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Abstract. We provide a geometric characterization of rigidity of equality cases in
Ehrhard’s symmetrization inequality for Gaussian perimeter. This condition is formu-
lated in terms of a new measure-theoretic notion of connectedness for Borel sets, inspired
by Federer’s definition of indecomposable current.

1. Introduction

1.1. Overview. Symmetrization inequalities are among the most basic tools used in the
Calculus of Variations. The study of their equality cases plays a fundamental role in the
explicit characterization of minimizers, thus in the computation of optimal constants in
geometric and functional inequalities. Although it is usually easy to derive useful necessary
conditions for equality cases, the analysis of rigidity of equality cases (that is, the situ-
ation when every set realizing equality in the given symmetrization inequality turns out
to be symmetric) is a much subtler issue. Two deep results that provide sufficient condi-
tions for the rigidity of equality cases are Brothers-Ziemer theorem concerning Schwartz’s
symmetrization inequality for the Dirichlet-type integral functionals [BZ88], and Chleb́ık-
Cianchi-Fusco theorem, concerning Steiner’s symmetrization inequality for distributional
perimeter [CCF05] (see [BCF13] for an extension of this last result to higher dimensional
Steiner’s symmetrization). In this paper we introduce a new point of view on rigidity
of equality cases, that will allow us to provide characterizations of rigidity (rather than
merely sufficient conditions) in various situations.

We address the case of Ehrhard’s symmetrization inequality for Gaussian perimeter.
Ehrhard’s symmetrization is a powerful device in the analysis of geometric variational
problems in the Gauss space, the versatility of which is well-known in Probability Theory.
Rigidity of equality cases for Ehrhard’s inequality is an open problem, even at the level of
finding sufficient conditions for rigidity. We shall completely solve the rigidity problem, by
providing a geometric characterization of rigidity of equality cases. This characterization
is formulated in terms of a measure-theoretic notion of connectedness, meaningful in the
very general context of Borel sets, and inspired by the notion of indecomposable current
adopted in Geometric Measure Theory; see [Fed69, 4.2.25]. Moreover, as we shall explain
later on, the ideas and techniques developed here are not specific to the Gaussian setting,
and open the possibility to obtain similar results in other frameworks.

The rest of this introduction is organized as follows. In section 1.2 we introduce Gaussian
perimeter, together with the Gaussian isoperimetric problem. This important variational
problem motivates the notion of Ehrhard’s symmetrization, presented in section 1.3. In
sections 1.4 and 1.5 we introduce, respectively, the rigidity problem for Ehrhard’s inequal-
ity, and the measure-theoretic notion of connectedness we shall exploit in its solution. In
section 1.6 we state our main result, Theorem 1.3, together with its proper reformula-
tion in the planar setting. Finally, in section 1.7, we quickly illustrate the application of
our methods to Steiner’s symmetrization inequality, referring to the forthcoming paper
[CCDPM13] for a complete discussion of this last problem.
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1.2. Gaussian perimeter and the Gaussian isoperimetric problem. We introduce
our setting. Given a Lebesgue measurable set E ⊂ Rn, we define its Gaussian volume as

γn(E) =
1

(2π)n/2

∫
E
e−|x|2/2 dx .

If n ≥ k ≥ 1, the k-dimensional Gaussian-Hausdorff measure of a Borel set S ⊂ Rn is

Hk
γ(S) =

1

(2π)k/2

∫
S
e−|x|2/2 dHk(x) ,

where Hk denotes the k-dimensional Hausdorff measure on Rn. (In this way, γn = Hn
γ

and Hk
γ(S) = 1 whenever S is a k-dimensional plane containing the origin.) The Gaussian

perimeter of an open set E with Lipschitz boundary is then defined as

Pγ(E) = Hn−1
γ (∂E) =

1

(2π)(n−1)/2

∫
∂E

e−|x|2/2 dHn−1(x) . (1.1)

The most basic geometric variational problem in the Gauss space is, of course, the Gauss-
ian isoperimetric problem, which consists in the minimization of Gaussian perimeter at
fixed Gaussian volume. As it turns out, (the only) isoperimetric sets are half-spaces.
The Gaussian isoperimetric theorem can be translated into a geometric inequality, with
a characterization of equality cases. Indeed, if we define Φ : R ∪ {±∞} → [0, 1] and
Ψ = Φ−1 : [0, 1] → R ∪ {±∞} by setting

Φ(t) =
1√
2π

∫ ∞

t
e−s2/2 ds , t ∈ R ∪ {±∞} , (1.2)

then Φ(t) is the Gaussian volume of an half-space lying at “signed distance” t from the
origin (more precisely, Φ(t) = γn({x1 > t}) for every t ∈ R). It is thus clear that, given

λ ∈ (0, 1), e−Ψ(λ)2/2 is the Gaussian perimeter of any half-space of Gaussian volume λ,
and thus the Gaussian isoperimetric inequality takes the form

Pγ(E) ≥ e−Ψ(γn(E))2/2 , (1.3)

with equality if and only if, up to rotations keeping the origin fixed, E is an half-space
with the suitable Gaussian volume, that is

E =
{
x ∈ Rn : xn > Ψ(γn(E))

}
.

Inequality (1.3) was first proved by Borell [Bor75] and by Sudakov and Cirel’son [SC74].
Alternative proofs, either of probabilistic [BL95, Bob97, Led98, BM00] or geometric [Ehr83,
Ehr84, Ehr86] nature, have been proposed during the years, although the characterization
of equality cases has been obtained only recently, by probabilistic methods, by Carlen and
Kerce [CK01]. Finally, a characterization of equality cases, and a stability inequality with
sharp decay rate, were obtained in [CFMP11] building on the symmetrization methods
introduced by Ehrhard in [Ehr83]. In passing, let us mention that the study of stability
issues for Gaussian isoperimetry still poses some difficult questions; see [MN12] for some
recent progresses in this direction.

Let us notice that the natural domain of validity of the Gaussian isoperimetric inequality,
and, in fact, of Ehrhard’s symmetrization technique, is much broader than what we have
explained so far. Indeed, Gaussian perimeter can be defined for every Lebesgue measurable
set E ⊂ Rn by setting

Pγ(E) = Hn−1
γ (∂eE) ∈ [0,∞] .

We recall that the essential boundary ∂eE of E is defined as

∂eE = Rn \
(
E(0) ∪ E(1)

)
,
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Figure 1.1. Ehrhard’s symmetrization amounts in replacing the vertical sec-

tions of a set with vertical half-lines with same Gaussian length and positive ori-

entation. Note that, in this picture, the non-trivial vertical sections Ez of E are

constantly equal to a same segment. The corresponding sections Es
z of Es are thus

constantly equal to the half-line of Gaussian length H1
γ(Ez).

where, given t ∈ [0, 1], E(t) denotes the set of points of density t of E,

E(t) =
{
x ∈ Rn : lim

r→0+

Hn(E ∩B(x, r))

ωn rn
= t

}
,

and ωn is the volume of the Euclidean unit ball of Rn. If E is an open set with Lipschitz
boundary, then we trivially have ∂eE = ∂E, and thus this new definition of Pγ(E) provides
a coherent extension of (1.1). In general, if Pγ(E) < ∞, then E is a set of locally
finite perimeter, and in that case Pγ(E) = Hn−1

γ (∂∗E), where ∂∗E denotes the reduced
boundary of E; see section 2.5 for the terminology introduced here. (More generally, E is
of locally finite perimeter if and only if E is of locally finite Gaussian perimeter, that is, if
Hn−1

γ (K ∩ ∂eE) <∞ for every compact set K ⊂ Rn.) Finally, we notice that, with these
definitions in force, inequality (1.3) holds true for every Lebesgue measurable set E ⊂ Rn,
and equality holds if and only if, up to rotations around the origin, E is Hn-equivalent to
the half-space {x ∈ Rn : xn > Ψ(γn(E))}.

1.3. Ehrhard’s symmetrization. Ehrhard’s approach [Ehr83, Ehr84, Ehr86] to the
Gaussian isoperimetric inequality is based on a symmetrization procedure that is the
natural analogous in the Gaussian setting of Steiner’s symmetrization. The definition
goes as follows. We decompose Rn, n ≥ 2, as the Cartesian product Rn−1 × R, denot-
ing by p : Rn → Rn−1 and q : Rn → R the horizontal and vertical projections, so that
x = (px,qx), px = (x1, ..., xn−1), and qx = xn for every x ∈ Rn. Given a set E ⊂ Rn, we
denote by Ez its vertical section with respect to z ∈ Rn−1, that is, we set

Ez =
{
t ∈ R : (z, t) ∈ E

}
, z ∈ Rn−1 . (1.4)

Given a Lebesgue measurable function v : Rn−1 → [0, 1], we say that E is v-distributed
provided H1

γ(Ez) = v(z) for Hn−1-a.e. z ∈ Rn−1, and we set

F [v] =
{
x ∈ Rn : qx > Ψ(v(px))

}
, (1.5)

for the v-distributed set whose vertical sections are positive half-lines in the xn-direction.
If E is a v-distributed set, then the Ehrhard symmetral Es of E is defined as

Es = F [v] ;

see Figure 1.1. By Fubini’s theorem, Gaussian volume is preserved under Ehrhard’s sym-
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metrization, that is, γn(E) = γn(E
s). At the same time, Gaussian perimeter is decreased

under Ehrhard’s symmetrization. Precisely, if there exists a v-distributed set of finite
Gaussian perimeter E, then F [v] is of locally finite perimeter, and Ehrhard’s inequality

Pγ(E) ≥ Pγ(F [v]) , (1.6)

holds true. A proof of these facts based on the coarea formula is presented in [CFMP11,
Section 4.1]. This approach also leads to the following theorem concerning equality cases,
that will play an important role in the sequel. (Here, νE denotes the measure-theoretic
outer unit normal to a set of locally finite perimeter E; see section 2.5.)

Theorem A. If E ⊂ Rn is a set of locally finite perimeter with Pγ(E) = Pγ(E
s), then

Ez is H1-equivalent to a half-line for Hn−1-a.e. z ∈ Rn−1. (1.7)

Moreover, if E satisfies (1.7), and ∂∗E has no “vertical parts”, that is, if

Hn−1
({
x ∈ ∂∗E : qνE(x) = 0

})
= 0 , (1.8)

then Pγ(E) = Pγ(E
s).

1.4. The rigidity problem for Ehrhard’s inequality. We now turn to the rigidity
problem related to the Ehrhard inequality. Given v : Rn−1 → [0, 1] such that

M(v) =
{
E ⊂ Rn : E is v-distributed and Pγ(E) = Pγ(F [v]) <∞

}
,

is non-empty, we ask for necessary and sufficient conditions for having that

E ∈ M(v) if and only if either Hn(E∆F [v]) = 0 or Hn(E∆ g(F [v])) = 0 , (1.9)

where g : Rn → Rn denotes the reflection with respect to Rn−1, that is

g(x) = (px,−qx) , x ∈ Rn .

Simple examples show that the rigidity condition (1.9) may fail if we allow v to take the
values 0 or 1 (see Figure 1.2) and suggest that a reasonable sufficient condition for rigidity
could amount in ruling out this possibility. At the same time, v may take the values 0
and/or 1 and still rigidity may hold: an example is depicted in Figure 1.3. Thus, this
plausible sufficient condition would be far from being also necessary. As it turns out, one
needs to introduce some proper notions of connectedness in order to formulate conditions
that effectively characterize rigidity.

Before entering into this, let us notice how the need for working in a measure-theoretic
framework arises naturally in here. Indeed, if w = v Hn−1-a.e. on Rn−1, then F [v] and
F [w] are Hn-equivalent (thus Pγ(F [v]) = Pγ(F [w]) ∈ [0,∞]), a set E ⊂ Rn is v-distributed
if and only if it is w-distributed, and M(v) = M(w). In particular, a condition like “v
takes the value 0 or 1 on a given set S” has no meaning in our problem if Hn−1(S) = 0.
We shall rule out these ambiguities by exploiting the notions of approximate upper and
lower limits of a Lebesgue measurable function f : Rm → R. Precisely, the approximate
upper limit f∨(x) and the approximate lower limit f∧(x) of f at x ∈ Rm are defined by
setting

f∨(x) = inf
{
t ∈ R : x ∈ {f > t}(0)

}
, (1.10)

f∧(x) = sup
{
t ∈ R : x ∈ {f < t}(0)

}
. (1.11)

In this way, f∨ and f∧ are defined at every point of Rm, with values in R∪{±∞}, in such
a way that, if f1 = f2 Hm-a.e. on Rm, then f∨1 = f∨2 and f∧1 = f∧2 everywhere on Rm.
Moreover, f∨ and f∧ turn out to be both Borel functions on Rm; see section 2.3.
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Figure 1.2. In the first example (two top pictures), the function v : R → [0, 1]

takes the value 1 at the origin. The correspoding set F [v] is connected and there

exists E ∈ M(v) such that H2(E∆F ) = H2(E∆g(F )) = ∞. In the second

example (two bottom pictures), we observe the same features in the case of a

function v that takes the value 0 at the origin.

F [v]

x2

x3

{0 < v < 1}(1)

{v∧ = 0}x1

Figure 1.3. In this example, {v∧ = 0} is a segment lying inside {0 < v < 1}(1).
Nevertheless, we have rigidity of equality cases, as a vertical reflection of F [v] on

any proper non-empty subset of {0 < v < 1} will create extra Gaussian perimeter.

1.5. A measure-theoretic notion of connectedness. Given a open set G and an
hypersurface K in Rm, the intuitive idea of what does it mean for K to disconnect G is
pretty clear: one simply expects K to be the relative boundary inside G of two non-trivial,
disjoint open sets G+ and G− such that G+ ∪G− = G. In this section, we precisely define
what it means for a Borel set K ⊂ Rm to “essentially” disconnect a Borel set G ⊂ Rm, in
such a way this definition is stable under modifications of K by Hm−1-negligible sets, and
of G by Hm-negligible sets.
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G

K

Figure 1.4. If G = [0, 1] × [−1, 1] ⊂ R2 and K ⊂ ℓ = [0, 1] × {0}, then K

essentially disconnects G if and only if H1(ℓ \K) = 0. Thus, the rational numbers

in [0, 1] do not essentially disconnect G, while the irrational numbers in [0, 1]

essentially disconnect G.

In order to introduce our definition, let us first recall the measure-theoretic notion of
connectedness used in the theory of sets of finite perimeter. A set of finite perimeter
G ⊂ Rm is indecomposable (see [DM95, Definition 2.11] or [ACMM01, Section 4]), if for
every non-trivial partition of G into sets of finite perimeter {G+, G−} modulo Hm,

Hm(G+ ∩G−) = 0 , Hm(G∆(G+ ∪G−)) = 0 , Hm(G+)Hm(G−) > 0 , (1.12)

we have that P (G) < P (G+) + P (G−), where P (G) = Hm−1(∂∗G) = Hm−1(∂eG). (The
indecomposability of G in this sense is equivalent to the indecomposability in the sense of
[Fed69, 4.2.25] of the m-dimensional integer current on Rm canonically associated to G.)
More generally, we can say that a set of locally finite perimeter G ⊂ Rm is indecomposable
if there exists r0 > 0 such that P (G;Br) < P (G+;Br) + P (G−;Br) for every r > r0
and for every non-trivial partition of G into sets of locally finite perimeter {G+, G−}.
Indecomposability plays for sets of finite perimeter the same role that connectedness plays
for open sets; see, for example, the various results supporting this intuition collected in
[ACMM01, Section 4]. At variance with topological connectedness, indecomposability has
however the following important stability property: if G1 is an indecomposable set and
G2 is Hm-equivalent to G1, then G2 is an indecomposable set too.

