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Abstract. We obtain an improved Sobolev inequality in Ḣs spaces involving
Morrey norms. This refinement yields a direct proof of the existence of optimiz-
ers and the compactness up to symmetry of optimizing sequences for the usual
Sobolev embedding. More generally, it allows to derive an alternative, more trans-
parent proof of the profile decomposition in Ḣs obtained in [19] using the abstract
approach of dislocation spaces developed in [50]. We also analyze directly the lo-
cal defect of compactness of the Sobolev embedding in terms of measures in the
spirit of [31, 32]. As a model application, we study the asymptotic limit of a fam-
ily of subcritical problems, obtaining concentration results for the corresponding
optimizers which are well known when s is an integer ([38, 22], [10]).

1. Introduction

Fractional Sobolev spaces have been a classical topic in Functional and Harmonic
Analysis as well as in Partial Differential Equations all the time. A great attention
has been focused on the study of problems involving fractional spaces, and, more
recently, the corresponding nonlocal equations, both from a pure mathematical point
of view and for concrete applications, since they naturally show up in many different
contexts. For an elementary introduction to this topic and a wide, but still very
limited, list of related references we refer to [12]. Here we are interested in the

simplest among them, namely the spaces Hs(RN ) and Ḣs(RN ), which are their
homogeneous counterpart, and in the corresponding Sobolev inequalities.

Let N ≥ 1 and for each 0 < s < N/2 denote by Hs(RN ) the usual1 L2−based

fractional Sobolev spaces and Ḣs(RN ) its homogeneous version defined via Fourier
transform as the completion of C∞0 (RN ) under the norm

(1.1) ‖u‖2
Ḣs =

∫
RN
|ξ|2s|û(ξ)|2dξ .

In the present paper, we mainly focus our attention on fractional Sobolev embed-
dings Ḣs(RN ) ↪→ L2∗(RN ), and the corresponding inequality

(1.2) ‖u‖2∗
L2∗ ≤ S∗‖u‖2∗

Ḣs ∀u ∈ Ḣs(RN ),

2010 Mathematics Subject Classification. Primary 35J60; Secondary 35C20, 35B33, 49J45.

Key words and phrases. Refined Sobolev inequalities, concentration-compactness principle, pro-
file decomposition, critical Sobolev exponent, dislocation spaces, Morrey spaces, Besov spaces,
fractional Sobolev spaces.

1 We immediately refer to Section 2 for the basic definitions and some properties of the relevant
spaces we deal with in the paper.
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where 2∗ = 2N/(N − 2s) is the critical Sobolev exponent, so that 2∗ ∈ (2,∞) as
s ∈ (0, N/2), which allows to define the fractional Laplacian e. g. as a bounded

linear operator (−∆)s/2 : Ḣs(RN )→ L2(RN ).

First, we recall that, using the important results in [30] on the related Hardy-
Littlewood-Sobolev inequality, the optimal constant in the Sobolev inequality (1.2)
was computed in [11, Theorem 1.1], namely

(1.3) S∗ =

(
2−2sπ−s

Γ
(
N−2s

2

)
Γ
(
N+2s

2

) [ Γ(N)

Γ(N/2)

]2s/N
)2∗

2

,

together with the explicit formula for those functions giving equality in the inequal-
ity. Precisely, for u 6= 0, we have equality in (1.2) if and only if

(1.4) u(x) =
c

(λ2 + |x− x0|2)
N−2s

2

∀x ∈ RN ,

where c ∈ R \ {0} and λ > 0 are constants and x0 ∈ RN is a fixed point.
When s = 1 the Sobolev inequality (1.2) as well as the previous results have been

proved in [45] and also in [1], where the subtle connection of (1.2)-(1.4) with the
Yamabe problem in Riemannian geometry is discussed. When 2 ≤ s < N/2 is an
even integer the same result was obtained some years later in [44], following the
ideas in [31] and [32]. Also, the case s = 1/2 has been already studied in [14] in an
equivalent form given by the s-harmonic extension (see (2.5)-(2.6) in Section 2.1),
in connection with the Yamabe problem on manifolds with boundary.

Using the moving planes method, formula (1.4) has been obtained independently
by Chen, Li & Ou in [9]. At least when 0 < s < 1, a third approach through
symmetrization techniques applied to the equivalent Gagliardo seminorm (see (2.4)
in Section 2.1) can be found in [17].

A naive approach to the validity of (1.2) is to study the variational problem

S∗ :=sup

{
F (u) : u ∈ Ḣs(RN ),

∫
RN
|(−∆)

s
2u|2dx ≤ 1

}
(1.5)

where F (u):=

∫
RN
|u|2∗dx.

Clearly, the validity of (1.2) is equivalent to show that the constant S∗ defined
in (1.5) is finite, and an explicit formula of S∗ is given by (1.3). Moreover, (1.4) gives
the maximizers of the variational problem (1.5) up to normalization. Note that
even the existence of a maximizer is not trivial since the embedding (1.2) is not

compact, because of translation and dilation invariance. Indeed, if u ∈ Ḣs(RN ) is
an admissible function in (1.5), the same holds for

(1.6) ux0,λ(x) = λ−
N−2s

2 u

(
x− x0

λ

)
,

for any x0 ∈ RN and any λ > 0; in addition ux0,λ satisfies F (ux0,λ) = F (u) and

tends to zero weakly in Ḣs, as |x0| → ∞ or as λ→ 0+ and λ→∞. More precisely,

formula (1.6) and simple calculations show that both the Ḣs and the L2∗ norms are
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invariant under translations and dilations and through (1.6) such groups (actually

their semidirect product) act by isometries on Ḣs and L2∗ in a noncompact way.
Another related problem we consider is the following. Given a bounded domain

Ω ⊂ RN , one can define the Sobolev space Ḣs(Ω) as the closure of C∞0 (Ω) in Ḣs(RN )
with the norm in (1.1) and the related maximization problem (corresponding to

Sobolev embedding Ḣs(Ω) ↪→ L2∗(Ω)), namely

S∗Ω :=sup

{
FΩ(u) : u ∈ Ḣs(Ω),

∫
RN
|(−∆)

s
2u|2dx ≤ 1

}
(1.7)

where FΩ(u):=

∫
Ω
|u|2∗dx.(1.8)

A simple scaling argument on compactly supported smooth functions shows that
S∗Ω = S∗, but in view of (1.4), the variational problem (1.7) has no maximizer and
no maximizing sequence in (1.7) converges.

Part of our analyses here will be devoted to the study of the effects of such lack
of compactness for optimizing sequences in (1.5)-(1.7). Also, in analogy with the
the local case s ∈ N, we will describe such phenomena in terms of concentration-
compactness and more generally in terms of the so-called profile decomposition as
originally done in [19] for fractional spaces Ḣs(RN ) but with a different approach.

In order to do this, among other tools we will need to make use of a refinement of
the Sobolev inequality (1.2) itself, in terms of Morrey spaces. By a refinement of the
Sobolev embedding, one means that there exists a Banach function space X such
that Ḣs ↪→ X continuously (possibly Ḣs ↪→ L2∗ ↪→ X ) and, for some 0 < θ < 1
and some C > 0,

(1.9) ‖u‖L2∗ ≤ C‖u‖θ
Ḣs‖u‖1−θX , ∀u ∈ Ḣs(RN ) .

Clearly (1.9) implies (1.2) because the embedding Ḣs ↪→ X is continuous.
Such improved Sobolev inequalities are difficult to get but, as we will discuss

below, they allow to obtain deeper informations that would be not detected in the
Lebesgue scale. The simplest choice is probably the Lorentz space X = L(2∗,∞),
(so that L2∗ ↪→ X), for which (1.9) can be proved combining Peetre’s Sobolev

embedding Ḣs ↪→ L(2∗, 2) with Hölder inequality in Lorentz spaces (see e. g. [17])
and for which the convexity exponent is θ = 2/2∗.

In the same direction, Gerard, Meyer & Oru ([20]) proved (1.9) when X = Ḃ
−N/2∗
∞,∞

is an homogeneous Besov space of negative smoothness and still θ = 2/2∗ and
L2∗ ↪→ X. Thus, in both cases the refinement (1.9) appears as an interpolation in-

equality between Ḣs and X with intermediate space L2∗ . This is not the case in [19],
pages 224-225, where using a result from [20] the inequality (1.9) is established for

X = Ḃs
2,∞, a Besov space of positive smoothness very close to Ḣs (so that one only

has Ḣs ↪→ X ↪→ L(2∗,∞) but X 6↪→ L2∗). We will back to this case below, when

discussing the profile decomposition in Ḣs.

Now, for any 1 ≤ r < ∞ and any 0 ≤ γ ≤ N let denote by Lr,γ the usual
homogeneous Morrey space. For 1 ≤ r < 2∗ we let γ = r(N − 2s)/2 (so that 0 <

γ < N) and consider X = Lr,r(N−2s)/2. Note that with this choice of the parameters
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the norm of X has the same invariance property of the Ḣs norm under (1.6) (see
equation (2.9) below). Our first result is the following

Theorem 1.1. For any 0 < s < N/2 there exists a constant C depending only on
N and s such that, for any 2/2∗≤ θ < 1 and for any 1 ≤ r < 2∗,

(1.10) ‖u‖L2∗ ≤ C‖u‖θ
Ḣs‖u‖1−θLr,r(N−2s)/2 ∀u ∈ Ḣs(RN ) .

Note that a simple application of Hölder inequality gives L2∗ ↪→ Lr,
N−2s

2
r = X,

i. e., there exists a constant C = C(n, s) such that

(1.11) ‖u‖
Lr,r

N−2s
2
≤ C‖u‖L2∗ , ∀u ∈ L2∗ ,

thus (1.10) is a refinement of (1.2) in the sense discussed above. Note moreover that

Hölder inequality also gives Lp,p
N−2s

2 ↪→ Lr,r
N−2s

2 , for any 1 ≤ r < p < 2∗, so that it
will be enough to prove the theorem in the case r = 1.

We propose two different proofs of Theorem 1.1. The first one relies basically on
a subtle estimate of the Riesz potentials on weighted Lp spaces established in [39],
using Calderón-Zygmund type techniques much in the spirit of the fundamental
Fefferman-Phong inequality. Combining this estimate with a precise control on
Ap,q-constant associated to the weights in terms of the Morrey norm the theorem
follows.

The second proof we give is completely different and combines the refined Sobolev

embedding of [20] in Ḃ
−N/2∗
∞,∞ with an embedding of Morrey spaces into homogeneous

Besov spaces. Indeed, by means of the thermic description of the Besov spaces Ḃ−α∞,∞
(see [29, Chapter 5], and Section 2.2 below), we will check that

(1.12) L1,α ↪→ Ḃ−α∞,∞,

for any 0 < α < N , and for α = (N − 2s)/2 this is all we need to conclude.
The latter embedding is somehow implicit in [48] and presumably well-known in

the Navier-Stokes community (at least for nonhomogeneous spaces or for α = 1, for
which the space has the same scale-invariance of the equations). Since we were not
able to find a precise reference to the literature, we provide below an elementary
proof (see Lemma 3.4).

