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Abstract. We consider solutions in the whole of the space of a partial differential equa-
tion driven by the anisotropic Laplacian. We prove a pointwise energy bound and we
derive from that some rigidity results.

Introduction

Given a domain Ω ⊆ R
n, with n > 2, we consider critical points of the functional

(1) WΩ(u) :=

∫

Ω

1

2
H2(∇u(x))− F (u(x)) dx.

Here we take H ∈ C3,β
loc (R

N \ {0}), with β ∈ (0, 1), and we suppose that H is a positive
homogeneous function of degree 1, with H(0) = 0,

(2) H(ξ) > 0 for any ξ ∈ R
n \ {0},

and

(3) Hess (H2) positive definite in R
n \ {0}

(see the Appendix for the basic notions on positive homogeneous functions that are in used).

We also suppose that F ∈ C2,β
loc (R). In particular, critical points of WΩ satisfy (weakly) the

equation

(4)
∂

∂xi

(

H(∇u)Hi(∇u)
)

+ f(u) = 0,

where f := F ′ and Hi(ξ) := ∂ξiH(ξ). Here and in the sequel, the standard summation
convention on repeated indices is understood. The differential operator in (4) is known in
the literature with the name of anisotropic, or Finsler, Laplacian, and it has attracted the
attention of several authors (see, for instance, [AFTL97, CS09] and references therein – of
course, in the special case when H(ξ) = |ξ|, it reduces to the ordinary Laplacian).

The functional in (1), and therefore equation (4), is motivated by the study of the Wulff
shape of anisotropic crystals (see, e.g., [T78, FM91, DKS92] and the references therein).

Given u : Rn → R, we set

cu := sup
{

F (r) , r ∈
[

inf
Rn
u, sup

Rn

u
]}

.

In this paper, we provide three types of results, namely: a pointwise gradient bound, some
rigidity and symmetry results, and some results relating the important quantity cu with the
extremals of the solution u. We start with the following pointwise gradient estimate:

Theorem 1. Let u ∈ L∞(Rn) ∩H1
loc(R

n) be a weak solution of equation (4) in R
n. Then

u ∈ C1,α
loc (R

n), for some α ∈ (0, 1) and, for any x ∈ R
n,

(5)
1

2
H2(∇u(x)) 6 cu − F (u(x)).
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Also, if there exists xo ∈ R
n such that

(6) ∇u(xo) 6= 0

and

(7)
1

2
H2(∇u(xo)) = cu − F (u(xo)),

then

(8)
1

2
H2(∇u(x)) = cu − F (u(x))

for any x belonging to the connected component of {∇u 6= 0} that contains xo.

In the very special case in which H(ξ) = |ξ| (that may be thought as the isotropic case),
we have that (4) reduces to the Laplace equation and Theorem 1 in this case was proved
in [Mod85]. The result of [Mod85] is indeed, up to now, classical, and it has been generalized
in several directions (see, for instance, [CGS94, FV09, CFV12]). Nevertheless, as far as we
know, the case of the Wulff shape that is treated in Theorem 1 here was still open.

In particular, though very general functionals have been recently studied in [DG02],
results similar to Theorem 1 have been obtained there under an assumption of rotationally
invariance (namely, (1.5) there), that excluded the types of anisotropy dealt with in this
paper (see in particular Theorems 4.7 and 4.8, and Corollary 4.9 in [DG02] for the isotropic
case of our Theorem 1).

We think that it is quite intriguing to observe that if (7) holds in a neighborhood of xo
(satisfying (6)), then the anisotropic mean curvature (or H-mean curvature) of the regular
level set Sxo := {u = u(xo)} vanishes at xo.

More precisely, given xo ∈ {∇u 6= 0}, one considers the regular level set Sxo := {u =
u(xo)}. Then, for any x ∈ Sxo , we denote by C(x) the anisotropic mean curvature of Sxo at
the point x (see, e.g., pages 103–107 of [WX11] and references therein for definitions and
basic properties). Then, the following result holds true :

Theorem 2. Let U be an open subset of Rn and u be as in Theorem 1. Suppose that U ⊆
{∇u 6= 0} and that

(9)
1

2
H2(∇u(x)) = cu − F (u(x)) for any x ∈ U.

Then,

(10) C(x) = 0 for any x ∈ U .