We now want to extend the notion of indecomposability to arbitrary Borel sets. Indeed,
a pretty obvious necessary condition for rigidity in Ehrhard’s inequality should be the
“connectedness” of {0 < v < 1}. Of course, for the reasons explained so far, topological
connectedness is not suitable here. Moreover, the Borel set {0 < v < 1} defined by
v ∈ BVloc(Rn−1; [0, 1]) may fail to be of locally finite perimeter (see Example 3.9), and
in that case we may not exploit indecomposability. Finally, we shall in fact need to give
a precise meaning to the idea that a Borel set “disconnects” another Borel set. This is
achieved as follows. Given two Borel setsK and G in Rm, m ≥ 1, we say thatK essentially
disconnects G if there exists a non-trivial Borel partition {G+, G−} of G modulo Hm with

Hm−1
((
G(1) ∩ ∂eG+ ∩ ∂eG−

)
\K

)
= 0 . (1.13)

Of course, we say that K does not essentially disconnect G if for every non-trivial Borel
partition {G+, G−} of G modulo Hm we have

Hm−1
((
G(1) ∩ ∂eG+ ∩ ∂eG−

)
\K

)
> 0 . (1.14)

Finally, we say that G is essentially connected if ∅ does not essentially disconnect G. An
example is depicted in Figure 1.4.

Remark 1.1. If Hm(G1∆G2) = 0, then G
(1)
1 = G

(1)
2 : thus, K essentially disconnects G1

if and only if K essentially disconnects G2. Similarly, if Hm−1(K1∆K2) = 0, then K1

essentially disconnects G if and only if K2 essentially disconnects G.
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Remark 1.2. We shall prove in Remark 2.3 that a set of locally finite perimeter G ⊂ Rm

is indecomposable if and only if Hm−1(G(1) ∩ ∂eG+ ∩ ∂eG−) > 0 for every non-trivial
Borel partition {G+, G−} of G modulo Hm. Therefore, a set of locally finite perimeter
is indecomposable if and only if it is essentially connected. At the same, the notion of
essential connectedness makes sense on arbitrary Borel sets. Actually, by replacing G(1)

with (Rm \G)(0) in the definition of ∂eG, we define a notion of connectedness that should
retain reasonable properties even when G is a non-necessarily measurable set in Rm.

1.6. Characterizations of rigidity for Ehrhard’s inequality. We are finally into the
position of stating our characterization of rigidity of equality cases in Ehrhard’s inequality.

Theorem 1.3. If v : Rn−1 → [0, 1] is a Lebesgue measurable function with Pγ(F [v]) <∞,
then the following two statements are equivalent:

(i) if E ∈ M(v), then either Hn(E∆F [v]) = 0, or Hn(E∆g(F [v])) = 0;
(ii) the set {v∧ = 0} ∪ {v∨ = 1} does not essentially disconnect {0 < v < 1}.

Remark 1.4. If v = w Hn−1-a.e. on Rn−1, then v∨ = w∨, and v∧ = w∧. In particular,
the characterization of rigidity (ii) is independent of the considered representative of v.

Remark 1.5. The assumption Pγ(F [v]) < ∞ is of course the minimal hypothesis under
which it makes sense to consider the rigidity problem. As we shall see in Proposition 3.1, it
implies a very minimal amount of regularity on v. Precisely, it implies that the Lebesgue
measurable function Ψ ◦ v : Rn−1 → R ∪ {±∞} is an extended real valued function of
generalized bounded variation; see section 3.1.

Despite the geometric clarity of the characterization of rigidity presented in Theorem
1.3, its proof is actually quite delicate. We shall explain the reasons for this in the course of
its proof, that is presented in section 3. For the moment, let us just mention the following
reformulation of Theorem 1.3 in the planar case n = 2.

Theorem 1.6. If v : Rn−1 → [0, 1] is a Lebesgue measurable function with Pγ(F [v]) <∞,
then the following two statements are equivalent:

(i) if E ∈ M(v), then either H2(E∆F [v]) = 0, or H2(E∆g(F [v])) = 0;
(ii) {0 < v < 1} is H1-equivalent to an open interval I, with v∧ > 0 and v∨ < 1 on I.

Remark 1.7. A natural problem is that of characterizing rigidity, or otherwise providing
sufficient conditions for rigidity, in terms of indecomposability properties of F [v]. As shown
by the examples in Figure 1.2, it is not enough to ask that either F [v] or Rn \ F [v] are
indecomposable sets. As it turns out, if we are in the planar case, and we ask that both
F [v] and Rn \ F [v] are indecomposable sets, then rigidity holds; see Theorem 4.2. This
last condition is not necessary for rigidity in the planar case, see Figure 1.5, and, in fact,
it is not even sufficient for rigidity in Rn when n ≥ 3; see Figure 1.6. A sufficient condition
for rigidity in Rn, n ≥ 3, is obtained by asking the existence of ε > 0 such that

F [v] ∩
(
{t < v < 1− t} × R

)
is indecomposable for a.e. t < ε ; (1.15)

see Theorem 4.1. However, not even this last condition is necessary for rigidity in Rn:
for an example in the planar case, see Figure 1.7. In this case, (1.15) fails for every
t ∈ (0, 1), but, of course, rigidity holds true. In conclusion, it seems not possible to
achieve a characterization of rigidity in terms of indecomposability properties of F [v] and
related sets. At the same time, it is natural to guess that a characterization of rigidity in
terms of essential connectedness should be expressed by the requirement that

({v∧ = 0} ∪ {v∨ = 1})× R does not essentially disconnect F [v].

Although we shall not pursue this last direction here, in section 4 we shall provide proofs
of the above stated sufficient conditions for rigidity, see Theorem 4.1 and Theorem 4.2.
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x1

F [v]

x2

Figure 1.5. Asking that both F [v] and Rn \F [v] are indecomposable is a suffi-

cient condition for rigidity in Rn when n = 2, although it is not a necessary one,

as this example shows.

x2

x3

x1

Figure 1.6. It may happen that both F [v] and R3 \ F [v] are indecomposable,
but rigidity fails. An example of this situation is obtained by setting

F [v] =
{
x ∈ R3 : 0 < x1 < 1 , |x2| < 1 , x3 > − 1

|x2|

}
∪
{
x ∈ R3 : −1 < x1 < 0 , |x2| < 1 , x3 >

1

|x2|

}
.

Notice that the section F [v]∩{x ∈ R3 : x1 = t} for t ∈ (0, 1) (depicted on the left)
is an epigraph defined by two “negative” equilateral hyperbolas, while the section
F [v] ∩ {x ∈ R3 : x1 = t} for t ∈ (−1, 0) (depicted on the right) is an epigraph
defined by two “positive” equilateral hyperbolas. Also, {x ∈ R2 : −1 < x1 <
0 , x2 = 0} ⊂ {v∧ = 0} and {v∨ = 1} = {x ∈ R2 : 0 < x1 < 1 , x2 = 0}, so that
{v∧ = 0} ∪ {v∨ = 1} essentially disconnects {0 < v < 1} = (−1, 1)× (−1, 1), and
by Theorem 1.3 regularity fails. Indeed, the set E defined by a vertical reflection
of the part of F [v] above x2 > 0,

E =
{
x ∈ F [v] : x2 < 0

}
∪
{
x ∈ R3 : g(x) ∈ F [v] , x2 > 0

}
,

is such that H3(E∆F [v]) > 0, H3(E∆g(F [v])) > 0, and Pγ(E) = Pγ(F [v]). We

also notice that condition (1.15) does not hold true in this example.

1.7. An outlook on Steiner’s symmetrization inequality. With the aim to put the
results and methods of this paper into the right perspective, we now present a quick
overview on their applications to the study of rigidity of equality cases in Steiner’s sym-
metrization inequality. Given a Lebesgue measurable function v : Rn−1 → [0,∞] and a
Lebesgue measurable set E ⊂ Rn, at variance with the notation used in the rest of the
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x2 = Ψ(t)

x2 = Ψ(1− t)

Figure 1.7. A planar epigraph such that rigidity holds true but condition (1.15)

fails. The grey shaded area corresponds, for a generic t ∈ (0, 1), to the set F [v] ∩
({t < v < 1− t} × R), which turns out to be disconnected.

(b)(a)

Es

EE

Es

Figure 1.8. (a) In this case, ∂∗Es has vertical parts and rigidity fails; (b) In

this case, ∂∗Es has no vertical parts, but the length of its sections vanishes inside

its projection, and rigidity fails.

paper, let us now say that E is v-distributed if H1(Ez) = v(z) for Hn−1-a.e. z ∈ Rn−1

(recall that Ez denotes the vertical section of E, see (1.4)), and let us set

F [v] =
{
x ∈ Rn : |qx| < v(px)

2

}
,

for the v-distributed set whose vertical sections are segments centered at height xn = 0.
By definition, F [v] is the Steiner’s symmetral Es of E, and by Fubini’s theorem, Hn(E) =
Hn(F [v]). Moreover, F [v] is of finite perimeter and volume if and only if v ∈ BV (Rn−1)
with Hn−1({v > 0}) <∞. In this case, Steiner’s inequality ensures that

P (E) ≥ P (F [v]) , (1.16)

whenever E is a v-distributed set (with P (E) = Hn−1(∂eE)). In analogy with the notation
used in the Gaussian case, we set

M(v) =
{
E ⊂ Rn : E v-distributed and P (E) = P (F [v])

}
,

so that rigidity of equality cases in (1.16) amounts to say that E ∈ M(v) if and only if
E is Hn-equivalent to t en + F [v] for some t ∈ R. Simple examples show that we cannot
always expect rigidity of equality cases when ∂∗F [v] has vertical parts, or when the length
of the sections of F [v] vanishes inside the projection of F [v]; see Figure 1.8. In the seminal
paper [CCF05], Chleb́ık, Cianchi, and Fusco provide a sufficient condition for the rigidity of
equality cases in Steiner’s inequality that is inspired by the above considerations. Precisely,
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they consider the localization of (1.16) above a Borel set Ω ⊂ Rn−1,

P (E; Ω× R) ≥ P (F [v]; Ω× R) , (1.17)

and show that, if (a) Ω is an open connected set, (b) v ∈ W 1,1(Ω), and (c) v∧ > 0
Hn−2-a.e. on Ω, then E is Hn-equivalent to a vertical translation of F [v] inside Ω × R
whenever P (E; Ω×R) = P (F [v]; Ω×R). Assumption (b) and (c) express the requirements
that ∂∗F [v] has no vertical parts above Ω and that the sections of F [v] do not vanish
inside the projection of F [v]. Although these conditions look reasonable in light of the
examples depicted in Figure 1.8, it is not hard to construct examples of sets in R3 such
that rigidity holds true but either condition (b) or (c) fail. Moreover, as our analysis
of Ehrhard’s inequality suggests, the use of topological connectedness in assumption (a)
should be unnecessary. By exploiting the ideas introduced in this paper, one can obtain
several rigidity results for Steiner’s inequality and largely extend the scope of previous
rigidity theory. For example, in strikingly analogy with Theorem 1.3, one can show that
if v ∈ BV (Rn−1; [0,∞)) with Hn−1({v > 0}) < ∞ and Dsvx{v∧ > 0} = 0 (where Dsv
denotes the singular part of the distributional derivative of v), then, equivalently,

(i) if E ∈ M(v), then E is Hn-equivalent to t en + F [v] for some t ∈ R;
(ii) the set {v∧ = 0} does not essentially disconnect {v > 0};
(iii) F [v] is indecomposable.

(Implication (ii) ⇒ (i) of this theorem, coupled with an approximation argument, leads to
a proof of the Chleb́ık-Cianchi-Fusco theorem.) Moreover, we can obtain suitable charac-
terizations of rigidity even in the case when ∂∗F [v] contains more substantial vertical parts
than those allowed by the assumption Dsvx{v∧ > 0} = 0. We refer interested readers to
the forthcoming paper [CCDPM13] for a detailed account on these results.
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2. Notions from Geometric Measure Theory

We gather here some tools from Geometric Measure Theory. The notions needed in this
paper are treated in adequate generality in the monographs [GMS98, AFP00, Mag12].

2.1. General notation in Rn. We denote by B(x, r) and B(x, r) the open and closed
Euclidean balls of radius r > 0 and center x ∈ Rn. Given x ∈ Rn and ν ∈ Sn−1 we denote
by H+

x,ν and H−
x,ν the complementary half-spaces

H+
x,ν =

{
y ∈ Rn : (y − x) · ν ≥ 0

}
, (2.1)

H−
x,ν =

{
y ∈ Rn : (y − x) · ν ≤ 0

}
.

Finally, we decompose Rn as the product Rn−1 × R, and denote by p : Rn → Rn−1 and
q : Rn → R the corresponding horizontal and vertical projections, so that x = (px,qx) =
(x′, xn) and x

′ = (x1, . . . , xn−1) for every x ∈ Rn. We set

Cx,r =
{
y ∈ Rn : |px− py| < r , |qx− qy| < r

}
,

Dz,r =
{
w ∈ Rn−1 : |w − z| < r

}
,

10



for the vertical cylinder of center x ∈ Rn and radius r > 0, and for the (n−1)-dimensional
ball in Rn−1 of center z ∈ Rn−1 and radius r > 0, respectively. In this way, Cx,r =
Dpx,r×(qx−r,qx+r). We shall use the following two notions of convergence for Lebesgue
measurable subsets of Rn. Given Lebesgue measurable sets {Eh}h∈N and E in Rn, we shall
say that Eh locally converge to E, and write

Eh
loc→ E , as h→ ∞ ,

provided Hn((Eh∆E)∩K) → 0 as h→ ∞ for every compact set K ⊂ Rn; we say that Eh

converge to E as h→ ∞, and write Eh → E, provided Hn(Eh∆E) → 0 as h→ ∞.

2.2. Density points. If E is a Lebesgue measurable set in Rn and x ∈ Rn, then we define
the upper and lower n-dimensional densities of E at x as

θ∗(E, x) = lim sup
r→0+

Hn(E ∩B(x, r))

ωn rn
, θ∗(E, x) = lim inf

r→0+

Hn(E ∩B(x, r))

ωn rn
,

respectively. In this way we define two Borel functions on Rn, that agree a.e. on Rn. In
particular, the n-dimensional density of E at x

θ(E, x) = lim
r→0+

Hn(E ∩B(x, r))

ωn rn
= lim

r→0

Hn(E ∩B(x, r))

ωn rn
,

is defined for a.e. x ∈ Rn, and θ(E, ·) is a Borel function on Rn (up to extending it
by a constant value on some Hn-negligible set). Correspondingly, for t ∈ [0, 1], we set

E(t) = {x ∈ Rn : θ(E, x) = t}. By the Lebesgue differentiation theorem, {E(0), E(1)} is a
partition of Rn up to a Hn-negligible set. It is useful to keep in mind that

x ∈ E(1) if and only if Ex,r
loc→ Rn as r → 0+ ,

x ∈ E(0) if and only if Ex,r
loc→ ∅ as r → 0+ ,

where Ex,r denotes the blow-up of E at x at scale r, defined as

Ex,r =
E − x

r
=

{y − x

r
: y ∈ E

}
, x ∈ Rn , r > 0 .

