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Abstract. In this paper we prove existence and regularity results for
a class of semilinear evolution equations that are satisfied by vector
potentials associated with Maxwell’s equations in Carnot groups (con-
nected, simply connected, stratified nilpotent Lie groups). The natural
setting for these equations is provided by the so-called Rumin’s complex
of intrinsic differential forms.

1. Introduction

The aim of this paper is to prove existence of strong solutions for a class of
higher order semilinear evolution equations in Carnot groups (i.e. connected
simply connected stratified nilpotent Lie groups) satisfied by vector poten-
tials associated with “intrinsic” Maxwell’s equations in the group. These
equations, though not hyperbolic, can still be called “wave equations” be-
cause of their origin, as “equations for a vector potential”, from a class
of intrinsic Maxwell’s equations, precisely as it holds in the Euclidean set-
ting, where the vector potential associated with classical Maxwell’s equations
satisfies d’Alembert’s wave equation. Let us remind this procedure in the
Euclidean setting.

Consider the space-time R × R3 of special relativity, end we denote by
s ∈ R the time variable and by x ∈ R3 the space variable. If (Ω∗, d) is the de
Rham complex of differential forms in R×R3, classical Maxwell’s equations
can be formulated in their simplest form as follows: we fix the standard
volume form dV in R3, and we consider a 2-form F ∈ Ω2 (Faraday’s form),
that can be always written as F = ds ∧E +B, where E is the electric field
1-form and B is the magnetic induction 2-form. Then, if we assume for
sake of simplicity all “physical” constants (i.e. magnetic permeability and
electric permittivity) equal to 1, classical Maxwell’s equations become

(1) dF = 0 and d(∗MF ) = J .
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Here ∗M is the Hodge-star operator associated with the space-time Minkow-
skian metric and the volume form ds ∧ dV in R× R3, and J = ds ∧ ∗J − ρ
is a closed 3-form in R × R3, where ∗J and ρ = ρ0dV are respectively the
current density 2-form and the charge density 3-form (here ∗ is the standard
Hodge-star operator in R3 associated with the Euclidean metric and the
volume form dV ). Since dF = 0, we can always assume that F = dA, where
A (the electromagnetic potential 1-form) can be written as A = AΣ + ϕds.
If, in addition, AΣ and ϕ satisfy suitable gauge conditions, then they satisfy
the wave equations

∂2AΣ

∂s2
= −∆AΣ − J(2)

∂2ϕ

∂s2
= ∆ϕ + ρ0,(3)

where ∆AΣ in (2) is the positive Hodge Laplacian on 1-forms

∆AΣ = (d∗d+ dd∗)AΣ,

whereas ∆ϕ in (3) is the usual negative Laplacian on functions. We remind
that, in the Euclidean space, the Hodge Laplace operator ∆ acts diagonally
on 1-forms, i.e.

∆AΣ := ∆
(∑

i

AΣ,i dx
i
)

=
∑
i

(∆AΣ,i) dx
i,

so that equation (2) reduces to a system of uncoupled wave equations.
An extensive literature is dedicated to the semilinear counterpart of the

equations (2). These equations can therefore be reduced to scalar equations
of the form

(4)
∂2u

∂s2
= ∆u+ f(u),

where, typically, f(u) = −µu + |u|p−1u, with p > 1. We refer for instance
to [17], [18], [29], [1].

To state our results, we need to sketch preliminarily the basic notions and
the main results of Maxwell’s theory in Carnot groups.

A connected and simply connected Lie group (G, ·) (in general non-com-
mutative) is said a Carnot group of step κ if its Lie algebra g admits a step
κ stratification, i.e. there exist linear subspaces V1, ..., Vκ such that

g = V1 ⊕ · · · ⊕ Vκ, [V1, Vi] = Vi+1, Vκ 6= {0}, Vi = {0} if i > κ,

where [V1, Vi] is the subspace of g generated by the commutators [X,Y ] with
X ∈ V1 and Y ∈ Vi. The first layer V1, the so-called horizontal layer, plays
a key role in the theory, since it generates g by commutation.

We denote by Q the homogeneous dimension of G, i.e. we set

Q :=

κ∑
i=1

i dim(Vi).

As we shall see in Theorem 2.5, the homogeneous dimension plays a cru-
cial role in imbedding theorems for Sobolev spaces associated with Carnot
groups.
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For our purposes, it is important to remind the following definition: the
Carnot group G is said to be free if its Lie algebra is free, i.e, if the com-
mutators satisfy no linear relations other than antisymmetry and Jacobi
identity.

A Carnot group G can be always identified, through exponential coordi-
nates, with the Euclidean space (Rn, ·), where n is the dimension of g, and
(x, y) 7→ x · y is a suitable group operation in Rn. The explicit expression of
the group operation · is determined by the Campbell-Hausdorff formula.

Obviously, Euclidean spaces (Rn,+) are commutative Carnot groups, and,
more precisely, the only commutative Carnot groups. Indeed, in this case
the stratification of the algebra consists of only one layer, i.e. the Lie algebra
reduces to the horizontal layer.

In addition, throughout this paper we assume that n > 2.
For any x ∈ G, the (left) translation τx : G→ G is defined as

z 7→ τxz := x · z.

For any λ > 0, the dilation δλ : G→ G, is defined as

δλ(x1, ..., xn) = (λd1x1, ..., λ
dnxn),

where di ∈ N is called homogeneity of the variable xi in G (see [13] Chapter
1). The dilations δλ are group automorphisms, since δλx · δλy = δλ(x · y).

From now on, we use the word “intrinsic” when we want to stress a
privileged role played by the horizontal layer and by group translations and
dilations in (Rn, ·). In particular, we remind that the natural “intrinsic”
counterpart of the linear transformations in Rn is provided by the class of
the homogeneous endomorfisms of G, where, coherently, homogeneity must
be meant with respect to group translations. In exponential coordinates,
homogeneous endomorfisms are linear contact maps, i.e. linear maps that
preserve the stratification.

The Lie algebra g of G can be identified with the tangent space at the
origin e of G, and hence the horizontal layer of g can be identified with a
subspace HGe of TGe. By left translation, HGe generates a subbundle HG
of the tangent bundle TG, called the horizontal bundle. A section of HG is
called a horizontal vector field.

