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Abstract

We establish higher differentiability results for local solutions of elliptic systems of the type

divA(x,Du) = 0

in a bounded open set in R2. The operator A(x, ξ) is assumed to be strictly monotone and Lips-
chitz continuous with respect to variable ξ. The novelty of the paper is that we allow discontinuous
dependence with respect to the x-variable, through a suitable Sobolev function.
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1 Introduction and statements

In this paper, we address the study of the higher differentiability of local solutions of quasilinear ellip-
tic systems, as well as local minimizer of convex variational integrals having quadratic growth in the
gradient, allowing discontinuous dependence with respect to the x-variable, through a suitable Sobolev
function. In order to make our presentation precise, we shall introduce and discuss our hypotheses.
We shall consider elliptic system of the form

divA(x,Du) = 0 in Ω ⊂ R2 (1.1)

acting on Sobolev mappings u ∈ W1,2(Ω,RN ), with N ≥ 1. Here Ω is a bounded open set in R2,
Du = Du(x) stands for the Jacobi matrix of u, an N × 2 matrix whose entries Dju

i are the first order
partial derivatives of the coordinate functions, A(x,Du) is an N × 2 matrix with columns A1, A2 and

divA(x,Du) =
2∑
i=1

DiAi(x,Du(x))

is interpreted as an RN valued distribution. We assume that

A(x, ξ) : Ω× RN×2 → RN×2

is a Carathéodory mapping, satisfying for positive constants α ≤ β, the following set of hypotheses:

A(x, λξ) = λA(x, ξ) (H0)
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〈A(x, ξ)−A(x, η), ξ − η〉 ≥ α|η − ξ|2 (H1)

|A(x, ξ)−A(x, η)| ≤ β|ξ − η|, (H2)

for all constant λ > 0, for almost every x ∈ Ω and all ξ, η ∈ RN×2.
Concerning the dependence on the x-variable, we shall assume that there exists a function k such that
k(x) ∈ L2(Ω) and

|A(x, ξ)−A(y, ξ)| ≤ (|k(x)|+ |k(y)|)|x− y|(1 + |ξ|) , (H3)

for almost every x, y ∈ Ω and all ξ ∈ RN×2.
The function k plays the role of the derivative of the function x → A(x, ξ) and so the assumption (H3)
serves to describe the continuity of the operator A(x, ξ) with respect to the x-variable. Obviously, this is
a weak form of continuity, since the function k may blows up at some points.
The model case we have in mind is an equation of the form

div(a(x)Du) = 0,

where a(x) is a function in the Sobolev class W1,2 ∩L∞. Typical examples of operators that exhibit the
above monotonicity and Lipschitz continuity properties arise from Euler-Lagrange systems of variational
integrals

F(v,O) =
∫
O
F (x,Dv(x)) dx (1.2)

with smooth integrand F = F (x, ξ) satisfying, for positive constants `, L and for a function k(x) ∈
L2(Ω) the following assumptions:

ξ 7→ F (x, ξ) is a strictly convex C2 function for a.e. x ∈ Ω (F1)

`|ξ|2 ≤ F (x, ξ) ≤ L|ξ|2 (F2)

〈DξξF (x, ξ)η, η〉 ≥ ν|η|2 (F3)

DξF (x, λξ) = λDξF (x, ξ) (F4)

|DξF (x, ξ)−DξF (y, ξ)| ≤ L(|k(x)|+ |k(y)|)|x− y|(1 + |ξ|) , (F5)

for all constant λ > 0, for almost every x, y ∈ Ω and all ξ ∈ RN×2.
There exists a wide literature concerning the regularity of solutions of the system (1.1) and of local
minimizers of the integral functional (1.2), in case assumptions (H3) and (F5) are replaced by

|A(x, ξ)−A(y, ξ)| ≤ ω(|x− y|)(1 + |ξ|) (H3′)

and
|DξF (x, ξ)−DξF (y, ξ)| ≤ ω(|x− y|)(1 + |ξ|) , (F5′)

respectively. In the classical setting, the function ω : [0,∞)→ [0,∞) is assumed to be Hölder continu-
ous, i.e.,

ω(ρ) = min{ρα, 1} for some (α, 1]. (1.3)

For an exhaustive treatment of the regularity of solutions of elliptic systems under the assumptions (H0)–
(H2) and (H3′), or local minimizers under the assumptions (F1)–(F4) and (F5′), we refer the interested
reader to [17, 18] and the references therein.
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In the last few years, the study of the regularity has been successfully carried out under weaker assump-
tions on the function ω(ρ), which, roughly speaking, measures the continuity of the operator A with
respect to the x-variable. In particular, in [14] (see also [10, 11]), a partial C0,α regularity result has been
established relaxing the assumption (1.3) in a continuity assumption of the type

lim
ρ→0

ω(ρ) = 0.

Very recently, the result of [14] has been extended in [4] to operators that have discontinuous dependence
on the x-variable, through a VMO coefficient. We also recall that a continuity result for solutions of
linear elliptic equations with Sobolev coefficients has been established in [27].
In [25], we established the higher differentiability of local minimizers of convex degenerate functionals,
with integrand F : Ω × RN → R, Ω ⊂ Rn, having p-growth in the gradient and depending on the
x-variable through a function in the Sobolev class W1,n. More precisely, we assumed (F5) for k ∈
Ln(Ω). The higher differentiability of the gradient of the local minimizers is obtained in the case 2 ≤
p < n, by establishing higher differentiability estimates for solutions to a class of auxiliary problems.
Such problems are constructed adding singular higher order perturbations to the integrand, following the
techniques in [5]. We took advantage from the assumption k ∈ Ln, by the use of the Sobolev imbedding
Theorem, that cannot be used in the critical growth exponent case p = n = 2.

In this paper we fill this gap, proving the following

Theorem 1.1. Let A : Ω × RN×2 → RN×2 be a Carathéodory function satisfying the assumptions
(H0)–(H3). If u ∈W1,2

loc(Ω,RN×2) is a local solution of the system (1.1), then

D2u ∈W1,p
loc(Ω,RN×2),

for any exponent p, p < 2. Furthermore, there exists a radius R0 = R0(α, β, p,N) such that, whenever
B2R ⊂ BR0 b Ω, we have the Caccioppoli type inequality∫

BR
4

|D2u|p dx ≤ c

Rp

∫
BR

|Du|p dx (1.4)

for a constant c = c(α, β, p,N).

