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Abstract

We consider the problem of the minimization of the p-compliance functional
where the control variables Σ are taking among closed connected one-dimensional
sets. we prove some estimate from below of the p-compliance functional in terms
of the one-dimensional Hausdorff measure of Σ and compute the value of the
constant θ(p) appearing usually in Γ-limit functional of the rescaled p-compliance
functional.

1 Introduction

Let p > 1 be fixed and q = p/(p − 1) the conjugate exponent of p. For an open set
Ω ⊂ R and l a positive given real number, we define

Al(Ω) = {Σ ⊂ Ω, closed and connected, 0 < H1(Σ) ≤ l}.

For a nonnegative function f ∈ Lq(Ω) and Σ a compact set with positive p-capacity,
we denote by uf,Σ,Ω the weak solution of the equation{

−∆pu = f in Ω \ Σ
u = 0 in Σ ∪ ∂Ω,

(1.1)

that is u ∈ W 1,p
0 (Ω \ Σ) and∫

Ω

|∇u|p−2∇u · ∇ϕdx =

∫
Ω

fϕdx ∀ϕ ∈ W 1,p
0 (Ω \ Σ).

It is well known that by by the maximum principle, the nonnegativity of the function
f implies that of u. For f ≥ 0, the p-compliance functional is defined by

Cp(Σ, f,Ω) =

∫
Ω

fuf,Σ,Ωdx =

∫
Ω

|∇uf,Σ,Ω|pdx

= qmax

{∫
Ω

(
fv − 1

p
|∇v|p

)
dx : v ∈ W 1,p

0 (Ω \ Σ)

}
,

(1.2)

1



where q stands for the conjugate exponent of p. The minimization problem we are
dealing with is the following

min{Cp(Σ, f,Ω) : Σ ∈ Al(Ω)}. (1.3)

The existence of a minimal p-compliance configuration is just a consequence of a gen-
eralized Šverák compactness-continuity result (see [1]). In [2], authors have studied the
asymptotic behavior of the optimal set Σl of the p-compliance functional problem as
l → +∞. To fix idea, let us recall their result. Let us denote by P(Ω) the space of
all probability measures defined on Ω. We endow the space P(Ω) with the topology
generated by the weak* convergence of measures. To every set Σ ∈ Al(Ω), we associate
a probability measure on Ω, given by

µΣ =
H1xΣ

H1(Σ)

and define a functional Fl : P(Ω)→ [0; +∞] by

Fl(µ) =

{
lqCp(Σ, f,Ω) if µ = µΣ, Σ ∈ Al(Ω)

+∞ otherwise.
(1.4)

We also define a functional F by setting, for µ ∈ P(Ω)

F (µ) := θ(p)

∫
Ω

f q

µa
dx, (1.5)

where µa stands for the density of the absolutely continuous part of the measure µ and
f the right hand side of equation (1.1). The constant θ(p) is a positive and finite real
number which is defined by

θ(p) := inf{lim inf
l→+∞

lqCp(Σl, 1, Y ) : Σl ∈ Al(Y )}, (1.6)

being Y the unit square in R2.
The following theorem is the main result in [2].

Theorem 1.1. (Buttazzo-Santambrogio) Given any bounded open set Ω ⊂ R2 and a
nonnegative function f ∈ Lq(Ω), the functional defined in (1.4) Γ-converges to F as
l→ +∞ with respect to the weak* topology on P(Ω).

The constant used in [2] is equal to q−1θ(p). For the notion of Γ-convergence, one may
consults [3]. In order to have the explicit value of the functional F defined in (1.5),
we need to compute the exact value of the constant θ(p). But in [2] this value was not
available . However, authors proved that the constant is finite and bounded below by

θ(p) ≥ (2q)−q

q + 1
. (1.7)
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Finding the value of the constant θ(p) is the main motivation of our paper. Let us point
out that in the case where p = 2, the constant θ(2) is proved to be bounded above by
1
12

(in [2], this value is equal to 1
24

since our θ(2) is twice their own). Moreover authors
conjectured that θ(2) = 1

12
and the comb configuration is asymptotically optimal.

Recently, it has been proved in [4] that this conjecture holds true.