Among Carnot groups, the simplest but, at the same time, non-trivial
(since non-Abelian) instance is provided by Heisenberg groups HN , and in
particular by the first Heisenberg group H1. Precise definitions will be given
in a moment; let us remind that H1 is a free group of step 2 with 2 generators,
and that it is in some sense the “model” of all topologically 3-dimensional
contact structures.

The Heisenberg group HN can be identified with R2N+1, with variables
(x, y, t), x = (x1, . . . , xN ), y = (y1, . . . , yN ) ∈ RN and t ∈ R. Set Xi :=
∂xi + 2yi∂t, Yi := ∂yi − 2xi∂t, T := ∂t. The stratification of its algebra h
is given by h = V1 ⊕ V2, where V1 = span {X1, . . . , XN , Y1, . . . , YN} and
V2 = span {T}. For sake of simplicity, if N = 1, we write X := X1 and
Y = Y1.

Recently, a notion of “intrinsic” Maxwell’s equations in Carnot groups
has been introduced in a series of papers ([8], [15], [16], [3]). The setting for
these equations is provided by a subcomplex of “intrinsic” differential forms
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(E∗0 , dc) – homotopic to de Rham’s complex (Ω∗, d) – introduced by Rumin
in [28], [27], (see also [5]). The main features of this theory are sketched in
Section 4. To keep this introduction as simple as possible, from now on we
refer only to the case of free groups.

Here is important to stress that a differential 1-form α belongs to E1
0

if and only if is horizontal, i.e, if it is dual of an horizontal vector field.
In addition, when acting on intrinsic 1-forms in free Carnot groups, the
“exterior differential” dc is an operator of order κ (the step of the group) in
the horizontal derivatives. In particular, the “Hodge Laplacian” associated
with dc, i.e.

(5) δcdc + dcδc,

generally is not homogeneous (and therefore, as long as we know, we lack
Rockland type hypoellipticity results (see, e.g. [21]) and sharp a priori
estimates in a natural scale of Sobolev spaces, the so-called Folland-Stein
spaces - see Section 2). Since G is free, then dc is an homogeneous differential
operator of order κ (the step of the group) in the horizontal derivatives
when acting on 1-forms (see [16]), but the “Hodge Laplacian” fails to be
homogeneous. Indeed, on 1–forms, δcdc is an operator of order 2κ, while
dcδc is a 2nd order one.

To overcome this difficulty, we remind that in H1 (where κ = 2), M. Rumin
in [26] introduces a new homogeneous 4th order operator δcdc+ (dcδc)

2 that
satisfies sharp a priori estimates in intrinsic Folland-Stein spaces of order 4.
We apply the same idea in free groups of arbitrary step κ and we obtain
an homogeneous operator of order 2κ in the horizontal derivatives acting on
intrinsic 1-forms

∆G,1 = δcdc + (dcδc)
κ.

In [16] it is proved that ∆G,1 satisfies sharp a priori estimates of order 2κ
and is self-adjoint (see Theorem 3.12).

Consider for instance the case G = H1. We denote by θ := dt+ 1
2(y dx−

x dy) the contact form of H1. Then

E1
0,H1 = span {dx, dy};

E2
0,H1 = span {dx ∧ θ, dy ∧ θ};

E3
0,H1 = span {dx ∧ dy ∧ θ}.

The action of dc on E1
0,H1 is the following ([26], [14], [7]): let α = α1dx +

α2dy ∈ E1
0,H1 be given. Then

dc,H1α = (X2α2 − 2XY α1 + Y Xα1)dx ∧ θ
+ (2Y Xα2 − Y 2α1 −XY α2)dy ∧ θ

:= P1(α1, α2)dx ∧ θ + P2(α1, α2)dy ∧ θ.

Let us go back to general free groups of arbitrary step κ (though the fol-
lowing arguments can be carried on in more general geometric settings, like,
for instance, Heisenberg groups of higher order: see Remark 3.10 below).
Keeping in mind (1), it is natural to define Maxwell’s equations in G as
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follows: if F ∈ Ê2
0 , we call Maxwell’s equations in G the system

(6) d̂cF = 0 and d̂c(∗MF ) = J ,

where d̂c denotes the Rumin’s differential of the complex (Ê∗0 , d̂c) in the

space-time product group R × G, and d̂cJ = 0. So far, the argument may
appear as purely formal, but we notice first that the equations (6) are invari-
ant under the action of a class of suitable contact Lorentz transformations.
Moreover, it is possible to show ([3], [4]) that the equations in (6) are limits
of usual equations in a very strongly anisotropic matter.

If F is a solution of (6), then it is a closed form. Therefore it admits a
vector potential

(7) A := AΣ + ϕds ∈ Ê1
0 such that d̂cA = F,

where

∂2
sAΣ = −∆G,1AΣ − J(8)

∂2
sϕ = −(−∆G)κϕ + (−∆G)κ−1ρ0.(9)

Here ∆G :=
∑m

j=1X
2
j (= −∆G,0) is the usual subelliptic Laplacian in G,

provided the following gauge condition holds:

(10) δc(dcδc)
κ−1AΣ +

∂ϕ

∂s
= 0.

It is important to notice that the equation for AΣ cannot be diagonalized,
unlike the Euclidean case. But the main new phenomenon is that the “wave
equations” we obtain utterly differ even in the scalar case from what one
could imagine as “wave equations in the group”, i.e.

(11)
∂2ϕ

∂s2
−∆Gϕ = 0.

Indeed, in spite of the energy estimate we can obtain for the equation (8) (see
Lemma 4.7), the equations we obtain are by no means hyperbolic, by [22],
Theorem 5.5.2, since they contain second order derivatives in s and 2κ-th
order derivatives in x, so that their principal parts are (degenerate) elliptic.
Thus, we should not expect any hyperbolic behavior, as, for instance, finite
speed of propagation like in (3) (see, e.g., [25], [19]).

Existence and uniqueness results for equations (8) and (9) can be easily
deduced by means of abstract arguments (see Theorem 4.6). The aim of this
paper is to prove local existence results for the semilinear counterparts of
(8) and (9). More precisely, we prove a local existence result for the Cauchy
problem

(12)


∂2
sα+ ∆G,1α = g(α)α , in I ,

α|s=0
= α0,

αs|s=0
= α1 .