As a consequence of (10), we obtain a rigidity result in the plane:

Theorem 3. Let n = 2, U be an open subset of R2 and u be as in Theorem 1. Suppose

that U ⊆ {∇u 6= 0} and that

1

2
H2(∇u(x)) = cu − F (u(x)) for any x ∈ U.

Then the level sets of u are contained in straight lines.

When U is the whole of the plane, Theorem 3 may be precised, according to the following
result:

Theorem 4. Let n = 2 and u be as in Theorem 1. Suppose that

(11)
1

2
H2(∇u(x)) = cu − F (u(x)) for any x ∈ R

2.

Then u possesses one-dimensional Euclidean symmetry, i.e. there exist ̟ ∈ S1 and uo :
R → R such that

u(x) = uo(̟ · x) for any x ∈ R
2.
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We stress that it is not necessary to assume that {∇u = 0} = ∅ in Theorem 4.
Also, we think that it is an interesting open problem to decide whether or not Theorems 3

and 4 hold true in higher dimension.

As an example of positive homogeneous functions that satisfy our assumptions, one can
take p > 3 and

H(ξ) :=

(

n
∑

i=1

|ξi|
p

)1/p

+

(

n
∑

i=1

(ξi)
2

)1/2

.

In particular, the corresponding anisotropic operator is not rotationally invariant. In
fact, our framework is more general than this, and we do not even need to assume that H
is a norm.

Now, we give a rigidity result for u in terms of cu, which may be seen as the anisotropic
version of Theorem 4.10 in [DG02] (see also Theorem 1 in [Mod85] and Theorem 1.8 in
[CGS94]) :

Theorem 5. Let u be as in Theorem 1. If there exists p ∈ R
n such that F (u(p)) = cu and

F ′(u(p)) = 0, then u is constant.

Next result, which gives a precise characterization of cu, may be seen as the extension of
Theorem 2 of [FV09] to the anisotropic case:

Theorem 6. Let u be as in Theorem 1. Then

cu = max
{

F
(

inf
Rn
u
)

, F
(

sup
Rn

u
)}

.

Also, if there exists x ∈ R
n such that F (u(x)) = cu, then either u(x) = inf

Rn
u or u(x) = sup

Rn

u.

The paper is organized as follows. First, in Section 1, we introduce a suitable P -function,
that we show to be a subsolution of a suitable (possibly degenerate) pde. This will be the
core of the proof of Theorem 1, which is completed in Section 2. The subsequent sections
take care of the proofs of Theorems 2, 3, 4, 5 and 6. To make the paper more self-contained,
we enclose an Appendix collecting the basics of positive homogeneous functions that are in
used in the main computations.

1. P -function computations

Now we introduce a suitable function P , related to (5) and we show that P is a subsolution
of a (possibly degenerate) pde. This and the strong maximum principle will lead to the
proof of Theorem 1. Though the technique of looking for such a P -function is, up to
know, classical, several technical issues arise in the concrete cases of interest: for instance,
a result similar to the following Proposition 1 was proved in Theorem 4.3 of [DG02] in the
isotropic case – remarkably, the P function considered there (and the associated pde) seem
to be slightly different from ours. The P -function introduced in Theorem 4 of [WX11] to
deal with other anisotropic problems is also different. So, the choice of the appropriate
P -function seems always to be a delicate point.

Proposition 1. Let u be as in Theorem 1 and

(12) G(r) := cu − F (r),

aij := HiHj +HHij, dij := aij/H, and

(13) P (u;x) := H2(∇u)− 2G(u).

Then, u ∈ C3({∇u 6= 0}) and, at points where ∇u 6= 0,

(14) (dijPi)j −H−2G′HℓPℓ > 0.
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Proof. First of all, we remark that u is C3({∇u 6= 0}), see [LU68, T84, DiB83, GT83].
Then, the proof uses some ideas of [Mod85, CGS94] as developed in [FV09, CFV12]. In a
sense, the calculations we perform are a modification of the classical Bernstein technique,
as employed in [Pay76, Spe81], but several technical difficulties arise in this case, and this
complicates the algebra. Though some related computations can be found in [WX11],
the approach here is slightly different. We use the short notation ∂i = ∂xi

, G = G(u),
G′ = G′(u), H = H(∇u), Hi = Hi(∇u) = (∂iH)(∇u), etc.