2 Estimate of θ(p) from below

In this section, we estimate from below the p-compliance functional Cp(Σ, 1,Ω) in terms
of the one-dimensional Hausdorff measure of Σ ∪ ∂Ω as made in the case p = 2 in [4].
By taking Ω as a unit square, we prove an estimate from below of the constant θ(p)
(see (2.13) in the sequel) which is better than (1.7) obtained in [2].
From now on, if Σ is a nonempty closed set in R2, we denote by

dΣ(x) = min
y∈Σ
|y − x|, x ∈ R2

the distance function to Σ. We also denote by meas(A) the two-dimensional Lebesgue
measure of the measurable set A ⊂ R2 and by H1(A) the one-dimensional Hausdorff
measure of a measurable set A ⊂ R2. Let us recall the following definition.

Definition 2.1. Let N ≥ 1 be an integer. We say that a set Σ ⊂ R2 is an N-continuum
if the following holds true

1. Σ is decomposed as

Σ =
N⋃
j=1

Σj, Σj ∩ Σk = ∅ j 6= k,

where each Σj is nonempty, compact, connected set,

2. 0 < H1(Σ) < +∞.

The following result is proved in [4].

Lemma 2.2. Let Ω ⊂ R2 be a bounded open domain with Lipschitz boundary, let M
denote the number of connected components of ∂Ω, and let Σ ⊂ Ω be N-continuum for
some N ≥ 1. For t ≥ 0, we define

At := {x ∈ Ω : dΣ∪Ω(x) < t}, (2.1)

where dσ(x) stands for the distance function to σ. Then the following estimate of the
measure of At holds

meas(At) ≤ min{meas(Ω), 2H1(Σ ∪ ∂Ω)t + (N + M)πt2} t ≥ 0.
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For convenience of notation, we set Λ := Σ∪∂Ω and L = H1(Σ∪∂Ω). Let us introduce
the following auxiliary function

B(t) := min{meas(Ω), 2Lt + (N + M)πt2}. (2.2)

From lemma 2.2 and the definition of B(t), it holds

meas(At) ≤ B(t) ≤ meas(Ω). (2.3)

Now define α to be the positive root of the equation

2Lα + (M +N)πα2 = meas(Ω)

that is

α =
meas(Ω)

L+
√
L2 + (M +N)πmeas(Ω)

. (2.4)

From the definition of α, the function B may be written in the form

B(t) =

{
2Lt+ (N +M)πt2 if 0 ≤ t ≤ α

meas(Ω) if t > α.

For the computation in next proposition, let us introduce the quantity

m := max
x∈Ω

dΛ(x). (2.5)

Clearly, meas(Am) = meas(Ω), so taking t = m in (2.3) gives

meas(Am) = B(m) = meas(Ω). (2.6)

As a consequence we have
0 < α ≤ m. (2.7)

The function B is differentiable at t for any t 6= α and

B′(t) =

{
2L+ 2(N +M)πt if 0 ≤ t < α

0 if α < t ≤ m.
(2.8)

We denote the perimeter of At in Ω by B(At,Ω)( this notation of perimeter is not usual
but we do not want to use p which is reserved for the ”p−Laplacian” operator). Then,
by the coarea formula (see [5]), we have

meas(At) =

∫ t

0

B(As,Ω) ds, t ∈ (0,m),

hence

B(At,Ω) =
d

dt
meas(At) a.e. t ∈ (0,m).

4



Proposition 2.3. Let Ω ⊂ R2 be a bounded open domain with Lipschitz boundary, let
M denote the number of connected components of ∂Ω, and let Σ ⊂ Ω be N-continuum
for some N ≥ 1. For any h : [0, α] 7→ R C1,1 function such that

h(0) = 0, h′ ≥ 0, h′′ ≤ 0 on [0, α], (2.9)

we have the following estimate:

Cp(Σ, 1,Ω) ≥ q

∫ α

0

(
h(t)− 1

p
h′(t)p

)
B′(t) dt. (2.10)

where B′ is given in (2.8) and α in (2.4).

Proof. To prove (2.10), we will construct a competitor u depending only on the distance
function to Λ. Our proof is based on the one made in [4] for the case p = 2.
Let h : [0, α] 7→ R be as in our statement (2.9) and extended by h′(α)(t− α) for t ≥ 0.
It is well known that the distance function is Lipschitzian and enjoys the property
|∇dΛ| = 1 almost everywhere. Noticing that dΛ vanishes along Λ, we consider the
competitor u as the composition of h with the distance function namely

u(x) = h(dΛ(x)), x ∈ Ω.

One can check that u ∈ W 1,p
0 (Ω \ Λ) = W 1,p

0 (Ω \ Σ) and

|∇dΛ(x)| = |h′(dΛ(x))|

for almost every x ∈ Ω. Using (1.2) with f = 1, we get

Cp(Σ, 1,Ω) ≥ q

∫
Ω

(
u(x)− 1

p
|∇u(x)|p

)
dx = q

∫
Ω

(
h(dΣ′(x))− 1

p
|h′(dΣ′(x))|p

)
dx.