We also have

Theorem 1.2. Let F : Ω × RN×2 → R satisfy the assumptions (F1)–(F5). If u ∈ W1,1
loc(Ω,RN×2) is a

local minimizer of the functional (1.2), then

D2u ∈W1,p
loc(Ω,RN×2)

where p is any exponent such that p < 2. Furthermore, there exists a radius R0 = R0(α, β, p,N) such
that whenever B2R ⊂ BR0 b Ω we have the Caccioppoli type inequality∫

BR
4

|D2u|p dx ≤ c

Rp

∫
BR

|Du|p dx (1.5)

for a constant c = c(α, β, p,N).
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The proof of Theorems 1.1 and 1.2 is achieved combining a suitable a priori estimate for the second
derivatives of the local solutions of the system with an approximation argument.
Our main idea in order to establish the a priori estimate is to treat the regularity of local solutions of
systems with discontinuous coefficients with the tools needed to deal with functionals satisfying (p, q)
growth conditions. Functionals with (p, q) growth conditions have been widely investigated both in the
scalar and in the vectorial setting (see for example [1, 2, 8, 9, 12, 13, 22, 23, 24, 26]).

A classical tool in order to establish the higher differentiability of the gradient is the difference
quotient method. The main difficulty here is due to the fact that we deal with the critical growth exponent
p = n = 2. Therefore, in order to obtain suitable a priori estimates, we construct test functions obtained
combining the difference quotient method with the use of the Hodge decomposition, inspired by [21]. In
fact, the difference quotient method, as usual, leads to the higher differentiability result, while the Hodge
decomposition allows us to establish the a priori estimates in a Sobolev space with less integrability than
2, so avoiding the difficulties due to the critical growth case.
Actually, this is not only a technical feature, since for the solutions of (1.1) under the assumptions (H0)–
(H3), we can not expect second derivatives in L2, as it is shown in Example 4.1. where it is constructed
a quasilinear elliptic equation that satisfying (H3) for a function k ∈ L2, having a solution u that doesn’t
belong to W1,2 .
Moreover, we’d like to point out that the assumption on k can not be weakened in order to have solutions
with second derivatives in Lp, with p arbitrarily close to 2 (see Example 4.2).
Once Theorem 1.1 is proven, Theorem 1.2 follows by noticing that local minimizers of the functional
(1.2), under the assumptions (F0)–(F5), are local solutions of the Euler Lagrange system

divDξF (x,Du) = 0

and the operator DξF (x, ξ) satisfies the assumptions (H0)–(H3).
The plan of the paper is the following. We have collected standard preliminary material in Section 2,
which at the same time serves as our reference for notation. The proofs of the higher differentiability
results stated in Theorems 1.1 and 1.2 are presented in Section 3. The examples are contained in Section
4

2 Preliminaries

For matrices ξ, η ∈ RN×n we write 〈ξ, η〉 := trace(ξT η) for the usual inner product of ξ and η, and
|ξ| := 〈ξ, ξ〉

1
2 for the corresponding euclidean norm. When a ∈ RN and b ∈ Rn we write a⊗ b ∈ RN×n

for the tensor product defined as the matrix that has the element arbs in its r-th row and s-th column.
Observe that |a ⊗ b| = |a||b|, where |a|, |b| denote the usual euclidean norms of a in RN , b in Rn,
respectively.
When F : Ω× RN×n → R is sufficiently differentiable we write

DξF (x, ξ)[η] :=
d
dt

∣∣∣
t=0

F (x, ξ + tη) and DξξF (x, ξ)[η, η] :=
d2

dt2

∣∣∣
t=0

F (x, ξ + tη)

for ξ, η ∈ RN×n.
Let us give the definition of local solution of the system (1.1) and of local minimizer of the integral (1.2):

Definition 2.1. A mapping u ∈W1,2
loc(Ω,RN ) is a local solution of the system (1.1) if
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∫
suppϕ

〈A(x,Du), Dϕ〉 dx = 0

for any O b Ω and any ϕ ∈ C∞0 (O,RN ).

Definition 2.2. A mapping u ∈W1,2
loc(Ω,RN ) is a local F–minimizer if∫

suppϕ
F (x,Du) dx ≤

∫
suppϕ

F (x,Du+Dϕ) dx

for any O b Ω and any ϕ ∈ C∞0 (O,RN ).

Now, we state a very well-known iteration lemma.

Lemma 2.3. Let Φ: [R2 , R]→ R be a bounded nonnegative function on the interval [R2 , R] whereR > 0.
Assume that for all R2 ≤ r < s ≤ R we have

Φ(r) ≤ ϑΦ(s) +A+
B

(s− r)2
+

C

(s− r)γ

where ϑ ∈ (0, 1), A, B, C ≥ 0 and 0 < γ are constants. Then there exists a constant c = c(ϑ, γ) such
that

Φ
(
R

2

)
≤ c

(
A+

B

R2
+

C

Rγ

)
See for instance [18], pp. 191–192.

2.1 Difference quotient

In order to get the higher differentiability of the solutions of system (1.1) we have to use the difference
quotient method. Therefore we introduce the following finite difference operator.

Definition 2.4. For every vector valued function F : Rn → RN the finite difference operator is defined
by

τs,hF (x) = F (x+ hes)− F (x)

where h ∈ R, es is the unit vector in the xs direction and s ∈ {1, . . . , n}.
The difference quotient is defined for h ∈ R \ {0} as

∆s,hF (x) =
τs,hF (x)

h
.

The following proposition describes some elementary properties of the finite difference operator and can
be found, for example, in [18].

Proposition 2.5. Let f and g be two functions such that F,G ∈ W 1,p(Ω; RN ), with p ≥ 1, and let us
consider the set

Ω|h| := {x ∈ Ω : dist(x, ∂Ω) > |h|} .