Here h(α) = g(α)α, where g : E1
0 → R is a locally Lipschitz continuous

function such that g(0) = 0 and

(13) |g(α)− g(β)| ≤ C‖α− β‖
(
1 + ‖α‖p−2 + ‖β‖p−2

)
,

for some p ≥ 1.
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Our proof relies on a classical fixed point argument, following the guide-
lines of [20]. The main theorem (see Theorem 5.3) reads as follows:

Let T ∈ R+ and set I = [0, T ]. In addition, let α0 ∈ W r,2
G (G, E1

0),
α1 ∈ L2(G, E1

0) be given, and let g satisfy (13).
Assume G is a Carnot group satisfying one of the following assumptions:

• G = H1 and p ≥ 1;
• G = HN with N > 1 and 1 ≤ p ≤ 1 + 1/N ;
• G is a free group of step κ, 2κ < Q and 1 ≤ p ≤ Q/(Q− 2κ).

Then there exists δ ∈ (0, T ], such that problem (12) has a strong solution
in [0, δ].

A couple of comments are now in order, since the range of p in cases ii)
and iii) may appear very restrictive. However, it relies on deep features of
the group. First of all, in the Sobolev imbedding theorem (see 2.5), the
homogeneous dimension Q of G plays the role of the dimension n of G as
a manifold. In general, Q >> n (in fact, Q = n only for the commutative
group (Rn,+)). But this is a well known feature of Carnot groups, affect-
ing, for instance, geometric measure theory in groups and nonlinear partial
differential equations. On the contrary, here there is another more subtle
consequence of the non-commutativity of the group that interferes with our
problem, yielding weaker results (i.e. requiring a narrower range for the
exponent p in (13)) when compared with their Euclidean counterpart: basi-
cally, we cannot expect local Strichartz-type estimates for our higher order
equations (for the Euclidean setting we refer, for instance, to [18], [23], and
to [20] and the reference therein for higher order equations). To illustrate
this phenomenon, let us restrict ourselves to the simplest case G = H1 and
consider the scalar equation (9) for the time-component of the vector po-
tential. In addition, choose ρ0 ≡ 0.

Thus, equation (9) becomes

(14) ∂2
sϕ = −(−∆G)2ϕ,

that can be written as the action of the product of two Schrödinger operators

(15) (∂s + i∆G)(∂s − i∆G)ϕ = 0.

Now, it follows from [2] that there exist traveling wave solutions of the
Schrödinger’s equation in H1

(16) (∂s + i∆G)ϕ = 0

of the form (with our notations)

(17) φλ(s;x, y, t) := f(λx, λy, λ2t− λ2s) λ > 0

for a suitable function f ∈ S(H1). Clearly, the solution φλ has Lr-norm
in H1 independent of s ∈ R for 1 ≤ r ≤ ∞. Moreover, if λ > 0, then
‖φλ‖Lr(H1) = cλ4/r, and necessarily Strichartz-type estimates fail to hold
even for short times.

On the other hand, the existence of the traveling waves (17) for Schrö-
dinger’s equation in H1 comes from another peculiar feature of Heisenberg
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groups: the existence of the so-called forbidden values α ∈ R for the differ-
ential operator

Lα = X2 + Y 2 − iαT
for which Lα has a non-trivial kernel (see [30], Chapter XIII, 2.3.2). Basi-
cally, this is due to the fact that T is at the same time a differential opera-
tor of order 1 and a second order operator with respect to group dilations.
Clearly, this phenomenon fails to hold in the Euclidean space.

Finally, we stress that, on the other side, Strichartz-type estimates hold
for the equation (11), the usual homogeneous second order wave equation
in H1 (see [2]). Thus, the lack of these estimates is originated in our case
by the combination of the structure of the group and of the order of the
equation.

2. Carnot groups

Definition 2.1. Let e1, . . . , en be a basis of g = V1⊕· · ·⊕Vκ adapted to the
stratification of g, and let X = {X1, . . . , Xn} be the family of left invariant
vector fields such that Xi(0) = ei, i = 1, . . . , n. The Lie algebra g can be
endowed with a scalar product 〈·, ·〉, making {X1, . . . , Xn} an orthonormal
basis.

From now on, we set mi := dimVi, i = 1, . . . , κ. We write also m instead
of m1.

Following [13], we also adopt the following multi-index notation for higher-

order derivatives. If I = (i1, . . . , in) is a multi–index, we setXI = Xi1
1 · · ·Xin

n .
By the Poincaré–Birkhoff–Witt theorem (see, e.g. [9], I.2.7), the differential
operators XI form a basis for the algebra of left invariant differential opera-
tors in G. Furthermore, we set |I| := i1 + · · ·+ in the order of the differential
operator XI , and d(I) := d1i1 + · · · + dnin its degree of homogeneity with
respect to group dilations.

Let now {X1, . . . , Xm} be a basis of the first layer of g, and denote by L
the associated positive sub-Laplacian

L := −
m∑
j=1

X2
j .

If 1 < p <∞ and k ≥ 0, we denote by W k,p
G (G) (the Folland-Stein Sobolev

space) the domain of Lk/2(G) in Lp(G) endowed with the graph norm (see
[12] or [13]).

We remind that

Proposition 2.2. If 1 < p < ∞ and k ≥ 0, then the space W k,p
G (G) is

independent of the choice of X1, . . . , Xm.

Proposition 2.3. If 1 < p <∞ and k ≥ 0, then D(G) is dense in W k,p
G (G).

Proposition 2.4. Let k be a positive integer, 1 ≤ p < ∞. Then W k,p
G (G)

consists of all functions f ∈ Lp(G) with distributional derivatives XIf ∈
Lp(G) for any XI with d(I) ≤ k, endowed with the natural norm.
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Theorem 2.5 ([12], Theorem 4.17 and Proposition 4.2). If 1 < p < q <∞
and α, β ≥ 0 are such that

β = α−Q
(

1

p
− 1

q

)
,

or

p = q and β < α,

then Wα,p
G (G) is continuously embedded in W β,q

G (G).