By differentiating (13), for any i, we have

(15) Pi = 2HHkuki − 2G′ui.

Hence

(16) (dijPi)j = −2(G′dijui)j+(2aijHkuki)j = −2(G′dijui)j+2(aijuki)jHk+2aijukiHkℓuℓj .

Moreover, from (4),

(17) aijuij = G′.

Now, since u is C3,

(aijuki)j − (aijuij)k = (aij)juki − (aij)kuij

= (HiHj +HHij)juki − (HiHj +HHij)kuij

= (HiℓHj +HiHjℓ +HℓHij +HHijℓ)ukiujℓ

−(HiℓHj +HiHjℓ +HℓHij +HHijℓ)uijukℓ.

Therefore, by exchanging the names of the indices i and ℓ in the last term,

(aijuki)j − (aijuij)k

= (HiℓHj +HiHjℓ +HℓHij +HHijℓ)ukiujℓ

−(HiℓHj +HℓHij +HiHℓj +HHijℓ)ukiujℓ = 0.

This and (17) give that

(18) (aijuki)j = (aijuij)k = (G′)k = G′′uk.

By plugging (18) into (16), we obtain

(dijPi)j = −2(G′dijui)j + 2G′′ukHk + 2aijukiHkℓuℓj

= −2G′′dijuiuj − 2G′(dijui)j + 2G′′ukHk + 2aijukiHkℓuℓj .

(19)

On the other hand, using (49) and (50),

2G′′ukHk − 2G′′dijuiuj = 2G′′H−1(ukHkH − aijuiuj)

= 2G′′H−1(H2 −HiHjuiuj −HHijuiuj) = 2G′′H−1(H2 −H2 − 0) = 0.

Consequently, (19) becomes

(20) (dijPi)j = −2G′(dijui)j + 2aijukiHkℓuℓj .

Now, since, from (17), we know that dijuij = H−1G′, we can write (20) as

(21) (dijPi)j = −2G′(dij)jui − 2H−1(G′)2 + 2aijukiHkℓuℓj .

On the other hand,

(dij)jui = (H−1aij)jui = (H−1HiHj +Hij)jui

= (−H−2HℓHiHj +H−1HiℓHj +H−1HiHjℓ +Hijℓ)uiujℓ.

Then, by using (49), (50) and (51),

(dij)jui = (−H−1HℓHj + 0 +Hjℓ −Hjℓ)ujℓ

= −H−1HℓHjujℓ = −H−2Hℓ(HHjujℓ).
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That is, making use of (15) and (49) once more,

(dij)jui = −H−2Hℓ

(Pℓ + 2G′uℓ
2

)

= −
1

2
H−2HℓPℓ −H−1G′.

By plugging this into (21), we conclude that

(dijPi)j = −2G′
(

−
1

2
H−2HℓPℓ −H−1G′

)

− 2H−1(G′)2 + 2aijukiHkℓuℓj

= H−2G′HℓPℓ + 2aijukiHkℓuℓj .
(22)

Now, we write vk := Hiuki and βjk := Hijuik.
We remark that

(23) βjkβkj > 0.

To check this, we diagonalize Hess (H) by writing Hij = MpiλpMpj , with λp > 0 (recall
Lemma 5). We also set ϑpr :=MpiMrmumi. Then, for any fixed p and r, we have that

0 6 (ϑpr)
2

= (MpiMrkuki) (MpjMrℓuℓj)

= MpiMpjMrkMrℓukiuℓj .

We multiply by λpλr and we sum over p and r: we get

0 6 MpiλpMpjMrkλrMrℓukiuℓj

= HijHkℓukiuℓj

= (Hijuik) (Hℓkuℓj)

= βjkβkj ,

which proves (23).
Also, by means of (52), we see that Hkℓvkvℓ > 0, therefore

aijHkℓukiuℓj = (HiHj +HHij)Hkℓukiuℓj

= Hkℓvkvℓ +Hβjkβkj > 0.