Then
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(d1) τs,hF ∈W 1,p(Ω) and
Di(τs,hF ) = τs,h(DiF ).

(d2) If at least one of the functions F or G has support contained in Ω|h| then∫
Ω
F τs,hGdx = −

∫
Ω
Gτs,−hF dx.

(d3) We have
τs,h(FG)(x) = F (x+ hes)τs,hG(x) +G(x)τs,hF (x).

The next result about finite difference operator is a kind of integral version of Lagrange Theorem.

Lemma 2.6. If 0 < ρ < R, |h| < R−ρ
2 , 1 < p < +∞, s ∈ {1, . . . , n} and F,DsF ∈ Lp(BR) then∫

Bρ

|τs,hF (x)|p dx ≤ |h|p
∫
BR

|DsF (x)|p dx.

Moreover ∫
Bρ

|F (x+ hes)|p dx ≤ c(n, p)
∫
BR

|F (x)|p dx.

Now, we recall the fundamental Sobolev embedding property. (For the proof see, for example, [18,
Lemma 8.2]).

Lemma 2.7. Let F : Rn → RN , F ∈ Lp(BR) with 1 < p < +∞. Suppose that there exist ρ ∈ (0, R)
and M > 0 such that

n∑
s=1

∫
Bρ

|τs,hF (x)|p dx ≤Mp|h|p,

for every h with |h| < R−ρ
2 . Then F ∈W 1,p(Bρ; RN ) ∩ L

np
n−p (Bρ; RN ). Moreover

||DF ||Lp(Bρ) ≤M

and
||F ||

L
np
n−p (Bρ)

≤ c
(
M + ||F ||Lp(BR)

)
,

with c ≡ c(n,N, p).

2.2 Hodge decomposition

We recall that for a vector field F ∈ Lp(Rn,Rn), with 1 < p < +∞, the Poisson equation

∆w = divF

is solved by a function w ∈ W1,p whose gradient can be expressed in terms of the Riesz transform as
follows

Dw = −(R⊗R)(F ).
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The tensor product operator R⊗R is the n×nmatrix whose entries are the second order Riesz transforms
Rj ◦Rk (1 ≤ j, k ≤ n) and therefore the above identity reads as

Djw = −
n∑
k=1

RjRkF
k,

where F k denotes the k − th component of the vector field F .
Setting E = −(R⊗R), since div(Dw − F ) = 0, we have that the range of the operator

B = Id−E

consists of divergence free vector fields and the Hodge decomposition of F is given by

F = E(F ) + B(F ).

When F is a N × n matrix field, then we define E(F ) and B(F ) row-wise. Then E(F ) is a N × n
matrix field whose rows are rotation free and B(F ) is a N × n matrix field whose rows are divergence
free. Standard Calderon-Zygmund theory yields Lp bounds for the operators E and B, whenever 1 <
p < +∞. However, we will need a more precise estimate, which is contained in the following stability
property of the Hodge decomposition.

Lemma 2.8. Let w ∈ W1,2−ε(R2,RN ), for 0 < ε < 1. Then there exist Φ ∈ W
2−ε
1−ε (R2; RN ) and

H ∈ L
2−ε
1−ε (R2; RN ) with divH = 0, such that

DΦ = Dw|Dw|−ε +H. (2.1)

Moreover
||DΦ||

L
2−ε
1−ε (R2;RN )

≤ cH ||Dw||1−εL2−ε(R2;RN )
(2.2)

and
||H||

L
2−ε
1−ε (R2;RN )

≤ cHε||Dw||1−εL2−ε(R2;RN )
, (2.3)

for an absolute positive constant cH .

The proof of previous Lemma is contained in [21, Theorem 4]. The fact that the constant is indepen-
dent of the dimension and of ε can be derived as in [19, Corollary 3].

3 Proof of Theorem 1.1

This section is devoted to the proof of our main result, that will be divided in two parts. In the first
one, we will establish an a priori estimate and in the second we will conclude through an approximation
procedure.

Proof of Theorem 1.1.
Step 1. The a priori estimate
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Suppose that the local solution u ∈W 2,2
loc (Ω; RN ). Let us fix a ball BR b Ω and arbitrary radii R2 < r <

s < t < λr < R, with 1 < λ < 2. Further, let us consider a cut off function ρ ∈ C∞0 (Bt) such that
ρ = 1 on Bs , |∇ρ| ≤ c

t−s and for a fixed exponent p, with 1 < p < 2, let us consider the matrix field

D(ρτs,hu)|D(ρτs,hu)|p−2.

The function ρτs,hu can be considered as a W1,p map on R2 that vanishes off Bt. Therefore, the Hodge

decomposition of Theorem 2.8 implies that there exist ψ ∈W
p
p−1

0 (Bt; RN ) andB ∈ L
p
p−1 (Bt; RN ) with

divB = 0 such that
Dψ = D(ρτs,hu)|D(ρτs,hu)|p−2 +B (3.1)

and
||Dψ||

L
p
p−1 (Bt;RN )

≤ cH ||D(ρτs,hu)||p−1
Lp(Bt;RN )

(3.2)

||B||
L

p
p−1 (Bt;RN )

≤ cH(2− p)||D(ρτs,hu)||p−1
Lp(Bt;RN )

, (3.3)

where cH is an absolute constant. Using ϕ = τs,−h(ψ) as a test function in the system (1.1), we get∫
Bt

〈A(x,Du), Dϕ〉dx = 0,

which, by virtue of (d2) of Proposition 2.5, is equivalent to the following∫
Bt

〈τs,hA(x,Du), Dψ〉dx = 0. (3.4)

We write the left hand side of (3.4) as follows∫
Bt

〈τs,hA(x,Du), Dψ〉 dx

=
∫
Bt

〈
A(x+ sh,Du(x+ sh))−A(x,Du(x)), Dψ

〉
dx

=
∫
Bt

〈
A(x+ sh,Du(x+ sh))−A(x+ sh,Du(x)), Dψ

〉
dx

+
∫
Bt

〈
A(x+ sh,Du(x))−A(x,Du(x)), Dψ

〉
dx

=
∫
Bt

〈
A(x+ sh,Du(x+ sh))−A(x+ sh,Du(x)), D(ρτs,hu)|D(ρτs,hu)|p−2

〉
dx

+
∫
Bt

〈
A(x+ sh,Du(x+ sh))−A(x+ sh,Du(x)), B

〉
dx

+
∫
Bt

〈
A(x+ sh,Du(x))−A(x,Du(x)), Dψ

〉
dx , (3.5)

where the last equality is due to the Hodge decomposition (3.1). Inserting (3.5) in (3.4), we have∫
Bt