To summarize, for 0 < 2s < N and 1 ≤ r < 2∗ we have the chain of inclusions

Ḃs
2,∞ ↪→ L(2∗,∞) ↪→ Lr,r

N−2s
2 ↪→ Ḃ−N/2

∗
∞,∞ ,

and the refined Sobolev inequality (1.9) holds when X is any of these spaces, due to
Theorem 1.1 and all the previous results recalled above.

Actually the same strategy above applies to the Sobolev embedding Ẇ 1,p(RN ) ↪→
Lp
∗
(RN ), 1 ≤ p < N , where Ẇ 1,p is the closure of C∞0 (RN ) with respect to the Lp-

norm of the gradient. To be precise, we will prove the following

Theorem 1.2. For any 1 ≤ p < N let p∗ be the usual critical exponent given by
Np/(N − p). There exists a constant C depending only on N and p such that, for
any p/p∗ ≤ θ < 1 and for any 1 ≤ r < p∗,

‖u‖Lp∗ ≤ C‖∇u‖θLp‖u‖1−θLr,r(N−p)/p ∀u ∈ Ẇ 1,p(RN ) .
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As in the nonlocal case given in Theorem 1.1 – the previous result contains an
improvement of the usual Sobolev embedding Ẇ 1,p ↪→ Lp

∗
in terms of Morrey

spaces. The previous refinement is similar to the one in [28], where a stronger
improvement is established analogous to (1.9) using the Besov space of negative

smoothness X = Ḃ
(p−N)/p
∞,∞ . As for Theorem 1.1 we give two proofs of this result,

again either by weighted estimates of the Riesz potentials or combining the refined
Sobolev inequality from [28] with the embedding (1.12) with α = (N − p)/p.

Armed with the improved Sobolev embeddings in Theorem 1.1, we will prove
that for any sequence {un} in Ḣs uniformly bounded from below in the Lebesgue
L2∗-norm one can detect an appropriate scaling {xn, λn} which assures that the
sequence uxn,λn given by (1.6) admits a nontrivial weak-limit (see Lemma 4.1).
Combining this fact with a celebrated lemma from [5], we can study maximizing
sequences for (1.5). As for the case when s is an integer, first considered in [31]-[32],
we will prove that the compactness of such sequences is restored when the natural
invariance is taken into account. Indeed, we have the following

Theorem 1.3. Let {un} ⊂ Ḣs(RN ) be a maximizing sequence for the critical
Sobolev inequality in the form (1.5). Then, up to subsequences, there exist a se-
quence of points {xn} ⊂ RN and a sequence of numbers {λn} ⊂ (0,∞) such that

ũn(x) = λ
(N−2s)/2
n un (xn + λnx) converges to u(x) as given by (1.4), both in L2∗(RN )

and in Ḣs(RN ) as n→∞.

As a consequence of the previous theorem, we see that optimizing sequences for
the Sobolev inequality (1.5), at least asymptotically, look like optimal functions. It
would be interesting to prove a quantitative version of this fact in analogy with what
is done in [3] for the case s = 1.

As next step, we informally2 review the notion of profile decomposition in general
Hilbert spaces and we present an alternative abstract approach, based on [50] and

Theorem 1.1, to the profile decomposition in Ḣs(RN ) as first proved in [19] by
different arguments. Consider a bounded sequence {un} ⊂ H weakly converging to

some u ∈ H, where H is a given separable Hilbert space (in our case, H = Ḣs,
0 < s < N/2) and let u = 0 without loss of generality. We assume that some
noncompact group G acts by unitary operators on H (in our case G = RN o (0,∞)
acts by traslations and dilations according to (1.6)), where the elements of the
group G (possibly just a set) are sometimes called “dislocations”.

One can define the set of all profiles associated to {un} ⊂ H as the set of all
possible nonzero weak limits

(1.13) Ψ = {ψj ∈ H \ {0}, j ∈ I; ψj = w − lim
n→∞

(
g(j)
n

)∗
un , g

(j)
n ∈ G} ,

where I is the (at most countable) index set for the profiles, and for each j ∈ I the

sequence {g(j)
n } ⊂ G is going to infinity on the group. In case such set is not empty,

one can try to subtract-off from un all the profiles (scaled-back in the opposite way
they where constructed) and analyze the asymptotic properties of the reminders.
More precisely, one writes

2 We defer to [50, Chapter 3], and to Section 5 below for precise definitions.
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un =
∑
j∈I

g(j)
n ψj + rn ,

where the vectors {ψj}j∈I ⊂ H, the dislocations {g(j)
n } ⊂ G and the reminders

{rn} ⊂ H are characterized by three requirements: (i) the profiles ψj are nonzero
(nontriviality), (ii) for different j ∈ I the corresponding dislocations are different as
n→∞ (asymptotic orthogonality), (iii) the sequence of reminders rn contains non
further profiles as n→∞ (G-weak convergence to zero).

According to [50, Theorem 3.1], such abstract decomposition is always possible
and essentially unique (see also [47] for another proof). Thus, one can think of the
investigations of profile decompositions as an attempt to capture the main features
of the Banach-Alaoglu theorem in the extended setting of a group G acting on H.
Moreover, the presence of profiles is an obvious obstruction to compactness for the
embedding of H in any Banach space Y on which the group G acts also by isometries
in an equivariant way (e. g. when H = Ḣs we can take Y = L2∗ in view of (1.2)
and (1.6)). For discussing the relevance of this theory with references, proofs and
some explicit applications, we refer the interested reader to the notes by Tao in [46].

Since such an abstract decomposition is available, the difficulty in applying it
to Ḣs is just to characterize property (ii) and (iii) in a concrete way, and proving
(iii) is precisely the point where improved Sobolev embeddings (1.10) enter. More
precisely, using Theorem 1.1 it is very easy to show that G-weak convergence to zero
is equivalent to strong convergence to zero in L2∗ .

Thus, combining Theorem 3.1 and Corollary 3.2 from [50] with Theorem 1.1, we
recover the following result by Gerard (see [19], Theorem 1.1).

Theorem 1.4. Let {un} be a bounded sequence in Ḣs(RN ). Then, there exist a

(at most countable ) set I, a family of profiles {ψj} ⊂ Ḣs(RN ), a family of points

{x(j)
n } ∈ RN and a family of numbers {λ(j)

n } ⊂ (0,∞), such that, for a renumbered
subsequence of {un}, we have∣∣∣∣∣log

(
λ

(i)
n

λ
(j)
n

)∣∣∣∣∣+

∣∣∣∣∣(x(i)
n − x(j)

n )

λ
(i)
n

∣∣∣∣∣ −→n→∞∞ for i 6= j,

(1.14) un(x) =
∑
j∈I

λ(j)
n

2s−N
2 ψj

(
x− x(j)

n

λ
(j)
n

)
+ rn(x),

where lim
n→∞

‖rn‖L2∗ = 0,

and ‖un‖2Ḣs =
∑
j∈I
‖ψj‖2Ḣs + ‖rn‖2Ḣs + o(1) as n→∞.

The first form of profile decomposition appeared in [43], when s = 1 in analyz-
ing the failure of Palais-Smaile condition, under the name of “global compactness”
property and involving finitely many profiles (see also [23] for the same result when
s = 2). Almost at the same time, still for s ≥ 1 integer, a kind of profile decompo-
sitions in the sense of measures for bounded sequences in Sobolev spaces has been
given in [31, 32] and this aspect will be discussed below. The first general result,
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close to Theorem 1.4 is in [42], still for s = 1, using an improved Sobolev embedding
in Lorentz spaces.

Few years later, in the remarkable paper [19], the author proved Theorem 1.4
combining, among other things, a subtle analysis of h−oscillating sequences in
L2(RN ) and a tricky exhaustion method with the refined Sobolev inequality (1.9)

for X = Ḃs
2,∞. The specific choice of X is crucial in [19], among other things, to

characterize the absence of profiles in a given sequence. Then, profile decomposi-
tions in Ḣs spaces has become a common decisive tool in the study of properties of
solutions of many evolution equations and related issues (see e.g. [2], [26], [34], [18],
[25], [16] and the references therein).

Some time after [19], an abstract approach in general Hilbert space appeared (see

[50] and the references therein), yielding profile decomposition in Ḣs, s integer, in
a much simpler way.

Our contribution here is twofold: on the one hand, following [50], we recover the
decomposition result in an easier and more transparent way, on the other hand, in
contrast with [19], we show that absence of profiles can be actually characterized in

terms of the much simpler spaces Lr,r
N−2s

2 , for any 1 ≤ r < 2∗ (see Corollary 5.2).
It should be also mentioned that, after the paper [19], there have been some

extensions of profile decompositions to more general Banach spaces, namely to Bessel
spaces Ḣs,p ([24]) and, more recently, to Besov spaces Ḃs

p,q ([27]). In both cases, the
decomposition is heavily based on the construction of concrete unconditional bases
in terms of wavelets. It would be very challenging to try to develop a more general
approach in Banach spaces to recover these results in a simpler abstract way.

Now, in order to study the behavior of a maximizing sequence for (1.5) and
(1.7) it is also convenient to establish a concentration-compactness alternative for

bounded sequences in the fractional space Ḣs in terms of measures, using methods
and ideas introduced in the pioneering works [31] and [32] and developed extensively
in literature (see, e. g., [15], [50] and the references therein).

We have the following

Theorem 1.5. Let Ω ⊆ RN an open subset and let {un} be a sequence in Ḣs(Ω)
weakly converging to u as n→∞ and such that

|(−∆)
s
2un|2dx

∗
⇀ µ and |un|2

∗
dx

∗
⇀ ν in M(RN ).

Then, either un → u in L2∗
loc(R

N ) or there exists a (at most countable) set of distinct

points {xj}j∈J ⊂ Ω and positive numbers {νj}j∈J such that we have

(1.15) ν = |u|2∗dx+
∑
j

νjδxj .

If, in addition, Ω is bounded, then there exist a positive measure µ̃ ∈ M(RN ) with
spt µ̃ ⊂ Ω and positive numbers {µj}j∈J such that

(1.16) µ = |(−∆)
s
2u|2dx+ µ̃+

∑
j

µjδxj , νj ≤ S∗(µj)
2∗
2 .
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The previous result extends to the case of the fractional spaces Ḣs a well known
fact for s = 1 and, more generally, when s is an integer (see [31] and [32]; see also [50]
and the references therein); namely that, at least locally, compactness in the Sobolev
embedding fails precisely because of concentration of the L2∗ norm at countably
many points. These results have been largely used for the variational treatment
of the Yamabe problem and their higher order analogues involving the Paneitz-
Branson operators and more generally for semi-linear elliptic equations with critical
nonlinearities. As notice in [19], when Ω = RN , a different proof of Theorem 1.5 can
be also deduced as a byproduct of the profile-decomposition in Theorem 1.4 (for a
possibly different index set J). In this respect, in (1.16) the sum of Dirac masses
comes from those profiles in (1.14) which are peaking at the xj ’s.

