn,k,i)[φ] : ‖φ‖ = 1} and then by (6) we can write

∂vF(tn,k, vn(τ))[v′n(τ)] ≤ ∂vF(tn,k, vn,k,i)[φn,k,i] + C(‖vn,k,i+1 − vn(τ)‖)
≤ −‖∂vF(tn,k, vn,k,i)‖+ C(‖vn,k,i+1 − vn(τ)‖)
≤ −‖∂vF(tn,k, vn(τ))‖+ 2 C(‖vn,k,i+1 − vn(τ)‖).

Then ∫ τn,k,i+1

τn,k,i

∂vF(tn,k, vn(τ))[v′n(τ)] dτ ≤ −
∫ τn,k,i+1

τn,k,i

‖∂vF(tn,k, vn(τ))‖ dτ

+2 C(‖vn,k,i+1 − vn,k,i‖) |τn,k,i+1 − τn,k,i|

and hence in the subinterval [τn,k, τ̄n,k] we have∫ τ̄n,k

τn,k

∂vF(tn,k, vn(τ))[v′n(τ)] dτ ≤ −
∫ τ̄n,k

τn,k

‖∂vF(tn,k, vn(τ))‖ dτ

+2 C(‖vn,k+1 − vn,k‖) |τ̄n,k − τn,k|.

In the subinterval [τ̄n,k, τn,k+1] (if it is not a single point) we have by Proposition 4.1

∂vF(tn,k, vn(τ))[v′n(τ)] = ‖∂vF(tn,k, vn,k+1)‖ = 0.

Therefore in the whole interval [τn,k, τn,k+1] we can write∫ τn,k+1

τn,k

∂vF(tn,k, vn(τ))[v′n(τ)] dτ ≤ −
∫ τn,k+1

τn,k

‖∂vF(tn,k, vn(τ))‖ dτ

+2 C(‖vn,k+1 − vn,k‖) ∆τn.

Finally, again by (6)∫ τn,k+1

τn,k

∂tF(tn(τ), vn,k+1) t′n(τ) dτ ≤
∫ τn,k+1

τn,k

∂tF(tn(τ), vn(τ)) t′n(τ) dτ

+ C(‖vn,k+1 − vn,k‖) ∆τn,

which concludes the proof.
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4.2 Compactness and convergence

Arguing exactly as in §3.2 we can prove the next results; this is possible thanks to the fact that the
proof of Proposition 3.3, Theorem 3.4 and Corollary 3.5 depend only on Proposition 3.1 and 3.2.

Proposition 4.3 Let (tn, vn) : [0, Tn)→ [t0, t1]×V be given by §4.1. Let 0 < T < lim infn Tn. There

exists a subsequence (not relabelled) such that tn
∗
⇀ t in W 1,∞(0, T ) and vn

∗
⇀ v in W 1,∞(0, T ;V).

In particular tn(τn) → t(τ) and vn(τn) ⇀ v(τ) in V if τn → τ . Moreover 0 ≤ t′ ≤ 1 and ‖v′‖ ≤ 1
a.e. in (0, T ).

Theorem 4.4 Let (tn, vn) and (t, v) be as in Proposition 4.3; then (t, v) is (a parametrization of)
a quasi-static evolution, i.e. it satisfies (t(0), v(0)) = (t0, v0), t′ ≥ 0, ‖v′‖ ≤ 1. Moreover

(S′) for every τ > 0 with t′(τ) > 0 it holds

‖∂vF(t(τ), v(τ))‖ = 0,

(E′) for every τ it holds

F(t(τ), v(τ)) = F(t0, v0)−
∫ τ

0
‖∂vF(t(s), v(s))‖ ds+

∫ τ

0
∂tF(t(s), v(s)) t′(s) ds .

Corollary 4.5 F(tn(τ), vn(τ))→ F(t(τ), v(τ)) for every τ ∈ [0, T ].