The set ∂eE = Rn \ (E(0) ∪ E(1)) is called the essential boundary of E. Thus, in general,
we only have Hn(∂eE) = 0, and we do not know ∂eE to be “(n− 1)-dimensional”.

2.3. Approximate limits. Strictly related to the notion of density is that of approximate
upper and lower limits of a measurable function. We shall stick to Federer’s convention
[Fed69, 2.9.12] in place of the one usually adopted in the study of functions of bounded
variation [AFP00, Section 3.6] since we will mainly deal with functions of generalized
bounded variation; see section 2.5. Given a Lebesgue measurable function f : Rn →
R ∪ {±∞} we define the (weak) approximate upper and lower limits of f at x ∈ Rn as

f∨(x) = inf
{
t ∈ R : θ({f > t}, x) = 0

}
= inf

{
t ∈ R : θ({f < t}, x) = 1

}
,

f∧(x) = sup
{
t ∈ R : θ({f < t}, x) = 0

}
= sup

{
t ∈ R : θ({f > t}, x) = 1

}
.

Note that f∨ and f∧ are Borel functions with values on R ∪ {±∞} defined at every point
x of Rn, and they do not depend on the representative chosen for the function f . The
approximate jump of f is the Borel function [f ] : Rn → [0,∞] defined by

[f ](x) = f∨(x)− f∧(x) , x ∈ Rn .
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We easily deduce the the following properties, which hold true for every Lebesgue mea-
surable f : Rn → R ∪ {±∞} and for every t ∈ R:

{|f |∨ < t} = {−t < f∧} ∩ {f∨ < t} , (2.2)

{f∨ < t} ⊂ {f < t}(1) ⊂ {f∨ ≤ t} , (2.3)

{f∧ > t} ⊂ {f > t}(1) ⊂ {f∧ ≥ t} . (2.4)

(Note that all the inclusions may be strict, that we also have {f < t}(1) = {f∨ < t}(1), and
that all the other analogous relations hold true.) If f is non negative and E is Lebesgue

measurable, then for every x ∈ E(1), we have

(1Ef)
∨(x) = f∨(x) , (1Ef)

∧(x) = f∧(x) . (2.5)

Finally, we notice that if I and J are intervals in R ∪ {±∞}, φ : I → J is continuous and
decreasing, and f takes values into I, then v = φ ◦ f is Lebesgue measurable on Rn, with

v∧ = φ(f∨) , v∨ = φ(f∧) . (2.6)

We now introduce the set of approximate discontinuity points Sf of a Lebesgue measurable
function f : Rn → R ∪ {±∞}, which is defined as

Sf =
{
x ∈ Rn : f∧(x) < f∨(x)

}
=

{
x ∈ Rn : [f ](x) > 0

}
.

We have the following general fact, that is usually stated in the finite-valued case only.
For this reason we have included the short proof.

Proposition 2.1. If f : Rn → R∪ {±∞} is Lebesgue measurable, then {f∧ = f∨ = f} is
Hn-equivalent to Rn. In particular, f∨ and f∧ are representatives of f , and Hn(Sf ) = 0.

Proof. Let us consider the function Φ defined in (1.2). Since Φ : R ∪ {±∞} → [0, 1] is
continuous and decreasing, it turns out that v = Φ◦f : Rn → [0, 1] is Lebesgue measurable,
with v∨ = Φ ◦ f∧ and v∧ = Φ ◦ f∨. Thus Sv = Sf , where, by [GMS98, Section 3.1.4,
Proposition 3], Hn(Sv) = 0. �

If f : Rn → R∪{±∞} and A ⊂ Rn Lebesgue measurable, then we say that t ∈ R∪{±∞}
is the approximate limit of f at x with respect to A, and write t = ap lim(f,A, x), if

θ
(
{|f − t| > ε} ∩A;x

)
= 0 , ∀ε > 0 , (t ∈ R) ,

θ
(
{f < M} ∩A;x

)
= 0 , ∀M > 0 , (t = +∞) ,

θ
(
{f > −M} ∩A;x

)
= 0 , ∀M > 0 , (t = −∞) .

We say that x ∈ Sf is a jump point of f if there exists ν ∈ Sn−1 such that

f∨(x) = ap lim(f,H+
x,ν , x) , f∧(x) = ap lim(f,H−

x,ν , x) .

If this is the case we set ν = νf (x), the approximate jump direction of f at x. We denote
by Jf the set of approximate jump points of f , so that Jf ⊂ Sf ; moreover, νf : Jf → Sn−1

is a Borel function. It will be particularly useful to keep in mind the following proposition.

Proposition 2.2. We have that x ∈ Jf if and only if for every ε > 0 such that f∧(x)+ε <
f∨(x)− ε we have

{|f − f∨(x)| ≤ ε}x,r
loc→ H+

0,ν , {|f − f∧(x)| ≤ ε}x,r
loc→ H−

0,ν , as r → 0+ .

Similarly, x ∈ Jf if and only if for every τ ∈ (f∧(x), f∨(x)) we have

{f > τ}x,r
loc→ H+

0,ν , {f < τ}x,r
loc→ H−

0,ν , as r → 0+ . (2.7)
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Proof. We prove the “only if” part of the first equivalence only, leaving the other implica-
tions to the reader. Let us set t = f∨(x) and s = f∧(x). By assumption({

|f − t| > ε
}
∩H+

x,ν

)
x,r

loc→ ∅ ,
({

|f − s| > ε
}
∩H−

x,ν

)
x,r

loc→ ∅ ,

as r → 0+. As a consequence, as r → 0+,({
|f − t| ≤ ε

}
∪H−

x,ν

)
x,r

loc→ Rn ,
({

|f − s| ≤ ε
}
∪H+

x,ν

)
x,r

loc→ Rn .

As E(1) ∩ F (1) = (E ∩ F )(1), we find(({
|f − t| ≤ ε

}
∪H−

x,ν

)
∩
({

|f − s| ≤ ε
}
∪H+

x,ν

))
x,r

loc→ Rn ,

that is
({

|f − t| ≤ ε
}
∩H+

x,ν

)
x,r

∪
({

|f − s| ≤ ε
}
∩H−

x,ν

)
x,r

loc→ Rn ,

Since the two sets are disjoint, the first one contained in H+
0,ν , the second one in H−

0,ν , we
complete the proof. �

2.4. Rectifiable sets. Let 1 ≤ k ≤ n, k ∈ N. A Borel set M ⊂ Rn is countably Hk-
rectifiable if there exist Lipschitz functions fh : Rk → Rn (h ∈ N) such that

Hk

(
M \

∪
h∈N

fh(Rk)

)
= 0 . (2.8)

We further say that M is locally Hk-rectifiable if Hk(M ∩ K) < ∞ for every compact
set K ⊂ Rn, or, equivalently, if HkxM is a Radon measure on Rn. Hence, for a locally
Hk-rectifiable set M in Rn the following definition is well-posed: we say that M has a
k-dimensional subspace L of Rn as its approximate tangent plane at x ∈ Rn, L = TxM , if

lim
r→0+

1

rk

∫
B(x,r)∩M

φ
(y − x

r

)
dHk(y) =

∫
L
φdHk , ∀φ ∈ C0

c (Rn) .

It turns out that TxM exists and is uniquely defined at Hk-a.e. x ∈ M . Moreover,
given two locally Hk-rectifiable sets M1 and M2 in Rn, it turns out that TxM1 = TxM2

for Hk-a.e. x ∈ M1 ∩M2. Since f(Rk) is locally Hk-rectifiable whenever f : Rk → Rn

is a Lipschitz function, if M is merely a countably Hk-rectifiable set and {fh}h∈N is a
sequence of Lipschitz functions satisfying (2.8), then we can find a partition modulo Hk of
M into Borel sets {Mh}h∈N such that Txf(Rk) exists for every x ∈ Mh: correspondingly,
we set TxM = Txfh(Rk) for x ∈ Mh. The definition is well-posed in the sense that
the approximate tangent spaces defined by another family of Lipschitz functions {gh}h∈N
satisfying (2.8) will just coincide at Hk-a.e. x ∈ M with the ones defined by {fh}h∈N.
In other words, {TxM}x∈M is well-defined as an equivalence class modulo Hk of Borel
functions from M to the set of k-planes in Rn.

Finally, we mention the following consequence of [Fed69, 3.2.23]: if M is countably
Hk-rectifiable in Rn, then M × Rℓ is countably Hk+ℓ-rectifiable in Rn+ℓ, and

(HkxM)×Hℓ = Hk+ℓx
(
M × Rℓ

)
. (2.9)

2.5. Functions of bounded variation and sets of finite perimeter. Given an open
set Ω ⊂ Rn and f ∈ L1(Ω), we say that f has bounded variation in Ω, f ∈ BV (Ω), if the
total variation of f in Ω, defined as

|Df |(Ω) = sup
{∫

Ω
f(x) div T (x) dx : T ∈ C1

c (Ω;Rn) , |T | ≤ 1
}
,

is finite. We say that f ∈ BVloc(Ω) if f : Ω → R is Lebesgue measurable, and, for
every open set Ω′ ⊂⊂ Ω, we have f ∈ BV (Ω′). If f ∈ BVloc(Rn) then the distributional
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derivative Df of f is an Rn-valued Radon measure. The Radon–Nykodim decomposition
of Df with respect to Hn is denoted by Df = Daf + Dsf , where Dsf and Hn are
mutually singular, and where Daf ≪ Hn. Moreover, Sf is countably Hn−1-rectifiable,
with Hn−1(Sf \ Jf ) = 0, [f ] ∈ L1

loc(Hn−1xJf ), and the Rn-valued Radon measure Djf ,
defined as Djf = [f ] νf dHn−1xJf , is called the jump part of Df . Since Daf and Djf are
mutually singular, by setting Dcf = Dsf −Djf we come to the canonical decomposition
of Df into the sum Daf +Djf +Dcf , where Dcf is called the Cantorian part of Df . It
turns out that |Dcf |(M) = 0 whenever M is σ-finite with respect to Hn−1.

A Lebesgue measurable set E ⊂ Rn is said of locally finite perimeter in Rn if 1E ∈
BVloc(Rn). In this case, we call µE = −D1E the Gauss–Green measure of E, so that∫

E
∇φ(x) dx =

∫
Rn

φ(x) dµE(x) , ∀φ ∈ C1
c (Rn) .

The reduced boundary of E is the set ∂∗E of those x ∈ Rn such that

νE(x) = lim
r→0+

µE(B(x, r))

|µE |(B(x, r))
exists and belongs to Sn−1 .

The Borel function νE : ∂∗E → Sn−1 is called the measure-theoretic outer unit normal to
E. It turns out that ∂∗E is a locally Hn−1-rectifiable set in Rn [Mag12, Corollary 16.1],
that µE = νE Hn−1x∂∗E, so that∫

E
∇φ(x) dx =

∫
∂∗E

φ(x) νE(x) dHn−1(x) , ∀φ ∈ C1
c (Rn) .

We say that x ∈ Rn is a jump point of E, if and only if there exists ν ∈ Sn−1 such that

Ex,r
loc→ H+

0,ν , as r → 0+ , (2.10)

and we denote by ∂JE the set of jump points of E. Notice that we always have ∂JE ⊂
E(1/2) ⊂ ∂eE. In fact, if E is a set of locally finite perimeter and x ∈ ∂∗E, then (2.10)
holds true with ν = −νE(x), so that ∂∗E ⊂ ∂JE. Summarizing, if E is a set of locally
finite perimeter, we have

∂∗E ⊂ ∂JE ⊂ E1/2 ⊂ ∂eE , (2.11)

and, moreover, by Federer’s theorem [AFP00, Theorem 3.61], [Mag12, Theorem 16.2],

Hn−1(∂eE \ ∂∗E) = 0 ,

so that ∂eE is locally Hn−1-rectifiable in Rn. We shall also need the following criterion for
finite perimeter, known as Federer’s criterion [Fed69, 4.5.11] (see also [EG92, Theorem 1,
section 5.11]): if E is a Lebesgue measurable set in Rn such that

Hn−1(K ∩ ∂eE) <∞ , for every compact set K ⊂ Rn ,

then E is a set of locally finite perimeter. (Notice that Federer’s criterion is actually more
general than this.) We conclude this preliminary section by the following remark, which
shows the equivalence for a set of locally finite perimeter between being indecomposable
and being essentially connected (see section 1.5 for the terminology).

Remark 2.3. If E is an indecomposable set in Rn, then, whenever {F,G} is a non-trivial
partition of E by Lebesgue measurable sets, we have

Hn−1
(
E(1) ∩ ∂eF ∩ ∂eG

)
> 0 . (2.12)

Indeed, in the case that {F,G} is further assumed to be a partition by sets of locally finite
perimeter, then, by definition of indecomposability, there exists r0 such that P (E;Br) <
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P (F ;Br) + P (G;Br) for every r > r0. Thus, by Federer’s theorem,

Hn−1(Br ∩ ∂eE) < Hn−1(Br ∩ ∂eF ) +Hn−1(Br ∩ ∂eG)
= Hn−1(Br ∩ ∂eF ∩ ∂eE) +Hn−1(Br ∩ ∂eG ∩ ∂eE) (2.13)

+Hn−1(Br ∩ ∂eF ∩ E(1)) +Hn−1(Br ∩ ∂eG ∩ E(1))

where we have used the fact that, since F ⊂ E, then ∂eF = (∂eF ∩ ∂eE)∪ (∂eF ∩E(1)) (a

similar remark is applied to G too). Since (∂eF∆∂eG)∩(E(1)∪E(0)) = ∅ and ∂JF ∩∂JG ⊂
E(1), by Federer’s theorem we find that ∂eF∆∂eG isHn−1-equivalent to ∂eE. Hence, (2.13)

is equivalent to 0 < 2Hn−1(∂eF∩∂eG∩E(1)∩Br) for every r > r0, that is, (2.12). To settle
the general case, let us assume, arguing by contradiction, the existence of a non-trivial
Lebesgue measurable partition {F,G} of E such that

0 = Hn−1
(
E(1) ∩ ∂eF ∩ ∂eG

)
= Hn−1

(
(∂eF ∩ ∂eG) \ ∂eE

)
. (2.14)

We are now going to show that, in this case, F and G are necessarily sets of locally finite
perimeter, thus contradicting the fact that E is indecomposable. Indeed, since F ⊂ E, we
have E(0) ⊂ F (0), and thus ∂eF ∩ E(0) = E(0) \ (F (0) ∪ F (1)) = ∅; thus

∂eF ⊂ ∂eE ∪ (∂eF ∩ E(1)) . (2.15)

At the same time, since ∂eF ∩ E(1) ⊂ ∂eF ∩ ∂eG, we find

∂eF ∩ E(1) ⊂
(
∂eF ∩ ∂eG

)
\ ∂eE .

Therefore, by (2.14) and (2.15), for every compact set K ⊂ Rn, and since E is of locally
finite perimeter, Hn−1(K∩∂eF ) ≤ Hn−1(K∩∂eE) <∞. By Federer’s criterion, F is a set
of locally finite perimeter, and so is G = E \ F . We can thus repeat our initial argument

to prove that Hn−1(E(1) ∩ ∂eF ∩ ∂eG) > 0 and obtain a contradiction.

