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Preface

These notes have been motivated by the interests of the author in variational problems
depending on small parameters, for some of which a description based on a global min-
imization principle does not seem satisfactory. Such problems range from the derivation
of physical theories from first principles to numerical problems involving energies with
many local minima. Even though an asymptotic description of related global minimization
problems can be given in terms of Γ-convergence, the Γ-limit often does not capture the
behavior of local minimizers or of gradient flows. This failure is sometimes mentioned as
the proof that Γ-convergence is ‘wrong’. It may well be so. The author’s standpoint is that
it might nevertheless be a good starting point that may be systematically ‘corrected’.

The author’s program has been to examine the (few) results in the literature, and try to
connect them with his own work in homogenization and discrete systems, where often the
local minimization issues are crucial due to the oscillations of the energies. The directions
of research have been
• find criteria that ensure the convergence of local minimizers and critical points. In case

this does not occur then modify the Γ-limit into an equivalent Γ-expansion (as introduced
by the author and L. Truskinovsky) in order to match this requirement. We note that in
this way we ‘correct’ some limit theories, finding (or ‘validating’) other ones present in the
literature;
• modify the concept of local minimizer, so that it may be more ‘compatible’ with the

process of Γ-limit. One such concept is the δ-stability of C. Larsen;
• treat evolution problems for energies with many local minima obtained by a time-

discrete scheme (introducing the notion of ‘minimizing movements along a sequence of
functionals’). In this case the minimizing movement of the Γ-limit can be always obtained
by a choice of the space and time-scale, but more interesting behaviors can be obtained
at a critical ratio between them. In many cases a ‘critical scale’ can be computed and
an effective motion, from which all other minimizing movements are obtained by scaling.
Furthermore the choice of suitable Γ-converging sequences in the scheme above allows to
address the issues of long-time behavior and backwards motion;
• examine the general variational evolution results that may be related to these mini-

mizing movements, in particular recent theories of quasistatic motion and gradent flow in
metric spaces.
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8 PREFACE

The content of the present notes is taken from a series of lectures which formed a PhD
course first given at Sapienza University of Rome from March to May 2012 and subsequently
at the University of Pavia from November 2012 to January 2013. Those courses were
addressed to an audience of students, some of which with an advanced background (meaning
that they were already exposed to the main notions of the Calculus of Variations and of
Γ-convergence), and researchers in the field of the Calculus of Variations and of Variational
Evolution. This was an advanced course in that it was meant to address some current (or
future) research issues rather than to discuss some subject systematically. Part of the notes
has been also reworked during a ten-hour course at the University of Narvik on October
25-30, 2012.

Since the scope of the notes has been to highlight the phenomena and issues linked
to local minimization and variational evolution, we have focused our attention on those
aspects, rather than on the details of the Γ-convergence process, or the optimal hypotheses
for the definition of gradient flows, for which we refer to the existing literature.

These notes would not have been written without the personal constant encouragement
of Adriana Garroni, who is also responsible of the organization of the PhD course in Rome.
I gratefully acknowledge the invitation of Enrico Vitali to give the PhD course in Pavia,
his many interesting comments and his delightful hospitality. I greatly profited from the
stimulating environments in both Departments; special thanks go to all the students who
interacted during the course and the final exams. A precious direct contribution has been
given by Adriana Garroni for many ideas about the homogenization of damage in Section
2.1, by Ulisse Stefanelli, who provided the material for most of Section 2.2 by giving a
beautiful lecture on the subject during the course at Pavia, and by Luigi Ambrosio for the
proofs in Section 10.1.1. I also acknowledge very fruitful discussions with Matteo Focardi,
Chris Larsen, Alexander Mielke, Matteo Novaga, Andrey Piatnitski, Giuseppe Savaré and
Lev Truskinovsky, which inspired many examples in these notes.

Rome, February 2013.