We will provide a simple proof of Theorem 1.5 by following the original argument
in [31] and [32]; clearly, we need to operate some modifications due to the non-

locality of (−∆)
s
2 . Indeed, our approach relies on pseudodifferential calculus to

control the natural error term in the localization by cut-off functions. Using a
simple commutator estimate (see, e. g., Taylor [49]) and a standard approximation

argument, we will show the compactness of the commutator [ϕ, (−∆)
s
2 ] : Ḣs(Ω) →

L2(RN ) when ϕ ∈ C∞0 (RN ), at least if Ω is bounded (see Lemma 6.2). As a
consequence we will give local description of the lack of compactness in L2∗ in terms
of atomic measures. We hope that these results will be also of use in the variational
theory of the fractional Yamabe problem firstly considered in [21].

As a corollary of Theorems 1.3 and 1.5, we will see that concentration always
occurs in problem (1.7) because of the classification in (1.4); see Corollary 6.6. Exis-
tence/nonexistence of optimal functions in problems (1.5) and (1.7) could be studied
for other equivalent norms. Even for norms equivalent to (1.1) (and analogously to
(2.4) and (2.5)-(2.6) defined in Section 2.1), e. g. obtained multiplying by suitable
kernels |a(ξ)| , |K(x, y)| and |A(x, t)| bounded from above and below, we expect the
existence of optimal function to depend in a nontrivial subtle way on the chosen
kernels (see [35] for similar results in this direction).

Finally, we consider a family of problems for perturbations of the functional (1.8).
Let 0 < ε < 2∗ − 2 and let Ω ⊂ RN be a bounded open set. We set

S∗ε :=sup

{
Fε(u) : u ∈ Ḣs(Ω),

∫
RN
|(−∆)

s
2u|2dx ≤ 1

}
(1.17)

where Fε(u):=

∫
Ω
|u|2∗−εdx.

The previous maximization problems are subcritical. Indeed, since Ω is a bounded
open set and the embedding Ḣs(Ω) ↪→ L2∗−ε(Ω) is compact, the previous problem

admits a maximizer uε ∈ Ḣs(Ω). Our purpose is to investigate what happens when
ε → 0 both to the subcritical Sobolev constant S∗ε (i. e., the optimal constant

for the embedding Ḣs(Ω) ↪→ L2∗−ε(Ω) given in (1.17)) and to the corresponding
maximizers uε (i. e. the corresponding optimal functions).

Combining Theorem 1.3 together with Theorem 1.5, we have
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Theorem 1.6. Let Ω ⊂ RN be a bounded open set and for each 0 < ε < 2∗ − 2 let
uε ∈ Ḣs(Ω) be a maximizer for S∗ε . Then

(i) lim
ε→0

S∗ε = S∗;

(ii) As ε = εn → 0, up to subsequences un = uεn satisfies un ⇀ 0 in Ḣs(Ω) and

it concentrates at some point x0 ∈ Ω both in L2∗ and in Ḣs, i. e.

|un|2
∗
dx

∗
⇀ S∗δx0 and |(−∆)

s
2un|2dx

∗
⇀ δx0 in M(RN ).

(iii) There exists a sequence of points {xn} ⊂ RN , xn → x0 and a sequence of

numbers {λn} ↘ 0, such that ũn(x) = λ
(N−2s)/2
n un (xn + λnx) converges to

u(x) as given by (1.4), both in L2∗(RN ) and in Ḣs(RN ) as n→∞.

The previous concentration result is well known for s = 1. The asymptotic behav-
ior of the optimal functions has been discusses in [22] and [38], at least assuming (i)
and the smoothness of the domain Ω. For the case of general possibly non-smooth
domains we refer to [36]. It would interesting to characterize the concentration
point x0 as critical point of some function. This is known to be the case when s = 1
or s = 2, the function being the regular part of the Green function of the Laplacian
or the BiLaplacian in the domain Ω (see [22], [38] and [10]).

Here, we also note that the maximizers uε ∈ Ḣs(Ω) discussed in Theorem 1.6 are
in fact solutions of the semi-linear equation

(1.18) (−∆)suε = λ|uε|2
∗−2−εuε in (Ḣs(Ω))′,

where λ = (S∗ε )−1 is a Lagrange multiplier. Indeed, (1.18) is the Euler-Lagrange

equation for the functional Fε among functions with Ḣs norm equal to one. Our
results yield a concentration phenomenon for a sequence of solutions uε, as ε→ 0.

In this respect, another critical problem that would be very natural to investigate
is

(1.19) (−∆)su− ηu = |u|2∗−2u in (Ḣs(Ω))′,

where η > 0 is a parameter. Well known results for s = 1 (see [6]) and s = 2m
an even integer (see [13] and [37]) suggest that, even for fractional values of s,
existence results for (1.19) should always depend in a delicate way on η (see, e. g.,
the forthcoming paper [41] for first results when s ∈ (0, 1)).

The rest of the paper is organized as follows. In Section 2 we briefly recall the def-
initions and some basic properties of the function spaces we deal with, also analyzing
the corresponding scaling properties. In Section 3 we will prove the refined Sobolev
embeddings in terms of Morrey spaces, Theorem 1.1 and Theorem 1.2. In Section 4,
we study the optimizing sequences for the Sobolev embedding (1.2), proving Theo-
rem 1.3. Section 5 is devoted to the application of the abstract G-weak convergence
to profile decomposition in the spaces Ḣs, as given by Theorem 1.4. In Section 6,
we prove Theorem 1.5 by establishing the concentration-compactness alternative in
terms of measures and we discuss maximizing sequences for the Sobolev inequal-
ity (1.7) (see Corollary 6.6). Finally, we analyze the asymptotic behavior of the
subcritical Sobolev constant S∗ε and the corresponding optimal functions proving
Theorem 1.6.
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2. Relevant function spaces

Throughout the paper, N will always be the dimension of the ambient space and
will be greater or equal than 1. For any real 0 < s < N/2, we denote by

(2.1) 2∗ ≡ 2∗s := 2N/(N − 2s)

the standard critical Sobolev exponent.

Also, we follow the usual convention of denoting by c a general positive constant
that may vary from line to line. Relevant dependencies will be emphasized by using
parentheses or special symbols.

As usual, we denote by

BR(x0) = B(x0;R) := {x ∈ RN : |x− x0| < R}

the open ball centered in x0 ∈ RN with radius R > 0. When not important and
clear from the context, we shall use the shorter notation BR = BR(x0).

2.1. Fractional Sobolev spaces. For each s ≥ 0 let

Hs(RN ) =
{
u ∈ L2(RN ) s. t. |ξ|sû(ξ) ∈ L2(RN )

}
be the standard fractional Sobolev space Hs defined using the Fourier transform

F(u)(ξ) = û(ξ) =
1

(2π)
N
2

∫
RN

e−ix·ξu(x) dx.

As usual, the space Hs(RN ) can be equivalently defined as the completion of
C∞0 (RN ) with respect to the norm

(2.2) ‖u‖2Hs = ‖(Id−∆)
s
2u‖2L2 =

∫
RN

(1 + |ξ|2)s|û(ξ)|2dξ ,

where the operator (Id−∆)
s
2 = F−1 ◦M(1+|ξ|2)s/2 ◦ F is conjugate to the multipli-

cation operator on L2(RN ) given by the function (1 + |ξ|2)s/2.
It is well known that for 0 < s < N/2, the Sobolev inequality (1.2) is valid for

an explicit positive constant S∗ = S∗(N, s) given by (1.3), and for any function
u ∈ Hs(RN ). In order to discuss inequality (1.2), it is very natural to consider for
each 0 < s < N/2 the homogeneous Sobolev space

(2.3) Ḣs(RN ) = {u ∈ L2∗(RN ) s. t. |ξ|sû(ξ) ∈ L2(RN ) }.

This space can be equivalently defined as the completion of C∞0 (RN ) under the

norm (1.1) and inequality (1.2) holds by density on Ḣs(RN ).

When 0 < s < 1, a direct calculation using Fourier transform (see, e. g., [12,
Proposition 3.4]) gives

(2.4)

∫
RN
|ξ|2s|û(ξ)|2dξ = c(N, s)

∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dx dy ,

which provides an alternative formula for the norm on Ḣs(RN ). The previous equal-
ity fails for s ≥ 1, since in that case the right hand-side in (2.4) is known to be finite
if and only if u is constant (see [4]).
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When 0 < s < 1, according to [7] (see also [8] for the more difficult case 1 < s <
N/2, s 6∈ N), the Sobolev inequality (1.2) is also equivalent to the trace Sobolev
embedding H1

0 (RN × [0,∞), t1−2s dx dt) ↪→ L2∗(RN ). Indeed, taking for simplicity
u ∈ C∞0 (Rn) and U ∈ C∞0 (RN × [0,∞)) such that U(x, 0) ≡ u(x) we have

(2.5) ‖u‖2
L2∗ (RN )

≤ S∗2/2
∗
∫
RN
|ξ|2s|û(ξ)|2dξ ≤ C(N, s)

∫
RN

∫ ∞
0
|∇U |2t1−2s dx dt ,

which extends to a bounded trace operator Tr : H1
0 → L2∗ . Moreover, the second

inequality in (2.5) is an equality if and only if the extension U satisfies

(2.6)

{
div
(
t1−2s∇U

)
= 0 in RN × (0,∞) ,

U(·, 0) = u in RN .

Actually, the solution operator to (2.6) allows to identify Ḣs(RN ) as the trace space
of H1

0 (RN× [0,∞), t1−2s dx dt) and the Sobolev inequality (1.2) as the trace inequal-
ity in (2.5).

2.2. Besov spaces. For any real α > 0 the homogeneous Besov space Ḃ−α∞,∞ is

defined as the set of tempered distributions on RN (possibly modulo polinomials)
such that

sup
j∈Z

2−αj‖(∆ju)‖L∞ <∞ ,

where ∆j are the frequency localization operators at frequency of order |ξ| ∼ 2−j

associated to a standard Paley-Littlewood decomposition in frequency space.
In the rest of the paper, we make essential use of the equivalent thermic description

for the homogeneous Besov spaces with negative exponent above. To this aim, for
each t ≥ 0, we denote by

(2.7) Pt := et∆

the standard heat semigroup on RN . For any real α > 0, one can equivalently define
the homogeneous Besov space Ḃ−α∞,∞ as the space of tempered distributions u on RN

(possibly modulo polinomials) for which the following norm

(2.8) ‖u‖Ḃ−α∞,∞ := sup
t>0

tα/2‖Ptu‖L∞

is finite. The thermic description above is classic and various references are available;
see, e. g., Theorem 5.4 in the book [29] by Lemarié-Rieusset.

The special case which is relevant to us is the Besov space of index α = N/2∗,
since this is the case when the norm in (2.8) is invariant by dilation and translation
with respect to the same scaling factor of the critical Lebesgue space L2∗ and the
fractional Sobolev spaces Ḣs (see (1.6)). This is easy to check by computation.

Indeed, take u ∈ Ḃ−N/2
∗

∞,∞ and, for any x0 ∈ RN and any λ > 0, consider the function
ux0,λ given by (1.6). By definition in (2.7) together with the standard change of
variable formula, it follows that

‖ux0,λ‖Ḃ−N/2∗∞,∞
≡ ‖u‖

Ḃ
−N/2∗
∞,∞

.
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2.3. Morrey spaces. We recall the definition of the Morrey spaces Lr,γ , introduced
by Morrey as a refinement of the usual Lebesgue spaces. A measurable function
u : RN → R belongs to the Morrey space Lr,γ(RN ), with r ∈ [1,∞) and γ ∈ [0, N ],
if and only if

(2.9) ‖u‖rLr,γ(RN ) := sup
R>0; x∈RN

R γ−
∫
BR(x)

|u|r dy < ∞.