5 Proof of the approximation result

In this section we will prove Theorem 2.3. Let (th, vh) : [0, T )→ [t0, t1]×V be a Lipschitz map with
(th(0), vh(0)) = (t0, vh,0), 0 ≤ t′h ≤ 1 and ‖v′h‖ ≤ 1, and such that

(S′h) for every τ with t′h(τ) > 0 it holds

‖∂vFh(th(τ), vh(τ))‖h = 0, (29)

(E′h) for every τ it holds

Fh(th(τ), vh(τ)) = Fh(t0, v0)−
∫ τ

0
‖∂vFh(th(s), vh(s))‖h ds+

∫ τ

0
∂tFh(th(s), vh(s)) t′h(s) ds. (30)

The ”sequence” (th, vh) is weakly compact in W 1,∞(0, T )×W 1,∞(0, T ;V), therefore by the argu-

ments of Proposition 3.3 there exists a subsequence (not relabelled) such that th
∗
⇀ t in W 1,∞(0, T )

and vh
∗
⇀ v in W 1,∞(0, T ;V), th(τh) → t(τ) and vh(τh) ⇀ v(τ) if τh → τ , 0 ≤ t′ ≤ 1 and ‖v′‖ ≤ 1

a.e. in (0, T ). In particular th(τ)→ t(τ), vh(τ) ⇀ v(τ) for every τ ∈ [0, T ).
Now, to check that the limit (t, v) satisfies conditions (S′) and (E′) we follow the same arguments

used in the proof of Theorem 3.4, roughly speaking replacing (tn, vn) with (th, vh) and conditions
(3)-(5) with (7)-(9).

Let τ with t′(τ) > 0. Since th converge to t pointwise there exists a sequence τh → τ such that
t′h(τh) > 0 and thus ‖∂vFh(th(τh), v(τh))‖h = 0 by (S′h). As τh → τ we also have vh(τh) ⇀ v(τ) in
V. Therefore, thanks to (8) we get

‖∂vF(t(τ), v(τ))‖ ≤ lim inf
h
‖∂vF(th(τh), v(τh))‖h = 0.
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It remains to show that (E′) follows from (E′h). Taking the limsup in (30) yields

lim sup
h
Fh(th(τ), vh(τ)) ≤ lim

h
Fh(t0, vh,0)− lim inf

h

∫ τ

0
‖∂vFh(th(s), vh(s))‖ ds

+ lim sup
h

∫ τ

0
∂tFh(th(s), vh(s)) t′h(s) ds.

By (10) we known that
lim
h
Fh(t0, vh,0) = F(t0, v0).

As th(s)→ t(s) and vh(s) ⇀ v(s) by (8) we have ‖∂vF(t(s), v(s))‖ ≤ lim infh ‖∂vFh(th(s), vh(s))‖h
and then by Fatou’s Lemma∫ τ

0
‖∂vF(t(s), v(s))‖ ds ≤ lim inf

h

∫ τ

0
‖∂vFh(th(s), vh(s))‖h ds.

By (9) we have ∂tF(t(s), v(s)) = limh ∂tFh(th(s), vh(s)) ≤ C where (by assumption) the upper
bound C is uniform. By dominated convergence it follows that ∂tFh(th(·), vh(·)) → ∂tF(t(·), v(·))
strongly in L1(0, T ). Since t′h

∗
⇀ t′ in L∞(0, T ) we get

lim
h

∫ τ

0
∂tFh(th(s), vh(s)) t′h(s) ds =

∫ τ

0
∂tF(t(s), v(s)) t′(s) ds.

In conclusion,

lim sup
h
Fh(th(τ), vh(τ)) ≤ F(t0, v0)−

∫ τ

0
‖∂vF(t(s), v(s))‖ ds+

∫ τ

0
∂tF(t(s), v(s)) t′(s) ds.(31)

Since ‖v′‖ ≤ 1 by the chain rule we deduce again that

F(t0, v0)−
∫ τ

0
‖∂vF(t(s), v(s))‖ ds+

∫ τ

0
∂tF(t(s), v(s)) t′(s) ds ≤ F(t(τ), v(τ))

and thus lim suphFh(th(τ), vh(τ)) ≤ F(t(τ), v(τ)). The liminf inequality

F(t(τ), v(τ)) ≤ lim inf
h
Fh(th(τ), vh(τ))

is provided by (7). Therefore

lim sup
h
Fh(th(τ), vh(τ)) = lim

h
Fh(th(τ), vh(τ)) = F(t(τ), v(τ)).

As a consequence from (31) we get (E′). Note also that, in the language of Γ-convergence, (th(τ), vh(τ))
is a recovery sequence for every τ ∈ [0, T ).