ρ
〈
A(x+ sh,Du(x+ sh))−A(x+ sh,Du(x)), D(ρτs,hu)|D(ρτs,hu)|p−2

〉
dx
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=
∫
Bt

(ρ− 1)
〈
A(x+ sh,Du(x+ sh))−A(x+ sh,Du(x)), D(ρτs,hu)|D(ρτs,hu)|p−2

〉
dx

−
∫
Bt

〈
A(x+ sh,Du(x+ sh))−A(x+ sh,Du(x)), B

〉
dx

−
∫
Bt

〈
A(x+ sh,Du(x))−A(x,Du(x)), Dψ

〉
dx . (3.6)

The homogeneity of the operator A(x, ξ) at (H0) yields∫
Bt

〈
A(x+ sh, ρDu(x+ sh))−A(x+ sh, ρDu(x)), D(ρτs,hu)|D(ρτs,hu)|p−2

〉
dx

= −
∫
Bt

(1− ρ)
〈
A(x+ sh,Du(x+ sh))−A(x+ sh,Du(x)), D(ρτs,hu)|D(ρτs,hu)|p−2

〉
dx

−
∫
Bt

〈
A(x+ sh,Du(x+ sh))−A(x+ sh,Du(x)), B

〉
dx

−
∫
Bt

〈
A(x+ sh,Du(x))−A(x,Du(x)), Dψ

〉
dx . (3.7)

Adding to both sides of (3.7) the quantity∫
Bt

〈
A(x+ sh, ρDu(x+ sh) +∇ρ⊗ τs,hu), D(ρτs,hu)|D(ρτs,hu)|p−2

〉
dx ,

we obtain∫
Bt

〈
A(x+ sh, ρDu(x+ sh) +∇ρ⊗ τs,hu)−A(x+ sh, ρDu(x)), D(ρτs,hu)|D(ρτs,hu)|p−2

〉
dx

=
∫
Bt

〈
A(x+ sh, ρDu(x+ sh) +∇ρ⊗ τs,hu)−A(x+ sh, ρDu(x+ sh)), D(ρτs,hu)|D(ρτs,hu)|p−2

〉
dx

−
∫
Bt

(1− ρ)
〈
A(x+ sh,Du(x+ sh))−A(x+ sh,Du(x)), D(ρτs,hu)|D(ρτs,hu)|p−2

〉
dx

−
∫
Bt

〈
A(x+ sh,Du(x+ sh))−A(x+ sh,Du(x)), B

〉
dx

−
∫
Bt

〈
A(x+ sh,Du(x))−A(x,Du(x)), Dψ

〉
dx . (3.8)

The left hand side of (3.8) can be written as∫
Bt

〈
A(x+sh, ρDu(x+sh)+∇ρ⊗τs,hu)−A(x+sh, ρDu(x)), ρDu(x+sh)−ρDu(x)+∇ρ⊗τs,hu

〉
|D(ρτs,hu)|p−2

and so, the monotonicity assumption (H1) with ξ = ρDu(x+ sh) +∇ρ⊗ τs,hu and η = ρDu(x) yields
that

α

∫
Bt

|D(ρτs,hu)|p dx

≤
∫
Bt

|A(x+ sh, ρDu(x+ sh) +∇ρ⊗ τs,hu)−A(x+ sh, ρDu(x+ sh))||D(ρτs,hu)|p−1 dx
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+
∫
Bt\Bs

|A(x+ sh,Du(x+ sh))−A(x+ sh,Du(x))||D(ρτs,hu)|p−1 dx

+
∫
Bt

|A(x+ sh,Du(x+ sh))−A(x+ sh,Du(x))||B|dx

+
∫
Bt

|A(x+ sh,Du(x))−A(x,Du(x))||Dψ|dx

=: I + II + III + IV , (3.9)

where we also used the properties of ρ. In order to estimate I, we use the assumption (H2) and Young’s
inequality as follows

I ≤ β

∫
Bt\Bs

|∇ρ||τs,hu||D(ρτs,hu)|p−1 dx

≤ β

(t− s)p

∫
Bt\Bs

|τs,hu|pdx+ β

∫
Bt\Bs

|D(ρτs,hu)|p dx

≤ c
β|h|p

(t− s)p

∫
Bλr

|Du|pdx+ β

∫
Bt\Bs

|D(ρτs,hu)|p dx, (3.10)

where in last line we used Lemma 2.6. The assumption (H2) and Young’s inequality yield

II ≤ β

∫
Bt\Bs

|Du(x+ sh)−Du(x)||D(ρτs,hu)|p−1 dx

≤ β

∫
Bt\Bs

|τs,hDu|p dx+ β

∫
Bt\Bs

|D(ρτs,hu)|p dx. (3.11)

In order to estimate III, we use again the Lipschitz continuity of the operatorA(x, ξ) at (H2) and Hölder’s
inequality thus getting

III ≤ β

∫
Bt

|Du(x+ sh)−Du(x)||B| dx

≤ β

(∫
Bt

|τs,hDu|p dx
) 1
p
(∫

Bt

|B|
p
p−1 dx

) p−1
p

≤ cHβ(2− p)
(∫

Bt

|τs,hDu|p dx
) 1
p
(∫

Bt

|D(ρτs,hu)|p dx
) p−1

p

≤ 4p−1cH
βp

αp−1
(2− p)p

∫
Bt

|τs,hDu|p dx+
α

4

∫
Bt

|D(ρτs,hu)|p dx,

where we used (3.3) and Young’s inequality. Since p < 2, we have that 4p−1cH < 4cH =: c̃, for a
constant c̃ independent of p. Therefore