Introduction

The theory of Γ-convergence was conceived by Ennio De Giorgi at the beginning of the
1970s. It originated from previous notions of convergence related mainly to elliptic oper-
ators as G-convergence or H-convergence or to convex functionals as Mosco convergence.
The main issue in the definition of Γ-convergence is tracking the behaviour of global mini-
mum problems (minimum values and minimizers) of a sequence Fε by the computation of
an ‘effective’ minimum problem involving the (suitably defined) Γ-limit of this sequence.
Even though the definition of such a limit is local (in that in defining its value at a point x
we only take into account sequences converging to x), its computation in general does not
describe the behaviour of local minimizers of Fε (i.e., points xε which are absolute minimiz-
ers of the restriction of Fε to a small neighbourhood of the point xε itself). The possible
situation, in a very simplified picture, is that in Figure 1, where the original Fε possess

Figure 1: many local minima may disappear in the limit

many local minimizers, some (or all) of which are ‘integrated out’ in the Γ-convergence
process (note that this happens even when the oscillations depth does not vanish). A no-
table exception is when we have an isolated local minimizer x of the Γ-limit: in that case
we may track the behaviour of local minimizers as absolute minimizers of Fε restricted to
a fixed neighbourhood of x and conclude the existence of local minimizers for Fε close to
x. The possibility of the actual application of such a general principle has been envisaged
by Kohn and Sternberg, who first used it to deduce the existence of local minimizers of the
Allen-Cahn equation by exhibiting local area minimizing sets.
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10 INTRODUCTION

A recent different but related direction of research concerns the study of gradient flows.
A general variational theory based on the solution of Euler schemes has been developed by
Ambrosio, Gigli and Savaré. The stability of such schemes by Γ-perturbations is possible
in the absence of local minimizers which could generate ‘pinned’ flows (i.e., stationary
solutions or solutions ‘attracted’ by a local minimum) that are not detected by the limit.
Conditions that guarantee such a stability are of convexity type on the energies. These
conditions can be removed under other special assumptions on the gradient flows and for
‘well-prepared’ initial data following the scheme proposed for Ginzburg-Landau energies
by Sandier and Serfaty. Unfortunately, as remarked by those authors, the applicability of
this scheme is often hard to verify.

Taking the above-mentioned results as a starting point we have explored some different
directions. The standpoint of the analysis is that even though the Γ-limit may not give
the correct description of the effect of local minimizers, it may nevertheless be ‘corrected’
in some systematic way.

After introducing the main notions of Γ-convergence in Chapter 1 and the general results
on convergence of global minimum problems, in Chapter 2 we have examined another ques-
tion related to global minimization, concerning the behavior of quasistatic motions, where
the functions uε = uε(t, x) minimize at each value of the parameter t (which is understood
as a ‘slow time’) a total energy of the form Fε(u, v)+Dε(v) subject to a t-depending forcing
condition. Here, v is an additional parameter satisfying some monotonicity constraint and
Dε is a dissipation. We examine conditions that imply that the separate Γ-convergences of
Fε to F and of Dε to D guarantee the convergence of uε to a quasi static motion related to
F and D, as envisaged by Mielke, Roubiček and Stefanelli. In general such conditions do
not hold, and a relaxed formulation taking into account the interaction of Fε and Dε must
be used. In this case, quasistatic motion turns out to be compatible with Γ-convergence
provided that the latter is understood as that of the functionals Gε(u, v) = Fε(u, v)+Dε(v)
of the variable (u, v).

In Chapter 3 we have dealt with another case when the global minimization arguments
can be ‘localized’, which is the case of isolated local minimizers of the Γ-limit, as recalled
above. We have noted that this principle can also be applied to scaled energies (e.g.,
to higher-order Γ-limits, or to ‘blown-up’ energies) obtaining existence of multiple local
minimizers for the Γ-converging functionals.

A first issue beyond global minimization is introduced in Chapte 4 and takes into
account the notion of ‘equivalence by Γ-convergence’ as introduced and studied by Braides
and Truskinovsky: in the case that a Γ-limit or a Γ-development may be insufficient to
capture some desired feature of the minimum problems Fε we may introduce equivalent
energies F̃ε. These energies still integrate out the unimportant details of Fε but maintain
the desired feature and are equivalent to the original Fε in that they have the same Γ-
limit or Γ-development. One of the conditions that may be required to F̃ε is that they
have the same landscape of local minimizers as Fε. As an example, we highlight that a Γ-
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development taking into account interactions between neighbouring transitions recovers the
local minimizers of Allen-Cahn energies that are integrated out by the usual sharp-interface
models of phase transitions.

Another issue is the problem of distinguishing ‘meaningful local minimizers’ from those
that may ‘rightfully’ considered to disappear in the limit. Taking Figure 1 as a pictorial
example, local minimizers deriving from vanishing oscillations should be considered as
different from those ‘trapped’ by energy barriers. To that end in Chapter 5 we study
the notion of δ-stable state as recently introduced by C. Larsen, and the related notion
of stable sequences of energies. We show that Γ-convergence allows to exhibit classes of
stable sequences.