3. Differential forms in Carnot groups

In order to write our Maxwell’s equation in G, we need to use the language
of differential forms. More precisely, we need to present a class of intrinsic
differential forms, that has been introduced by Rumin in [28], [27], (see also
[5]).

The dual space of g is denoted by
∧1 g. The basis of

∧1 g, dual of the
basis {X1, . . . , Xn}, is the family of covectors {θ1, . . . , θn}. We indicate by

〈·, ·〉 also the inner product in
∧1 g that makes {θ1, . . . , θn} an orthonormal

basis. We point out that, except for the trivial case of the commutative group
Rn, the forms θ1, . . . , θn may have polynomial (hence variable) coefficients.

Following Federer (see [11], 1.3), the exterior algebras of g and of
∧1 g are

the graded algebras indicated as
∧
∗
g =

n⊕
h=0

∧
h
g and

∧∗
g =

n⊕
h=0

∧h
g

where
∧

0 g =
∧0 g = R and, for 1 ≤ h ≤ n,∧
h
g := span{Xi1 ∧ · · · ∧Xih : 1 ≤ i1 < · · · < ih ≤ n},∧h
g := span{θi1 ∧ · · · ∧ θih : 1 ≤ i1 < · · · < ih ≤ n}.

The elements of
∧
h g and

∧h g are called h-vectors and h-covectors, re-

spectively. We denote by Ωh and Ωh the spaces of all sections of
∧
h g and∧h g, respectively, for h = 0, 1, . . . , n. We refer to elements of Ωh as fields of

h-vectors and to elements of Ωh as h-forms and to (Ω∗, d) as the de Rham
complex.

We denote by Θh the basis {θi1 ∧ · · · ∧ θih : 1 ≤ i1 < · · · < ih ≤ n} of∧h g.

The dual space
∧1(

∧
h g) of

∧
h g can be naturally identified with

∧h g.

The inner product 〈·, ·〉 extends canonically to
∧
h g and to

∧h g making
the bases Xi1 ∧ · · · ∧Xih and θi1 ∧ · · · ∧ θih orthonormal.

Definition 3.1. We define linear isomorphisms (Hodge duality: see [11]
1.7.8)

∗ :
∧

h
g←→

∧
n−h

g and ∗ :
∧h

g←→
∧n−h

g,

for 1 ≤ h ≤ n, putting, for v, w ∈
∧
h g and ϕ,ψ ∈

∧h g

v ∧ ∗w = 〈v, w〉X1 ∧ · · · ∧Xn, ϕ ∧ ∗ψ = 〈ϕ,ψ〉θ1 ∧ · · · ∧ θn.
8



From now on, we refer to the n-form

dV := θ1 ∧ · · · ∧ θn
as the canonical volume form in G.

If d is the usual De Rham exterior differential, we denote by δ = d∗ its
formal adjoint in L2(G,Ω∗).

Definition 3.2. If α ∈
∧1 g, α 6= 0, we say that α has weight k, and we

write w(α) = k, if its dual vector α\ is in Vk. More generally, if α ∈
∧h g, we

say that α has weight k if α is a linear combination of covectors θi1∧· · ·∧θih
with w(θi1) + · · ·+ w(θih) = k.

Remark 3.3. As shown in [5], Remark 2.4, if α, β ∈
∧h g and w(α) 6= w(β),

then 〈α, β〉 = 0, and we have

(18)
∧h

g =

Mmax
h⊕

p=Mmin
h

∧h,p
g,

where
∧h,p g is the linear span of the h–covectors of weight p and Mmin

h ,
Mmax
h are the smallest and the largest weight of left-invariant h-covectors,

respectively. Since the elements of the basis Θh have pure weights, a basis

of
∧h,p g is given by Θh,p := Θh ∩

∧h,p g.

Keeping in mind the decomposition (18), we can define in the same way
several left invariant fiber bundles over G, that we still denote with the same

symbol
∧h,p g. Notice also that the fiber

∧h
x g (and hence the fiber

∧h,p
x g)

can be endowed with a natural scalar product 〈·, ·〉x.
We denote by Ωh,p the vector space of all smooth h–forms in G of pure

weight p, i.e. the space of all smooth sections of
∧h,p g. We set

(19) Ωh :=

Mmax
h⊕

p=Mmin
h

Ωh,p.

The following crucial property of the weight follows from Cartan identity:
see [28], Section 2.1:

Lemma 3.4. We have d(
∧h,p g) ⊂

∧h+1,p g, i.e., if α ∈
∧h,p g is a left

invariant h-form of weight p with dα 6= 0, then w(dα) = w(α).

Definition 3.5. If α =
∑

θhi ∈Θh,p αiθ
h
i ∈ Ωh,p is a smooth form of pure

weight p, then we have

dα = d0α+
κ∑
`=1

d`α,

where
d0α =

∑
θhi ∈Θh,p

αidθ
h
i

does not increase the weight, and

d`α =
∑

θhi ∈Θh,p

∑
Xj∈V`

(Xjαi) θj ∧ θhi ,
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increases the weight by ` units (` = 1, . . . κ); here κ is the step of the group.
In particular, d0 is an algebraic operator.

Definition 3.6. If 0 ≤ h ≤ n we set

Eh0 := ker d0 ∩ (Im d0)⊥ ⊂ Ωh

The elements of Eh0 are intrinsic h-forms on G. Since the construction of
Eh0 is left invariant, this space of forms can be seen as the space of sections

of a fiber subbundle of
∧h g, generated by left translation and still denoted

by Eh0 . In particular Eh0 inherits from
∧h g the scalar product on the fibers.

Moreover, there exists a left invariant orthonormal basis Ξh0 = {ξj} of Eh0
that is adapted to the filtration (18).

Since it is easy to see that E1
0 = span {θ1, . . . , θm}, without loss of gener-

ality we can take ξj = θj for j = 1, . . . ,m.

If we set Eh,p0 := Eh0 ∩ Ωh,p, then

Eh0 =
⊕
p

Eh,p0 .

We define now a (pseudo) inverse of d0 as follows:

Lemma 3.7. If β ∈
∧h+1 g, then there exists a unique α ∈

∧h g∩ (ker d0)⊥

such that d0α− β ∈ (Im d0)⊥. We set α := d−1
0 β. Notice that d−1

0 preserves
the weights.