By substituting this expression into (22), we obtain (14). �

2. Proof of Theorem 1

With the result of Proposition 1, we can now complete the proof of Theorem 1 by using
the techniques of [Mod85, CGS94, FV09]. We provide the argument in detail for the facility
of the reader.

By the classic results of [LU68, T84, DiB83] we have that u ∈ C1,α
loc (R

n) for some α ∈
(0, 1). Then we define the set

E :=
{

v is solution of (4), with inf
Rn
u 6 v(x) 6 sup

Rn

u for any x ∈ R
n
}

and we remark that, using once again [LU68, T84, DiB83] (cfr. for instance Theorem 4.1

of [DG02]) the above set E is compact in the topology of C1,α
loc (R

n).
We also note that

(24) if v ∈ E , then G(v(x)) > 0 for any x ∈ R
n,

where G is defined in (12). Let also

(25) Po := sup
v∈E
x∈Rn

P (v;x).
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We claim that

(26) Po 6 0.

To prove (26) we argue by contradiction and we suppose that

(27) Po > 0.

Let vk ∈ E and xk ∈ R
n such that

(28) lim
k→+∞

P (vk;xk) = Po.

Let us define wk(x) := vk(x+ xk). Then,

(29) wk ∈ E

and

(30) P (wk; 0) = P (vk;xk).

So, up to subsequences, we may suppose that wk converges to some w in C1,α
loc (R

n) ∩ E .
In particular,

P (w; 0) = H2(∇w(0))− 2G(w(0))

= lim
k→+∞

H2(∇wk(0))− 2G(wk(0)) = lim
k→+∞

P (wk; 0).

Hence, recalling (28) and (30),

(31) P (w; 0) = lim
k→+∞

P (vk;xk) = Po.

In particular, from (27) and (24),

0 < Po = P (w; 0) = H2(∇w(0))− 2G(w(0)) 6 H2(∇w(0))

and so ∇w(0) 6= 0. This implies that we can use Proposition 1 and conclude that

(32) (dijPi(w;x))j −H−2(∇w(x))G′(w(x))Hℓ(∇w(x))Pℓ(w;x) > 0

for any x ∈ Bρ, for a suitably small ρ > 0.
On the other hand, by (25), we know that P (w;x) 6 Po and so, by (31), we obtain

that 0 is a local maximum for P (w; ·). Accordingly, (32) and the strong maximum principle
(see, e.g., Theorem 8.19 in [GT83]), imply that P (w; ·) is constant in Bρ and, in fact, by
connectedness, in the whole of Rn: thus

(33) H2(∇w(x))− 2G(w(x)) = P (w;x) = Po for any x ∈ R
n.

But, since w is bounded, we have that there exists a sequence qk ∈ R
n such that

lim
k→+∞

∇w(qk) = 0.

Hence, from (24) and (33),

0 = H2(0) = lim
k→+∞

H2(∇w(qk)) > lim
k→+∞

H2(∇w(qk))− 2G(w(qk)) = Po.

This is in contradiction with (27) and therefore it proves (26). Since obviously u ∈ E , we
obtain from (26) that P (u;x) 6 Po 6 0 for any x ∈ R

n, thus proving (5).
Now we show that once equality in (5) is attained at some non-critical point, then it is

attained everywhere. For this let xo be as in (6) and (7). By (7), (5) and (12), we have that

P (u;xo) = H2(∇u(xo))− 2G(u(xo)) = 0

> H2(∇u(x))− 2G(u(x)) = P (u;x)
(34)

for any x ∈ R
n, hence

(35) xo is a local maximum for P (u; ·).
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By (6), (35), Proposition 1 and the strong maximum principle, we obtain that P (u; ·) is
constant, and constantly equal to 0, in the whole of the connected component of {∇u 6= 0}
that contains xo. This establishes (7). �

3. Proof of Theorem 2

From formula (10) on page 107 of [WX11], we know that

(36) C = Hijuij ,

where the short hand notation H = H(∇u) has been used. Also, by using (9) and the
notation in (12), we have

1

2
H2 = G

in U , and so, by differentiating,

(37) HHjuij = G′ui.