An equivalent definition can be provided by using cubes Q ⊆ RN instead of balls.
By definition, one can see that if γ = N then the Morrey spaces Lr,N coincide with
the usual Lebesgue spaces Lr for any r ≥ 1; similarly Lr,0 coincide with L∞.

It is worth noticing that the exponents r and γ in (2.9) endow the spaces Lr,γ
with the same dilation and translation invariance of the Lebesgue space L2∗ – and

therefore of Ḣs and Ḃ
−N/2∗
∞,∞ – if (and only if) they are suitably coupled, namely

γ/r = N/2∗. Indeed, for any x0 ∈ RN and any λ > 0, let ux0,λ be the function
defined by (1.6). By change of variable formula, one can see that the following
equality holds

‖ux0,λ‖Lr,N−2s
2 r

= ‖u‖
Lr,

N−2s
2 r

,

for any 1 ≤ r ≤ 2∗. Also, in the rest of the paper, we make use of the following
property, which one can plainly deduce by the definition in (2.9). For any β > 0,

‖|u|β‖Lr,γ = ‖u‖βLβr,γ .

Finally note that Hölder inequality readily yields the embedding Lr,γ ↪→ L1,γ/r for
any r ∈ (1,∞) and any γ ∈ (0, N). Equivalently, with the same restriction on the
parameters, there exists a constant C = C(N, r, γ) > 0 such that

(2.10) ‖u‖L1,γ/r ≤ C‖u‖Lr,γ ,

for all u ∈ Lr,γ(RN ).

3. Improved Sobolev inequalities

3.1. Refinements via Riesz potentials. This section is devoted to the proofs
of the improved Sobolev embedding given in Theorems 1.1 and 1.2 based on the
weighted estimates on Riesz potentials established in [39]. A slightly different proof,
yet involving the same kind of Calderón-Zygmund type techniques could be obtained
using a bilinear estimate of the Riesz potentials on Morrey spaces proved in [40].

First, we recall the characterization of the fractional Sobolev space Ḣs(RN ) in

terms of Riesz potentials. For any u ∈ Ḣs(RN ) let g ∈ L2(RN ) be a function such
that ĝ(ξ) = |ξ|sû(ξ). In view of Plancherel’s Theorem we have

(3.1) ‖u‖Ḣs = ‖(−∆)
s
2u‖L2 = ‖g‖L2 ,

On the other hand, using Fourier transform, we can write

(3.2) u = F−1

(
1

|ξ|s
|ξ|sû(ξ)

)
= F−1

(
1

|ξ|s
ĝ(ξ)

)
= F−1

(
1

|ξ|s

)
∗ g = Isg,
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where, up to an explicit constant c = c(N, s) that will be neglected in the rest of
this section, the symbol Isg in (3.2) denotes the standard Riesz potential of order
s, namely

Isg(x) :=

∫
RN

g(y)

|x− y|N−s
dy.

As it is well known, the Sobolev inequality (1.2) is equivalent to the fact that Is :
L2 → L2∗ is well defined and it is a bounded operator.

The following norm inequality for Riesz potentials on weighted Lebesgue space is
the crucial ingredient in proving Theorem 1.1.

Theorem 3.1. (see [39, Theorem 1]). Suppose that 0 < s < N , 1 < p ≤ q <∞ and
that V and W are nonnegative measurable functions on RN , N ≥ 1. If, for some
σ > 1,

(3.3) |Q|
s
N

+ 1
q
− 1
p

(
−
∫
Q
V σdx

) 1
qσ
(
−
∫
Q
W (1−p′)σdx

) 1
p′σ
≤ Cσ,

for all cubes Q ⊂ RN , then for any function f ∈ Lp(RN ;W (x)dx) we have

(3.4)

(∫
RN
|Isf(x)|q V (x)dx

) 1
q

≤ cCσ

(∫
RN
|f(x)|pW (x)dx

) 1
p

,

where the constant c depends only on p, q and N .

Note that the statement of Theorem 1 in [39] is slightly adapted to our purpose.
The original statement involves only nonnegative functions, a case from which the
statement above clearly follows considering positive and negative parts. In addition,
in the original formulation the constants in (3.4) are actually presented as a unique
constant c = c(p, q,N, V,W ). The fact that it is a product of the separated constants
in (3.4) can be easily deduced by a close inspection of the proof in [39].

Proof of Theorem 1.1. The main idea in the present proof consists into a careful
application of Theorem 3.1 to the function g in (3.1), after interpolating the expo-
nent 2∗ via a suitable tuning. Choosing W ≡ 1 and p = 2, the assumption in (3.3)

can be rewritten as

(3.5) |Q|
s
N

+ 1
q
− 1

2

(
−
∫
Q
V σdx

) 1
σq

≤ Cσ ,

for some exponent σ > 1 to be determined.
Now, for any fixed 2 ≤ q < 2∗ and u ∈ Ḣs(RN ) , we can chose the weight V as

V (x) = |u(x)|2∗−q, so that

(3.6) |u(x)|2∗ = |u(x)|q|u(x)|2∗−q = |u(x)|qV (x), ∀x ∈ RN .
Hence, taking σ = σ(q) := 1/(2∗ − q) > 1, we have the obvious equality V (x)σ =

|u(x)|, and the corresponding restriction on the tuning exponent

(3.7) max
{

2, 2∗ − 1
}
< q < 2∗,

which will allow us to apply (3.4) if (3.3) holds. Notice also that in high dimensions
we can actually take any q in [2, 2∗) because 2∗ − 1 < 2.
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Going back to (3.5), up to a positive constant depending only on N, p, q, s (when
passing from balls to cubes), we have

|Q|
s
N

+ 1
q
− 1

2

(
−
∫
Q
|u| dx

)2∗−q
q

=

(
Rσ(sq+N−Nq

2
)−
∫
BR

|u| dx
) 1
σq

=

(
R
N−2s

2 −
∫
BR

|u| dx
) 1
σq

≤ ‖u‖
2∗−q
q

L1,
N−2s

2

=: Cσ.(3.8)

Keeping in mind the inequality above and the decomposition in (3.6), we can apply
Theorem 3.1, choosing in particular p = 2 there. We get∫

|u|2∗dx = ‖Isg‖qLqV ≤ (cCσ)q‖g‖q
L2 = c‖u‖2

∗−q

L1,
N−2s

2

‖u‖q
Ḣs
,

which plainly yields

(3.9) ‖u‖L2∗ ≤ C‖u‖θ
Ḣs‖u‖1−θ

L1,
N−2s

2

,

for any exponent θ = q/2∗ such that max
{

2/2∗, 1−1/2∗
}
< θ < 1, as desired. Thus,

if r = 1 we have the conclusion, otherwise we also apply (2.10) with γ = r(N−2s)/2
and the proof is complete. �

The preceding proof can be extended with simple modifications to cover the case
of functions in Ẇ 1,p. As a consequence we obtain the improved Sobolev inequality
given by Theorem 1.2. We would like to notice that in such case we cannot expect
to use an analog representation of Sobolev functions via Riesz potentials as the one
given at the beginning of this section for the nonlocal case. Anyway, as it is well
known, a pointwise potential estimate always holds and this will suffice to extend to
the nonlinear case the strategy via weighted Lebesgue inequalities presented before.

For N ≥ 3 (the case N = 2 being analogous via the logarithmic kernel) and
u ∈ C∞0 (RN ), again neglecting a multiplicative constant c = c(N), we have

u(x) = ∆−1∆u =

∫
1

|x− y|N−2
∆u(y) dy = (2−N)

∫
x− y
|x− y|N

∇u(y) dy,

which yields

(3.10) |u(x)| ≤ c

∫
|∇u(y)|
|x− y|N−1

dy = c I1(|∇u|)(x) for x ∈ RN ,

and the same pointwise bound easily extends by density for any u ∈ Ẇ 1,p(RN ).

Proof of Theorem 1.2. We assume 1 < p < N . By taking into account the
estimate in (3.10), we can proceed as in the proof of Theorem 1.1. Hence, for any
p ≤ q < p∗ it suffices to decompose the function |u|p∗ as follows,

|u(x)|p∗ = |u(x)|qV (x),

where V (x) := |u(x)|p∗−q will be the weight to be chosen in (3.3), with the existence
of the exponent σ = 1/(p∗ − q) > 1 assured by taking max

{
p, p∗ − 1

}
< q < p∗;

again any choice p ≤ q < p∗ is admissible in high dimensions, since p∗ − 1 < p in
such case (recall the observation regarding the range in (3.7)).
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We can deduce the dependence of the constant Cσ as at the end of proof of
Theorem 1.1, and if θ = q/p∗ from (3.4) we finally get

(3.11) ‖u‖Lp∗ ≤ C‖u‖θ
Ẇ 1,p‖u‖1−θ

L1,
N−p
p

,

where max
{
p/p∗, 1− 1/p∗

}
< θ < 1. Possiby applying (2.10) the proof is complete.

�

Again, it is worth noticing that (3.11) constitutes a refinement of the usual Sobolev

inequality ‖u‖Lp∗ ≤ c‖u‖Ẇ 1,p because of the embedding Lr,r
N−p
p ↪→ Lp

∗
, for any

1 < p < N and any 1 ≤ r < p∗, which follows from Hölder inequality.

Remark 3.2. In both the proofs of Theorem 1.1 and Theorem 1.2, a suitable choice
of the involved weights and parameters will allow us to make use of Theorem 1.1 in
[40] in substitution to Theorem 3.1. The deduced refined inequalities will be exactly
as proved before.

Remark 3.3. Finally, it is worth noticing that the range of validity for the tuning
parameter θ, both in (3.9) and in (3.11), is somehow restricted, unless N is large, a
limitation that is absent in the second proof that will be presented in the next sub-
section. We remark that, by simple modifications of the argument below, one could
get the full range of convexity exponent θ but some restriction on the integrability
exponent r, still unless N is large. Similarly, a further restriction appeared in the
proof of Theorem 1.2, where we had to assume p > 1 in order to apply Theorem 3.1.
In all respects, the approach via Besov spaces at present seems to be more efficient.

3.2. Refinements via Besov spaces. As mentioned in the introduction, we can
deduce the improved Sobolev inequality in the Morrey scale given by (1.10) from

the improved Sobolev inequality in (1.9) for X = Ḃ
−N/2∗
∞,∞ . In order to do this, it will

suffice to show that the Morrey spaces L1,α can be embedded in the Besov space
Ḃ−α∞,∞ for any admissible α.

Lemma 3.4. For any α ∈ (0, N) we have L1,α ↪→ Ḃ−α∞,∞. More precisely, each func-

tion u ∈ L1,α is a tempered distribution and there exists a constant C = C(N,α) > 0
such that

(3.12) ‖u‖Ḃ−α∞,∞ ≤ C‖u‖L1,α ,

for any u ∈ L1,α(RN ).