Using the fact that |∇dΛ| = 1 almost everywhere and a slicing along the level sets of
the distance function, the coarea formula (see [5] ) gives

Cp(Σ, 1,Ω) ≥ q

∫ m

0

(
h(t)− 1

p
h′(t)p

)
B(At,Ω)dt,

where B(At,Ω) is the perimeter of the set At inside Ω (see (2.1) for the definition of
At). Set Hp(t) = h(t)− 1

p
h′(t)p and integrate by part, we get

Cp(Σ, 1,Ω) ≥ q

∫ m

0

Hp(t)B(At,Ω)dt

= −q
∫ m

0

H ′p(t)meas(At)dt + meas(Am)Hp(m)q−meas(A0)H(0)q

= −q
∫ m

0

H ′p(t)meas(At)dt + meas(Am)Hp(m)q
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from (2.9) and the way h is extended for all t ≥ α, we get H ′p(t) ≥ 0 for all t ∈ (0,m)
so, (2.3) yields

−H ′p(t)meas(At) ≥ −H′p(t)B(t), t ∈ (0,m).

Using this inequality, (2.8), (2.6) and (2.7), an integration by part gives

Cp(Σ, 1,Ω) ≥ −q
∫ m

0

H ′p(t)meas(At)dt + meas(Am)Hp(m)q

= q

∫ m

0

Hp(t)B
′(t) dt+ (meas(Am)− B(m))Hp(m)q

= q

∫ α

0

Hp(t)B
′(t) dt+ (meas(Am)− B(m))Hp(m)q

= q

∫ α

0

Hp(t)B
′(t) dt,

and the proof is over.

In the following result, we prove two estimates from below of the p-compliance func-
tional in terms of the one-dimensional Hausdorff measure of the set Λ (made by Dirich-
let regions and the boundary of Ω) and the number of its connected components. One
of these estimates allows to get an estimate from below of the constant θ(p).

Theorem 2.4. Let Ω ⊂ R2 be a bounded open set with Lipschitz boundary, let M
denote the number of connected components of ∂Ω, and let Σ ⊂ Ω be N-continuum for
some N ≥ 1. Then the following estimate of p-compliance holds

Cp(Σ, 1,Ω) ≥
∫ α

0

(B(α)−B(t)

B′(t)

)q
B′(t) dt. (2.11)

where α is given in (2.4) and B′ in (2.8). In particular an useful estimate can be
written as follow

Cp(Σ, 1, Y ) ≥ 2L

q + 1
αq+1 +

(N +M)(q2 + q + 2)π

(q + 1)(q + 2)
αq+2. (2.12)

As a consequence, if we choose Ω to be the unit square Y then

θ(p) = inf{lim inf
l→+∞

lqCp(Σ, 1, Y ) : Σ ∈ Al(Y )} ≥ 1

(q + 1)2q
(2.13)

Proof. The inequality (2.10) holds for every C1,1 function h satisfying (2.9), so

Cp(Σ, 1,Ω) ≥ qmax
{∫ α

0

(
h(t)− 1

p
h′(t)p

)
B′(t) dt : h satisfies (2.9)

}
. (2.14)

To find the maximizer of this problem, we first look for the maximizer of the variational
problem

max
{∫ α

0

(
h(t)− 1

p
h′(t)p

)
B′(t) dt : h(0) = 0

}
(2.15)
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and show that the solution of (2.15) satisfies (2.9). Therefore solution of (2.15) will
turn out to be a solution of (2.14). The Euler equation associated to the variational
problem (2.15) is given by{

d
dt

(
h′(t)p−1B′(t)

)
= −B′(t), t ∈ (0, α)

h(0) = 0, h′(α) = 0
. (2.16)

where B′(t) = 2(N+M)πt+2L. Integrating (2.16) from t to α and taking into account
the boundary condition (namely h′(α) = 0) we geth′(t) =

(
B(α)−B(t)

B′(t)

) 1
p−1
, t ∈ (0, α)

h(0) = 0.
(2.17)

The right hand side of (2.17) is a nice function and the solution of the equation is given
by

h(t) =

∫ t

0

(B(α)−B(s)

B′(s)

) 1
p−1

ds, t ∈ (0, α). (2.18)