III ≤ c̃ βp

αp−1
(2− p)p

∫
Bt

|τs,hDu|p dx+
α

4

∫
Bt

|D(ρτs,hu)|p dx. (3.12)

In order to estimate IV, we use the assumption (H3), the fact that k(x) ∈ L2(Ω) and Hölder’s inequality
thus obtaining

IV ≤ |h|
∫
Bt

(|k(x+ sh)|+ |k(x)|)|Du(x)|Dψ| dx
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≤ |h|
(∫

Bt

|Dψ|
p
p−1 dx

) p−1
p

·
(∫

Bt

(|k(x+ sh)|+ |k(x)|)2 dx
) 1

2
(∫

BλR

|Du(x)|
2p

2−p dx
) 2−p

2p

≤ c|h|
(∫

BR

|k(x)|2 dx
) 1

2
(∫

Bt

|Dψ|
p
p−1 dx

) p−1
p
(∫

Bt

|Du(x)|
2p

2−p dx
) 2−p

2p

,

where we used Lemma 2.6 and c is an absolute constant. Using (3.2) and Young’s inequality in previous
estimate, we obtain

IV ≤ cH |h|
(∫

BR

|k(x)|2 dx
) 1

2
(∫

Bt

|D(ρτs,hu)|p dx
) p−1

p
(∫

Bt

|Du(x)|
2p

2−p dx
) 2−p

2p

≤ α

4

∫
Bt

|D(ρτs,hu)|p dx+ c̃
|h|p

αp−1

(∫
BR

|k(x)|2 dx
) p

2
(∫

Bt

|Du(x)|
2p

2−p dx
) 2−p

2

,(3.13)

where c̃ is a constant independent of p. Inserting estimates (3.10), (3.11), (3.12) and (3.13) in (3.9), we
get

α

∫
Bt

|D(ρτs,hu)|p dx

≤ α

2

∫
Bt

|D(ρτs,hu)|p dx+ 2β
∫
Bt\Bs

|D(ρτs,hu)|p dx

+ β

∫
Bt\Bs

|τs,hDu|p dx+ c̃
βp

αp−1
(2− p)p

∫
Bt

|τs,hDu|p dx

+ c̃
|h|p

αp−1

(∫
BR

|k(x)|2 dx
) p

2
(∫

Bλr

|Du(x)|
2p

2−p dx
) 2−p

2

+ c
β|h|p

(t− s)p

∫
Bλr

|Du|p dx. (3.14)

Reabsorbing the first integral in the right hand side of (3.14) by the left hand side, we have

α

2

∫
Bt

|D(ρτs,hu)|p dx ≤ 2β
∫
Bt\Bs

|D(ρτs,hu)|p dx

+ β

∫
Bt\Bs

|τs,hDu|p dx+ c̃
βp

αp−1
(2− p)p

∫
Bt

|τs,hDu|p dx

+ c̃
|h|p

αp−1

(∫
BR

|k(x)|2 dx
) p

2
(∫

Bλr

|Du(x)|
2p

2−p dx
) 2−p

2

+ c
β|h|p

(t− s)p

∫
Bλr

|Du|p dx. (3.15)

By virtue of the elementary inequality (|a|+ |b|)p ≤ 2p(|a|p + |b|p) ≤ 4(|a|p + |b|p), we get

α

2

∫
Bt

|D(ρτs,hu)|p dx ≤ 9β
∫
Bt\Bs

|τs,hDu|p dx

11



+ 8β
∫
Bt\Bs

|Dρ|p|τs,hu|p dx+ c̃
βp

αp−1
(2− p)p

∫
Bt

|τs,hDu|p dx

+ c̃
|h|p

αp−1

(∫
BR

|k(x)|2 dx
) p

2
(∫

Bλr

|Du(x)|
2p

2−p dx
) 2−p

2

+ c
β|h|p

(t− s)p

∫
Bλr

|Du|p dx

≤ 9β
∫
Bt\Bs

|Dτs,hu|p dx+ c̃
βp

αp−1
(2− p)p

∫
Bt

|τs,hDu|p dx

+ c̃
|h|p

αp−1

(∫
BR

|k(x)|2 dx
) p

2
(∫

Bλr

|Du(x)|
2p

2−p dx
) 2−p

2

+ c
β|h|p

(t− s)p

∫
Bλr

|Du|p dx+ 8β
∫
Bt\Bs

|Dρ|p|τs,hu|p dx , (3.16)

where c and c̃ are absolute constants. By the properties of ρ and Lemma 2.6, from (3.16) we infer that∫
Bs

|Dτs,hu|p dx ≤
∫
Bt

|D(ρτs,hu)|p dx

≤ 18
β

α

∫
Bt\Bs

|Dτs,hu|p dx+ c̃
βp

αp
(2− p)p

∫
Bt

|Dτs,hu|p dx

+ c̃
|h|p

αp

(∫
BR

|k(x)|2 dx
) p

2
(∫

Bλr

|Du(x)|
2p

2−p dx
) 2−p

2

+ c(α, β)
|h|p

(t− s)p

∫
Bλr

|Du|pdx . (3.17)

Using the hole filling trick of Widman, i.e. adding to both sides of (3.17) the quantity

18β
α

∫
Bt\Bs

|D(τs,hu)|p dx,

we get ∫
Bs

|D(τs,hu)|p dx ≤

≤ 18βαp−1 + c̃βp(2− p)p

18βαp−1 + αp

∫
Bt

|D(τs,hu)|p dx

+ c(α, β)|h|p
(∫

BR

|k(x)|2 dx
) p

2
(∫

Bλr

|Du(x)|
2p

2−p dx
) 2−p

2

+ c(α, β)
|h|p

(t− s)p

∫
Bλr

|Du|p dx. (3.18)

Setting

ϕ(r) =
∫
Br

|D(τs,hu)|p dx ,

12



we can write inequality (3.18) as

ϕ(s) ≤ ϑϕ(t) +A+
B

(t− s)p
,

where

ϑ =
18βαp−1 + c̃βp(2− p)p

18βαp−1 + αp
A = c(α, β)|h|p

(∫
BR

|k(x)|2 dx
) p

2
(∫

Bλr

|Du(x)|
2p

2−p dx
) 2−p

2

and

B = c(α, β)|h|p
∫
Bλr\Br

|Du|p dx .