Proof. By definition, since u ∈ L1,α then for any σ > 0 and any ball Bσ ⊂ RN the
following estimate holds

(3.13)

∫
Bσ

|u(y)| dy ≤ ‖u‖L1,ασN−α .

First, we are going to show that, because of (3.13), u is a tempered distribution.
Then, taking R =

√
t in definition (2.8) it will remain to check that

(3.14) sup
R>0

Rα‖eR2∆u‖L∞ ≤ c sup
R>0, x∈RN

Rα−
∫
BR

|u| dy,
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for any u ∈ L1,α(RN ).
The main tool will be a dyadic decomposition in the domain of integration. To

this aim, for any fixed R > 0, x ∈ RN and k ∈ Z, we define

Ck :=
{

2−kR < |x− y| < 2−k+1R; y ∈ RN
}
.

In order to prove that u defines a tempered distribution, it is clearly enough to
show that

(3.15)

∫
RN
|u(y)||φ(y)|dy ≤ C‖u‖L1,α sup

y
|φ(y)|(1 + |y|m)

for some integer m ≥ 1, some absolute constant C > 0 and for all φ ∈ S(RN ).
Since

(3.16)

∫
RN
|u(y)||φ(y)|dy ≤

(
sup
y
|φ(y)|(1 + |y|m)

)∫
RN

|u(y)|
1 + |y|m

dy ,

we just need to estimate the last integral.
Assuming x = 0 and combining the dyadic decomposition with (3.13) we have∫
RN

|u(y)|
1 + |y|m

dy =
∑
k∈Z

∫
Ck

|u(y)|
1 + |y|m

dy

≤
∑
k∈Z

C

1 + 2−mk

∫
B

2−k+1

|u(y)|dy ≤ C‖u‖L1,α
∑
k∈Z

2k(α−N)

1 + 2−mk
,(3.17)

where the last sum is clearly convergent for any fixed m ≥ N . Combining (3.16)
with (3.17) we see that (3.15) holds, hence u ∈ S ′ as claimed.

To finish the proof we note that

‖eR2∆u‖L∞ ≤ ‖eR
2∆|u|‖L∞ ,

therefore in proving (3.14) we may assume that u is nonnegative.

For x ∈ RN and R > 0 we set

KR(x−y) :=
1

(4π)
N
2

1

RN
e−
|x−y|2

4R2 , GR(x) := eR
2∆u (x) =

∫
RN

KR(x−y)u(y) dy ,

thus, our goal is to prove that GR(x) ≤ c‖u‖L1,αR−α for any x ∈ RN and R > 0 for
an absolute constant c > 0.

Using again the dyadic decomposition we can write

(3.18) GR(x) =
∑
k∈Z

∫
Ck

KR(x− y)u(y) dy .

Since on each annulus we have |x− y| ∼ 2−kR, then we easily obtain∫
Ck
KR(x− y)u(y) dy ≤ c

1

RN
e−c2

−2k

∫
B

2−k+1R

u(y) dy

≤ c‖u‖L1,αR−Ne−c2
−2k

(2−kR)N−α,
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where we also used (3.13) by choosing σ = σk ∼ 2−kR there. Now, we combine the
inequality above with (3.18) and we obtain

(3.19) GR(x) ≤ c‖u‖L1,α

(∑
k∈Z

2−k(N−α)e−c2
−2k

)
R−α ≤ c‖u‖L1,αR−α,

where we used that the sum in (3.19) converges. Since the previous inequality holds
for any x ∈ RN , we conclude that (3.12) holds, so the proof is complete. �

Now, we are in the position to provide another proof of the improved Sobolev
inequality in the Morrey scale given by Theorem 1.1.

Proof of Theorem 1.1. In view of the previous results in this section, when θ =
2/2∗ the inequality in (1.10) is straightforward, by just combining the embedding

(1.9) for X = Ḃ
−N/2∗
∞,∞ proved in [20] with Lemmas 3.4 and inequality (2.10) (choosing

α = (N − 2s)/2 and γ = r(N − 2s)/2 respectively). Then the conclusion follows for

the whole range θ ∈ [2/2∗, 1) just because Ḣs ↪→ L2∗ ↪→ Lr,r(N−2s)/2. �

Analogously, for the case s = 1 and p 6= 2, we have

Proof of Theorem 1.2. We can combine the results in this section with the refined
Sobolev embedding for functions in Ẇ 1,p proved by Ledoux in [28], that is

‖u‖Lp∗ ≤ C ‖u‖θ
Ẇ 1,p‖u‖1−θ

Ḃ
−(N−p)/p
∞,∞

,

where p/p∗ ≤ θ < 1, with Lemmas 3.4 and inequality (2.10) (choosing α = N/p∗ and
γ = rα respectively) and we plainly obtain an alternative proof of Theorem 1.2. �

4. Optimizing sequences for the Sobolev inequality

As already mentioned in the Introduction, a first application of the improved
Sobolev inequalities is the following lemma, which states that an appropriate scaling
{xn, λn} will assure a nontrivial weak-limit of any sequence {un} in Ḣs uniformly
bounded from below in the Lebesgue L2∗-norm.

Lemma 4.1. Let 0 < s < N/2 and let {un} ⊂ Ḣs(RN ) a bounded sequence such
that

(4.1) inf
n∈N
‖un‖L2∗ ≥ c > 0.

Then, up to subsequences, there exist a family of points {xn} ⊂ RN and a family of
positive numbers {λn} ⊂ (0,∞) such that

ũn ⇀ w 6= 0 in Ḣs(RN ),

where ũn(x) := λ
N−2s

2
n un (xn + λnx).

Proof. Since the sequence is bounded in Ḣs and Ḣs ↪→ L2∗ ↪→ L2,N−2s, we have
‖un‖L2,N−2s ≤ C for some C > 0 independent of n. On the other hand, combining

assumption (4.1) with Theorem 1.1 for r = 2, we readily see that ‖un‖L2,N−2s ≥ C̃
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for some C̃ > 0 independent of n. Hence, there exists a positive constant which we
denote again by C such that for any n we have

(4.2) C ≤ ‖un‖L2,N−2s ≤ C−1 .

Combining the definition (2.9) with (4.2), we deduce that for any n ∈ N there
exist xn, λn such that

(4.3) λ−2s
n

∫
Bλn (xn)

|un(y)|2dy ≥ ‖un‖2L2,N−2s −
C2

2n
≥ C̃ > 0,

for any n and for some constant C̃ > 0.

Now we set ũn(x) := λ
N−2s

2
n un (xn + λnx) and in view of the scaling invariance

of the Ḣs norm, the sequence ũn is bounded in Ḣs, therefore up to subsequences
ũn ⇀ w in Ḣs(RN ) and it remains to prove that w 6= 0.

Starting from (4.3), a direct calculation gives∫
B1

|ũn(x)|2dx = λ−2s
n

∫
Bλn (xn)

|un(y)|2dy ≥ C̃ > 0 ,

and since the embedding Ḣs ↪→ L2
loc is compact, passing to the limit in the previous

inequality we obtain
∫
B1
|w(x)|2dx ≥ C̃ > 0. Thus w 6= 0 and the proof is complete.

�

We would like to remark that the improved Sobolev inequality in Morrey spaces

Lr,r
N−2s

2 could be replaced by the analougue (1.9) with X = Ḃ
s−N/2
∞,∞ , with only

minor changes in the present proof.

Now, combining Lemma 4.1 together with the result in Brezis-Lieb ([5]), one can
finally deduce that the optimal sequences in the critical Sobolev inequality (1.2) are
compact up to translations and dilations.

Proof of Theorem 1.3. Let {un} ⊂ Ḣs(RN ) be an optimal sequence for the
Sobolev inequality (1.5), i. e. a sequence such that ‖un‖Ḣs = 1 for each n and∫
|un|2

∗
dx → S∗ as n → ∞. We aim to show that there exists a suitably rescaled

subsequence converging strongly in Ḣs to a function w ∈ Ḣs(RN ).

In view of Lemma 4.1 applied to the optimal sequences {un} ⊂ Ḣs(RN ), we have

that the renumbered rescaled sequence ũn ⇀ w 6= 0 in Ḣs(RN ). It remains to show

that ũn → w strongly in Ḣs and that w is given by (1.4). This fact will follow from
the optimality of the sequence {un}.

Note that the weak convergence ũn ⇀ w in Ḣs yields the identity∫
RN
|(−∆)

s
2w|2dx+ lim sup

n→∞

∫
RN
|(−∆)

s
2 (ũn − w)|2dx

= lim sup
n→∞

∫
RN
|(−∆)

s
2 ũn|2dx = 1.(4.4)

Since the embedding Ḣs ↪→ L2
loc is compact, passing to a further subsequence if

necessary we may also assume ũn → w a. e..
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Combining [5] with Sobolev inequality (1.2), the identity in (4.4) and the elemen-

tary inequality for positive numbers a2∗/2 + b2
∗/2 ≤ (a+ b)2∗/2, we have

S∗ = lim
n→∞

∫
RN
|ũn|2

∗
dx =

∫
RN
|w|2∗dx+ lim

n→∞

∫
RN
|ũn − w|2

∗
dx

≤ S∗
(∫

RN
|(−∆)

s
2w|2dx

)2∗
2

+ S∗
(

lim sup
n→∞

∫
RN
|(−∆)

s
2 (ũn − w)|2dx

)2∗
2

≤ S∗
(∫

RN
|(−∆)

s
2w|2dx+ lim sup

n→∞

∫
RN
|(−∆)

s
2 (ũn − w)|2dx

)2∗
2

= S∗.

Since all the previous inequalities are equalities, we infer ‖w‖Ḣs = 1, because w 6≡ 0

and hence ũn → w in Ḣs. By Sobolev embedding (1.2) we also deduce ũn → w
in L2∗ , hence

∫
|w|2∗dx = S∗ and w is an optimal function in the Sobolev inequal-

ity (1.5), thus w is given by (1.4) in view of [11, Theorem 1.1]. �

5. Profile decomposition for arbitrary sequences in Ḣs

In this section, we investigate the profile decomposition for sequences of func-
tions in the fractional Sobolev spaces Ḣs(RN ) by means of a careful analysis via
weak-convergence with respect to dilation and translation (the so-called D-weak
convergence, where D stands for “dislocations”; see below). As mentioned in the
introduction, we follow an abstract approach mainly due to Tintarev, contained in
the book [50, Chapter 3]. Also, in [50, Chapters 5 and 6] it has been also discussed

the application to Sobolev spaces Ḣs(RN ) when s is an integer. Here, thanks to
the improved Sobolev inequalities proved in the Section 3, we show how this ab-
stract point of view can be easily applied to the full range of fractional Sobolev
spaces Ḣs(RN ) for any real 0 < s < N/2. Our presentation here differs slightly
from [50]: in particular we identify D with the group G of affine homogeneous dila-
tion in RN and we take advantage of the corresponding explicit group structure. In
our opinion such aspect, not present in [19] and not clearly used in [50, Chapter 5],
could be relevant for other concrete situations when different groups G act on some
function spaces with Hilbertian structure.