3. Rigidity of equality cases in Ehrhard inequality

This section contains the proofs of Theorem 1.3 and Theorem 1.6. In section 3.1 we
collect the basic results concerning epigraphs of locally finite perimeter. In section 3.2
we show the implication (ii) ⇒ (i) in Theorem 1.3, while in section 3.3 we prove the
implication (i) ⇒ (ii). In section 3.4, we finally prove Theorem 1.6.

3.1. Epigraphs of locally finite perimeter and the space GBV∗. Let us set

Σf = {x ∈ Rn : qx > f(px)} .

for the epigraph of f : Rn−1 → R ∪ {±∞}. In this section we analyze the situation when
f defines an epigraph of locally finite perimeter. To this end, it is convenient to introduce
the functions τM : R → R (M > 0) defined as

τM (s) = max
{
−M,min

{
M, s

}}
, s ∈ R ∪ {±∞} ,

and set the following definition: a Lebesgue measurable function f : Rn−1 → R ∪ {±∞}
is a function of generalized bounded variation with values in extended real numbers,
f ∈ GBV∗(Rn−1), if τM (f) ∈ BVloc(Rn−1) for every M > 0, or, equivalently, if ψ(f) ∈
BVloc(Rn−1) for every ψ ∈ C1(R) with ψ′ ∈ C0

c (R). (Note that the composition makes
sense since, for example, there will be positive constants c and t0 such that ψ(t) = c for
every t > t0: correspondingly, we shall set ψ(f) = c on {f = ∞}, and argue similarly
on the set {f = −∞}.) If we start from Lebesgue measurable functions f : Rn−1 → R,
we shall set GBV (Rn−1) for the corresponding space. The space GBV∗(Rn−1) plays a
particularly important role in our analysis because of the following proposition.
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Proposition 3.1. If f : Rn−1 → R∪{±∞} is Lebesgue measurable, then f ∈ GBV∗(Rn−1)
if and only if Σf is of locally finite perimeter in Rn; moreover, in this case, for a.e. t ∈ R,
we have that {f < t} is a set of locally finite perimeter in Rn−1.

Remark 3.2. If Ω ⊂ Rn−1 is an open set and f ∈ L1(Ω), it is well-known that f ∈ BV (Ω)
if and only if Σf is of finite perimeter in Ω × R; see, e.g. [GMS98, Section 4.1.5]. This
result, because of the artificial structures assumed in it (open set and summable function)
will not suffice for our purposes. Moreover, it seems that the infinite-valued case is not
covered by the literature. Therefore, we shall provide a proof of Proposition 3.1. Similar
remarks apply to Proposition 3.4 and Lemma 3.6 below. We also notice that we shall need
to refer to these proofs in some crucial steps of the proof of Theorem 1.3.

Remark 3.3. Note that if v ∈ BVloc(Rn−1; [0, 1]), then f = Ψ ◦ v ∈ GBV∗(Rn−1), where
Ψ is defined as in (1.2). Indeed, if we pick any ψ ∈ C1(R) with ψ′ ∈ C0

c (R), then ψ ◦ Ψ
is real-valued on [0, 1], with ψ ◦ Ψ ∈ C1([0, 1]) and (ψ ◦ Ψ)′ ∈ C0

c ((0, 1)). Therefore,
ψ ◦ f = (ψ ◦Ψ) ◦ v ∈ BVloc(Rn−1) by the C1 chain rule theorem on BV .

Proof of Proposition 3.1. Step one : We show that if Σf is of locally finite perimeter then
f ∈ GBV∗(Rn−1). Let ψ ∈ C1(R) with ψ′ ∈ C0

c (R), so that ψ ◦ f is defined on Rn−1 with
ψ ◦ f ∈ L∞(Rn−1) ⊂ L1

loc(Rn−1). If ψ ∈ C2(R), then ψ′(qx)φ(px) ∈ C1
c (Rn) for every

φ ∈ C1
c (Rn−1), and thus, setting ∇′ = (∂1, . . . , ∂n−1),∣∣∣ ∫

Σf

∇′(ψ′(qx)φ(px)) dx

∣∣∣∣ =
∣∣∣ ∫

∂∗Σf

ψ′(qx)φ(px)pνΣf
(x) dHn−1(x)

∣∣∣
≤ Lip(ψ) sup |φ|P (Σf ; sptφ× sptψ′) .

At the same time, by Fubini’s theorem∫
Σf

∇′(ψ′(qx)φ(px)) dx =

∫
Rn−1

∇′φ(z) dz

∫ ∞

f(z)
ψ′(t) dt = −

∫
Rn−1

ψ(f(z))∇′φ(z) dz .

Hence, for every R > 0,

sup
{∣∣∣ ∫

Rn−1

(ψ ◦ f)∇′φ
∣∣∣ : φ ∈ C1

c (DR) , |φ| ≤ 1
}
≤ Lip(ψ)P (Σf ;DR × sptψ′) <∞ ,

that is, ψ(f) ∈ BVloc(Rn−1) if ψ ∈ C2(R). By approximation, the same holds if we only
have ψ ∈ C1(R), and thus, f ∈ GBV∗(Rn−1).

Step two : If f ∈ GBV∗(Rn−1), then τM ◦f ∈ BVloc(Rn−1), {τM ◦f < t} = {f < t} for every
|t| < M , and {τM ◦ f < t} is of locally finite perimeter for a.e. t ∈ R. Hence, {f < t} is of
locally finite perimeter for a.e. t ∈ R. Let now φ ∈ C1

c (Rn), with sptφ ⊂⊂ DR × (−R,R)
for some R > 0. On the one hand, we have∣∣∣ ∫

Σf

∂nφ
∣∣∣ = ∣∣∣ ∫

Rn−1

dz

∫ ∞

f(z)
∂nφ

∣∣∣ ≤ sup
Rn

|φ|Hn−1(DR) ; (3.1)

on the other hand, since {f < t} is of locally finite perimeter for a.e. t ∈ R, we find∣∣∣ ∫
Σf

∇′φ
∣∣∣ =

∣∣∣ ∫
R
dt

∫
{f<t}

∇′φ(z, t) dz
∣∣∣ = ∣∣∣ ∫

R
dt

∫
∂∗{f<t}

φ(z, t) ν{f<t}(z) dHn−2(z)
∣∣∣

≤ sup
Rn

|φ|
∫ R

−R
P ({f < t};DR) dt = sup

Rn
|φ| |D(τR ◦ f)|(DR) , (3.2)

by coarea formula. By (3.1) and (3.2), Σf is a set of locally finite perimeter. �
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Given a Lebesgue measurable function f : Rn−1 → R ∪ {±∞}, we set

Γf =
{
x ∈ Rn : f∧(px) ≤ qx ≤ f∨(px)

}
,

Γv
f =

{
x ∈ Rn : f∧(px) < qx < f∨(px)

}
.

We call Γf the complete graph of f , and Γv
f the vertical graph of f . Note that these

objects are invariant in the Hn−1-equivalence class of f .

Proposition 3.4. If f ∈ GBV∗(Rn−1), then

∂∗Σf ∩ (Sc
f × R) =Hn−1

{
x ∈ Rn : qx = f∧(px) = f∨(px)

}
, (3.3)

∂∗Σf ∩ (Sf × R) =Hn−1 Γv
f , (3.4)

Σ
(1)
f =Hn−1

{
x ∈ Rn : qx > f∨(px)

}
, (3.5)

Σ
(0)
f =Hn−1

{
x ∈ Rn : qx < f∧(px)

}
. (3.6)

Moreover, Sf is countably Hn−2-rectifiable with Hn−2(Sf \Jf ) = 0. Finally, for Hn−1-a.e.
x ∈ Γv

f , the outer unit normal νΣf
(x) exists, Sf has an approximate tangent plane at px,

and νΣf
(x) = (νSf

(px), 0), where νSf
(px) is a unit normal direction to TpxSf in Rn−1.

Remark 3.5. Here and in the following, A =Hk B stands for Hk(A∆B) = 0.

Proposition 3.4 is in turn based on the following lemma, that will play a crucial role
also in the proof of Theorem 1.3.

Lemma 3.6. If f : Rn−1 → R∪{±∞} is a Lebesgue measurable function, I is a countable
dense subset of R with the property that {f > t} is of locally finite perimeter for every
t ∈ I, and if we set

Nf =
∪
t∈I

∂e{f > t} \ ∂∗{f > t} ,

then Hn−2(Nf ) = 0, and for every z ∈ Sf \Nf there exists ν(z) ∈ Sn−2 such that

z ∈ ∂J{f > t} , ∀t ∈ (f∧(z), f∨(z)) ,

with jump direction ν(z). (In other words, the jump direction of {f > t} at z is independent
of t). In particular, we have

Sf \Nf ⊂ Jf , Hn−2(Sf \ Jf ) = 0 .

Remark 3.7. Notice that the set Nf depends also on the choice of I.

Proof of Lemma 3.6. By Federer’s theorem, Hn−2(Nf ) = 0. We now notice that,{
z ∈ Sf ,
f∧(z) < t < s < f∨(z) ,

⇒ z ∈ ∂e{f > t} ∩ ∂e{f > s} .

By taking into account that z ∈ Sf \ Nf if and only if z ∈ Sf and for every t ∈ I either
z ̸∈ ∂e{f > t} or z ∈ ∂∗{f > t}, we thus find z ∈ Sf \Nf ,

f∧(z) < t < s < f∨(z) ,
t, s ∈ I ,

⇒ z ∈ ∂∗{f > t} ∩ ∂∗{f > s}

⇒ {f > t}z,r
loc→ H+

0,ν(z) , {f > s}z,r
loc→ H+

0,ν(z) ,

where −ν(z) = ν{f>t}(z) = ν{f>s}(z) , (3.7)
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as E ⊂ F implies indeed that νE = νF on ∂∗E∩∂∗F . In other words, for every z ∈ Sf \Nf

there exists ν(z) ∈ Sn−2 such that

{f > t}z,r
loc→ H+

0,ν(z) , ∀t ∈ I ∩ (f∧(z), f∨(z)) .

Finally, if z ∈ Sf \Nf with f∧(z) < t < f∨(z), then we may pick s, s′ ∈ I with f∧(z) <
s < t < s′ < f∨(z) and use

{f > s}z,r
loc→ H+

0,ν(z) , {f > s′}z,r
loc→ H+

0,ν(z) ,

to infer {f > t}z,r
loc→ H+

0,ν(z). Indeed, as a general fact, if Eh ⊂ Fh ⊂ Gh with Eh → E

and Gh → E as h→ ∞, then Fh → E as h→ ∞. �

Proof of Proposition 3.4. Step one : We show that Sf is countably Hn−2-rectifiable. Let
I ⊂ R be a countable dense set in R such that for every t ∈ I we have {f > t} of locally
finite perimeter in Rn−1. By Federer’s theorem, if t ∈ I, then ∂∗{f > t} is locally Hn−2-
rectifiable, withHn−2(∂e{f > t}\∂∗{f > t}) = 0. Since t < f∨(z) gives θ∗({f > t}, z) > 0,
while t > f∧(z) implies θ∗({f > t}, z) < 1, we find that for every t ∈ R{

z ∈ Rn−1 : f∨(z) > t > f∧(z)
}
⊂ ∂e{f > t} ,

so that, as I is dense in R,

Sf ⊂
∪
t∈I

{
z ∈ Rn−1 : f∨(z) > t > f∧(z)

}
⊂

∪
t∈I

∂e{f > t} .

Thus Sf is countably Hn−2-rectifiable, as, by Federer’s theorem and since I is countable,

Hn−2
(
Sf \

∪
t∈I

∂∗{f > t}
)
= 0 .

Step two : We prove that

∂eΣf ∩ (Sf × R) ⊂Hn−1 Γv
f , (3.8)

∂eΣf ∩ (Sc
f × R) ⊂

{
x ∈ Rn : qx = f∧(px) = f∨(px)

}
, (3.9)

{x ∈ Rn : qx < f∧(px)} ⊂ Σ
(0)
f , (3.10)

{x ∈ Rn : qx > f∨(px)} ⊂ Σ
(1)
f . (3.11)

We start proving (3.10): if x ∈ Rn is such that qx < f∧(px), then f∧(px) > −∞ and,
taking t∗ > qx with θ({f < t∗},px) = 0, for every r < t∗ − qx we find

Hn(Σf ∩Cx,r) =

∫ qx+r

qx−r
Hn−1

(
{f < s} ∩Dpx,r

)
ds

≤ 2rHn−1
(
{f < t∗} ∩Dpx,r

)
= o(rn) .

This proves (3.10), and (3.11) follows similarly. As a consequence, ∂eΣf ⊂ Γf , from which
(3.9) follows, as well as that ∂eΣf ∩ (Sf ×R) ⊂ Γf ∩ (Sf ×R). This last inclusion implies
(3.8), as (

Γf ∩ (Sf × R)
)
\ Γv

f =
{
(z, f∧(z)) : z ∈ Sf

}
∪
{
(z, f∨(z)) : z ∈ Sf

}
,

is Hn−1-negligible (indeed, it projects twice over the countably Hn−2-rectifiable set Sf ).
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Step three : Let now Nf be as in Lemma 3.6. We claim that, if z ∈ Sf \Nf and f∧(z) <

t < f∨(z) (so that z ∈ ∂J{f > t} for every such t, with constant jump direction ν(z) ∈
Sn−1 ∩ Rn−1), then (z, t) ∈ ∂JΣf with jump direction given by (−ν(z), 0); in particular,

Γv
f ∩

(
(Sf \Nf )× R

)
⊂ ∂JΣf . (3.12)

Indeed, if t0, t1 ∈ I are such that f∧(z) < t0 < t < t1 < f∨(z), then for r small enough,

Hn
((

Σf∆H
+
(z,t),(−ν(z),0)

)
∩C(z,t),r

)
=

∫ t+r

t−r
Hn−1(Dz,r ∩H−

z,−ν(z) ∩ {f < s}) +Hn−1(Dz,r ∩H+
z,−ν(z) ∩ {f ≥ s}) ds

≤ 2rHn−1(Dz,r ∩H+
z,ν(z) ∩ {f < t1}) + 2rHn−1(Dz,r ∩H−

z,ν(z) ∩ {f ≥ t0}) = o(rn) ,

as {f < t1}z,r
loc→ H−

z,ν(z) and {f ≥ t0}z,r
loc→ H+

z,ν(z). We conclude by Federer’s theorem.

Step four : By (3.9), (3.10), (3.11), and by Federer’s theorem we deduce (3.3). By (3.8),
(3.12), and by Federer’s theorem, we prove (3.4). Finally, a last application of Federer’s
theorem allows to deduce (3.5) and (3.6) from (3.3), (3.4), (3.10), and (3.11). �

Recall that, if M ⊂ Rn and z ∈ Rn−1, then Mz = {t ∈ R : (z, t) ∈ M}. As a corollary
of Proposition 3.4 we thus find the following statement.

Corollary 3.8. If f ∈ GBV∗(Rn−1) and Nf is defined as in Lemma 3.6, then for every
z ∈ Sf \Nf we have

(Γv
f )z = (f∧(z), f∨(z)) ⊂

(
∂JΣf ∩ (Sf × R)

)
z

(3.13)

⊂
(
∂eΣf ∩ (Sf × R)

)
z
⊂ [f∧(z), f∨(z)] .

In particular, for every Borel set A ⊂ Sf we have

Pγ(Σf ;A× R) =
∫
A

∫ f∨(z)

f∧(z)
dH1

γ(t) dHn−2
γ (z) .