Moreover, from (4)

(38) 0 = f + (HHi)i = f +HiHjuij +HHijuij .

By plugging (37) into (38) and then recalling (49), we obtain

0 = f +
G′Hiui
H

+HHijuij = f +G′ +HHijuij = HHijuij .

This and (36) imply that C is constantly equal to zero on any level set lying in U . This
proves (10). �

4. Proof of Theorem 3

First of all, we recall that, for any ξ ∈ S1, Hess (H) at ξ is positive definite on ξ⊥: see
Proposition 2 on page 102 of1 [WX11]. In particular,

(39) H11(0, 1) = Hess (H)(0, 1)
[

(1, 0), (1, 0)
]

> 0.

Now we take a point x⋆ ∈ U and we write, nearby, the level set {u = u(x⋆)} as a graph.
Up to rigid motions, we may suppose that x⋆ = 0 and that {u = u(x⋆)}, near 0, may be
written as the graph {x2 = h(x1)}, with h ∈ C2, h(0) = 0 and

(40) h′(0) = 0.

Then we can write the normal as

ν = (ν1, ν2) =
(−h′, 1)
√

1 + (h′)2

and use the anisotropic curvature in local representation (see formula (8) on page 106
of [WX11], here with α = 1 since we are in dimension 2):

C = Hi1(ν)∂1νi

= H11(ν)∂1ν1 +H12(ν)∂1ν2

= −H11(ν)∂1

(

h′
√

1 + (h′)2

)

+H12(ν)∂1

(

1
√

1 + (h′)2

)

.

Hence, recalling (40),

C(0) = −H11(0, 1)h
′′(0).

From (10), we obtain that −H11(0, 1)h
′′(0) = C(0) = 0, and so, by (39), that h′′(0) = 0.

This says, in general, that the curvature of the level sets of u vanishes in the whole of U . �

1We remark that in [WX11] the function H is taken to be even, which is not assumed here: on the other
hand, this parity assumption is used elsewhere in [WX11] but not in the proof of Proposition 2.
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5. Proof of Theorem 4

First, we take S to be any connected component of {∇u 6= 0}. We claim that

S is foliated by level sets of u which are union of parallel straight lines,

and so ∂S is the union of (at most two) parallel straight lines.
(41)

To establish this, we fix any x⋆ ∈ S and look at the level set Sx⋆ = {u = u(x⋆)}. By
Theorem 3, we know that

(42) any connected component of Sx⋆ is contained in a straight line, say rx⋆ .

We observe that

(43) Sx⋆ ⊆ {∇u 6= 0}.

Indeed, taking any x̃ ∈ Sx⋆ , we have from (11) that

1

2
H2(∇u(x̃)) = cu − F (u(x̃)) = cu − F (u(x⋆)) =

1

2
H2(∇u(x⋆)) 6= 0,

hence x̃ ∈ {∇u 6= 0}, thus proving (43).
Now we point out that

(44) the connected component of Sx⋆ that contains x⋆ must be equal to rx⋆ .

Indeed, Sx⋆ is closed in the relative topology of rx⋆ , because u is continuous, and Sx⋆ is also
open in that topology, thanks to (43) and Theorem 3.

By (43) and (44), we obtain (41).
Now, we denote by ̟ a vector normal to all the straight lines in (41). We claim that

(45) u(xo) = u(yo) if (xo − yo) ·̟ = 0.

To check this, fix xo ∈ R
2. If ∇u = 0 at all points of rxo , then (45) follows from the

Fundamental Theorem of Calculus. Conversely, if there exists x♯ ∈ rxo ∩{∇u 6= 0}, by (44)
(applied to x♯), we have that u is constant on rx♯

, which, in turn, is equal to rxo , thus
proving (45).

Then, (45) gives the desired one-dimensional Euclidean symmetry. �

6. Proof of Theorem 5

We need an appropriate modification of some arguments in [CGS94, FV09]. We take p
as in the statement of Theorem 5 and r := u(p). We fix q ∈ R

n \ {p} and we show that
u(q) = r: with this, the thesis of Theorem 5 would be established.