We start with a direct consequence of Lemma 4.1, which states that a characteri-
zation of the weak-convergence up to dilation and translation in Ḣs(RN ) is precisely
L2∗-convergence. This fact is in clear accordance with the local case s = 1, as already
proved in [50, Lemma 5.3] and it shows that absence of profiles can be measured in
the L2∗-norm. We have

Proposition 5.1. Let {un} be any bounded sequence in Ḣs(RN ), then the following
statements are equivalent

(i) For any {xn} ⊂ RN and any {λn} ⊂ (0,∞),

ũn(·) := λ
N−2s

2
n un(xn + λn ·) ⇀ 0 in Ḣs(RN ) as n→∞.

(ii) {un} converges strongly to 0 in L2∗(RN ).
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Proof. The first implication is now straightforward thanks to Lemma 4.1. Indeed,
assume by contradiction that un 9 0 in L2∗(RN ), then we have that, up to subse-

quences, there exist x̄n and λ̄n such that λ̄
N−2s

2
n un(x̄n + λ̄n ·) weakly converges to a

function w 6= 0. Contradiction.

Assume now that un → 0 strongly in L2∗(RN ) as n → ∞. Then, for any {xn}
and {λn}, by scaling invariance, it also holds ‖ũn‖L2∗ → 0 as n → ∞, so that, by

continuity of the Sobolev embedding (1.2), it follows ũn ⇀ 0 in Ḣs(RN ) as n→∞,
as desired. �

The following result shows that the previous proposition can be improved using
a Morrey norm weaker than L2∗ to characterize absence of profiles.

Corollary 5.2. Let {un} be any bounded sequence in Ḣs(RN ). For fixed 1 ≤ r < 2∗

the following statements are equivalent

(i) For any {xn} ⊂ RN and any {λn} ⊂ (0,∞),

ũn(·) := λ
N−2s

2
n un(xn + λn ·) ⇀ 0 in Ḣs(RN ) as n→∞.

(ii) {un} converges strongly to 0 in Lr,r
N−2s

2 (RN ) as n→∞.

Proof. Clearly (i) implies (ii) as a consequence of the previous proposition and (1.11).
Conversely, if (ii) holds, then un → 0 in L2∗ in view of Theorem 1.1. Then, the
conclusion again follows from the previous proposition. �

Actually, the statement in (i) in Proposition 5.1 above is the definition of the

D-weak convergence in Ḣs(RN ) to zero. Whereas we will not go into detail of the
D-weak convergence framework for general Hilbert space (referring the interested
readers to [50, Chapter 3]), in the following lines we will describe how to equip the

fractional Sobolev spaces Ḣs(RN ) with an appropriate group of dislocations D. This
step is necessary in order to apply the abstract profile decomposition, namely the
Refined Banach-Alaoglu Theorem on dislocation spaces [50, Theorem 3.1], in turn

implying the desired profile decomposition in Ḣs(RN ).

Let T ⊂ U(Ḣs(RN )) the group of all unitary operator on Ḣs(RN ) induced by
translation on RN , i. e.

T :=
{
Ty : Tyu(x) := u(x− y) ∀u ∈ Ḣs ; y ∈ RN

}
,

and by S ⊂ U(Ḣs(RN )) the group of all unitary operator on Ḣs(RN ) induced by
dilations on RN , i. e.

S :=
{
Sλ : Sλu(x) := λ

2s−N
2 u(λ−1 x) ∀u ∈ Ḣs ; λ > 0

}
.

Now, we consider the family of operators D given by the composition of elements of
the preceding groups (actually the semidirect product of T and S); i. e., we define

D ⊂ U(Ḣs(RN )) as

(5.1) D :=
{
Dy,λ : Dy,λu(x) := λ

2s−N
2 u

(
x− y
λ

)
∀u ∈ Ḣs ; y ∈ RN , λ > 0

}
.
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Notice that the map RN × (0,∞)→ U(Ḣs(RN )) defined above is continuous in the

strong topology of U(Ḣs(RN )); we have that, for any sequence (yn, λn) converging
to (y, λ),

(5.2) Dyn,λnu→ Dy,λu ∀u ∈ Ḣs(RN ) as n→∞.

This can be checked on smooth functions u ∈ C∞0 (RN ), via Fourier transform, using
the Dominated Convergence Theorem and then arguing by density.

Now, let us focus on G = RN o (0,∞) as a semi-direct product of groups RN

and (0,∞). As a set, G = RN × (0,∞) is naturally endowed with the distance

(5.3) d((x, λ), (y, σ)) =

∣∣∣∣log
λ

σ

∣∣∣∣+ |x− y| ,

which makes it a complete metric space. It is easy to check that it induces the
usual Euclidean topology with the usual notion of convergent sequences. It is very
convenient to identify G with the set of homogeneous affine transformations acting
on RN , i. e.

RN o (0,∞) 3 (y, λ)←→ ϕy,λ : x 7→ x− y
λ

, ϕy,λ ∈ Aff (RN ) ,

whence G inherits a group structure just by composition of the corresponding affine
transformation; more precisely, since ϕa,δ ◦ ϕy,λ(x) = (x− (y + aλ))/δλ, and there-
fore,

(5.4) ϕa,δ ◦ ϕy,λ ≡ ϕy+aλ,δλ ∀a, y ∈ RN , ∀δ, λ ∈ (0,∞),

then we define the group law on G = RN o (0,∞) by setting

(5.5) (y, λ) ◦ (a, δ) := (y + λa, λδ) , (y, λ), (a, δ) ∈ G .

Therefore, denoting by π : RN o (0,∞)→ U(Ḣs(RN )) the following map

(5.6) π(y, λ) = Dy,λ,

one can check that it is a group homomorphism (i. e., unitary representation); also,
π is injective and strongly continuous in view of (5.2). In this way, we have D = π(G)
where G = RN o (0,∞) and D is given by (5.1).

The following results show how translations and dilations act on the space Ḣs.
In particular, we first characterize how a given function becomes asymptotically
orthogonal in Ḣs with respect to any fixed function under a sequences of scaling
going to infinity on the group G. We have the following

Lemma 5.3. Take any sequence {(yn, λn)} ⊂ RN × (0,∞). Then the following
statements are equivalent as n→∞

(i) Dyn,λnv ⇀ 0 , ∀v ∈ Ḣs(RN ).

(ii) | log λn|+ |yn| → ∞.

Proof. Assume that the convergence in (i) does hold; thus

(5.7) 〈w,Dyn,λnv〉Ḣs −→
n→∞

0 ∀w, v ∈ Ḣs(RN ).
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We argue by contradiction. If (ii) fails, then up to subsequences yn → y ∈ RN and
λn → λ > 0 as n goes to infinity. Thus, for any u 6= 0, by continuity of the scalar
product and (5.2), one can write

lim
n→∞

〈Dyn,λnu,Dyn,λnu〉Ḣs = 0,

which, still in view of (5.2) and the fact that D ⊂ U(Ḣs) also gives

0 = 〈Dy,λu,Dy,λu〉Ḣs = ‖Dy,λu‖2Ḣs ≡ ‖u‖2Ḣs ,

and this is a contradiction, since we have taken u 6= 0.

Conversely, now we assume that the condition (ii) does hold. Thus, up to renum-
bered subsequence, we have to distinguish between the following two cases: λn → 0
or λn ≥ λ > 0.

It is clearly enough to check the property (i) on the dense space of all u, v in the
Schwarz class of rapidly decaying functions S(RN ) such that F(u) ∈ C∞0 (RN \{0}).
Notice that, under this assumption, we have (−∆)su, (−∆)sv ∈ S(RN ).

We can write

〈u,Dyn,λnv〉Ḣs =

∫
(−∆)

s
2u (−∆)

s
2 (Dyn,λnv) dx

=

∫
((−∆)su)Dyn,λnv dx, ∀u, v ∈ S.(5.8)

Therefore, it suffices to analyze the convergence in the identity above, with respect
to the aforementioned two cases.

In the first case, that is when λn ≥ λ > 0, we have that Dyn,λn is equi-bounded
in L∞. Moreover, since |yn| → ∞ and/or λn → ∞, we have that Dyn,λnv → 0 a. e.
as n→∞, so that the Dominated Convergence Theorem yields (5.7), i. e. (i) holds.

In the second case, that is when λn → 0, we can write

〈u,Dyn,λnv〉Ḣs =

∫
(−∆)su(x+ yn)λ−

N−2s
2 v

(
x

λn

)
dx.

For any δ > 0 it is convenient to split the integral in two parts, respectively∫
RN

(−∆)su(x+ yn)λ−
N−2s

2 v

(
x

λn

)
dx

=

∫
CBδ(0)

(−∆)su(x+ yn)λ−
N−2s

2 v

(
x

λn

)
dx

+

∫
Bδ(0)

(−∆)su(x+ yn)λ−
N−2s

2 v

(
x

λn

)
dx,(5.9)

where CBδ(0) denotes the complement of the ball of radius δ centered in 0.
The first integral in the right-hand side of (5.9) can be estimated as follows∣∣∣∣∣

∫
CBδ(0)

(−∆)su(x+ yn)λ−
N−2s

2 v

(
x

λn

)
dx

∣∣∣∣∣
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≤
(∫

RN
|(−∆)su| dx

)
‖Dyn,λnv‖L∞(CBδ(yn))

n→∞−→ 0.(5.10)

For the second integral, we can use the Hölder inequality to get, for any δ > 0,∣∣∣∣∣
∫
Bδ(0)

(−∆)su(x+ yn)λ−
N−2s

2 v

(
x

λn

)
dx

∣∣∣∣∣
≤ ‖(−∆)su‖L∞(RN )

∫
Bδ(0)

∣∣∣∣λ−N−2s
2 v

(
x

λn

)∣∣∣∣ dx
≤ ‖(−∆)su‖L∞(RN )

(∫
Bδ(0)

∣∣∣∣λ−N−2s
2 v

(
x

λn

)∣∣∣∣2∗ dx
) 1

2∗

|Bδ(0)|
2N
N+2s

≤ c‖v‖L2∗ (RN )δ
2N
N+2s ,(5.11)

where we also used the scaling invariance of the L2∗-norm. Finally, combining (5.9)
with (5.10) and (5.11), we have

lim sup
n→∞

∣∣∣∣∫
RN

(−∆)su(x+ yn)λ−
N−2s

2 v

(
x

λn

)
dx

∣∣∣∣ ≤ c‖v‖L2∗ δ
2N
N+2s ,

which yields (5.7) as δ → 0. Thus condition (i) holds also in this second case and
the proof is complete. �

Taking into account the group properties (5.4)-(5.6), we can write

D−1
an,δn

◦Dyn,λn = π((an, δn)−1 ◦ (yn, λn)) = Dδ−1
n (yn−an),δ−1

n λn
.

Combining Lemma 5.3 with the previous identity we obtain the following result,
which, roughly speaking, say that two arbitrary Ḣs-functions are made orthogonal
by sequences of elements of the group going at infinity in “different directions”.
As a consequence we will see that asymptotic orthogonality is obtained either if
the dilation parameters are not comparable or if they are comparable each other
but negligible with respect to the distance between the translation parameters as
n→∞.