6 Existence in a weaker norm

In this section we will prove the existence result stated in Theorem 2.5. We will not follow the
proofs of the previous existence Theorems; we will use instead a ”Galerkin proof” approximating
the evolution in finite dimensional spaces. To this end, let Vh be a monotone sequence of finite
dimensional subspaces of V with ∪hVh dense in V. Let Fh be the restriction to Vh of the energy
functional F . Being Vh ⊂ V ⊂ W and being Vh finite dimensional, the norms ‖ · ‖V and ‖ · ‖W are
equivalent in Vh as it is for the weak and strong topology.
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First of all let us prove the existence of the discrete evolutions. As Fh = F in Vh it turns out
that the energy functionals Fh : [t0, t1] × Vh → [0,+∞) are of class C1 with respect to ‖ · ‖V and
thus with respect to ‖ · ‖W . For v ∈ Vh denote by ∇VFh(t, v) and by ∇WFh(t, v) the gradients in
the first and second norm respectively. Clearly, for v ∈ Vh

‖∇WFh(t, v)‖ = max{∂vFh(t, v)[φ] : φ ∈ Vh, ‖φ‖W ≤ 1}.

Since Fh is of class C1 in [t0, t1]× Vh it is easy to check that

Fh(t, v) ≤ lim inf
m
Fh(tm, vm) for tm → t and vm → v, (32)

‖∇WFh(t, v)‖ ≤ lim inf
m
‖∇WFh(tm, vm)‖ for tm → t and vm → v, (33)

∂tFh(t, v) = lim
m
∂tFh(tm, vm) for tm → t and vm → v. (34)

Note that in the finite dimensional setting weak and strong convergence coincide. Now, let us check
that there exists a modulus of continuity Ch such that in [t0, t1]× Vh we have

‖∇WFh(t, v)−∇WFh(t, w)‖+ |∂tFh(t, v)− ∂tFh(t, w)| ≤ Ch(‖v − w‖W). (35)

Note that, being Fh = F on Vh, for v ∈ Vh we have

‖∂vF(t, v)‖ = max{∂vF(t, v)[φ] : φ ∈ V, ‖φ‖V ≤ 1} ≥ ‖∇VFh(t, v)‖,

and then, by equivalence of norms, we can write

Ch‖∇WFh(t, v)‖ ≤ ‖∇VFh(t, v)‖ ≤ ‖∂vF(t, v)‖ .

Therefore, again by by the equivalence of norms, from

‖∂vF(t, v)− ∂vF(t, w)‖+ |∂tF(t, v)− ∂tF(t, w)| ≤ C(‖v − w‖V)

we get (35). Now, let vh,0 ∈ Vh with vh,0 → v0 in V. Thank to (32)-(35) we can invoke Theorem
2.2 which provides the existence of a quasi-static evolution: there exists a map (th, vh) : [0, Th] →
[t0, t1]× Vh with (th(0), vh(0)) = (t0, vh,0), 0 ≤ t′h ≤ 1 and ‖v′h‖W ≤ 1 and such that

(S′h) for every τ with t′h(τ) > 0
‖∇WFh(th(τ), vh(τ))‖ = 0, (36)

(E′h) for every τ

Fh(th(τ), vh(τ)) = Fh(t0, vi,0)−
∫ τ

0
‖∇WFh(th(s), vh(s))‖ ds

+

∫ τ

0
∂tFh(th(s), vh(s)) t′h(s) ds. (37)

Next, let us prove compactness. As already observed in Proposition 3.3, we have Th ≥ (t1 − t0).
Let 0 < T < lim infh Th. Since th is bounded in W 1,∞(0, T ) and vh is bounded in W 1,∞(0, T ;W) it
follows (by the arguments of Proposition 3.3) that there exists a subsequence (not relabelled) such

that th
∗
⇀ t in W 1,∞(0, T ) and vh

∗
⇀ v in W 1,∞(0, T ;W). Moreover, for every τ ∈ [0, T ] we have

th(τ) → t(τ) and vh(τ) ⇀ v(τ) in W. Clearly 0 ≤ t′ ≤ 1 and ‖v′‖W ≤ 1 a.e. in (0, T ). Now, let us
see that vh(τ) ⇀ v(τ) in the weak topology of V. By the chain rule, for every τ1 ≤ τ2 we can write

Fh(th(τ2), vh(τ2)) = Fh(t(τ1), v(τ1)) +

∫ τ2

τ1

F ′h(th(τ), vh(τ)) dτ



May 7, 2013 18

where F ′h denotes the (total) derivative with respect to τ . At the same time by (E′h) we have

Fh(th(τ2), vh(τ2)) ≤ Fh(t(τ1), v(τ1)) +

∫ τ2

τ1

∂tFh(th(τ), vh(τ)) t′h(τ) dτ.