The following theorem summarizes the construction of the intrinsic dif-
ferential dc (for details, see [28] and [5], Section 2) .

Theorem 3.8. The de Rham complex (Ω∗, d) splits in the direct sum of two
sub-complexes (E∗, d) and (F ∗, d), with

E := ker d−1
0 ∩ ker(d−1

0 d) and F := Im (d−1
0 ) + Im (dd−1

0 ).

We have

i) Let ΠE be the projection on E along F (that is not an orthogonal

projection). Then for any α ∈ Eh,p0 , if we denote by (ΠEα)j the
component of ΠEα of weight j, then

(ΠEα)p = α

(ΠEα)p+k+1 = −d−1
0

( ∑
1≤`≤k+1

d`(ΠEα)p+k+1−`
)
.(20)

ii) ΠE is a chain map, i.e.

dΠE = ΠEd.

iii) Let ΠE0 be the orthogonal projection from Ω∗ on E∗0 , then

(21) ΠE0 = Id− d−1
0 d0 − d0d

−1
0 , Π⊥E0

= d−1
0 d0 + d0d

−1
0 .

Set now

dc = ΠE0 dΠE : Eh0 → Eh+1
0 , h = 0, . . . , n− 1.

We have:

iv) d2
c = 0;

v) the complex E0 := (E∗0 , dc) is exact;
10



vi) with respect to the bases Ξ∗, the intrinsic differential dc can be seen
as a matrix-valued operator such that, if α has weight p, then the
component of weight q of dcα is given by an homogeneous differential
operator in the horizontal derivatives of order q − p ≥ 1, acting on
the components of α.

If we need to stress that the complex is built on a specific group G, we shall
denote it by (E∗0,G, dc,G), to avoid misunderstandings.

From now on, we restrict ourselves to assume G is a free group of step κ.
The technical reason for this choice relies in the following property.

Theorem 3.9 ([16], Theorem 5.9). Let G be a free group of step κ. Then
all forms in E1

0 have weight 1 and all forms in E2
0 have weight κ+ 1.

In particular, the differential dc : E1
0 → E2

0 can be identified, with re-
spect to the adapted bases Ξ1

0 and Ξ2
0, with a homogeneous matrix-valued

differential operator of degree κ in the horizontal derivatives.

Remark 3.10. When N > 1, the N -th Heisenberg group HN is not a free
group. Nevertheless, all 2-forms in E2

0 have the same weight 2.

We denote by δc = δc,G = d∗c = d∗c,G the formal adjoint of dc in L2(G, E∗0).
The following assertion holds.

Definition 3.11. If 0 ≤ h ≤ n, k ≥ 0 and 1 < p ≤ ∞, then we denote

by W k,p
G (G, Eh0 ) the space of all forms in Eh0 with coefficients in W k,p

G (G),
endowed with its natural norm. It is easy to see that this definition is

independent of the chosen basis of
∧h g.

Theorem 3.12 ([16]). Let G be a Carnot group. Suppose all intrinsic 2-
forms have the same weight N2 (by Theorem 3.9 this holds true for any free
group G of step κ, with N2 = κ + 1, but also for all Heisenberg groups HN

with N > 1 with N2 = 2, by Remark 3.10). Set N2 − 1 := r. We denote by
∆G,1 := δcdc + (dcδc)

r Rumin’s homogeneous Hodge Laplacian on intrinsic
1-forms in G.

i) ∆G,1 is maximal subelliptic, i.e. there exists C > 0 such that for any
multi–index I with d(I) = r

(22) ‖XIα‖L2(G,E1
0) ≤ C

(
〈∆G,1α, α〉L2(G,E1

0) + ‖α‖L2(G,E1
0)

)
for any α ∈ D(G, E1

0).
ii) If 1 < p < ∞ is fixed, then there exists C > 0 such that for any

multi–index I with d(I) = 2r we have

(23) ‖XIα‖Lp(G,E1
0) ≤ C

(
‖∆G,1α‖Lp(G,E1

0) + ‖α‖Lp(G,E1
0)

)
for any α ∈ D(G, E1

0) (if p = 2 this means that ∆G,1 is maximal
hypoelliptic in the sense of [21]);

iii) the unbounded operator in L2(G, E1
0)

∆G,1 with domain W 2r,2
G (G, E1

0)

is self-adjoint and nonnegative.
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Definition 3.13. If 1 ≤ h ≤ n, we say that T is a h-current on G if T is a
continuous linear functional on D(G, Eh0 ) endowed with the usual topology.
We write T ∈ D′(G, Eh0 ).

Any (usual) distribution T ∈ D′(G) can be identified canonically with an

n-current T̃ ∈ D′(G, En0 ) through the formula

(24) 〈T̃ |α〉 := 〈T |∗α〉

for any α ∈ D(G, En0 ). Reciprocally, by (24), any n-current T̃ can be iden-
tified with an usual distribution T ∈ D′(G).

Following [11], 4.1.7, we give the following definition.

Definition 3.14. If T ∈ D′(G, En0 ), and ϕ ∈ E(G, Ek0 ), with 0 ≤ k ≤ n, we

define T ϕ ∈ D′(G, En−k0 ) by the identity

〈T ϕ|α〉 := 〈T |α ∧ ϕ〉

for any α ∈ D(G, En−k0 ).

We notice that, when ϕ ∈ E(G, Ek0 ) and α ∈ D(G, En−k0 ), then the wedge
product α ∧ ϕ belongs to D(G, En0 ), since En0 = Ωn.

The following result is taken from [6], Propositions 5 and 6, and Definition
10, but we refer also to [10], Sections 17.3, 17.4 and 17.5.

If 1 ≤ h ≤ n and Ξh0 = {ξh1 , . . . , ξhdim Eh
0
} is a left invariant basis of Eh0 and

T ∈ D′(G, Eh0 ), then there exist (uniquely determined) T1, . . . , Tdim Eh
0
∈

D′(G) such that

T =
∑
j

T̃j (∗ξhj ).