Choosing p < 2 such that

ϑ =
18βαp−1 + c̃βp(2− p)p

18βαp−1 + αp
< 1 or, equivalently, p > 2− α

β

(
1
c̃

) 1
p

,

we are legitimate to apply Lemma 2.3 thus obtaining∫
Br

|D(τs,hu)|p dx

≤ c(α, β, p)|h|p
(∫

BR

|k(x)|2 dx
) p

2
(∫

Bλr

|Du(x)|
2p

2−p dx
) 2−p

2

+ c(α, β, p)
|h|p

(λ− 1)prp

∫
Bλr

|Du|p dx. (3.19)

By virtue of (3.19), we can apply Lemma 2.7 in order to obtain∫
Br

|Du|
2p

2−p dx ≤ c

(∫
BR

|k(x)|2 dx
) p

2−p
∫
Bλr

|Du(x)|
2p

2−p dx

+
c

(λ− 1)
2p

2−p r
2p

2−p

(∫
Bλr

|Du|p dx
) 2

2−p
(3.20)

where c = c(α, β, p,N). By the absolute continuity of the integral we can choose R0 = R0(α, β, p,N)
such that

c(α, β, p,N)

(∫
BR0

|k(x)|2 dx

) p
2−p

≤ 1
2

(3.21)

so that, if R < R0, estimate (3.20) becomes

∫
Br

|Du|
2p

2−p dx ≤ 1
2

∫
Bλr

|Du|
2p

2−p dx+
c(α, β, p,N)

(λ− 1)
2p

2−p r
2p

2−p

(∫
Bλr

|Du|p dx
) 2

2−p
. (3.22)

13



Since estimate (3.22) is valid for radii R2 < r < λr < R < R0 for any λ > 1, the iteration Lemma 2.3

with ϕ(r) =
∫
Br
|Du|

2p
2−p dx and ϑ = 1

2 implies∫
BR

2

|Du|
2p

2−p dx ≤ c(α, β, p,N)

R
2p

2−p

(∫
BR

|Du|p dx
) 2

2−p
. (3.23)

In view of (3.23) and (3.21) and by the arbitrariness of the ballBR ⊂ BR0 , estimate (3.19) can be written
as follows ∫

BR
4

|D(τs,hu)|p dx ≤ |h|p c(α, β, p,N)
Rp

∫
BR

|Du|p dx (3.24)

and therefore, by the use of Lemma 2.7, we conclude with the estimate∫
BR

4

|D2u|p dx ≤ c(α, β, p,N)
Rp

∫
BR

|Du|p dx . (3.25)

Step 2. The approximation
Fix a compact set Ω′ b Ω, and for a smooth kernel φ ∈ C∞c (B1(0)) with φ ≥ 0 and

∫
B1(0)φ = 1, let us

consider the corresponding family of mollifiers (φε)ε>0 and put

kε = k ∗ φε

and
Aε(x, ξ) =

∫
B1

φ(ω)A(x+ εω, ξ) dω (3.26)

on Ω′ for each positive ε < dist (Ω′,Ω). The assumptions (H0)–(H2) imply that

Aε(x, λξ) = λAε(x, ξ) (A0)

〈Aε(x, ξ)−Aε(x, η), ξ − η〉 ≥ α|η − ξ|2 (A1)

|Aε(x, ξ)−Aε(x, η)| ≤ β|ξ − η| (A2)

By virtue of assumption (H3), we have that

|Aε(x1, ξ)−Aε(x2, ξ)| ≤ (|kε(x1)|+ |kε(x2)|)|x1 − x2|(1 + |ξ|) . (A3)

for almost every x1, x2 ∈ Ω and for all ξ, η ∈ RN×2. Let u be a local solution of the system (1.1) and
let fix a ball BR b BR0

2

⊂ Ω′, where R0 is the radius determined in previous step. Let us denote by

uε ∈W1,2(BR) the solution of the Dirichlet problem
divAε(x,Dv) = 0 in BR

v = u on ∂BR .

(Pε)

It is well known that uε ∈W2,2
loc(BR; RN ) and, sinceAε satisfies conditions (A0)–(A3), for ε sufficiently

small, we are legitimate to apply estimate (3.25) to get∫
B r

4

|D2uε|p dx ≤ c(α, β, p,N)
rp

∫
Br

(|Duε|p) dx , (3.27)
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for every ball Br b BR. By the inequality (A1) and using that uε solves the problem (Pε), we get that

α

∫
BR

|Duε|2dx ≤
∫
BR

〈Aε(x,Duε), Duε〉dx

=
∫
BR

〈Aε(x,Duε), Du〉 dx ≤ β
∫
Br

|Duε||Du|dx

≤ α

2

∫
BR

|Duε|2dx+ c(α, β)
∫
BR

|Du|2 dx , (3.28)

where we also used (A2) and Young’s inequality. Reabsorbing the first integral in the right hand side of
(3.28) by the left hand side we obtain∫

BR

|Duε|2dx ≤ c(α, β)
∫
BR

|Du|2 dx , (3.29)

i.e., the sequence (Duε) is bounded in L2(BR,RN ). Therefore, there exists a not relabeled sequence uε
such that

uε ⇀ v weakly in W1,2(BR; RN ).

Our next aim is to prove that the sequence Duε converge to Dv in measure, i.e we shall prove that for
every η, λ > 0, there exists ν = ν(η, λ) such that

|{x ∈ BR : |Duε −Duε′ | > λ}| < η, (3.30)

for every ε and ε′ in (0, ν). For some B > 1, let us define the sets

E1 = {x ∈ BR : |Duε| > B} ∪ {x ∈ BR : |Duε′ | > B},
E2 = {x ∈ BR : |Duε| ≤ B, |Duε′ | ≤ B, |Duε −Duε′ | > λ}.

Obviuosly, we have
{x ∈ BR : |Duε −Duε′ | > λ} ⊂ E1 ∪ E2.