Since t′h ≤ 1 and by (17) it follows that for a.e. τ it holds

F ′h(th(τ), vh(τ)) ≤ ∂tFh(th(τ), vh(τ)) t′h(τ) ≤ AFh(th(τ), vh(τ)) +B (38)

(for A,B independent of i). By Gronwall Lemma

F(th(τ), vh(τ)) = Fh(th(τ), vh(τ)) ≤ C(Fh(t0, vi,0) + 1) eAτ ≤ C ′.

and hence Fh(th(τ), vh(τ)) is bounded, uniformly with respect to τ ∈ [0, T ] and i ∈ N. By the
coercivity of F(t, ·) it follows that ‖vh(τ)‖V is bounded. We already known that for every τ we have
vh(τ) ⇀ v(τ) in the weak topology of W. Since vh(τ) is bounded in V, which is reflexive, for every
subsequence vhk(τ) there exists a further subsequence (not relabelled) such that vhk(τ) ⇀ z in the
weak topology of V. Since V is continuously embedded in W it follows that vhk(τ) ⇀ z in the weak
topology of W and thus z = v(τ). As a consequence the whole sequence vh(τ) ⇀ v(τ) in V.

Finally, let us see the convergence of (S′h) and (E′h). In order to pass to the limit in (36) it is
sufficient to show that for every τ

‖∇WF(t(τ), v(τ))‖ ≤ lim inf
h
‖∇WFh(th(τ), vh(τ))‖.

For h ≥ h′ and φh′ ∈ Vh′ with ‖φh′‖W ≤ 1 we can write

‖∇WFh(th(τ), vh(τ))‖ = max{∂vF(th(τ), vh(τ))[φ] : φ ∈ Vh, ‖φ‖W ≤ 1}
≥ ∂vF(th(τ), vh(τ))[φh′ ].

Since vh(τ) ⇀ v(τ) in V we can use (14) to get

lim inf
h
‖∇WFh(th(τ), vh(τ))‖ ≥ ∂vF(t(τ), v(τ))[φh′ ] for every φh′ ∈ Vh′ .

Since ∪h′Vh′ is dense in V it is enough to take the supremum with respect to φh′ ∈ Vh′ with
‖φh′‖W ≤ 1. Note that ∂vF(th(τ), vh(τ))[φh′ ] = ∂vFh(th(τ), vh(τ))[φh′ ] is measurable, therefore its
pointwise limit ∂vF(t(τ), v(τ))[φh′ ] and then the supremum ‖∇WF(t(τ), v(τ))‖ are measurable, and
actually integrable.

Following the arguments of §5, to pass to the limit in (37) it is sufficient to show that

F(t(τ), v(τ)) ≤ lim inf
h
Fh(th(τ), vh(τ)), (39)

lim sup
h
Fh(t0, vi,0) ≤ F(t0, v0), (40)

lim
h
∂tFh(th(·), vh(·)) = ∂tF(t(·), v(·)) in L1(0, T ). (41)

Remembering that Fh is just the restriction of F on Vh the first and the third condition follow
respectively from (13) and (15) together with the uniform bound (38). The second is instead a
direct consequence of the fact that vi,0 → v0 strongly in V and thus the initial datum is well
prepared.
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7 A phase field model for brittle fracture

7.1 Energy

Let Ω be an open, bounded Lipschitz set in R2. Let ∂DΩ ⊂ ∂Ω with H1(∂DΩ) > 0. For p > 2 let
g ∈W 1,p(Ω,R2) and let the space of admissible displacement be

U = {u ∈ H1(Ω,R2) : u = g in ∂DΩ}.