Proof. The first inclusion in (3.13) follows immediately from (3.12), while the second
inclusion is immediate from (2.11). The third inclusion follows of course from ∂eΣf ⊂ Γf .
Finally, since Sf is countablyHn−2-rectifiable, (2.9) impliesHn−1x(Sf×R) = (Hn−2xSf )×
H1. Thus, is A is a Borel set with A ⊂ Sf , then by (3.13) we find

Pγ(Σf ;A× R) = Hn−1
γ (∂eΣf ∩ (A× R)) =

∫
A
H1

γ((∂
eΣf )z) dHn−2

γ (z)

=

∫
A

∫ f∨(z)

f∧(z)
dH1

γ(t) dHn−2
γ (z) ,

where the tensorization property of e−|x|2/2 was also taken into account. �
3.2. Proof of Theorem 1.3: (ii) implies (i). In this section we present the proof of the
implication (ii) ⇒ (i) in Theorem 1.3. At the end of the proof we collect some examples
and remarks that should justify the rather involved technical argument we adopt.

Proof of Theorem 1.3, (ii) implies (i). Overview : We let v : Rn−1 → [0, 1] be a Lebesgue
measurable function such that Pγ(F [v]) <∞ (and, therefore, {F [v], g(F [v])} ⊂ M(v)). If
we define f : Rn−1 → R ∪ {±∞} as f(z) = Ψ(v(z)), z ∈ Rn−1, then

F [v] = Σf = epigraph of f .

We shall set for brevity F = F [v]. Since F has finite Gaussian perimeter, it turns out that
F is of locally finite perimeter, and thus, by Proposition 3.1, that f ∈ GBV∗(Rn−1). Up
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to redefine v on a Hn−1-negligible set, we can also assume that v is Borel measurable. (As
noticed in the introduction, Theorem 1.3 is stable under modifications of v over Hn−1-
negligible sets.) We now consider the Borel set

G = {z ∈ Rn−1 : 0 < v(z) < 1} = {z ∈ Rn−1 : f(z) ∈ R} ,
and assume that

{v∧ = 0} ∪ {v∨ = 1} does not essentially disconnect G. (3.14)

We want to prove that, if E is a v-distributed set such that

Pγ(E) = Pγ(F ) , (3.15)

then either Hn(E∆F ) = 0 or Hn(E∆g(F )) = 0, where g denotes the reflection with
respect to Rn−1, g(x) = (px,−qx), x ∈ Rn. To this end, let us set as usual Ez = {t ∈ R :
(z, t) ∈ E} for z ∈ Rn−1, and set

G+ =
{
z ∈ G : H1

(
Ez∆(f(z),∞)

)
= 0

}
,

G− =
{
z ∈ G : H1

(
Ez∆(−∞,−f(z))

)
= 0

}
,

G1 = {v = 1} =
{
z ∈ Rn−1 : H1

(
Ez∆R

)
= 0

}
,

G0 = {v = 0} =
{
z ∈ Rn−1 : H1(Ez) = 0

}
.

By Theorem A we find that

E =Hn

(
F ∩

(
(G+ ∪G1)× R

))
∪
(
g(F ) ∩ (G− × R)

)
, (3.16)

as well as that {G+, G−, G1, G0} is a partition of Rn−1 modulo Hn−1, and that {G+, G−}
is a partition of G modulo Hn−1, where this last condition means

Hn−1(G∆(G+ ∪G−)) = 0 , Hn−1(G+ ∩G−) = 0 .

Clearly, G = {0 < v < 1}, G1 = {v = 1}, and G0 = {v = 0} are Borel sets, as v is a Borel
function. Notice that also G+ and G− are Lebesgue measurable sets. Indeed, if we define
β : Rn−1 → R as

β(z) =

{ 1
v(z)

∫
Ez
t dγ1(t) , z ∈ {0 < v ≤ 1} ,

0 , z ∈ {v = 0} ,
(so that β(z) is the Gaussian barycenter of Ez), then, by Fubini’s theorem, β is a Lebesgue
measurable function. At the same time, a simple computation shows that

β(z) =
1√
2π

(
1G+(z)

e−f(z)2/2

v(z)
− 1G−(z)

e−f(z)2/2

v(z)

)
, ∀z ∈ G ∪G1 ,

so that G+ = {β > 0} and G− = {β < 0}. Thus, both G+ and G− are Lebesgue
measurable sets. We now look back at (3.16), and notice that Hn(E∆F )Hn(E∆g(F )) = 0
if and only if Hn−1(G+)Hn−1(G−) = 0. We thus argue by contradiction, and assume that
rigidity fails because of E, which amounts in asking that

Hn−1(G+)Hn−1(G−) > 0 . (3.17)

In other words, {G+, G−} is a non-trivial Lebesgue measurable partition of G. Hence,
thanks to (3.14), by Borel regularity of the Lebesgue measure, and since ∂eA = ∂eB if
A,B ⊂ Rn−1 with Hn−1(A∆B) = 0, we find that

Hn−2
((
G(1) ∩ ∂eG+ ∩ ∂eG−

)
\
(
{v∧ = 0} ∪ {v∨ = 1}

))
> 0 . (3.18)

Comparing (3.16) and (3.18) we see that E is obtained by reflecting F across a region
of non-trivial Hn−2 measure where the sections of F are neither negligible nor equivalent
to R: correspondingly, we expect Gaussian perimeter to be increased in this operation,
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that is, we expect (3.16) and (3.18) to imply Pγ(E) > Pγ(F ), thus contradicting (3.15).
The main difficulty in proving that this actually happens relies on the fact that the set
G(1) ∩ ∂eG+ ∩ ∂eG− may not have a reasonable metric structure, that is, it may fail to
be countably Hn−2-rectifiable. (Example 3.9 shows that G may fail to be of locally finite

perimeter. Example 3.10 shows that G(1) ∩ ∂eG+ ∩ ∂eG− may fail to be countably Hn−2-
rectifiable even if v ∈ Lip(Rn−1; [0, 1]).) We shall avoid this difficulty by showing the
existence of a countably Hn−2-rectifiable set Σ such that

Σ ⊂
(
G(1) ∩ ∂eG+ ∩ ∂eG−

)
\
(
{v∧ = 0} ∪ {v∨ = 1}

)
, Hn−2(Σ) > 0 .

We shall then deduce that, as simple drawings suggest, Pγ(E; Σ × R) > Pγ(F ; Σ × R).
Finally, by taking into account that Pγ(E;A × R) ≥ Pγ(F ;A × R) for every Borel set
A ⊂ Rn−1, we shall find Pγ(E) > Pγ(F ). We divide this argument in nine steps.

Step one : We use the information that E is a set of locally finite perimeter to deduce that
for every k ∈ N the function uk : Rn−1 → R defined as

uk = (k − |f |) 1{|f |<k}

(
1G+ − 1G−

)
∈ BVloc(Rn−1) .

Indeed, if we take into account (3.16) and repeat the argument in the proof of Proposition
3.1 with E in place of F = Σf , then we find

P (E;K × I) ≥
∫
G+

∇′φ(z) dz

∫ ∞

f(z)
ψ′(t)dt+

∫
G−

∇′φ(z) dz

∫ −f(z)

−∞
ψ′(t)dt

+

∫
G1

∇′φ(z) dz

∫ ∞

−∞
ψ′(t)dt , (3.19)

whenever φ ∈ C1
c (Rn−1) with sptφ ⊂ K ⊂⊂ Rn−1 and |φ| ≤ 1, ψ : R → R is a Lipschitz

function with sptψ′ ⊂ I ⊂⊂ R and Lip(ψ) ≤ 1. If we apply (3.19) with ψ defined by
ψ(t) = k for |t| > k and ψ(t) = |t| for |t| ≤ k, then we deduce our assertion by exploiting
the relations (valid for every a ∈ R)∫ ∞

a
ψ′ = (k − |a|) 1(−k,k)(a) ,

∫ −a

−∞
ψ′ = −(k − |a|) 1(−k,k)(a) ,

∫ ∞

−∞
ψ′ = 0 .

Step two : We show that, for every k ∈ N,{
|f |∨ < k

2

}
∩G(1)

+ ⊂
{
u∧k >

k

2

}
∩G(1)

+ .

It suffices to prove that, if z ∈ {|f |∨ < k/2} ∩G(1)
+ and ε < (k/2)− |f |∨(z), then

θ({uk < s}, z) = 0 , ∀s < k

2
+ ε .

Indeed, thanks to (2.3), we have {|f |∨ < k/2} ⊂ {|f | < k/2}(1). Thus, for every such s,

Hn−1
(
Dz,r ∩ {uk < s}

)
(z ∈ G

(1)
+ ) = Hn−1

(
Dz,r ∩ {uk < s} ∩G+

)
+ o(rn−1)

(z ∈ {|f | < k/2}(1)) = Hn−1
(
Dz,r ∩ {uk < s} ∩ {|f | < k/2} ∩G+

)
+ o(rn−1)

= Hn−1
(
Dz,r ∩ {k − |f | < s} ∩ {|f | < k/2} ∩G+

)
+ o(rn−1)

≤ Hn−1
(
Dz,r ∩ {k − s < |f |}

)
+ o(rn−1) = o(rn−1) ,

where the last identity follows by definition of |f |∨ since k − s > k/2− ε > |f |∨(z).
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Step three : We set

Σk = ∂eG+ ∩ ∂eG− ∩
{
− k

2
< f∧ ≤ f∨ <

k

2

}(1)
, k ∈ N ,

and prove that

Σk ⊂
{
u∨k ≥ k

2

}
∩
{
u∧k ≤ −k

2

}
, ∀k ∈ N . (3.20)

To show this, we start noticing that for every z ∈ Σk we have

Hn−1
(
Dz,r ∩

{
uk >

k

2

})
= Hn−1

(
Dz,r ∩

{
uk >

k

2

}(1))
≥ Hn−1

(
Dz,r ∩

{
uk >

k

2

}(1)
∩G(1)

+

)
≥ Hn−1

(
Dz,r ∩

{
u∧k >

k

2

}
∩G(1)

+

)
, (3.21)

where the last inequality follows from (2.4). Now, by step two and by (2.2),{
u∧k >

k

2

}
∩G(1)

+ ⊃
{
|f |∨ < k

2

}
∩G(1)

+ =
{
− k

2
< f∧ ≤ f∨ <

k

2

}
∩G(1)

+ ,

so that, by (3.21),

Hn−1
(
Dz,r ∩

{
uk >

k

2

})
≥ Hn−1

(
Dz,r ∩

{
− k

2
< f∧ ≤ f∨ <

k

2

}
∩G(1)

+

)
= Hn−1

(
Dz,r ∩G+

)
+ o(rn−1),

where in the last identity we have used the fact that z ∈ {k/2 > f∨ ≥ f∧ > −k/2}(1).
Since, by assumption, z ∈ ∂eG+, we conclude that

0 < θ∗(G+, z) ≤ θ∗
({
uk >

k

2

}
, z
)
,

which in turn gives u∨k (z) ≥ k/2. One can prove analogously that u∧k (z) ≤ −k/2.
Step four : We show that, for every k ∈ N,

Σk is locally Hn−2-rectifiable.

From step three we have that Σk ⊂ Suk
. Being uk ∈ BVloc(Rn−1), this imples that Σk is

countably Hn−2-rectifiable, and we are only left to show that Σk is locally Hn−2-finite. To
this end, let K ⊂ Rn−1 be a compact set; since

Σk = [Σk ∩ (Suk
\ Juk

)] ∪ (Σk ∩ Juk
)

and Hn−2(Suk
\ Juk

) = 0, we have

Hn−2(Σk ∩K) = Hn−2(Σk ∩ Juk
∩K) ∈ [0,∞] .

By step three and since uk ∈ BVloc(Rn−1),

kHn−2(Σk ∩ Juk
∩K) ≤

∫
Σk∩Juk∩K

(u∨k − u∧k ) dHn−2 ≤ |Djuk|(K) .

Thus, if K ⊂ Rn−1 is compact and k ∈ N, then Hn−2(K ∩ Σk) ≤ k−1 |Djuk|(K) < ∞.
This proves Σk is locally Hn−2-finite.

Step five : We are now going to deduce from (3.18) that, for k sufficiently large, we have

Hn−2(Σk) > 0 . (3.22)

We start proving the following identity,∪
k∈N

Σk =
(
∂eG+ ∩ ∂eG−

)
\
(
{f∨ = ∞} ∪ {f∧ = −∞}

)
. (3.23)
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Indeed, by definition of Σk, and by repeatedly applying (2.3) and (2.4),

Σk = ∂eG+ ∩ ∂eG− ∩
{
− k

2
< f∧ ≤ f∨ <

k

2

}(1)

⊂ ∂eG+ ∩ ∂eG− ∩
{
− k

2
≤ f∧ ≤ f∨ ≤ k

2

}
⊂ ∂eG+ ∩ ∂eG− ∩

{
− k + 1

2
< f∧ ≤ f∨ <

k + 1

2

}
⊂ ∂eG+ ∩ ∂eG− ∩

{
− k + 1

2
< f∧ ≤ f∨ <

k + 1

2

}(1)
= Σk+1 , (3.24)

from which (3.23) immediately follows. Since f = Ψ(v) with Ψ continuous and decreasing,
and thanks to (2.6), we have {f∨ = ∞} = {v∧ = 0} and {f∧ = −∞} = {v∨ = 1}, so that
(3.23) is equivalent to∪

k∈N
Σk =

(
∂eG+ ∩ ∂eG−

)
\
(
{v∧ = 0} ∪ {v∨ = 1}

)
. (3.25)

Finally, by (3.25), (3.24), and (3.18), we find

lim
k→∞

Hn−2(Σk) = Hn−2
((
∂eG+ ∩ ∂eG−

)
\
(
{v∧ = 0} ∪ {v∨ = 1}

))
> 0 .

Step six : We show here that, if W ⊂ Σk is a Borel set, then

Pγ(F ;W × R) =
∫
W
dHn−2

γ (z)

∫ f∨(z)

f∧(z)
dH1

γ . (3.26)

Indeed, (3.26) follows immediately by Corollary 3.8 provided W ⊂ Sf . Since the right-
hand side of (3.26) is trivially equal to zero if W ⊂ Sc

f , we are left to prove that

Pγ(F ; (Σk ∩ Sc
f )× R) = 0 .

To this end, we notice that, by Proposition 3.4,

∂eF ∩ (Sc
f × R) ⊂Hn−1

{
x ∈ Rn : px ∈ Sc

f ,qx = f∧(px) = f∨(px)
}
.

If L denotes the set on the right-hand side of this last inclusion, then H0(Lz) = 1 for every
z ∈ Sc

f . As Σk is countably Hn−2-rectifiable, by (2.9) we find that

Pγ(F ; (S
c
f ∩ Σk)× R) = Hn−1

γ

(
∂eF ∩

(
(Sc

f ∩ Σk)× R
))

≤ Hn−1
γ

(
L ∩

(
(Sc

f ∩ Σk)× R
))

=

∫
Sc
f∩Σk

H1
γ(Lz) dHn−2

γ (z) = 0 .

We have thus completed the proof of (3.26).