The interested reader may consult [4] for the explicit function h where p = 2 replacing
N therein by N +M . The function h, critical point of (2.15), is a maximizer. In fact
from (2.18), we may notice that the function h is twice differentiable on (0, α) and
satisfies (h′(t))p−1B′(t) = B(α)−B(t), t ∈ (0, α). Therefore multiplying this relation
by h′(t), integrating by part from 0 to α and using the boundary condition h(0) = 0,
we get ∫ α

0

(h′(t))pB′(t) dt =

∫ α

0

h(t)B′(t) dt,

which shows the maximality of h. It remains to show that h satisfies the condition
(2.9) but this is straightforward since h(0) = 0, h′ > 0 on (0, α) by (2.17) and a direct
computation shows that h′′ ≤ 0 on (0, α). From (2.14) and the maximality of h, it
holds

Cp(Σ, 1,Ω) ≥ q
(p− 1

p

)∫ α

0

(h′(t))pB′(t) dt =

∫ α

0

(B(α)−B(t)

B′(t)

)q
B′(t) dt.

To prove (2.12) and (2.13), we will choose a particular function h which is not optimal
(that is not maximizer of (2.14)) but satisfies the conditions (2.9). Let take h to be
the function defined by

h(t) :=
1

q

(
αq − (α− t)q

)
t ∈ (0, α),

where α is defined in (2.4). Clearly, h satisfies (2.9). Let us point out that the function
h is the solution of the variational problem

max
{∫ α

0

(
h(t)− 1

p
h′(t)p

)
dt : h(0) = 0

}
.
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Using the relation between the conjugate exponents p and q, it holds

(h′(t)p = (α− t)p(q−1) = (α− t)q

and

h(t)− 1

p
(h′(t)p =

1

q
αq − (α− t)q.

So plugging this in (2.10), using the expression of B′(t) and integrating by part, we get

Cp(Σ, 1,Ω) ≥ αq
∫ α

0

B′(t) dt− q
∫ α

0

(α− t)qB′(t) dt

= αqB(α)− q
(

2L

∫ α

0

(α− t)q dt+ 2(M +N)π

∫ α

0

(α− t)qt dt
)

= αqB(α)− q
( 2L

q + 1
αq+1 +

2(M +N)π

(q + 1)(q + 2)
αq+2

)
.

By observing that B(α) = 2Lα + (M +N)πα2, we get

Cp(Σ, 1,Ω) ≥ 2L

q + 1
αq+1 +

(N +M)(q2 + q + 2)π

(q + 1)(q + 2)
αq+2

which proves (2.12). For (2.13), if we choose Ω to be the unit square Y and Σ ∈ Al(Y )
then meas(Ω) = 1, M = N = 1 (since Σ and ∂Y are connected) and from (2.4), we
have

α =
1

L+
√
L2 + 2π

.

The relation between L and l is given by l ≤ L ≤ l + 4 since L = H1(Σ ∪ ∂Y ),
Σ ∈ Al(Y ) and H1(∂Y ) = 4. So

α ≈ 1

2L
≈ 1

2l
as l→ +∞,

hence

lim inf
l→+∞

lqCp(Σ, 1, Y ) ≥ lim inf
l→+∞

lq
( 2L

q + 1

( 1

2l

)q+1

+
(N +M)(q2 + q + 2)π

(q + 1)(q + 2)

( 1

2l

)q+2)
=

1

(q + 1)2q
.

Taking the infimum over all sets Σ ∈ Al(Y ) yields (2.13).

3 Estimate of θ(p) from above and optimal sequence

This section deals with the estimate of the constant θ(p) from above and optimal
sequence. In fact we will prove that the reverse inequality of (2.13) holds true and the
comb structure is asymptotically optimal.
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Theorem 3.1. We have θ(p) ≤ 1
(q+1)2q

and the comb configuration is asymptotically
optimal.

Proof. To prove the Theorem, we will construct a comb configuration Σn with a one-
dimensional Hausdorff measure H1(Σn) = ln (with ln → +∞ as n → +∞) and then
show that

lim inf
n→+∞

lqnCp(Σn, 1, Y ) ≤ 1

(q + 1)2q
.