For the moment we assume that the phase-field variable v belongs to the space V = H1(Ω) and
in particular we do not impose the bounds 0 ≤ v ≤ 1. For ε > 0 and 0 < ηε = o(ε) the energy
functional Fε(t, ·, ·) : U × V → [0,+∞) is the Ambrosio-Tortorelli energy [1] for linear elasticity:

Fε(t, u, v) = t2
∫

Ω
(v2 + ηε)W (Du) dx+Gc

∫
Ω

(v − 1)2/4ε+ ε|∇v|2 dx,

where W (Du) = Du : CDu/2 is the linear elastic energy density and Gc is the fracture toughness.
Thank to the linearity of the density W the energy Fε(t, ·, ·) is associated to the proportional
boundary condition u(t) = tg.

It is convenient to introduce also a notation for the elastic energy and the dissipation potential,
respectively

Eε(t, u, v) = t2
∫

Ω
(v2 + ηε)W (Du) dx,

Dε(v) = Gc

∫
Ω

(v − 1)2/4ε+ ε|∇v|2 dx.

Since we are concerned with quasi-static evolutions, we can ”condense” the energy considering only
the displacement at equilibrium, to this end let u(v) be the unique minimizer of Eε(t, ·, v) and denote

Eε(t, v) = Eε(t, u(v), v) = min{Eε(t, u, v) : u ∈ U},

Fε(t, v) = Eε(t, v) +Dε(v) = min{Fε(t, u, v) : u ∈ U}.

Finally, note that, if v(t) is a trajectory, the dissipation (rate of dissipated energy) is given by

dtDε(v(t)) = dvD(v(t))[v̇(t)] = 2Gc

∫
Ω

(v(t)− 1)v̇(t)/4ε+ ε∇v(t) · ∇v̇(t) dx.

In particular the dissipation depends on the state v and is linear with respect to v̇ (the latter is
indeed always the case when there exists a dissipation potential).

In the evolution, the irreversibility of the crack is given by the monotonicity constraint v(t2) ≤
v(t1) if t2 ≥ t1. Hence, given v ∈ V the set of admissible variations is the cone

Φ = {v ∈ V : v ≤ 0}.

In analogy with the un-constrained case let us define

−|∂vFε(t, v)| = min{∂vFε(t, v)[φ] : φ ∈ Φ, ‖φ‖ ≤ 1}.

Since φ = 0 is an admissible variation we always have −|∂vFε(t, v)| ≤ 0 (which is the reason for the
minus sign). Note also that Φ is weakly closed, and that it is not restrictive to choose ‖φ‖ = 1 in
the definition of the slope.

The energy Fε and its derivatives have been studied in detail in the recent work [10], the
interested reader will find there the proof of the following Lemmas which provides the properties,
corresponding to (3)-(5), employed in the existence result.
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Lemma 7.1 The energy functional Fε is of class C1 with

∂tFε(t, v) = 2t

∫
Ω

(v2 + ηε)Du(v) : CDg dx,

∂vFε(t, v) [φ] = 2

∫
Ω
vφW (Du(v)) dx+ 2Gc

∫
Ω

(v − 1)φ/4ε+ ε∇v · ∇φdx.

Proof. See Lemma 2.7 in [10].

Lemma 7.2 The functional Fε : [t0, t1]× V → [0,+∞) is of class C1 and

Fε(t, v) ≤ lim inf
m
Fε(tm, vm) for tm → t and vm ⇀ v. (42)

There exists a constant C such that

|∂vFε(t, v)[φ]− ∂vFε(t, w)[φ]|+ |∂tFε(t, v)− ∂tFε(t, w)| ≤ C‖v − w‖ (43)

for every t ∈ [t0, t1] and for every φ ∈ Φ with ‖φ‖ ≤ 1. Moreover,

|∂vFε(t, v)| ≤ lim inf
m
|∂vFε(tm, vm)| for tm → t and vm ⇀ v (44)

and
∂tFε(t, v) = lim

m
∂tFε(tm, vm) for tm → t and vm ⇀ v. (45)

Proof. For (42), (44) and (45) see Corollary 2.9 in [10]. For the Lipschitz continuity of ∂tFε and
∂vEε see respectively (2.28) and (2.36) in [10] while the continuity of ∂vDε is standard.