Since, by (3.29), the following estimate holds

||Duε||L2(BR) ≤ c(α, β)||Du||L2(BR) := C,

we have that |E1| < η
2 , for B ≥ C

√
2
η , independently of ε, ε′. So from now on, we will suppose that

B = 2C
√

2
η . The definition of Aε and elementary calculations yield

〈Aε(x,Duε)−Aε′(x,Duε′), Duε −Duε′〉

≥ α|Duε −Duε′ |2 − |ε− ε′| |kε + kε′ ||Duε||Duε −Duε′ |

and so, integarting previous estimate over the set E2, we get

α

∫
E2

|Duε −Duε′ |2dx

15



≤
∫
E2

〈Aε(x,Duε)−Aε′(x,Duε′), Duε −Duε′〉 dx

+ |ε− ε′|
∫
E2

|kε + kε′ ||Duε||Duε −Duε′ | dx

≤
∫
E2

〈Aε(x,Duε)−Aε′(x,Duε′), Duε −Duε′〉 dx

+
α

2

∫
E2

|Duε −Duε′ |2dx+ c|ε− ε′|2
∫
E2

|kε + kε′ |2|Duε|2 dx , (3.31)

where we used Young’s inequality. Reabsorbing the second integral in the right hand side of (3.31) by
the left hand side and using the definition of E2, we deduce that

α

2

∫
E2

|Duε−Duε′ |2dx

≤
∫
E2

〈Aε(x,Duε)−Aε′(x,Duε′), Duε−Duε′〉dx+ cB2|ε−ε′|2
∫
BR

(k2
ε + k2

ε′) dx

≤
∫
E2

〈Aε(x,Duε)−Aε′(x,Duε′), Duε−Duε′〉dx+ c
|ε−ε′|2

η

∫
BR

(k2
ε + k2

ε′)dx, (3.32)

where, in the last inequality, we used that B = 2C
√

2
η . We can verify, as in [3], that E2 is a compact

set. In order to estimate the first integral in the right hand side of (3.32), let us denote by E2,t, for every
t > 0, the set E2,t = {x ∈ E2 : dist(x, ∂E2) > t}. Consider the subset Lt = E2, t

2
\ E2,t and a smooth

cut-off function ψt ∈ C∞0 (E2, t
2
; [0, 1]) such that ψt = 1 on E2,t. As the thickness of the strip Lt is

of order t, we have an upper bound of the form ||∇ψt||∞ ≤ c
t . Using ψt(uε − uε′) as test function in

problems (Pε) and (Pε′), we get∫
E2

〈Aε(x,Duε)−Aε′(x,Duε′), Duε −Duε′〉dx

=
∫
E2,t

〈Aε(x,Duε)−Aε′(x,Duε′), ψt(Duε −Duε′)〉dx

+
∫
E2\E2,t

〈Aε(x,Duε)−Aε′(x,Duε′), Duε −Duε′〉dx

=
∫
E

2, t2

〈Aε(x,Duε)−Aε′(x,Duε′), ψt(Duε −Duε′)〉dx

+
∫
E2\E2,t

〈Aε(x,Duε)−Aε′(x,Duε′), Duε −Duε′〉dx

−
∫
E

2, t2
\E2,t

〈Aε(x,Duε)−Aε′(x,Duε′), ψt(Duε −Duε′)〉dx

= −
∫
E

2, t2

〈Aε(x,Duε)−Aε′(x,Duε′),∇ψt(uε − uε′)〉dx

+
∫
E2\E2,t

〈Aε(x,Duε)−Aε′(x,Duε′), Duε −Duε′〉dx
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−
∫
E

2, t2
\E2,t

〈Aε(x,Duε)−Aε′(x,Duε′), ψt(Duε −Duε′)〉dx

≤ c

t

∫
E2

|Aε(x,Duε)−Aε′(x,Duε′)||uε − uε′ |dx

+ 2B
∫
E2\E2,t

|Aε(x,Duε)−Aε′(x,Duε′)|dx

+ 2B
∫
E

2, t2
\E2,t

|Aε(x,Duε)−Aε′(x,Duε′)|dx

≤ cB

t

∫
E2

|uε − uε′ |dx+ cB2
(
|E2 \ E2,t|+ |E2, t

2
\ E2,t|

)
, (3.33)

where we used that |Duε| ≤ B and |Duε′ | ≤ B on the set E2. Using Hölder’s inequality and that

B = 2C
√

2
η in (3.33), we obtain∫

E2

〈Aε(x,Duε)−Aε′(x,Duε′), Duε −Duε′〉dx

≤ c

t
√
η

(∫
BR

|uε − uε′ |2dx
) 1

2

+
c

η
(|E2 \ E2,t|+ |E2, t

2
\ E2,t|)

≤ c

t
√
η

(∫
BR

|uε − uε′ |2dx
) 1

2

+
ct

η
, (3.34)

where in the last line we used that the thickness of the strips E2 \ E2,t and E2, t
2
\ E2,t is of order t.

Choosing t = η2λ and inserting estimate (3.34) in (3.32), we finally obtain

α

2

∫
E2

|Duε −Duε′ |2dx ≤ c

η2√ηλ
||uε − uε′ ||2 + cηλ+ c

|ε− ε′|2

η

∫
BR

(k2
ε + k2

ε′)dx

≤ c

η2√ηλ
||uε − uε′ ||2 + cηλ+ c(||k||2)

|ε− ε′|2

η
, (3.35)

where we used that limε ||kε||2 = ||k||2. The strong convergence of the sequence uε in L2 implies that
there exists ν(η, λ) such that for every ε, ε′ < ν we have

α

2

∫
E2

|Duε −Duε′ |2dx ≤ cηλ, (3.36)

and hence (3.30) follows. The convergence in measure of (Duε) together with the weak convergence of
(Duε) to Dv in L2(BR,RN ) implies that

Duε → Dv strongly in Lp(BR,RN ), (3.37)

for every 1 < p < 2. Next we show that v solves the Dirichlet problem
divA(x,Dv) = 0 in BR

v = u on ∂BR .