It is well known that currents can be seen as forms with distributional co-
efficients in the following sense: if α ∈ E(G, Eh0 ), then α can be identified
canonically with a h-current Tα through the formula

(25) 〈Tα|ϕ〉 :=

∫
G
∗α ∧ ϕ

for any ϕ ∈ D(G, Eh0 ). Moreover, if α =
∑

j αjξ
h
j then

Tα =
∑
j

α̃j (∗ξhj )

Using the language of intrinsic currents, we can now characterize the dual
Folland-Stein Sobolev space in (E∗0 , dc) (see [5], Proposition 3.14). We state
the result only for intrinsic 1-forms and p = 2.

Proposition 3.15. We remind that E1
0 is the dual space of the first layer

of the stratification of g, and that therefore dimE1
0 = m. Moreover {θj}mj=1

is a left invariant orthonormal basis of E1
0 . Then, if k ≥ 0, the dual space(

W k,2
G (G, E1

0)
)∗

coincides with the set of all currents T ∈ D′(G, E1
0) of the

form

(26) T =

m∑
j=1

T̃j (∗θj),

12



where T̃j ∈W−k,2G (G) for all j ∈ {1, . . . ,m}. Moreover, if T is as in (26)

‖T‖
W−k,2

G (G,E1
0)
≈

m∑
j=1

‖T̃j‖W−k,2
G (G)

.

4. Space-time Carnot groups and Maxwell’s equations

From now on, we denote by x a “space” point in the Carnot group G, and
by s ∈ R the “time”, and we choose in Ĝ := R × G the canonical volume
form ds ∧ dV , where, as above, dV = θ1 ∧ · · · ∧ θn is the canonical volume
form in G.

Denote by S the vector field ∂
∂s in R × G. The Lie group Ĝ is a Carnot

group; its Lie algebra ĝ admits the stratification

(27) ĝ = V̂1 ⊕ V2 ⊕ · · · ⊕ Vκ,
where V̂1 = span {S, V1}. Since the adapted basis {X1, . . . , Xn} has been
already fixed once and for all, the associated orthonormal fixed basis for
ĝ will be {S,X1, . . . , Xn}. Consider the Lie derivative LS along S. When
acting on h-forms α in G, without risk of misunderstandings, we write Sα
for LSα.

The following structure lemma for intrinsic forms in Ĝ was proved in [8]
and also in [16].

Lemma 4.1. If 1 ≤ h ≤ n, then a h-form α belongs to Êh0 if and only if it
can be written as

(28) α = ds ∧ β + γ,

where β ∈ Eh−1
0 and γ ∈ Eh0 are respectively intrinsic (h − 1)-forms and

h-forms in G with coefficients depending on x and s.

As in special relativity, the space-time R × G can be endowed with a
Minkowskian scalar product 〈·, ·〉M in

∧
∗ ĝ and

∧∗ ĝ (see [16], Definition
4.1).

Definition 4.2. If 1 ≤ h ≤ n, we set

〈ds ∧ β + γ, ds ∧ β′ + γ′〉M := 〈γ, γ′〉 − 〈β, β′〉,
for β, β′ ∈ Eh−1

0 and γ, γ′ ∈ Eh0 . In addition, we denote by ∗M the Hodge op-

erator ∗M :
∧h ĝ→

∧n−h ĝ associated with the Minkowskian scalar product
in
∧∗ ĝ, with respect to the volume form ds ∧ dV , by

α ∧ ∗Mβ = 〈α, β〉Mds ∧ dV.
Let J be a fixed closed intrinsic n-form in R × G (a source form). We

can write J = ds∧∗J −ρ, where J = J(s, ·) is an intrinsic 1-form on G and
ρ(s, ·) = ρ0(s, ·) dV is a volume form on G for any fixed s ∈ R.

If F ∈ Ê2
0 , we call Maxwell’s equations in G the system

(29) d̂cF = 0 and d̂c(∗MF ) = J
(for sake of simplicity, we assume all “physical” constants to be 1). This
system corresponds to a particular choice of the so-called constitutive rela-
tions. We refer to [8], [16] for further comments (in particular for invariance
under suitable contact Lorentz transformation).
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If F is a solution of (29), then it is a closed form. Therefore it admits a
vector potential

(30) A := AΣ + ϕds ∈ Ê1
0 such that d̂cA = F.

Now we can define our intrinsic “wave equations” for Carnot groups sat-
isfying the assumptions of Theorem 3.12.

Theorem 4.3 ([16], Theorem 5.12). Let G be a Carnot group satisfying the

assumption of Theorem 3.12. Suppose F ∈ Ê2
0 satisfies (29). Then F = d̂cA

with A =
∑m

j=1Ajθj + ϕds := AΣ + ϕds ∈ Ê1
0 , where

∂2
sAΣ = −∆G,1AΣ − J(31)

∂2
sϕ = −(−∆G)rϕ + (−∆G)r−1ρ0,(32)

where ∆G :=
∑m

j=1X
2
j (= −∆G,0) is the usual subelliptic Laplacian in G,

provided the following gauge condition holds:

(33) δc(dcδc)
r−1AΣ +

∂ϕ

∂s
= 0.

Notice condition (33) can also be written as

(34) (−∆G)r−1δcAΣ +
∂ϕ

∂s
= 0.

Remark 4.4. The gauge condition (33) is always satisfied if we replace A by

A+ d̂cf , with f satisfying

∂2
sf = −(−∆G)rf −

(
δc(dcδc)

r−1AΣ +
∂ϕ

∂s

)
.

Remark 4.5. For sake of simplicity, suppose now ρ ≡ 0 (no charges). If,
for instance, we associate with equations (31) and (32) sufficiently regular
Cauchy data

(35)

{
AΣ|s=0 = AΣ,0,

∂AΣ
∂s |s=0

= AΣ,1;

ϕ|s=0 = ϕ0,
∂ϕ
∂s |s=0

= ϕ1,

then the statement of Theorem 4.3 can be reversed. More precisely (see [16],
Section 5 for a detailed discussion), let AΣ ∈ E1

0,H1 and ϕ satisfy (31), (32)

and (33). Assume also that they have L2-traces on s = 0 satisfying (35),
with

AΣ,1 ∈W 1,2
G (G, E1

0) and ϕ0 ∈W 2,2
G (G, ) if r > 1.

Then
F = dcA := dc(AΣ + ϕds)

satisfies Maxwell’s system (29).

In view of the self-adjointness of ∆G,1 (see Theorem 3.12, iii)), next the-
orem follows from [24], Ch. 3, Theorem 8.2.