7.2 Evolution in the H1-norm

We use the implicit scheme of §3. Let ∆τn → 0+. Given the initial conditions tn,0 = t0 and
vn,0 = v0 ≤ 1 and known tn,k < t1 and vn,k, the updates vn,k+1 and tn,k+1 are defined by{

vn,k+1 ∈ argmin {Fε(tn,k, v) : v ∈ V, v ≤ vn,k, ‖v − vn,k‖ ≤ ∆τn},
tn,k+1 = tn,k +

(
∆τn − ‖vn,k+1 − vn,k‖

)
.

(46)

As in §3 let k̄n = sup {k : tn,k < t1}; let τn,k = k∆τn for 0 ≤ k ≤ k̄n and let Tn = k̄n∆τn ≥ (t1− t0).
Next, we define the affine interpolations (tn, vn) : [0, Tn)→ [t0, t1]×V which are Lipschitz continuous
and satisfy t′n ≥ 0 and t′n + ‖v′n‖ = 1 a.e. in (0, Tn).

Proposition 7.3 If tn,k+1 > tn,k then vn,k+1 satisfies the equilibrium condition

|∂vFε(t(τ), v(τ))| = 0. (47)

Proof. Since ‖vn,k+1 − vn,k‖ < ∆τn, the minimality of vn,k+1 implies that

lim
h→0+

Fε(t, vn,k+1 + hφ)−Fε(t, vn,k+1)

h
= 0,

which gives ∂vFε(tn,k, vn,k+1) [φ] = 0 for every φ ∈ Φ.
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Proposition 7.4 The following incremental energy estimate holds

Fε(tn,k+1, vn,k+1) ≤ Fε(tn,k, vn,k)−
∫ τn,k+1

τn,k

|∂vFε(tn,k, vn(τ))| dτ

+

∫ τn,k+1

τn,k

∂tFε(tn(τ), vn(τ)) t′n(τ) dτ + 3C‖vn,k − vn,k+1‖∆τn, (48)

where C is the Lipschitz constant appearing in (43).

Proof. We can argue exactly as in the proof of Theorem 3.2, replacing the norm ‖∂Fε(t, v)‖ with
the slope |∂vFε(t, v)| and using (43).

Proposition 7.5 Let (tn, vn) : [0, Tn) → [t0, t1] × V be given as above. Let 0 < T < lim infn Tn.

There exists a subsequence (not relabelled) such that tn
∗
⇀ t in W 1,∞(0, T ) and vn

∗
⇀ v in W 1,∞(0, T ;V).

In particular tn(τn) → t(τ) and vn(τn) ⇀ v(τ) in V if τn → τ . Moreover 0 ≤ t′ ≤ 1, v′ ≤ 0 and
‖v′‖ ≤ 1 a.e. in (0, T ).

Proof. It is sufficient to follow the proof of Proposition 3.3.

Theorem 7.6 There exists (a parametrization of) an evolution (t, v) : [0, T ]→ [t0, t1]×V such that
(t(0), v(0)) = (t0, v0), t′ ≥ 0 and ‖v′‖ ≤ 1, v′ ≤ 0; moreover

(S′) for every τ with t′(τ) > 0 it holds

|∂vFε(t(τ), v(τ))| = 0, (49)

(E′) for every τ it holds

Fε(t(τ), v(τ)) = Fε(t0, v0)−
∫ τ

0
|∂vFε(t(s), v(s))| ds+

∫ τ

0
∂tFε(t(s), v(s)) t′(s) ds . (50)

Proof. In order to prove (S′) and (E′) it is sufficient again to follow step by step the proof of
Theorem 3.4, replacing ‖∂vFε(t, v)‖ with the slope |∂vFε(t, v)| and using (44) and (45).

As a by-product we get also the convergence of the energies and then the strong convergence of
the phase field variable.

Corollary 7.7 Fε(tn(τ), vn(τ))→ Fε(t(τ), v(τ)) and then vn(τ)→ v(τ) strongly in H1(Ω)

Proof. The convergence of the energy follows from Corollary 3.5. For the strong convergence of the
phase field variable it is instead enough to observe that Eε(tn(τ), vn(τ))→ Eε(t(τ), v(τ)) if tn(τ)→
t(τ) and vn(τ) ⇀ v(τ). Since Fε(tn(τ), vn(τ))→ Fε(t(τ), v(τ)) it follows that Dε(vn(τ))→ Dε(v(τ))
from which the strong convergence of vn(τ)
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7.3 Evolution in the L2-norm

To prove the existence of an evolution with respect to the L2-norm we will follow the proof of
Theorem 2.5. With the properties listed in §7.1 it is easy to check that he hypotheses of Theorem
2.5 are fulfilled, in particular (14) holds, i.e.