(P)
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In fact, for every test function ϕ ∈ C∞0 (BR; RN ), we have∣∣∣∣∫
BR

〈A(x,Dv), Dϕ〉dx
∣∣∣∣

≤
∣∣∣∣∫
BR

〈A(x,Dv), Dϕ〉dx−
∫
BR

〈Aε(x,Dv), Dϕ〉 dx
∣∣∣∣

+
∣∣∣∣∫
BR

〈Aε(x,Dv), Dϕ〉 dx−
∫
BR

〈Aε(x,Duε), Dϕ〉dx
∣∣∣∣

≤ ||Dϕ||∞
{
ε
(∫

BR

(|k|2 + |k|2ε) dx
) 1

2
(∫

BR

|Dv|2 dx
) 1

2 + β

∫
BR

|Dv −Duε| dx
}

(3.38)

where we used that ∫
BR

〈Aε(x,Duε), Dϕ〉 dx = 0.

Since Duε → Dv strongly in Lp(BR,RN ), taking the limit as ε→ 0 in (3.38) we obtain∫
BR

〈A(x,Dv), Dϕ〉dx = 0.

Since v = u on ∂BR in the sense of traces, we can use u − v as a test function in the system thus
obtaining

α

∫
BR

|Du−Dv|2 dx ≤
∫
BR

〈A(x,Dv)−A(x,Du), Du−Dv〉dx = 0

and therefore

u ≡ v in BR.

By passing to the limit as ε↘ 0 in (3.27), thanks to Fatou’s Lemma and (3.37), we finally get∫
B r

2

|D2u|p dx ≤ c(α, β, p,N)
rp

∫
Br

|Du|p dx (3.39)

which is the conclusion.

Now, we give the proof of Theorem 1.2.

Proof of Theorem 1.2. Let u be a local minimizer of the functional (1.2). It is well known that, thanks to
the assumptions (F1)-(F2), u is a local solution of the Euler Lagrange system

divDξF (x,Du) = 0.

One can easily check that the operator DξF (x, ξ) satisfies the assumptions (H0)–(H3) and we conclude
by virtue of Theorem 1.1.
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4 Examples

Our first example shows that the conclusion of Theorem 1.1 is sharp. In fact, for the second derivatives
of the solution of the system (1.1) one can not expects better integrability than Lp, for p arbitrarily close
to 2. In fact we have the following

Example 4.1. There exists a linear elliptic equations whose coefficients matrix satisfies assumptions
(H0)–(H3) for a function k ∈ L2(B 1

e
), that admits a solution u ∈W2,p(B 1

e
), for every p < 2 but

u 6∈W2,2(B 1
e
).

Proof. Let us consider the function u : B
(
0, 1

e

)
→ R defined as

u(x1, x2) = x1(1− log |x|)

Define the matrix

A(x) =



log |x|−1
log |x| + 2 log |x|−1

log |x|(log |x|−1)
x2
2
|x|2 − 1

log |x|−1
x1x2
|x|2

− 1
log |x|−1

x1x2
|x|2

log |x|−1
log |x| + 2 log |x|−1

log |x|(log |x|−1)
x2
1
|x|2


One can easily check that the operator A : (x, η) ∈ B 1

e
× R2 → A(x) · η ∈ R2 satisfies the following :

〈A(x, ξ)−A(x, η), ξ − η〉 ≥ 1
2
|ξ − η|2 (H1)

|A(x, ξ)−A(x, η)| ≤ 2|ξ − η| (H2)

and
|A(x1, ξ)−A(x2, ξ)| ≤ (|k(x1)|+ |k(x2)|)|x1 − x2|(1 + |ξ|) . (H3)

where k is defined as
k(x) =

1
|x|

1
1− log |x|

.

Notice that k ∈ L2(B 1
e
), and, since

|D2u| ' 1
|x|
,

we have that u ∈W2,p(B 1
e
) for every p < 2, but

u 6∈W2,2(B 1
e
).

Our second example shows that the assumption k(x) ∈ L2 in Theorem 1.1 is sharp in order to obtain
that the second derivatives of the solution of the system (1.1) have degree of integrability arbitrarily close
to 2. In fact we have the following
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Example 4.2. There exists a linear elliptic equations whose coefficients matrix satisfies assumptions

〈A(x, ξ)−A(x, η), ξ − η〉 ≥ α|η − ξ|2 (H1)

|A(x, ξ)−A(x, η)| ≤ 1
α
|ξ − η| (H2)

for a fixed α ∈ (0, 1). Moreover

|A(x1, ξ)−A(x2, ξ)| ≤ (|k(x1)|+ |k(x2)|)|x1 − x2|(1 + |ξ|) (H3)

for a function k ∈ Lp(B 1
e
), for every p < 2. Furthermore the equation

divA(x)∇u = 0

admits a solution u ∈W2,p(B 1
e
), for every

p <
2

2− α
.

Proof. Let us consider the function u : B(0, 1)→ R defined as

u(x1, x2) = x1|x|α−1

for a fixed α ∈ (0, 1). Let us define the matrix A(x) as

A(x) =


1
α + α2−1

α
x2
2
|x|2 − α2−1

α
x1x2
|x|2

−α2−1
α

x1x2
|x|2

1
α + α2−1

α
x2
1
|x|2


One can easily check that

div(A(x)∇u) = 0

and
α|ξ|2 ≤ 〈A(x)ξ, ξ〉 ≤ 1

α
|ξ|2 .

Moreover
|A(x1, ξ)−A(x2, ξ)| ≤ (|k(x1)|+ |k(x2)|)|x1 − x2|(1 + |ξ|) (H3)

for the function
k(x) ' 1

|x|

and therefore k ∈ Lp(B 1
e
), for every p < 2. For the function u, we have that

|D2u| ' |x|α−2,

hence for the second derivatives of u, there is no better integrability than Lq, for q < 2
2−α .
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elliptic problems with VMO-coefficients, Proc. London Math. Soc. (2011), 1–34.

[5] M. Carozza, J. Kristensen and A. Passarelli di Napoli . Higher differentiability of minimizers of
convex variational integrals. Ann. Inst. H. Poincaré Anal. Non Linéaire 28 (2011), no. 3, 395–
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