Step seven : We show that, if z ∈ Σk \Nuk
(with Nuk

defined as in Lemma 3.6), then there
exists ν ∈ Sn−1 ∩ Rn−1 such that

(G+)z,r
loc→ H+

0,ν , (G−)z,r
loc→ H−

0,ν , (3.27)

{uk > t}z,r
loc→ H+

0,ν , ∀t ∈ (u∧k (z), u
∨
k (z)) . (3.28)

By (3.23) and since Hn−2(Nuk
) = 0, this will imply in particular that

Σk ⊂Hn−2 ∂JG+ ∩ ∂JG− ∩ {|f |∨ <∞} . (3.29)

We first recall that, by Lemma 3.6, if z ∈ Suk
\ Nuk

, then there exists ν = ν(z) ∈ Sn−2

such that (3.28) holds true. Now, we easily find that

{uk > t} = G+ ∩ {|f | < k − t} , ∀t > 0 ,
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which in particular gives,

z ∈
∩

0<t<u∨
k (z)

∂J
(
G+ ∩

{
|f | < k − t

})
.

Since, by (3.20), u∨k (z) ≥ k/2 for every z ∈ Σk, for ε small enough we find that

Σk \Nuk
⊂ ∂J

(
G+ ∩

{
|f | < k −

(k
2
− ε

)})
= ∂J

(
G+ ∩

{
|f | < k

2
+ ε

})
.

Taking now into account that ∂J(A ∩B) ∩B(1) ⊂ (∂JA) ∩B(1), we thus find(
Σk \Nuk

)
∩
{
|f | < k

2
+ ε

}(1)
⊂ ∂JG+ .

Finally, since Σk ⊂ {|f | < (k/2) + ε}(1), we conclude that Σk \Nuk
⊂ ∂JG+. One proves

analogously the inclusion in ∂JG−.

Step eight : We have so far proved that, if k is large enough, then Σk is a locally Hn−2-
rectifiable set in Rn−1, with Hn−2(Σk) > 0, and Σk ⊂ ∂JG+∩∂JG−∩{|f |∨ <∞} (modulo
Hn−2). Moreover, we have computed the Gaussian perimeter of F above Σk. We now want
to compute Pγ(E; Σk × R), in order to show that this last quantity is strictly larger than
Pγ(F ; Σk×R). To this end, it is convenient to divide Σk into two parts, defined by the sets
Π+ an Π− introduced in this and in the following step. Precisely, we start this conclusive
part of our argument by considering the set Π+ of those

z ∈ ∂JG+ ∩ ∂JG− ∩ {|f |∨ <∞} ∩ (Sc
f ∪ Jf ) ,

such that, for some ν ∈ Sn−1 ∩ Rn−1,

(G+)z,r
loc→ H+

0,ν , (G−)z,r
loc→ H−

0,ν , (3.30)

{f > s} loc→ H+
0,ν , if z ∈ Jf and s ∈ (f∧(z), f∨(z)) . (3.31)

We want to characterize (∂JE)z for z ∈ Π+, by showing that

(∂JE)z =H1 (−∞,−f∧(z)) ∪ (f∨(z),∞) , ∀z ∈ Π+ ∩ {f∨ ≥ −f∧} , (3.32)

(∂JE)z =H1 (−∞, f∨(z)) ∪ (−f∧(z),∞) , ∀z ∈ Π+ ∩ {f∨ ≤ −f∧} . (3.33)

In particular, we shall prove that, if z ∈ Π+ and f∨(z) ≥ −f∧(z), then

(z, t) ∈ ∂JE , ∀t ∈
(
−∞,−f∧(z)

)
∪
(
f∨(z),∞

)
, (3.34)

(z, t) ∈ E(0) ⊂ Rn \ ∂eE , ∀t ∈ (−f∧(z), f∨(z)) , (3.35)

(so that (3.32) holds true, see Figure 3.1), while, if z ∈ Π+ and f∨(z) ≤ −f∧(z), then

(z, t) ∈ ∂JE , ∀t ∈
(
−∞, f∨(z)

)
∪
(
− f∧(z),∞

)
, (3.36)

(z, t) ∈ E(1) ⊂ Rn \ ∂eE , ∀t ∈ (f∨(z),−f∧(z)) . (3.37)

(thus proving (3.33), see, once again, Figure 3.1). Before entering into the proof of (3.34),
(3.35), (3.36), and (3.37), let us notice that (3.32) and (3.33) imply that

(∂JE)z =H1 (−∞, a(z)) ∪ (b(z),∞) , ∀z ∈ Π+ , (3.38)

where we have set

a(z) = min
{
− f∧(z), f∨(z)

}
, b(z) = max

{
− f∧(z), f∨(z)

}
. (3.39)

We shall now provide the details of the proof of (3.34), noticing that (3.35), (3.36), and
(3.37), can be proved by entirely analogous arguments. Let us thus consider z ∈ Π+ with
f∨(z) ≥ −f∧(z), and notice that, necessarily, f∨(z) ≥ (f∨(z) + f∧(z))/2 ≥ 0. We now
consider two separate cases.
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(a)

(b)

(z, 0)(z, 0)

(z, 0) Rn−1

R

(z, 0)

(z,−f∧(z))

E

E
(z, f∨(z))

F

f∨(z) ≥ −f∧(z)

(z,−f∧(z))

(z, f∧(z))

(z, f∨(z))

F

f∨(z) ≤ −f∧(z)

(z, f∨(z))

G+G−

(z, f∧(z))

G+G−

(z, f∨(z))

Figure 3.1. In panel (a) we consider the case when z ∈ Π+ and f∨(z) ≥
−f∧(z). In this case we must have f∨(z) ≥ 0, while, of course, f∧(z) has ar-

bitrary sign. Moreover, (∂eE)z is H1-equivalent to (−∞,−f∧(z)) ∪ (f∨(z),∞),

see (3.34), and (−f∧(z), f∨(z)) is H1-equivalent to (E(0))z, see (3.35). In panel

(b) we consider the complementary case when z ∈ Π+ and f∨(z) ≤ −f∧(z). In

this case (∂eE)z is H1-equivalent to (−∞, f∨(z))∪ (−f∧(z),∞), see (3.36), while

(f∨(z),−f∧(z)) is H1-equivalent to (E(1))z, see (3.37). In both cases, of course,

(∂eF )z is H1-equivalent to (f∧(z), f∨(z)).

Proof of (3.34) when t > f∨(z) : Let r∗ > 0 be such that t− r∗ > f∨(z), so that

{f < s}z,r
loc→ Rn−1 , {f < −s}z,r

loc→ ∅ , ∀s ∈ [t− r∗, t+ r∗] , (3.40)

thanks to the fact that f∨(z) ≥ 0. Since z ∈ G
(1/2)
+ ∩G(1/2)

− ⊂ G
(0)
1 ∩G(0)

0 , we have that

Hn
(
C(z,t),r ∩

(
(G1 ∪G0)× R

))
= o(rn) ; (3.41)

moreover, if r < r∗, then by (3.40) and by (3.30) we have

Hn
(
E ∩C(z,t),r ∩ (G− × R)

)
=

∫ t+r

t−r
Hn−1

(
G− ∩ {f < −s} ∩Dz,r

)
ds (3.42)

≤ 2rHn−1
(
{f < −(t− r∗)} ∩Dz,r

)
= o(rn) ,

as well as,

Hn
(
H+

(z,t),(ν,0) ∩C(z,t),r ∩ (G− × R)
)

= 2rHn−1
(
H+

z,ν ∩G− ∩Dz,r

)
= o(rn) .(3.43)
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Hence, by (3.41), (3.42), and (3.43), and by taking again into account (3.40) and (3.30),

Hn
((
E∆H+

(z,t),(ν,0)

)
∩C(z,t),r

)
= o(rn) +

∫ t+r

t−r
Hn−1

((
H+

z,ν∆
(
G+ ∩ {f < s}

))
∩Dz,r

)
ds

= o(rn) +

∫ t+r

t−r
Hn−1

((
G+∆H

+
z,ν

)
∩Dz,r

)
ds = o(rn) .

This proves that if t > f∨(z), then (z, t) ∈ ∂JE with E(z,t),r
loc→ H+

(0,0),(ν,0).

Proof of (3.34) when t < −f∧(z) : In the subcase that t < −f∨(z), we immediately see
(by symmetry) that (z, t) ∈ ∂JE with

E(z,t),r
loc→ H−

(0,0),(ν,0) . (3.44)

In particular, if z ∈ Sc
f , this concludes the proof of (3.34). We are thus left to consider

the case that z ∈ Jf and −f∨(z) < t < −f∧(z). In this case, we still record the validity
of (3.44), but this time, in the proof, we also have to take (3.31) into account: indeed, by
(3.31) we have that

{f < s}z,r
loc→ H−

0,ν , ∀s ∈ (f∧(z), f∨(z)) ,

therefore, if −f∨(z) < t < −f∧(z) then there exists r∗ > 0 such that

{f < −s}z,r
loc→ H−

0,ν , ∀s ∈ [t− r∗, t+ r∗] . (3.45)

We now notice that, since t+r∗ < −f∧(z) ≤ f∧(z), then {f < t+r∗}z,r
loc→ ∅, and therefore

Hn
(
E ∩C(z,t),r ∩ (G+ × R)

)
≤

∫ t+r

t−r
Hn−1

(
G+ ∩ {f < s} ∩Dz,r

)
ds (3.46)

≤ 2rHn−1
(
G+ ∩ {f < t+ r∗} ∩Dz,r

)
= o(rn) .

By (3.30), we similarly have

Hn
(
H−

(z,t),(ν,0) ∩C(z,t),r ∩ (G+ × R)
)
= 2rHn−1

(
H−

z,ν ∩G+ ∩Dz,r

)
= o(rn) . (3.47)

By combining (3.46) and (3.47) with (3.41) (which holds true simply by z ∈ G
(1/2)
+ ∩G(1/2)

− ),
we thus find

Hn
((
E∆H−

(z,t),(ν,0)

)
∩C(z,t),r

)
= o(rn) +

∫ t+r

t−r
Hn−1

((
H−

z,ν∆
(
G− ∩ {f < −s}

))
∩Dz,r

)
ds

= o(rn) +

∫ t+r

t−r
Hn−1

(
G− ∩ {f < −s} ∩H+

z,ν ∩Dz,r

)
ds

+

∫ t+r

t−r
Hn−1

((
H−

z,ν \
(
G− ∩ {f < −s}

))
∩Dz,r

)
ds

≤ o(rn) + 2rHn−1
(
G− ∩ {f < −(t− r∗)} ∩H+

z,ν ∩Dz,r

)
+2rHn−1

((
H−

z,ν \
(
G− ∩ {f < −(t+ r∗)}

))
∩Dz,r

)
= o(rn) ,

where in the last step we have also (3.30) and (3.45). This concludes the proof of (3.34).

Step nine : We finally find a contradiction. To this end, let us define Π− as the set of those

z ∈ ∂JG+ ∩ ∂JG− ∩ {|f |∨ <∞} ∩ (Sc
f ∪ Jf ) ,
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such that, for some ν ∈ Sn−1,

(G+)z,r
loc→ H+

0,ν , (G−)z,r
loc→ H−

0,ν , (3.48)

{f > s} loc→ H−
0,ν , if z ∈ Jf and s ∈ (f∧(z), f∨(z)) . (3.49)

Let us now notice the following two facts. First, trivially,

(Π+ ∪Π−) ∩ Sc
f = ∂JG+ ∩ ∂JG− ∩ {|f |∨ <∞} ∩ Sc

f . (3.50)

Second, since Jf and Suk
are both countablyHn−2-rectifiable sets, we have that νf = ± νuk

Hn−2-a.e. on Jf ∩ Suk
, and thus by (3.27) and (3.28), we find that

(Π+ ∪Π−) ∩ Jf ∩ Suk
=Hn−2 ∂JG+ ∩ ∂JG− ∩ {|f |∨ <∞} ∩ Jf ∩ Suk

. (3.51)

Since Hn−2(Sf \ Jf ) = 0, we finally conclude that

(Π+ ∪Π−) ∩ Suk
=Hn−2 ∂JG+ ∩ ∂JG− ∩ {|f |∨ <∞} ∩ Suk

.

In particular, by (3.22) and (3.29), we may assume (up to replacing E with g(E)) that

Hn−2(Σk ∩Π+) > 0 ,

for sufficiently large values of k. Since Σk is countably Hn−2-rectifiable, by (2.9) and by
(3.38) we find

Pγ(E; (Σk ∩Π+)× R) =

∫
Σk∩Π+

dHn−2
γ (z)

∫
(∂JE)z

dH1
γ

=

∫
Σk∩Π+

dHn−2
γ (z)

(∫ a(z)

−∞
dH1

γ +

∫ ∞

b(z)
dH1

γ

)
,

where a and b have been defined as in (3.39). Since H1
γ(R) = 1, we thus have

Pγ(E; (Σk ∩Π+)× R) =
∫
Σk∩Π+

(
1− γ1

(
a(z), b(z)

))
dHn−2

γ (z) ,

while, by (3.26),

Pγ(F ; (Σk ∩Π+)× R) =
∫
Σk∩Π+

γ1

(
f∧(z), f∨(z)

)
dHn−2

γ (z) .

Since Pγ(E;W × R) ≥ Pγ(F ;W × R) for every Borel set W ⊂ Rn−1, by Pγ(E) = Pγ(F )
we find that

Pγ(E; (Σk ∩Π+)× R) = Pγ(F ; (Σk ∩Π+)× R) .
This leads to a contradiction with the fact that Hn−2(Σk∩Π+) > 0 and with the fact that
the function

δ(α, β) = 1− γ1

(
min{−α, β},max{−α, β}

)
− γ1(α, β) , ∀β ≥ α ,

is strictly positive on {(α, β) ∈ R2 : β ≥ α}. Indeed, if −α ≤ β, then we have

δ(α, β) = 1− γ1(−α, β)− γ1(α, β) = 1− γ1(−α, β)− γ1(−β,−α)
= 1− γ1(−β, β) > 0 ;

if, instead, −α > β, then we have

δ(α, β) = 1− γ1(β,−α)− γ1(α, β) = 1− γ1(α,−α) > 0 .

This completes the proof of the implication (ii) ⇒ (i). �
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Example 3.9. It may happen that v ∈ BV (Rn−1; [0, 1]) but G = {0 < v < 1} is not of
locally finite perimeter in Rn−1. For example, if n ≥ 3, take

v(z) =
|z|2

2

∞∑
h=1

1[1/(2h+1)1/(n−2),1/(2h)1/(n−2)](|z|) , z ∈ Rn−1 .

In this case G = {0 < v < 1} is not of locally finite perimeter, as

Hn−2(Dr ∩ ∂eG) = Hn−2(Dr ∩ ∂G) = (n− 1)ωn−1

∞∑
h=h(r)

1

2h
+

1

2h+ 1
= ∞ , ∀r > 0 .

At the same time v ∈ BV (Rn−1; [0, 1]), as

|Dv|(Rn−1) ≤
√
2Hn−1(G) + 2(n− 1)ωn−1

∞∑
h=1

1

(2h)2/(n−2)

1

2h
<∞ .

Example 3.10. Consider an open equilateral triangle T in R2, and define an increasing
sequence of open sets {Th}∞h=0 by setting T0 = T ; T1 is obtained from T0 by adding a copy
of T rescaled by a factor 1/3 to the center of each side of T0; and so on. In this way, the
open set A =

∪∞
h=0 Th has the well-known von Koch curve K as its topological boundary.