To this aim, we consider the function

[0, 1] ∋ t 7→ ϕ(t) := u
(

tq + (1− t)p
)

− r.

By the homogeneity of H and (2), we have that

(46) H2(ξ) = |ξ|2H2

(

ξ

|ξ|

)

> κ|ξ|2,

for any ξ ∈ R
n \ {0}, with

κ := inf
η∈Rn

|η|=1

H2(η).

As a matter of fact, since H(0) = 0, we infer from (46) that

H2(∇u) > κ|∇u|2.

Hence

(ϕ̇(t))2 6 |p− q|2
∣

∣∇u
(

tq + (1− t)p
)
∣

∣

2

6 κ−1|p− q|2H2
(

∇u
(

tq + (1− t)p
)

)

.
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Consequently, by (5) and the assumptions of Theorem 5, we have that

(ϕ̇(t))2 6 2κ−1|p− q|
[

cu − F
(

u
(

tq + (1− t)p
)

)]

= 2κ−1|p− q|2
[

F (r)− F
(

u
(

tq + (1− t)p
)

)]

= −2κ−1|p− q|2
∫ u(tq+(1−t)p)

r
F ′(σ) dσ

= 2κ−1|p− q|2
∫ u(tq+(1−t)p)

r
F ′(r)− F ′(σ) dσ

6 2κ−1|p− q|2 ‖F‖C1,1(J )

∣

∣

∣

∣

∣

∫ u(tq+(1−t)p)

r
|σ − r| dσ

∣

∣

∣

∣

∣

6 κ−1|p− q|2 ‖F‖C1,1(J )

∣

∣u(tq + (1− t)p)− r
∣

∣

2

= κ−1|p− q|2 ‖F‖C1,1(J ) (ϕ(t))
2,

where J :=
[

inf
Rn
u, sup

Rn

u
]

. Therefore, if ϕ(t) 6= 0,

∣

∣

∣

∣

ϕ̇(t)

ϕ(t)

∣

∣

∣

∣

6 K := κ−1/2|p− q|.

As a consequence, if ψ(t) := (ϕ(t))2e−2Kt, we have that

ψ̇(t) = 2ϕ(t)ϕ̇(t)e−2Kt − 2K(ϕ(t))2e−2Kt

=

{

0 if ϕ(t) = 0,

2(ϕ(t))2e−2Kt
[

ϕ̇(t)
ϕ(t) −K

]

if ϕ(t) 6= 0

6 0

and so ψ is non-increasing. Thus

(u(q)− r)2e−2K = (ϕ(1))2e−2K = ψ(1)

6 ψ(0) = (ϕ(0))2 = (u(p)− r)2 = 0.

This says that u(q) = r = u(p) and so the proof of Theorem 5 is finished. �

7. Proof of Theorem 6

Without loss of generality, we may and do assume that

(47) u is not constant,

otherwise we are done. Then, the proof of Theorem 6 is by contradiction: if its thesis were

false, there would exist ro ∈
(

infRn u, supRn u
)

such that

sup
{

F (r) , r ∈
[

inf
Rn
u, sup

Rn

u
]}

= cu = F (ro),

and so, by the continuity of u, there would exist xo ∈ R
n such that u(xo) = ro.

We deduce that ro is a local maximum for F , and so F ′(ro) = 0. Therefore, F (u(xo)) =
F (ro) = cu and F ′(u(xo)) = F ′(ro) = 0 and so, by Theorem 5, it follows that u is constant.
This is in contradiction with (47) and so the proof of Theorem 6 is complete. �
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Appendix

This part collects some elementary facts on positive homogeneous functions. Its purpose is
to make the paper more self-contained, and it can be skipped by the expert reader. Here, H
denotes a positive homogeneous function (not necessarily the one of the main results of this
paper). As usual, a function H : Rn \ {0} → R is said to be positive homogeneous of
degree k ∈ Z if H(tξ) = tkH(ξ) for any t > 0 and ξ ∈ R

n \ {0}.

Lemma 1 (Euler’s formula). If H ∈ C1(Rn \{0}) is positive homogeneous of degree k, then

(48)
∂H

∂ξi
(ξ)ξi = kH(ξ).