Let u be a function defined on [0, 1] by

u(t) :=

{
1
q
(1

2
)q − 1

q
(1

2
− t)q, t ∈ (0, 1

2
)

1
q
(1

2
)q − 1

q
(t− 1

2
)q, t ∈ (1

2
, 1)

. (3.1)

that we extend periodically on R with period 1. Notice that u is the explicit solution
of the p-Laplacian equation with right side 1 that is −∆pu = 1 on (0, 1) constraint to
the homogeneous Dirichlet boundary conditions at 0 and 1 (that is u(0) = u(1) = 0).
For a given integer n ≥ 1, we consider the set γn to be the union of n + 1 parallel
vertical segments of unit length (including the two vertical sides of the unit square)
uniformly distributed. Clearly this set is not connected. To make it connected, we add
one horizontal side of the unit square which give it the comb structure. We denote this
new set by Σn. The length of Σn is

ln := H1(Σn) = n+ 2 = H1(γn) + 1. (3.2)

Let vn be the weak solution of{
−∆pv = 1 in Y \ Σn

v = 0 in Σn ∪ ∂Y,

then

Cp(Σn, 1, Y ) =

∫
Y

vn(x, y) dxdy (3.3)

To estimate the integral (3.3) from above, we will compare the function vn with another
solution of the p-Laplacian equation with mixed boundary conditions (namely Dirichlet
and Neumann). Let us consider the function

un : R2 7→ R, un(x, y) := n−qu(nx),

where u is the function defined in (3.1) and q the conjugate exponent of p. An easy
computation shows that un satisfies −∆pu = 1 in Y \ Σn with homogeneous Dirichlet
condition along γn (the set γn is made of n+1 parallel line segments of unit length) and
homogeneous Neumann along the two horizontal sides of Y . Instead of homogeneous
Neumann conditions along the two horizontal sides of Y , one may consider also the
nonnegative inhomogeneous Dirichlet condition. Therefore by the maximum principle
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it holds vn ≤ un in Y \ Σn. Integrating this inequality and taking into account the
definition of un and the periodicity of u, we get∫

Y

vn(x, y) dxdy ≤
∫
Y

un(x, y) dxdy = n1−q
∫ 1/n

0

u(nx) dx = n−q
∫ 1

0

u(x) dx.

To compute the last integral, we use (3.1). From an elementary computation, we have∫ 1/2

0

u(x) dx =

∫ 1

1/2

u(x) dx =
1

q + 1

(1

2

)q+1

,

hence, recalling (3.3) we get

Cp(Σn, 1, Y ) =

∫
Y

vn(x, y) dxdy ≤ n−q

(q + 1)2q
.

Since the length of Σn is ln = n+ 2 (see (3.2)) it follows that

lqnCp(Σn, 1, Y ) ≤ 1

(q + 1)2q

(n+ 2

n

)q
.

Therefore, passing to liminf as n → +∞ in the inequality, and using the definition of
θ(p), we get

θ(p) ≤ lim inf
n→+∞

lqnCp(Σn, 1, Y ) ≤ 1

(q + 1)2q

which concludes the proof.

Remark 3.2. Combine the inequality of Theorem 3.1 and (2.13), it follows that

θ(p) =
1

(q + 1)2q
.

For the proof of Theorem 3.1, we may choose Σn to be the union of γn with the two
horizontal sides of the unit square Y instead of being the union of γn with one horizon-
tal side of the unit square. In this case, we loose the comb configuration but the set Σn

is still asymptotically optimal. the point is that the length of a side of Y we added is
asymptotically irrelevant. More generally, adding to Σn some segments (or more gen-
erally connect set) of asymptotically irrelevant length will give another asymptotically
optimal set.

Remark 3.3. The case of higher dimension is still an open problem. For this setting,
the scaling factor in the definition of θ(p) is l

q
d−1 . To get an estimate from below, one

has to find a right function h as we did in (2.12). A big deal is to find an asymptotically
optimal set which will lead to the value of θ(p).

10



References

[1] D. Bucur and P. Trebeschi, Shape optimization governed by nonlinear state equa-
tions, Proc. Roy. Soc. Edinburgh Sec: A, 128 (1998), 945-963.

[2] G. Buttazzo and F. Santambrogio, Asymptotical compliance optimization for con-
nected networks, Networks and Heterogeneous Media, Vol II, n4 (2007), 761-777.

[3] G. Dal Maso, ”An introduction to Γ-convergence“, Birkhauser, Basel, (1992).

[4] P. Tilli, Compliance estimates for two-dimensional problems with Dirichlet region
of prescribed length, Networks and Heterogeneous Media, Vol 7, n1 (2012), 127-
136.

[5] W. P. Ziemer ”Weakly differentiable functions. Sobolev Spaces and functions of
bounded variation“, Graduate texts in Mathematics, 120, Springer-Verlag, New
York, (1989).

11