If we set

v(z) = min
{1

2
, dist(z,K)

}
, z ∈ R2 ,

then v is a Lipschitz function on R2 with G = {0 < v < 1} = R2 \K. Notice that

K = {v∧ = 0} = {v = 0} ⊂ G(1) , {v∨ = 1} = ∅,

that is G(1) ∩ {v∧ = 0} ∩ {v∨ = 1} = K, and thus it is not countably H1-rectifiable.
(Indeed, the Hausdorff dimension of K is equal to log(4)/ log(3).) In particular, given a
Borel partition {G+, G−} of G we cannot expect the set

G(1) ∩ ∂eG+ ∩ ∂eG− ∩
(
{v∧ = 0} ∪ {v∨ = 1}

)
⊂ K ,

to possess any rectifiability property. Notice also that, in this example, K = {v∧ = 0}
essentially disconnects {0 < v < 1}, as it is seen by considering the non-trivial Borel
partition {G+, G−} of G defined by G+ = A and G− = R2 \ A. (Indeed, we easily
find that ∂eG+ = ∂eG− ⊂ K.) Also, by Theorem 1.3, we expect rigidity to fail. A
counterexample to rigidity is obtained by setting

E =
(
F ∩ (G+ × R)

)
∪
(
g(F ) ∩ (G− × R)

)
.

The fact that Pγ(E) = Pγ(F ) descends from the proof of the implication (i) ⇒ (ii) that
is presented in section 3.3.

3.3. Proof of Theorem 1.3, (i) implies (ii). In this section we present the proof of
the implication (i) ⇒ (ii) in Theorem 1.3. Let us recall the following general relation for
essential boundaries

∂e(A ∩B) ∩B(1) = (∂eA) ∩B(1) , (3.52)

that holds true for every pair of Lebesgue measurable sets A,B ⊂ Rn.

Proof of Theorem 1.3, (i) implies (ii). Overview : We shall prove that if (ii) fails then (i)
fails. Precisely, let us assume the existence of a non-trivial Borel partition {G+, G−} of
G = {0 < v < 1}, such that

Hn−2
((
G(1) ∩ ∂eG+ ∩ ∂eG−

)
\
(
{v∧ = 0} ∪ {v∨ = 1}

))
= 0 . (3.53)
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We set G1 = {v = 1}, G0 = {v = 0}, and then consider the Borel set

E =
(
F ∩

(
(G+ ∪G1)× R

))
∪
(
g(F ) ∩ (G− × R)

)
.

The idea here is that since E is obtained by reflecting F across a region where the sections
of F are either negligible or equivalent to R, then we should have Pγ(E) = Pγ(F ); however,
since Hn−1(G+)Hn−1(G−) > 0 by assumption, this would imply that both Hn(E∆F ) > 0
and Hn(E∆g(F )) > 0, and thus that (i) fails. In order to prove that Pγ(E) = Pγ(F )
we shall first need to prove that E is a set of locally finite perimeter, and then use the
information that its reduced boundary is Hn−1-equivalent to its essential boundary in
order to be able to check that no additional Gaussian perimeter is created in passing from
F to E.

Step one: In this step we gather some preliminary remarks to the strategy of proof de-
scribed above. We start by noticing that, if we set for the sake of brevity,

G1 0+ = G1 ∪G0 ∪G+ , G1 0− = G1 ∪G0 ∪G− ,

then by (3.52) and F ∩ (G1 0+ × R) = E ∩ (G1 0+ × R) we find that

∂eF ∩
(
G

(1)
1 0+ × R

)
= ∂eE ∩

(
G

(1)
1 0+ × R

)
. (3.54)

Similarly, starting from g(F ) ∩ (G1 0− × R) = E ∩ (G1 0− × R), we deduce that

∂e(g(F )) ∩
(
G

(1)
1 0− × R

)
= ∂eE ∩

(
G

(1)
1 0− × R

)
. (3.55)

By (3.54) and (3.55), we thus find

Hn−1
γ

(
∂eE ∩

(
G

(1)
1 0+ × R

))
= Hn−1

γ

(
∂eF ∩

(
G

(1)
1 0+ × R

))
; (3.56)

Hn−1
γ

(
∂eE ∩

(
G

(1)
1 0− × R

))
= Hn−1

γ

(
∂eg(F ) ∩

(
G

(1)
1 0− × R

))
= Hn−1

γ

(
∂eF ∩

(
G

(1)
1 0− × R

))
. (3.57)

By (3.56) and (3.57), we are left to understand the situation outside the cylinder of basis

Rn−1 \ (G(1)
1 0+ ∪G(1)

1 0−). To this end, let us notice that,

G
(0)
1 0+ = G

(1)
− , G

(0)
1 0− = G

(1)
+ , ∂eG1 0+ = ∂eG− , ∂eG1 0− = ∂eG+ ,

so that

Rn−1 \ (G(1)
1 0+ ∪G(1)

1 0−) =
(
G

(0)
1 0+ ∪ ∂eG1 0+

)
∩
(
G

(0)
1 0− ∪ ∂eG1 0−

)
= ∂eG+ ∩ ∂eG− . (3.58)

Let us also notice that, by (3.53) and [Fed69, 2.10.45],

Hn−1
([(

G(1) ∩ ∂eG+ ∩ ∂eG−

)
\
(
{v∧ = 0} ∪ {v∨ = 1}

)]
× R

)
= 0 . (3.59)

(Notice that we cannot apply (2.9) here, since ∂eG+ ∩ ∂eG− may fail to be countably
Hn−2-rectifiable; see Example 3.10.) By taking into account that ∂eGσ = (∂eGσ ∩ ∂eG)∪
(∂eGσ ∩ G(1)) for σ ∈ {+,−}, we are thus left to understand the situation inside the
cylinder (W1 ∪W2)× R, where we have set,

W1 = G(1) ∩ ∂eG+ ∩ ∂eG− ∩
(
{v∧ = 0} ∪ {v∨ = 1}

)
,

W2 = ∂eG ∩ ∂eG+ ∩ ∂eG− .

In fact, by taking into account that

∂eG ⊂ {z ∈ Rn−1 : θ∗({v = 0}, z) > 0} ∪ {z ∈ Rn−1 : θ∗({v = 1}, z) > 0}
⊂ {v∧ = 0} ∪ {v∨ = 1} ,
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we find

W2 = ∂eG ∩ ∂eG+ ∩ ∂eG− ∩
(
{v∧ = 0} ∪ {v∨ = 1}

)
,

so that

W1 ∪W2 = ∂eG+ ∩ ∂eG− ∩
(
{v∧ = 0} ∪ {v∨ = 1}

)
. (3.60)

Step two : We show that E and F have no essential boundary above {v∨ = 0}∪ {v∧ = 1}.
Indeed, we are going to prove

{v∨ = 0} × R ⊂ E(0) ∩ F (0) , (3.61)

{v∧ = 1} × R ⊂ E(1) ∩ F (1) , (3.62)

thus deducing that

Hn−1
γ

(
∂eF ∩

(
{v∨ = 0} × R

))
= Hn−1

γ

(
∂eE ∩

(
{v∨ = 0} × R

))
= 0 , (3.63)

Hn−1
γ

(
∂eF ∩

(
{v∧ = 1} × R

))
= Hn−1

γ

(
∂eE ∩

(
{v∧ = 1} × R

))
= 0 . (3.64)

Let us show for example that if z ∈ {v∨ = 0}, then (z, s) ∈ E(0) for every s ∈ R. Indeed,
if s ∈ R and r < 1, then

Hn(E ∩C(z,s),r) = 2rHn−1(Dz,r ∩G1) +

∫ s+r

s−r
Hn−1

(
Dz,r ∩G+ ∩ {f < t}

)
dt

+

∫ s+r

s−r
Hn−1

(
Dz,r ∩G− ∩ {f < −t}

)
dt

≤ 2rHn−1(Dz,r ∩G1) + 2rHn−1
(
Dz,r ∩ {f < |s|+ 1}

)
= o(rn) ,

where in the last identity we have used the assumption that v∨(z) = 0 (and thus f∧(z) =
+∞) to deduce that θ({f < |s| + 1}, z) = 0. This proves (3.61), and (3.62) follows
analogously.

Step three : We show that E is of locally finite perimeter. To this end, by taking into
account step one and step two, it suffices to prove that

Hn−1
γ (∂eE ∩ (Σ1 × R)) <∞ , (3.65)

where we have set

Σ1 = ∂eG+ ∩ ∂eG− ∩
(
{0 = v∧ < v∨} ∪ {v∧ < v∨ = 1}

)
.

We now claim that, if z ∈ {0 = v∧ < v∨} ∪ {v∧ < v∨ = 1}, then

(∂eE)z ⊂H1 (∂eF )z ∪ (∂eg(F ))z . (3.66)

Indeed, on the one hand, by (3.13), we have that

(∂eF )z =H1 [f∧(z),∞) , ∀z ∈ {0 = v∧ < v∨} , (3.67)

(∂eF )z =H1 (−∞, f∨(z)] , ∀z ∈ {v∧ < v∨ = 1} ; (3.68)

on the other hand, we also have, for every z ∈ Rn−1,

(∂eE)z ⊂ (−∞,−f∧(z)] ∪ [f∧(z),∞) , (3.69)

(∂eE)z ⊂ (−∞, f∨(z)] ∪ [−f∨(z),∞) ; (3.70)

see Figure 3.2. Let us show, for example, the validity of (3.69): if f∧(z) ≤ 0, then inclusion
is trivial; if we thus assume that f∧(z) > 0, then we have v∨(z) < 1/2, thus that

0 = θ({v > 2/3}, z) ≥ θ(G1, z) ;

30



(b)(a) (c)

zRn−1
z

R

z

0 ≤ f∧(z) ≤ f∨(z)

(z, f∧(z))

F
(z, f∨(z))(z, f∨(z))

(z, f∧(z))

F

f∧(z) ≤ 0 ≤ f∨(z)

F

(z, f∧(z))

f∧(z) ≤ f∨(z) ≤ 0

(z, f∨(z)) f∨(z)

−f∨(z)

−f∧(z)

f∧(z)

Figure 3.2. The three cases one has to consider in describing (∂eE)z. Notice

that, in case (a), both inclusions (3.69) and (3.70) are trivial; in case (b), (3.70)

is trivial, and (3.69) carries all the useful information; finally, in case (c), (3.69) is

trivial, and (3.70) is not.

that is, z ∈ G
(0)
1 . Hence,

Hn(E ∩C(z,t),r) = 2rHn−1(G1 ∩Dz,r) +

∫ t+r

t−r
Hn−1(G+ ∩ {f < s} ∩Dz,r) ds

+

∫ t+r

t−r
Hn−1(G− ∩ {f < −s} ∩Dz,r) ds

≤ o(rn) + 2rHn−1({f < |t|+ r} ∩Dz,r) ;

therefore, if t ∈ (−f∧(z), f∧(z)) and r < r∗ for a suitable value of r∗, then we have

Hn(E ∩C(z,t),r) ≤ o(rn) + 2rHn−1({f < |t|+ r∗} ∩Dz,r) = o(rn) ,

that is, (z, t) ∈ E(0); in other words,

(−f∧(z), f∧(z)) ⊂ (E(0))z ⊂ R \ (∂eE)z ,

that is (3.69). The proof of (3.70) is analogous; by taking into account (3.67), (3.68),
(3.69), and (3.70), we thus find (3.66), which in particular gives

Hn−1
γ

(
∂eE ∩

(
Σ1 × R

))
≤ 2Hn−1

γ

(
∂eF ∩

(
Σ1 × R

))
, (3.71)

and thus proves (3.65). By (3.56), (3.57), (3.58), (3.59), (3.60), (3.63), (3.64) and (3.65), we
thus find Hn−1

γ (∂eE) <∞. Hence, by Federer’s criterion, E is of locally finite perimeter.

Step four: We have proved so far that E is a set of locally finite perimeter with

Pγ(E; (Rn−1 \ Σ1)× R) = Pγ(F ; (Rn−1 \ Σ1)× R)

Since Pγ(E;W ×R) ≥ Pγ(F ;W ×R) for every Borel set W ⊂ Rn−1, we only need to show

Pγ(E; Σ1 × R) ≤ Pγ(F ; Σ1 × R) . (3.72)

By Federer’s theorem, Hn−1(∂eE \ ∂JE) = 0, and, moreover, by Proposition 3.4 we have
that Hn−2(Sf \ Jf ) = 0 (so that Hn−1((Sf \ Jf )× R) = 0). Since {v∧ = 0} = {f∨ = ∞}
and {v∨ = 1} = {f∧ = −∞}, we conclude that (3.72) follows by

Hn−1
γ (∂JE ∩ (Σ2 × R)) ≤ Hn−1

γ (∂eF ∩ (Σ2 × R)) , (3.73)

where

Σ2 = ∂eG+ ∩ ∂eG− ∩ Jf ∩
({

−∞ < f∧ < f∨ = ∞
}
∪
{
−∞ = f∧ < f∨ <∞

})
.
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(b) (b), case one

(a) (a), case one (a), case two

(b), case two

(z, t0)

(z, t0)

(z, 0)(z, 0) Rn−1

(z, 0)(z, 0) Rn−1
(z, 0)

R

R

(z, t0)

(z, t0)

(z, 0)

f∧(z) > 0

EF

E

G+G−G−

(z, f∧(z))

F E

G+

f∧(z) ≤ 0

E

G+ G+G−G−

(z, f∧(z))

Figure 3.3. The situation in the proof of (3.75) and (3.76). If f∧(z) ≤ 0,

then (3.79) shows that (f∧(z),−f∧(z)) is contained both in (∂eF )z and (∂eE)z.

Moreover, if f∧(z) ≤ 0 and we are in case one, then, see (3.81), there exists

t0 > −f∧(z) such that (z, t0) ∈ ∂JE, (∂eE)z and (∂eF )z are both H1-equivalent

to (f∧(z),∞), and (3.75) holds true. Finally, if f∧(z) ≤ 0 and we are in case

two, then, see (3.82), there exists t0 < f∧(z) such that (z, t0) ∈ ∂JE, (∂eE)z
and g((∂eF )z) are both H1 equivalent to (−∞, f∧(z)), and thus (3.76) holds true.

Similar remarks apply when f∧(z) > 0.

We now turn to the proof of (3.73), and thus complete the proof of the implication (ii) ⇒
(i). To this end, we pick

z ∈ Jf ∩
({

−∞ < f∧ < f∨ = ∞
}
∪
{
−∞ = f∧ < f∨ <∞

})
and show that either (∂JE)z ⊂H1 (∂JF )z or (∂

JE)z ⊂H1 g((∂JF )z). In fact, by symmetry,
we only have to consider the case

z ∈ Jf ∩ {−∞ < f∧ < f∨ = ∞} . (3.74)

Under assumption (3.74), we thus want to show that

either (∂JE)z ⊂H1 (∂JF )z =H1 (f∧(z),∞) , (3.75)

or (∂JE)z ⊂H1 g
(
(∂JF )z

)
=H1 (−∞,−f∧(z)) . (3.76)

We first notice that, by Lemma 3.6, there exists ν ∈ Sn−1 ∩ Rn−1 such that

{f < s}z,r
loc→ H+

z,ν , ∀ s > f∧(z) , (3.77)

{f < s}z,r
loc→ ∅ , ∀ s < f∧(z) . (3.78)
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Moreover, we have the inclusions,

(∂JE)z ∩
(
f∧(z),−f∧(z)

)
⊂H1 (∂JF )z , if f∧(z) ≤ 0 , (3.79)

(∂JE)z ∩
(
− f∧(z), f∧(z)

)
⊂H1 ∅ , if f∧(z) > 0 , (3.80)

that follow by (3.67) and (3.69). We now divide our argument into two cases.