Lemma 5.4. For any sequences {(an, δn)}, {(bn, λn)} ⊂ RN × (0,∞). Then the
following statements are equivalent as n→∞

(i) 〈Dan,δnu,Dyn,λnv〉Ḣs → 0 ∀u, v ∈ Ḣs(RN ).

(ii)

∣∣∣∣yn − anδn

∣∣∣∣+

∣∣∣∣log

(
λn
δn

)∣∣∣∣→∞.
Note that an equivalent version of the previous lemma is already present in [19];

that result holds in L2(RN ) and the notion of “different directions” given in (ii)
here corresponds to the notion of orthogonality used there. The way translations
and dilation acts on L2 is obviously different but it still corresponds to a unitary
representation of the same group G on the Hilbert space L2. Of course the operator
(−∆)s/2 : Ḣs → L2 is unitary, it makes the two representations of G unitary equiv-
alent and it is easy to check that the two orthogonality property, in L2 from [19]

and in Ḣs here, coincide and always correspond to condition (ii) on the parameters.
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However, in our opinion the present approach is much simpler than the one based
on a subtle analysis of h−oscillating sequences used in [19].

In view of the preceding lemmas, we can apply [50, Proposition 3.1], and so we can

conclude that the pair (Ḣs, D) is a dislocation space in the sense of [50, Definition
3.2 and Remark 3.1]. Thus, the abstract theory by Tintarev can be applied, in turn

implying the desired profile decomposition for Ḣs(RN ), as given in the following
theorem.

Theorem 5.5. ([50, Theorem 3.1, Corollary 3.2]). Let (H,D) be a dislocation space,
where D ⊂ U(H). If {un} ⊂ H is a bounded sequence, then there exist a (at most

countable) set J , ψ(j) ∈ H, g
(j)
n ∈ D, g

(1)
n = Id, with n ∈ N, j ∈ J such that for a

renumbered subequence, as n→∞ we have

ψ(j) = w − lim g(j)∗
n un,

g(j)∗
n g(m)

n ⇀ 0 for j 6= m,

‖un‖2H =
∑
j∈J
‖ψ(j)‖2H + ‖rn||2H + o(1)

un −
∑
j∈J

g(j)
n ψ(j) D

⇀ 0,

where the series
∑

j∈J g
(j)
n ψ(j) converges in H uniformly in n.

Proof of Theorem 1.4. Taking into account Proposition 5.1 and Lemma 5.4 a-
bove, the conclusion follows readily from Theorem 5.5. �

6. Concentration-compactness Alternative

This section is devoted to the proof of Theorem 1.5 and its consequences, i. e. we
establish the concentration-compactness alternative and we describe the behavior
of the optimal sequences for the Sobolev inequality (1.7). We show that in the
case of bounded domain there is no energy loss in the concentration process (see
Proposition 6.5) and that the maximizing sequences for the Sobolev inequality always
concentrate at one point (see Corollary 6.6). We analyze the asymptotic behavior of
the subcritical Sobolev constant S∗ε and the corresponding optimal functions proving
Theorem 1.6.

First we need some tools to handle the nonlocality of the fractional Laplacian.

6.1. Some useful lemmas. Roughly speaking, Lemma 6.1 and Lemma 6.2 below
are workarounds to use cut-off functions and provide a way to manipulate smooth
truncations for the fractional Laplacian; their proofs carefully requires properties of
multipliers between Sobolev spaces and strong commutator estimates.

Lemma 6.1. Let 0 < s < N/2 and let u ∈ Ḣs(RN ). Let ϕ ∈ C∞0 (RN ) and for each
λ > 0 let ϕλ(x) := ϕ(λ−1x). Then

uϕλ → 0 in Ḣs(RN ) as λ→ 0.
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If, in addition, ϕ ≡ 1 in a neighborhood of the origin, then

uϕλ → u in Ḣs(RN ) as λ→∞.

Proof. First, note that each function ϕλ gives a bounded multiplication operator
Mϕλ ∈ L (Ḣs, Ḣs) with operator norm independent on λ because of the scale invari-

ance of the Ḣs norm (see [33, Chapter 3], where instead of Ḣs the more traditional
notation hs2 is used for the Riesz potential space of order s and summability two).

Thus, if C ≡ ‖ϕλ‖L(Ḣs,Ḣs) we have

(6.1) ‖vϕλ‖Ḣs ≤ C‖v‖Ḣs

for any v ∈ Ḣs.
By density we take a sequence {un} ⊂ C∞0 (RN ) such that un → u in Ḣs, so we

can estimate

(6.2) ‖uϕλ‖Ḣs ≤ ‖(u− un)ϕλ‖Ḣs + ‖unϕλ‖Ḣs ≤ C‖(u− un)‖Ḣs + ‖unϕλ‖Ḣs .

Since for fixed n the function un gives also a bounded multiplier on Ḣs, we have

(6.3) ‖unϕλ‖Ḣs ≤ C(un)‖ϕλ‖Hs → 0

as λ → 0 by a direct scaling argument. Thus, the first statement of the lemma
follows from (6.2) and (6.3) letting λ→ 0 and n→∞.

In order to prove the second statement, it is enough to note that whenever u ∈
C∞0 (RN ) (indeed for any u which is compactly supported) we have uϕλ ≡ u for λ
sufficiently large (depending on u). Thus we see that uϕλ → u as λ → ∞ for any

u ∈ C∞0 (RN ) and the same holds for any u ∈ Ḣs(Ω) by approximation.

Indeed, (6.1) gives

‖u− uϕλ‖Ḣs ≤ ‖(u− un)(1− ϕλ)‖Ḣs + ‖un(1− ϕλ)‖Ḣs

≤ (1 + C)‖(u− un)‖Ḣs + ‖un(1− ϕλ)‖Ḣs ,(6.4)

and the conclusion follows arguing as in the previous case. �

Lemma 6.2. Let 0 < s < N/2, let Ω ⊂ RN a bounded open set and let ϕ ∈ C∞0 (RN ).

Then the commutator [ϕ, (−∆)
s
2 ] : Ḣs(Ω)→ L2(RN ) is a compact operator, i. e.

ϕ((−∆)
s
2un)− (−∆)

s
2 (ϕun)→ 0 in L2(RN )

whenever un ⇀ 0 in Ḣs(Ω) as n→∞.

Proof. Let L = (−∆)
s
2 and for each ε > 0 set Lε = (εId − ∆)

s
2 . Clearly, by

conjugation with Fourier transform we have

Lu = F−1 ◦M|ξ|s ◦ F(u) and Lεu = F−1 ◦M
(|ξ|2+ε)

s
2
◦ F(u) .

Thus, Lε : Hs(RN ) → L2(RN ) is a bounded operator which in turn implies the

boundedness of the operator Lε : Ḣs(Ω) → L2(RN ) induced by the continuous

embedding Ḣs(Ω) ↪→ Hs(RN ).

Similarly, L : Hs(RN )→ L2(RN ) is a bounded operator and the induced operator

L : Ḣs(Ω)→ L2(RN ) is also bounded.
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Estimating the norm in L (Hs, L2) easily yields

‖Lε − L‖ ≤ sup
ξ

|(ε+ |ξ|2)
s
2 − |ξ|s|

(1 + |ξ|2)
s
2

ε→0−→ 0 ,

hence the same holds in L (Ḣs(Ω), L2(RN )).

Thus, it suffices to prove that

[Lε, ϕ] : Ḣs(Ω)→ L2(RN )

is a compact operator for each ε > 0, to deduce the same property for [L,ϕ].

Let Lε = (εId −∆)
s
2 and lε(ξ) = (|ξ|2 + ε)

s
2 the corresponding symbol. Clearly,

Lε is a classical pseudodifferential operator of order s, i. e. Lε ∈ OPSs1,0 (hence

Lε ∈ OPBSs1,1). Since 0 < s < N/2, according to [49, Proposition 4.2] we have the
following commutator estimate

‖[Lε, ϕ]u‖L2(RN ) ≤ C‖ϕ‖Hσ(RN )‖u‖Hs−1(RN ) ,

provided σ > N/2 + 1.

Finally, as Ω is bounded, the embedding Ḣs(Ω) ↪→ Hs−1(RN ) is compact for
all s ∈ (0, N/2) and ϕ ∈ C∞0 (RN ), from the previous inequality we conclude that

[Lε, ϕ] : Ḣs(Ω)→ L2(RN ) is compact, as desired. �

6.2. Concentration-compactness. We start with a well known lemma about pairs
of positive measures in the Euclidean space. Roughly speaking, it gives control on
their atomic parts whenever a reverse Hölder inequality holds.

Lemma 6.3. ([31]) Let Ω ⊆ RN be an open set and let µ and ν in M(RN ) be two
nonnegative bounded measures with support in Ω such that for some 1 ≤ p < r <∞
there exists a positive constant C such that

(6.5)

(∫
RN
|ϕ|rdν

) 1
r

≤ C
(∫

RN
|ϕ|pdµ

) 1
p

∀ϕ ∈ C0
0 (RN ).

Then, there exist a number σ = C−(p−1−r−1)−1
> 0, a (at most countable) set of

distinct points {xj}j∈J in Ω and positive numbers νj ≥ σ, j ∈ J , such that

(6.6) ν =
∑
j

νjδxj and µ ≥ C−p
∑
j

ν
p
r
j δxj ,

where δxj denotes the Dirac mass at xj.

Using the previous lemma we are able to prove the main result of this section,
i. e. Theorem 1.5. Namely we show that the well-known concentration-compactness
alternative holds for sequences in any Sobolev spaces Ḣs(Ω), 0 < s < N/2. The
proof follows the original arguments in [31] and [32] with some modifications to
handle fractional differentiation.
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Proof of Theorem 1.5. Since Ḣs(Ω) ↪→ L2
loc(R

N ) with compact embedding, pass-

ing to a subsequence if necessary, we may assume that un → u both in L2
loc(R

N ) and

a. e.. Similarly, for vn = un − u ⇀ 0 in Ḣs(Ω), up to subsequence, we may assume

|(−∆)
s
2 vn|2dx

∗
⇀ µ̂ and |vn|2

∗
dx

∗
⇀ ν̂ in M(RN ),

for some positive measures µ̂ and ν̂ with spt ν̂ ⊂ Ω. In addition, when Ω is bounded,
Lemma 6.2 easily yields spt µ̂ ⊂ Ω.

Clearly ν ≥ |u|2∗dx by Fatou’s Lemma, and combining pointwise convergence and
the result in [5] we have∫

RN
|ϕ|2∗dν −

∫
RN
|ϕu|2∗dx = lim

n→∞

∫
RN
|ϕun|2

∗
dx−

∫
RN
|ϕu|2∗dx

= lim
n→∞

∫
RN
|ϕvn|2

∗
dx =

∫
RN
|ϕ|2∗dν̂,

i. e. ν = ν̂ + |u|2∗dx because the function ϕ ∈ C0
0 (RN ) can be choosen arbitrarily.

We are going to prove the structure properties in (1.15) and (1.16) assuming that
Ω is bounded. Then, the structure relation (1.15) will be true for any Ω just by a
simple localization argument.