Theorem 4.6. Let G be a Carnot group satisfying the assumptions of Theo-
rem 3.12, T ∈ R+, and set I = [0, T ]. Let α0 ∈W r,2

G (G, E1
0), α1 ∈ L2(G, E1

0)

and J ∈ L2
(
I, L2(G, E1

0)
)

be given. Then, there exists a unique strong so-
lution

α ∈ C0(I,W r,2
G (G, E1

0)) ∩ C1(I, L2(G, E1
0))
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of the linear equation

(36)

{
∂2
sα+ ∆G,1α = J, if s ∈ [0, T ] ,
α|s=0

= α0, αs|s=0
= α1 .

If, in addition, J ∈ C0
(
I,W−r,2G (G, E1

0)
)

, then α ∈ C2
(
I,W−r,2G (G, E1

0)
)

.

Lemma 4.7. Let α be a solution of (36). Then

(37) ‖α‖
C0(I,W r,2

G (G,E1
0)) + ‖∂sα‖C0(I,L2(G,E1

0)) ≤

≤ K
(√

E0(α0, α1) + T 1/2 ‖J‖L2(I,L2(G,E1
0))

)
,

where the kinetic energy E (α0, α1) is defined as

E (α0, α1) =
1

2

(
‖α0‖2W r,2

G (G,E1
0)

+ ‖α1‖2L2(G,E1
0)

)
and K does not depend on α0, α1 and J .

Proof. By the energy equality in [24], Ch. 3, Lemma 8.3, and elementary
computations, we get, for any s ∈ (0, T ],

‖α(s)‖2
W r,2

G (G,E1
0)

+ ‖∂sα(s)‖2L2(G,E1
0) ≤

≤ ‖α0‖2W r,2
G (G,E1

0)
+ ‖α1‖2L2(G,E1

0) + 2

∫ s

0
‖J(σ)‖L2(G,E1

0)‖∂sα(σ)‖L2(G,E1
0)dσ ≤

≤ ‖α0‖2W r,2
G (G,E1

0)
+ ‖α1‖2L2(G,E1

0) + 2‖∂sα‖C0(I,L2(G,E1
0))

∫ T

0
‖J(σ)‖L2(G,E1

0)dσ ≤

≤ ‖α0‖2W r,2
G (G,E1

0)
+ ‖α1‖2L2(G,E1

0) +
1

2
‖∂sα‖2C0(I,L2(G,E1

0)) + 2T‖J‖2L2(I,L2(G,E1
0)) .

Taking the supremum in the s variable, we get Eq. (37). �

5. Nonlinear equations

Our aim is to prove the existence of a local strong solution of the Cauchy
problem for the equation

(38) ∂2
sα+ ∆G,1α = h(α).

Here h(α) = g(α)α, where g : E1
0 → R is a locally Lipschitz continuous

function.

Definition 5.1. Let I an interval in R, such that 0 ∈ I, α0 ∈ W r,2
G (G, E1

0)
and α1 ∈ L2(G, E1

0). We say that α is a strong solution in I of the Cauchy
problem

(39)

{
∂2
sα+ ∆G,1α = g(α)α , in I ,

α|s=0
= α0, αs|s=0

= α1 ,

if α ∈ C0(I,W r,2
G (G, E1

0)) ∩ C1(I, L2(G, E1
0)) and satisfies (39).
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In what follows we always suppose g(0) = 0 and

(40) |g(α)− g(β)| ≤ C‖α− β‖
(
1 + ‖α‖p−2 + ‖β‖p−2

)
,

for some p ≥ 1. In particular,

|g(α)| ≤ C
(
1 + ‖α‖p−1

)
, ‖h(α)‖ ≤ C

(
1 + ‖α‖p

)
.

Lemma 5.2. Let G be a Carnot group of step κ. Then Q ≥ 2κ and equality
holds if only if G = H1 (in this case κ = 2 and Q = 4).

Proof. By definition,

Q =
κ∑
i=1

imi .

If κ = 1, the group becomes a Euclidean space of dimension greater than 2
and the statement is verified.

Suppose now κ > 1 and Q ≤ 2κ.
If κ = 2, we have

Q = m1 + 2m2 ≤ 4 ,

which is possible (since dimension is greater than 2) iff m1 = 2 and m2 = 1;
so we get Q = 2κ and G = H1.

If κ > 2, we get

m1 + (κ− 1)mκ−1 + κmκ ≤ 2κ ;

sincem1 ≥ 2 andmκ−1 ≥ 1, then 1+κ (mκ + 1) ≤ 2κ ; hence 1 ≤ κ (1−mκ),
which is impossible, since mκ ≥ 1. �

Theorem 5.3. Let G be a Carnot group satisfying the assumptions of Theo-
rem 3.12. Let T ∈ R+ and set I = [0, T ]. In addition, let α0 ∈W r,2

G (G, E1
0),

α1 ∈ L2(G, E1
0) be given, and let g satisfy (40).

Assume one of the following assumptions holds

• G = H1 and p ≥ 1;
• G = HN with N > 1 and 1 ≤ p ≤ 1 + 1/N ;
• G is a free group of step κ, 2κ < Q and 1 ≤ p ≤ Q/(Q− 2κ).

Then there exists δ ∈ (0, T ], such that problem (39) has a strong solution
in [0, δ].

Proof. First of all, set H := C0(I,W r,2
G (G, E1

0)) ∩ C1(I, L2(G, E1
0)). Our

proof follows the ideas in [20]: we consider the associated linear problem and
then we apply the Banach fixed point theorem combined with the previous
linear results.

Consider a compactly supported C∞ function η : R → [0, 1], such that
η ≡ 1 on [−1, 1], and define

h1(α) = η(‖α‖)h(α) , h2(α) =
(
1− η(‖α‖)

)
h(α) .

We observe that h1 is globally Lipschitz continuous, while h2 satisfies the
estimate

‖h2(α)‖ ≤ C (1− η(‖α‖)) (1 + ‖α‖p) ≤ C1 (1− η(‖α‖)) ‖α‖p ,
since ‖α‖ > 1 on the support of 1− η. Moreover, h1(0) = h2(0) = 0.
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Now, take α ∈ H and consider the following linear Cauchy problems

(41)

{
∂2
sβ0 + ∆G,1β0 = 0 , s ∈ I ,
β0(0) = α0 , ∂sβ0(0) = α1 .