∂vFε(t, v)[φ] = lim
m
∂vFε(tm, vm)[φ] for tm → t, vm ⇀ v in V and φ ∈ V. (51)

It remains to take into account the irreversibility constraint, the phase field constraint 0 ≤ v ≤ 1
and the boundary condition. It is actually enough to make few changes in the proof, contained in
§6.

Let Vh be as in §6 and let Fε,h be the restriction of Fε to Vh. For v ∈ Vh let us introduce the
slope

|∇L2 Fε,h(t, v)| = max{∂vFε,h(t, v)[φ] : φ ∈ Vh, φ ≤ 0, ‖φ‖L2 ≤ 1}.

Using (51) we have, as in Lemma 7.2, that there exists a constant Ch such that

|∇L2 Fε,h(t, v)−∇L2 Fε,h(t, w)|+ |∂tFε(t, v)− ∂tFε(t, w)| ≤ Ch‖v − w‖L2 (52)

for every t ∈ [t0, t1] and for every v, w ∈ Vh. Moreover,

|∇L2 Fε,h(t, v)| ≤ lim inf
m
|∇L2 Fε,h(tm, vm)| for tm → t and vm → v. (53)

As a consequence we can employ the minimizing movement to define a discrete evolution in each
space Vh: given th,n,0 = t0 and 0 ≤ vh,n,0 = vh,0 ≤ 1 and known th,n,k < t1 and vh,n,k, the incremental
problem for vh,n,k+1 and th,n,k+1 is given by{

vh,n,k+1 ∈ argmin {Fε,h(th,n,k, v) : v ∈ Vh, v ≤ vn,k, ‖v − vh,n,k‖L2 ≤ ∆τn},
th,n,k+1 = th,n,k +

(
∆τn − ‖vh,n,k+1 − vh,n,k‖

)
.

Let us see that vh,n,k+1 ≥ 0 even if this constraint is not explicitly imposed in the incremental
problem: by a simple truncation argument for every v ∈ V with v ≤ w we have Fε(t, v) ≥ Fε(t, v̄)
and ‖w − v‖L2 ≥ ‖w − v̄‖L2 for v̄ = max{v, 0} (it is interesting to note that in the H1-norm in
general it is not true that ‖w − v‖H1 ≥ ‖w − v̄‖H1).

Then, using (52)-(53) and following step by step the previous section we obtain for every Vh a
discrete evolution (th, vh) : [0, T ]→ [t0, t1]×Vh such that (th(0), vh(0)) = (t0, vh,0), t′h ≥ 0, ‖v′h‖ ≤ 1,
v′h ≤ 0 and 0 ≤ vh ≤ vh,0, moreover

(S′h) for every τ with t′h(τ) > 0
|∇L2 Fε,h(th(τ), vh(τ))| = 0,

(E′h) for every τ

Fε,h(th(τ), vh(τ)) = Fε,h(t0, vi,0)−
∫ τ

0
|∇L2Fε,h(th(s), vh(s))| ds

+

∫ τ

0
∂tFε,h(th(s), vh(s)) t′h(s) ds.

The final step consists in passing to the limit with respect to h. To this end we will follow
the last part of §6. Compactness does not present any particular difficulty and provides (up to
subsequences) a limit parametrization (t, v) : [0, T ] → [t0, t1] × V such that 0 ≤ t′ ≤ 1, v′ ≤ 0
and ‖v′‖L2 ≤ 1 a.e. in (0, T ). It is important to remark that (up to subsequences) vh(τ) ⇀ v(τ)
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weakly in H1 and thus strongly in L2. As a consequence the limit evolution will still satisfy also the
constraint 0 ≤ v(τ) ≤ v0. Next, to pass to the limit in (S′h) it is enough to check that

|∇L2Fε(t(τ), v(τ))| ≤ lim inf
h
|∇L2Fε,h(th(τ), vh(τ))|.

Once again, it is enough to follow §6.
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