Indeed, fix ψ ∈ C∞0 (RN ) such that ψ ≡ 1 on B1 and for 0 < λ < 1 let
ψλ(x) = ψ(λx). For fixed λ ∈ (0, 1), we consider uλn = ψλun. Then, letting

n → ∞, we have uλn ⇀ ψλu in ḢsΩ), because ψλ is a multiplier on Ḣs(Ω), and

|uλn|2
∗
dx

∗
⇀ νλ = |ψλ|2

∗
ν in M(RN ).

If we assume that (1.15) holds for each of these limiting measures νλ (possibly
adding further Dirac masses in Bλ−1 ∩ Ω as λ gets smaller), then the number of
atoms of νλ is clearly uniformly bounded and for 0 < λ < 1 and, for 0 < λ < λ0

in the location is independent of λ in Bλ−1
0

(recall that there is a uniform bound in

Ḣs). Thus νλ
∗
⇀ ν as λ→ 0, hence (1.15) holds for ν as desired.

Let Ω ⊂ RN be bounded and let us prove (1.15) and (1.16). Given ϕ ∈ C∞0 (RN ),
the Sobolev inequality (1.2) yields

(6.7)

(∫
RN
|ϕ|2∗ |un|2

∗
dx

) 2
2∗

≤ (S∗)
2
2∗ ‖(−∆)

s
2 (ϕun)‖2L2(RN )

and

(6.8)

(∫
RN
|ϕ|2∗ |vn|2

∗
dx

) 2
2∗

≤ (S∗)
2
2∗ ‖(−∆)

s
2 (ϕvn)‖2L2(RN ).

In view of Lemma 6.2 we have

‖(−∆)
s
2 (ϕvn)‖2L2(RN ) = ‖ϕ(−∆)

s
2 vn‖2L2(RN ) + o(1) as n→∞.

Passing to the limit in (6.8) and using again Lemma 6.2 we get

(6.9)

(∫
RN
|ϕ|2∗dν̂

) 2
2∗

= lim
n→∞

(∫
RN
|ϕ|2∗ |vn|2

∗
dx

) 2
2∗

≤ (S∗)
2
2∗

∫
RN

ϕ2dµ̂ ,
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i. e. the measures ν̂ and µ̂ satisfy the reverse Hölder inequality (6.5) with p = 2,

r = 2∗ and C = (S∗)1/2∗ . Thus, Lemma 6.3 gives the decomposition for ν̂ and in
turn for ν = |u|2∗dx+ ν̂, i. e. (1.15) holds.

In order to prove (1.16), note that as n→∞ we have vn = un − u ⇀ 0 in Ḣs(Ω)

(hence (−∆)
s
2 (un − u) ⇀ 0 in L2(RN )), thus Lemma 6.2 gives∫

RN
|(−∆)

s
2 (ϕun)|2dx

=

∫
RN
|(−∆)

s
2 (ϕu)|2dx+

∫
RN
|ϕ(−∆)

s
2 (un − u)|2dx+ o(1)

=

∫
RN
|(−∆)

s
2 (ϕu)|2dx+

∫
RN
|ϕ(−∆)

s
2un|2dx−

∫
RN
|ϕ(−∆)

s
2u|2dx+ o(1)

=

∫
RN
|(−∆)

s
2 (ϕu)|2dx−

∫
RN
|ϕ(−∆)s/2u|2dx+

∫
RN
|ϕ|2dµ+ o(1) .(6.10)

Combining (6.7) and (6.10), as n→∞ we obtain(∫
RN
|ϕ|2∗dν

) 2
2∗

≤ (S∗)
2
2∗

(∫
RN
|(−∆)

s
2 (ϕu)|2dx

−
∫
RN
|ϕ(−∆)

s
2u|2dx+

∫
RN
|ϕ|2dµ

)
(6.11)

for any ϕ ∈ C∞0 (RN ).
Since ν satisfies (1.15), choosing ϕxj ,λ(x) = ϕ(xj + λ−1x)) in (6.11) as a test

function, Lemma 6.1 and dominated convergence as λ→ 0 yield∫
RN
|(−∆)

s
2 (ϕxj ,λu)|2dx−

∫
RN
|ϕxj ,λ(−∆)

s
2u|2dx = o(1),

whence ν ≥
∑

j νjδxj implies µ ≥
∑

j µjδxj for some µj > 0 such that νj ≤ S∗µ
2∗
2
j .

Note that (1.16) follows easily because
∑

j µjδxj and |(−∆)
s
2u|2dx are mutually

singular, µ ≥
∑

j µjδxj and µ ≥ |(−∆)
s
2u|2dx (the latter inequality by weak lower

semicontinuity in L2), hence (1.16) holds. In order to conclude, it remains to observe

that spt µ̃ ⊆ Ω, i. e.,
∫
ϕ2dµ =

∫
ϕ2|(−∆)

s
2u|2dx for any ϕ ∈ C∞0 (RN \ Ω), which is

a straightforward consequence of equation (6.10) as n→∞. �

Remark 6.4. In the proof of formula (1.16), Ω is assumed to be bounded just in
order to apply Lemma 6.2. We don’t know if the latter, and in turn formula (1.16),
holds also for unbounded domains.

A simple consequence of the previous theorem is the following result, which will
be useful in the next section and which shows that on bounded domains there is no
energy loss in the concentration process.
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Proposition 6.5. Let 0 < 2s < N , let Ω ⊂ RN be a bounded open set and let
{un} ⊂ Ḣs(Ω) such that un ⇀ 0 as n → ∞. For any open set A ⊆ RN such that

Ω ∩A = ∅ we have

∫
A
|(−∆)

s
2un|2dx→ 0 as n→∞.

Proof. In view of the energy concentration described in formula (1.16) of Theo-
rem 1.5, the conclusion clearly holds when A is bounded, so it is enough to prove
the claim when A = RN \B and B ⊂ RN is some Euclidean ball sufficiently large.

Let us choose B such that 2Ω ⊂ B and let ϕ ∈ C∞0 (B) such that ϕ ≡ 1 on

B/2 ⊃ Ω. Applying Lemma 6.2 we have∫
A
|(−∆)

s
2un|2dx ≤

∫
RN

(1− ϕ)2|(−∆)
s
2un|2dx

=

∫
RN

∣∣∣[1− ϕ, (−∆)
s
2

]
un

∣∣∣2 dx
=

∫
RN

∣∣∣[ϕ, (−∆)
s
2

]
un

∣∣∣2 dx n→∞−→ 0

and the proof is complete. �

6.3. Asymptotic behaviour of optimal sequences. In case of bounded domains
the situation simplifies considerably and we have the following result, that is a direct
consequence of Theorem 1.5 and describes the behavior of optimal sequences for the
variational problem (1.7) in bounded domains.

Corollary 6.6. Let Ω ⊂ RN a bounded open set and let {un} ⊂ Ḣs(Ω) be a maxi-
mizing sequence for the critical Sobolev inequality (1.7). Then, up to subsequences,

{un} concentrates at one point x0 ∈ Ω in the sense that |un|2
∗
dx

∗
⇀ S∗δx0 and

|(−∆)
s
2un|2dx

∗
⇀ δx0 in M(RN ).

Proof. The result easily follows from the concentration-compactness alternative in
Theorem 1.5. One of the keypoint in the proof is the well-known convexity trick by
Lions.

Let {un} ⊂ Ḣs(Ω) be a maximizing sequence for the critical Sobolev inequality

(1.7). Then, up to subsequences, un ⇀ u in Ḣs(Ω),

∫
Ω
|un|2

∗
dx → S∗ and also

|un|2
∗
dx

∗
⇀ ν ∈M(RN ) with ν(Ω) = S∗.

By formula (1.15) in Theorem 1.5, we have

(6.12) S∗ = ν(Ω) =

∫
Ω
|u|2∗dx+

∑
j

νj .

Combining the Sobolev inequality (1.2) with (1.15)-(1.16), we get

(6.13)

∫
Ω
|u|2∗dx+

∑
j

νj ≤ S∗
(∫

RN
|(−∆)

s
2u|2dx

)2∗
2

+ S∗
∑
j

µ
2∗
2
j ,

where µj are atomic coefficients of the measure µ ∈M(RN ), that is the limit in the

sense of measures of the sequence |(−∆)
s
2un|2dx.
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Taking formula (1.16) and Proposition 6.5 into account we have

S∗
(∫

RN
|(−∆)

s
2u|2dx

)2∗
2

+ S∗
∑
j

µ
2∗
2
j ≤ S∗

∫
RN
|(−∆)

s
2u|2dx+

∑
j

µj

2∗
2

≤ S∗µ(RN ) = S∗,(6.14)

because ‖un‖Ḣs = 1 for each n and, in view of Proposition 6.5, there is no loss of
energy in the limit.

Therefore, combining (6.12), (6.13) and (6.14), we see that all the inequalities
must be equalities. Since the Sobolev constant is not attained on bounded domains

and the function t 7→ t
2∗
2 is strictly convex, it follows that µ̃ = 0, u is zero and only

one of the µj ’s and νj ’s can be nonzero in (1.15)-(1.16). Hence, concentration occurs

at one point x0 ∈ Ω as claimed. �

We conclude this section with the asymptotic analysis of the maximizers for the
variational problem in (1.17), proving the claims stated in Theorem 1.6.

Proof of Theorem 1.6. First, we claim that

(6.15) lim sup
ε→0

S∗ε ≤ S∗.

Indeed, taking uε ∈ Ḣs(Ω) a maximizer for S∗ε , by Hölder inequality we have

S∗ε = Fε(uε) =

∫
Ω
|uε|2

∗−εdx ≤
(∫

Ω
|uε|2

∗
)2∗−ε

2∗

|Ω|
ε
2∗ ≤ (S∗)

2∗−ε
2∗ |Ω|

ε
2∗ .

Thus, inequality (6.15) follows as ε→ 0.

The reverse inequality easily follows from the pointwise convergence of Fε to FΩ

with a standard argument. Indeed, for every δ > 0 there exists uδ ∈ Ḣs(Ω) such
that ‖uδ‖Ḣs ≤ 1 and

(6.16) FΩ(uδ) > S∗ − δ.
Clearly, for such function uδ, we have S∗ε ≥ Fε(uδ). Thus, combining the previous
inequality with (6.16) and passing to the limit as ε goes to zero, we get

lim inf
ε→0

S∗ε ≥ lim
ε→0

Fε(uδ) = FΩ(uδ) ≥ S∗ − δ

and claim (i) follows as δ → 0 in view of (6.15).

The concentration result (ii) for the sequence {uε} of maximizers of S∗ε now is
straightforward. Due to (i) the sequence uε is a maximizing sequence for FΩ, hence,
Corollary 6.6 ensures that, up to subsequences, {uε} concentrate at one point x0 ∈ Ω,

in the sense that |uε|2
∗
dx

∗
⇀ S∗δx0 and |(−∆)

s
2uε|2dx

∗
⇀ δx0 in M(RN ).

Finally, since {uε} is also an optimal sequence for the Sobolev inequality (1.2), by
Theorem 1.3 we deduce the convergence statement in (iii) under suitable rescaling.

Note that, following the proof of Theorem 1.3 and taking claim (ii) into account,
the scaling parameters there clearly satisfy xn → x0 and λn → 0 as n→∞ and the
proof of (iii) is complete. �
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