Proof. Differentiate in t the formula H(tξ) = tkH(ξ) and then plug t = 1. �

Lemma 2. If H ∈ Cm(Rn \{0}) is positive homogeneous of degree k and α ∈ N
n with α1+

· · ·+ αn = m, then ∂αH is positive homogeneous of degree k −m.

Proof. By induction over m. The inductive step goes like this: if α1 + · · ·+αn = m and we
know by inductive assumption that ∂αH is positive homogeneous of degree k−m, we write

∂αH(tξ) = tk−m∂αH(ξ).

Now we take one derivative more in direction, say ξ1: we obtain

t∂α+e1H(tξ) = tk−m∂α+e1H(ξ)

which gives that ∂α+e1H is positive homogeneous of degree k − (m+ 1). �

Following are the identities that we use in the course of the main proofs. We use the
standard notation Hi(ξ) = ∂iH(ξ) = ∂ξiH(ξ).

Lemma 3. If H ∈ C3(Rn \ {0}) is positive homogeneous of degree 1, we have that2

Hi(ξ)ξi = H(ξ),(49)

Hij(ξ)ξi = 0,(50)

Hijk(ξ)ξi = −Hjk(ξ).(51)

Proof. We use (48) with k := 1 and we obtain (49). Then, by Lemma 2, we know that Hj

is positive homogeneous of degree 0, so that (50) follows from (48) with k := 0. Similarly,
by Lemma 2, we know that Hjk is positive homogeneous of degree −1, so that (51) follows
from (48) with k := −1. �

Now, we justify the regularity on H needed to write (4):

Lemma 4. If H ∈ C1(Rn \ {0}) is positive homogeneous of degree k > 1/2, than it can be

extended by setting H(0) := 0 to a continuous function, such that H2 ∈ C1(Rn) and

∂i(H
2)(0) = 0 = lim

x→0
H(x)Hi(x).

Proof. Of course |H(ξ)| 6 |ξ|k supSn−1 |H|, showing the continuity of H at 0. More-
over, H2 ∈ C1(Rn \ {0}), and

∂i(H
2)(0) = lim

t→0

H2(tei)

t
= lim

t→0

H2(±|t|ei)

h
= lim

t→0

|t|2kH2(±ei)

t
= 0.

On the other hand, by Lemma 2, Hi(x) = |x|k−1H(x) for any x ∈ R
n \ {0}, and so

lim
x→0

|H(x)Hi(x)| 6 lim
x→0

|x|2k−1 sup
Sn−1

|HHi| = 0,

as desired. �

2As a matter of fact, H ∈ C
1(Rn \ {0}) is enough for (49), and H ∈ C

2(Rn \ {0}) is enough for (50) (and
so for the subsequent Lemma 5).
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We end this paper with a convexity remark:

Lemma 5. If H ∈ C2(Rn \{0}) is positive homogeneous of degree 1 and it satisfies (2) and
(3), then H is convex and

(52) Hij(ξ) ηiηj > 0 for any ξ ∈ R
n \ {0} and η ∈ R

n.

Proof. To prove (52), we may suppose that η 6= 0 and so, up to dividing by |η|, that η ∈ Sn−1.
Moreover, by Lemma 2, we know that Hij is positive homogeneous of degree −1, hence, to
prove (52), we may also assume that ξ ∈ Sn−1. Let us now decompose η along ξ and its
orthogonal space, that is let λ := η · ξ and τ := η − λξ. Notice that

(53) τ ∈ ξ⊥.

Furthermore, η = λξ + τ and, by virtue of (50),

Hij(ξ) ηiηj = λ2Hij(ξ) ξiξj +Hij(ξ) τiτj + 2λHij(ξ) ηiτj

= 0 +Hij(ξ) τiτj + 0.
(54)

On the other hand, by Proposition 2 on page 102 of [WX11], we have that Hess (H) at ξ is
positive definite on ξ⊥, and so, by (53),

(55) either τ = 0 or Hij(ξ)τiτj > 0.

Then, the desired result follows from (54) and (55). �

It is worth pointing out that it is not possible to have the strict sign in (52): indeed,
by (50),

Hij(ξ) ξiξj = 0.
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