(42)

{
∂2
sβ1 + ∆G,1β1 = h1(α) , s ∈ I ,
β1(0) = 0 , ∂sβ1(0) = 0 .

(43)

{
∂2
sβ2 + ∆G,1β2 = h2(α) , s ∈ I ,
β2(0) = 0 , ∂sβ2(0) = 0 .

By Theorem 4.6, problem (41) has a unique strong solution in H: call it
β0.

Furthermore, keeping in mind that ‖α‖ is bounded on the support of η,
we have

(44) ‖h1(α)‖2L2(I,L2(G,E1
0)) =

∫
I
‖h1(α(s))‖2L2(G,E1

0)ds ≤

≤ C
∫
I
‖α(s)‖2L2(G,E1

0)ds ≤ C T ‖α‖
2
C(I,L2(G,E1

0)) .

Thus, problem (42) has a unique strong solution in H: call it β1(α).
To prove the existence of a strong solution of (43), we must distinguish

the case G = H1 from cases ii) and iii). Indeed, suppose first G = H1. Then,
keeping in mind that Q = 4, by Theorem 2.5, if s ∈ I we have

‖α(s)‖L2p(G,E1
0) ≤ C‖α(s)‖

W
2(1−1/p),2
G (G,E1

0)
≤ C‖α(s)‖

W 2,2
G (G,E1

0)
.

Thus, since r = κ = 2, we obtain

‖h2(α)‖2L2(I,L2(G,E1
0)) =

∫
I
‖h2 (α(s)) ‖2L2(G,E1

0)ds ≤

≤ C
∫
I

(∫
G

∣∣1− η(‖α(s, x)‖)
∣∣2‖α(s, x)‖2pdx

)
ds ≤

≤ C
∫
I

(∫
G
‖α(s, x)‖2pdx

)
ds ≤ C

∫
I
‖α(s)‖2p

W 2,2
G (G,E1

0)
ds ≤

≤ CT ‖α‖2p
C0(I,W 2,2

G (G,E1
0))
.

(45)

On the other hand, in case ii), by definition r = 1, and hence Q = 2n+1 >
2r, whereas, in case iii), then r = κ, so that again Q > 2r, by Lemma 5.2.
Thus, we can apply Theorem 2.5 and we obtain

W r,2
G (G) is continuously embedded in L

2Q/(Q−2r)
G (G).
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Therefore, keeping in mind that ‖α‖ > 1 on the support of 1− η, we get

‖h2(α)‖2L2(I,L2(G,E1
0)) =

∫
I
‖h2 (α(s)) ‖2L2(G,E1

0)ds ≤

≤ C
∫
I

(∫
G

∣∣1− η(‖α(s, x)‖)
∣∣2‖α(s, x)‖2pdx

)
ds ≤

≤ C
∫
I

(∫
G
‖α(s, x)‖2pdx

)
ds ≤

≤ C
∫
I

(∫
G
‖α(s, x)‖2Q/(Q−2r)dx

)
ds ≤

≤ C
∫
I
‖α(s)‖2Q/(Q−2r)

W r,2
G (G,E1

0)
ds ≤ C2 T ‖α‖2Q/(Q−2r)

C0(I,W r,2
G (G,E1

0))
.

(46)

Thus, in any case, we obtain that, if α ∈ H, then problem (43) has a
unique strong solution in H: call it β2(α).

Set

χ : H → H , χ(α) = β0 + β1(α) + β2(α) .

We want to prove that χ maps a closed ball in H into itself and that it is
a contraction; so, by Banach fixed point theorem, the required result will
follow.

In case ii) and iii), combining (44) and (46), we get the following estimate

(47) ‖h(α)‖L2(I,L2(G,E1
0)) ≤

≤ T 1/2

(
C1 ‖α‖C1(I,L2(G,E1

0)) + C2 ‖α‖Q/(Q−2r)

C0(I,W r,2
G (G,E1

0))

)
.

Now choose M ≥ 2K
√
E0 (α0, α1), where K is the constant appearing in

Lemma 4.7. Then, if ‖α‖H ≤M , we have

(48) ‖χ(α)‖H ≤ K
(√

E0(α0, α1) + (C1 + C2)T 1/2MQ/(Q−2r)
)
.

If, for example, we choose T sufficiently small such that

(C1 + C2)T 1/2MQ/(Q−2r) <
√
E0(α0, α1) ,

we get

‖χ(α)‖H ≤ 2K
√
E0(α0, α1) ≤M .

On the other hand, in case i), equation (48) becomes

(49) ‖χ(α)‖H ≤ K
(√

E0(α0, α1) + (C1 + C2)T 1/2Mp
)
.

Choosing T sufficiently small, we get again

‖χ(α)‖H ≤M .

Thus, it remains only to prove that there exists δ ∈ (0, T ], such that χ is a

contraction in the space H defined on [0, δ]. Let α, β ∈ C0(J,W r,2
G (G, E1

0))∩
C1(J, L2(G, E1

0)), where J = [0, δ]; then,

‖h1(α)−h1(β)‖2L2(J,L2(G,E1
0)) ≤

≤ C ‖α− β‖2L2(J,L2(G,E1
0)) ≤ C δ ‖α− β‖

2
H ,

(50)
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and

‖h2(α)− h2(β)‖2L2(J,L2(G,E1
0)) ≤

≤ C
∫
J

(∫
G
‖α(s, x)− β)s, x)‖2

(
1 + ‖α‖p−1 + ‖β‖p−1

)2
dx

)
ds ≤

≤ CM,p δ ‖α− β‖2H .

(51)

Hence, remembering the definition of χ, we get

‖χ(α)−χ(β)‖H ≤ ‖h1(α)− h1(β)‖L2(J,L2(G,E1
0))

+ ‖h2(α)− h2(β)‖L2(J,L2(G,E1
0)) ≤ CM,p δ

1/2 ‖α− β‖H .

Now, if we choose δ sufficiently small, it is proved that χ is a contraction
from BM (0) ⊆ H into itself and the assertion follows. �
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