Case one : assuming that there exists t0 ∈ (∂JE)z with t0 > |f∧(z)| we show that{
t ∈ (∂JE)z : |t| > |f∧(z)|

}
=

(
|f∧(z)|,∞

)
. (3.81)

Case two : assuming that there exists t0 ∈ (∂JE)z with t0 < −|f∧(z)| we show that{
t ∈ (∂JE)z : |t| > |f∧(z)|

}
=

(
−∞,−|f∧(z)|

)
. (3.82)

Before entering into the proof of the two cases, let us notice how they allow to complete the
proof of the theorem (see also Figure 3.3.) Indeed, if none of the two cases holds true, this
means that (∂JE)z ⊂H1 (−|f∧(z)|, |f∧(z)|), and then the validity of either (3.75) or (3.76)
follows by (3.79) and (3.80). (Just notice that when f∧(z) ≤ 0, then (−|f∧(z)|, |f∧(z)|) ⊂
(∂JF )z ∩g(∂JF )z.) Similarly, if we are in the first case, and f∧(z) > 0, then (3.75) follows
by combining (3.80) with (3.81); if we are in the first case and f∧(z) ≤ 0, then (3.75)
follows by (3.79) and (3.81); finally, if we are in the second case then (3.76) holds true by
combining (3.79), (3.80), and (3.82). We prove (3.81) and (3.82) in the next step.

Step five : We assume to be in the first case, and prove (3.81). Let us first prove that

Hn−1(Dz,r ∩G1+ ∩H+
z,ν) =

ωn−1 r
n−1

2
+ o(rn−1) , (3.83)

and thus, clearly, that

Hn−1(Dz,r ∩G0− ∩H+
z,ν) = o(rn−1) , (3.84)

where we have set G1+ = G+ ∪G1 and G0− = G− ∪G0. To prove (3.83), we pick t1 and
t2 such that |f∧(z)| < t1 < t0 < t2. Since (z, t0) ∈ ∂JE, and since every half-space H with
x ∈ ∂H cuts Cx,r into two halves of equal volume, we find that

Hn(C(z,t0),r)

2
+ o(rn) = Hn(E ∩C(z,t0),r)

=

∫ t0+r

t0−r
Hn−1(Dz,r ∩G1+ ∩ {f < s}) +Hn−1(Dz,r ∩G− ∩ {f < −s}) ds

≤ 2rHn−1(Dz,r ∩G1+ ∩ {f < t2}) ds+ o(rn) ,

where in the last identity we have used (3.78) with s = −t1 < −|f∧(z)| ≤ f∧(z). By
applying (3.77) with s = t2 > |f∧(z)| ≥ f∧(z), and since Hn−1(Cr) = 2ωn−1r

n, we find

ωn−1r
n + o(rn) ≤ 2rHn−1(Dz,r ∩G1+ ∩H+

z,ν) + o(rn) .

that is

ωn−1r
n−1

2
+ o(rn−1) ≤ Hn−1(Dz,r ∩G1+ ∩H+

z,ν) ≤
ωn−1r

n−1

2
.
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This proves (3.83), and thus (3.84). We now pick t > |f∧(z)|, we now choose t1 and t2 to
be such that |f∧(z)| < t1 < t < t2, and then notice that

Hn((E∆H+
(z,t),(ν,0)) ∩C(z,t),r) =

∫ t+r

t−r
Hn−1(Dz,r ∩G1+ ∩ {f < s} ∩H−

z,ν) ds

+

∫ t+r

t−r
Hn−1(Dz,r ∩G1+ ∩ {f ≥ s} ∩H+

z,ν) ds

+

∫ t+r

t−r
Hn−1(Dz,r ∩G− ∩ {f < −s} ∩H−

z,ν) ds

+

∫ t+r

t−r
Hn−1(Dz,r ∩G− ∩ {f ≥ −s} ∩H+

z,ν) ds ,

so that, Hn((E∆H+
(z,t),(ν,0)) ∩C(z,t),r) ≤ 2r (I1 + I2 + I3 + I4) where

I1 = Hn−1(Dz,r ∩G1+ ∩ {f < t2} ∩H−
z,ν) ,

I2 = Hn−1(Dz,r ∩G1+ ∩ {f ≥ t1} ∩H+
z,ν) ,

I3 = Hn−1(Dz,r ∩G− ∩ {f < −t1} ∩H−
z,ν) ,

I4 = Hn−1(Dz,r ∩G− ∩ {f ≥ −t2} ∩H+
z,ν) .

We see that I1 = I2 = o(rn−1) by (3.77), while I3 = o(rn−1) by (3.78), and I4 = o(rn−1)
by (3.84). We have thus proved that(

|f∧(z)|,∞
)
⊂ (∂JE)z .

In order to conclude the proof of (3.81) we will now prove that(
−∞,−|f∧(z)|

)
⊂ E(0) .

Indeed, let us pick t < −|f∧(z)|. This time we set t1 and t2 to be such that t1 < t < t2 <

−|f∧(z)|. In this way, by arguing as above, and by also recalling that z ∈ G
(0)
1 , we find

Hn(E ∩C(z,t),r) ≤ 2rHn−1(Dz,r ∩G+ ∩ {f < t2})
+2rHn−1(Dz,r ∩G− ∩ {f < −t1}) .

where the first term is o(rn) by (3.78). By (3.77) we thus find

Hn(E ∩C(z,t),r) = o(rn) + 2rHn−1(Dz,r ∩G− ∩H+
z,ν) = o(rn) ,

where the last identity follows by (3.84). Hence (z, t) ∈ E(0), as claimed, and the proof of
(3.81) is completed. In order to prove (3.82), we notice that the existence of t0 < −|f∧(z)|
such that (z, t0) ∈ ∂JE, implies

Hn−1(Dz,r ∩G1+ ∩H+
z,ν) = o(rn−1) . (3.85)

The proof of (3.82) is then analogous to that of (3.81), with (3.85) in place of (3.84). �

3.4. Proof of Theorem 1.3 and Theorem 1.6. We finally complete the proof of our
two main results.

Proof of Theorem 1.3. The equivalence of (i) and (ii) is proved in sections 3.2 and 3.3. �

Proof of Theorem 1.6. Step one : We show that if a Borel set G ⊂ R is essentially con-
nected, then G(1) is an interval. Indeed, let us prove that, if a, b ∈ G(1) with a < b and
c ∈ (a, b), then c ∈ G(1). To see this, we set G+ = G ∩ (c,∞), G− = G ∩ (−∞, c), so that
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{G+, G−} is a Borel partition of G modulo H1. In fact, H1(G+)H1(G−) > 0. Indeed,

should H1(G+) = 0, then we would have (G+)
(1) = ∅, and thus

b ∈ G(1) ∩ (c,∞)(1) ⊂
(
G ∩ (c,∞)

)(1)
= (G+)

(1) = ∅ ,

a contradiction. Since G is essentially connected, we find

H0(G(1) ∩ ∂eG+ ∩ ∂eG−) > 0 . (3.86)

Since G(1) ∩ ∂eG+ = G(1) ∩ {c} and G(1) ∩ ∂eG− = G(1) ∩ {c}, (3.86) gives c ∈ G(1).

Step two : If {v∧ = 0} ∪ {v∨ = 1} does not essentially disconnect {0 < v < 1}, then, in
particular, {0 < v < 1} is essentially connected, and thusH1-equivalent to an open interval
I by step one. Let now c ∈ I, and assume that v∧(c) = 0. Since {c} (thus {v∧ = 0})
essentially disconnects I, by Remark 1.1 we find that {v∧ = 0} essentially disconnects
{0 < v < 1}, a contradiction. Therefore, v∧ > 0 on I. We similarly see that v∨ < 1 on I.
This shows that assumption (ii) in Theorem 1.3 implies assumption (ii) in Theorem 1.6.
Since the reverse implication is trivial, we are done. �

4. Some further conditions for rigidity

As noticed in Remark 1.7, a natural question is whether it is possible to formulate
sufficient conditions for rigidity in terms of suitable connectedness properties of F [v].
Referring readers to the remark for a list of examples and possible conditions, we prove
here two results, that provide simple sufficient conditions for rigidity.

Theorem 4.1. If v : Rn−1 → [0, 1] is Lebesgue measurable and such that Pγ(F [v]) < ∞,
and if there exists a sequence th → 0 as h→ ∞ such that, for every h ∈ N,

F [v] ∩
(
{th < v < 1− th} × R

)
is essentially connected in Rn , (4.1)

then E ∈ M(v) if and only if Hn(E∆F [v]) = 0 or Hn(E∆g(F [v])) = 0.

Proof. We notice that in the proof of (ii) implies (i) in Theorem 1.3, assumption (ii) was
used only to guarantee the validity of (3.18), that in turn was used in step five of that
proof to deduce that Hn−2(Σk) > 0. Thus, in order to prove that (4.1) implies rigidity, it
will suffice to show that it implies Hn−2(Σk) > 0 for k large enough. Let us now set

Gh = {th < v < 1− th} , Fh = F ∩ (Gh × R) , h ∈ N .
If we set Gh,+ = G+∩Gh and Gh,− = G−∩Gh, then Hn−1(Gh,±) → Hn−1(G±) as h→ ∞.
Hence, Hn−1(Gh,+)Hn−1(Gh,−) > 0 for h large enough, and, correspondingly, the sets

Fh,+ = F ∩ (Gh,+ × R) , Fh,− = F ∩ (Gh,− × R) ,
define a non-trivial Lebesgue measurable partition {Fh,+, Fh,−} of Fh. By (4.1),

Hn−1
(
∂eFh,+ ∩ ∂eFh,− ∩ F (1)

h

)
> 0 , (4.2)

for h large enough. Let us now set

Λh = p
(
∂eFh,+ ∩ ∂eFh,− ∩ F (1)

h

)
, ∀h ∈ N .

If Hn−2(Λh) <∞, then, by [Fed69, 2.10.45], for every R > 0 we have

Hn−2(Λh)L1((−R,R)) ≥ c(n)Hn−1(Λh × (−R,R))

≥ c(n)Hn−1
(
∂eFh,+ ∩ ∂eFh,− ∩ F (1)

h ∩ {|qx| < R}
)
,

so that, by (4.2), Hn−2(Λh) > 0 for every h large enough. We now claim that, given h ∈ N
there exists kh ∈ N such that

Λh ⊂ Σk , ∀k ≥ kh ; (4.3)
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this will conclude the proof. To show (4.3), we start noticing that

z ∈ G
(0)
+ ⇒ z ∈ G

(0)
h,+

⇒ (z, s) ∈ (Gh,+ × R)(0) , ∀s ∈ R ,
⇒ (z, s) ∈ [F ∩ (Gh,+ × R)](0) , ∀s ∈ R ,
⇒ z /∈ p(∂eFh,+) ;

similarly, being G+ and G− disjoint, z ∈ G
(1)
+ implies z ∈ G

(0)
− , and thus z /∈ p(∂eFh,−).

We have thus proved so far that

Λh ⊂ p
(
∂eFh,+ ∩ ∂eFh,−

)
⊂ ∂eG+ ∩ ∂eG− , ∀h ∈ N . (4.4)

We now notice that

G
(1)
h ⊂ {v > th}(1) ∩ {v < 1− th}(1)

(by (2.3) and (2.4)) ⊂ {v∧ ≥ th} ∩ {v∨ ≤ 1− th}
(by (2.6)) ⊂ {f∨ ≤ Ψ(th)} ∩ {f∧ ≥ Ψ(1− th)} . (4.5)

Hence, if x ∈ F
(1)
h , then x ∈ (Gh × R)(1), and thus px = z ∈ G

(1)
h , so that, by (4.5),

Λh ⊂ G
(1)
h ⊂

{
f∨ ≤ Ψ(th)

}
∩
{
f∧ ≥ Ψ(1− th)

}
, ∀h ∈ N . (4.6)

By combining (4.4), (4.6), and the definition of Σk, we thus come to prove (4.3), provided
we choose kh such that kh > Ψ(th) and −kh < Ψ(1− th). This completes the proof. �
Theorem 4.2. If v : R → [0, 1] is Lebesgue measurable with Pγ(F [v]) <∞, and both F [v]
and R2 \ F [v] are indecomposable sets, then E ∈ M(v) if and only if H2(E∆F [v]) = 0 or
H2(E∆g(F [v])) = 0.

Proof. Step one: We show that, if F = F [v] is indecomposable in R2 and v∧(c) = 0, then

H2(F ∩ ((c,∞)× R))H2(F ∩ ((−∞, c)× R)) = 0 . (4.7)

Indeed, let us assume this is not the case, and set F+ = F ∩ ((c,∞) × R) and F− =
F ∩((−∞, c)×R). We claim that {F+, F−} is a non-trivial partition of F by sets of locally
finite perimeter with the property that

F (1) ∩ ∂eF+ ∩ ∂eF− = ∅ , (4.8)

against the indecomposability of F . To show that (4.8) holds true, let us notice that since
F+ and F− are disjoint subsets of F whose union is F , we have

F (1) ∩ ∂eF+ ∩ ∂eF− = F (1) ∩ ∂eF+ = F (1) ∩ ({c} × R) .

However, if (c, t) ∈ F (1) for some t ∈ R, then for every r < 1 we find

4 r2 + o(r2) = H2(F ∩C(c,t),r) =

∫ t+r

t−r
H1(Dc,r ∩ {f < s}) ds

≤ 2rH1(Dc,r ∩ {f < t+ 1}) ,
which leads to a contradiction as, by v∧(c) = 0 (that is, f∨(c) = +∞), we have

lim inf
r→0+

H1(Dc,r ∩ {f < t+ 1})
2r

< 1 .

This proves (4.8), thus our claim.

Step two: By arguing as in the proof of step one, we notice that, if R2\F is indecomposable
in R2 and v∨(c) = 1, then

H2(((c,∞)× R) \ F )H2(((−∞, c)× R) \ F ) = 0 . (4.9)
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Step three: We show that, if both F and R2 \ F are indecomposable, then {0 < v < 1} is
H1-equivalent to an open interval. Indeed, let I be the least closed interval that contains
{0 < v < 1} modulo H1. If {0 < v < 1} is not H1-equivalent to I, then there exists
J ⊂ I ∩ ({v = 0} ∪ {v = 1}) with H1(J) > 0. In particular, if ε = H1(J)/3, then there

exists c ∈ J (1) with

c > inf I + ε , c < sup I − ε . (4.10)

By (4.10), and by minimality of I, we see that

H2(F ∩ ((c,∞)× R))H2(F ∩ ((−∞, c)× R)) > 0 , (4.11)

H2(((c,∞)× R) \ F )H2(((−∞, c)× R) \ F ) > 0 . (4.12)

By c ∈ J (1) we find c ∈ ({v = 0} ∪ {v = 1})(1), and thus either θ∗({v = 0}, c) > 0
or θ∗({v = 1}, c) > 0; therefore, either v∧(c) = 0 (but then (4.11) contradicts (4.7)) or
v∨(c) = 1 (but then (4.12) contradicts (4.9)). Hence, {0 < v < 1} is H1-equivalent to the
interval I.

Step four: We prove the validity of condition (ii) in Theorem 1.6 by a simple combination
of the first three steps. Hence, rigidity holds true by Theorem 1.6. �
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