Linked to the study of local minimizers is the variational motion defined by the limit
of Euler schemes at vanishing time step. This motion has been usually defined for a single
functional F (and is sometimes referred to as a minimizing movement), by introducing a
time step τ and define discrete trajectories (uτk) iteratively as solutions of

min
{
F (u) +

1
2τ
‖u− uτk−1‖2

}
(for simplicity assume that the energies be defined on a Hilbert space, and ‖u‖ the related
norm). A minimizing movement is a suitably defined continuum limit of such discrete
trajectories. These concept are introduced in Chapter 6 together with their analogues for
time-dependent energies.

In Chapter 7 we examine a variation of the minimizing-movement scheme with two
parameters: one is the time step τ , and the second one is the parameter ε (that we may
ofter regard as a space scale) appearing in the Γ-converging sequence Fε. The Euler scheme
is then applied at fixed τ with ε = ε(τ) and Fε in place of F , so that the resulting discrete
trajectories (uεk) defined iteratively as solutions of

min
{
Fε(u) +

1
2τ
‖u− uεk−1‖2

}
may depend on the interaction between the two scales. A general result, directly derived
from the properties of Γ-convergence allows to deduce the existence of a ‘fast’ space scale
such that the limit of the ε-τ Euler scheme is just a minimizing movement for the Γ-limit.
For ‘slow’ space scales the motion is often ‘pinned’ at local minimizers. This observation
highlights the existence of one or more critical ε-τ regimes which capture the most inter-
esting features of the motion connected to these energies. We show examples where an
‘effective’ motion is obtained such that all minimizing movements are obtained by scaling.

An important class of minimizing movements are geometric minimizing movements
treated in Chapter 8. The prototype of such a geometric motion is the motion by mean
curvature obtained as a minimizing movement starting from the perimeter functional by
Almgren, Taylor and Wang. In this case the scheme must be generalized to cover the case
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of an ‘asymmetric’ distance. This generalized scheme can be applied to treat sequences of
perimeter energies.

Another possible phenomenon for these Euler schemes for Γ-converging energies is the
existence of more superposed time scales, whose motions can themselves be interpreted as
derived from Euler schemes for scaled functionals Fε/λε. Moreover, an appropriate choice
of Γ-approximating sequences to a given F may be used to define a ‘backward’ motion.
These issues are examined in Chapter 9.

Finally, in Chapter 10 we examine stability issues. The first one is linked to the theory
of gradient flows elaborated by Ambrosio, Gigli and Savaré. Using their approach we
can show that for convex equicoercive energies Γ-convergence always commutes with the
minimizing-movement scheme. This is also true for some non-convex energies following the
Sandier-Serfaty approach.

The course is organized around some fundamental examples. We have analyzed a
number of prototypical Γ-converging sequences Fε : X → [−∞,+∞], highlighting different
phenomena.

1. Elliptic homogenization:

Fε(u) =
∫

Ω
a
(x
ε

)
|∇u|2 dx

with a 1-periodic. In this case X is (a subset of) H1(Ω). The inhomogeneity a repre-
sents the fine properties of a composite medium. These energies are convex so that they
do not possess local (non-global) minimizers. We may nevertheless introduce non-trivial
perturbations for which we exhibit an isolated local minimizer for the Γ-limit, deducing
existence of nontrivial local minimizers. Their convexity ensures that for the functionals
Fε Γ-convergence commutes with the minimizing movement schemes. As an application
we can deduce a parabolic homogenization theorem.

2. Oscillating metrics:

Fε(u) =
∫ 1

0
a
(u
ε

)
|u′| dt,

with a as above and X a subspace of W 1,∞([0, 1]; Rn), and the analog oscillating perimeter
energies

Fε(A) =
∫
∂A
a
(x
ε

)
dHd−1(x).

Here we are interested in the overall metric properties, or, in the case of perimeters, of
the averaged interfacial energies in a composite medium. These energies have many local
minimizers (which tend to be dense as ε → 0), which are not stable as ε → 0. As a
consequence we have a variety of limit minimizing movements that range from trivial (i.e.,
constant) motions, to ‘crystalline’ motion, passing through interesting regimes where the
scale ε interacts with the timescale τ . In the case of perimeter energies the limit motion
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is a kind of motion by curvature with a discontinuous dependence of the velocity on the
curvature. Conversely, they may be ‘incompatible’ with simple types of dissipation, and
lead to relaxed quasi static evolutions.

3. Van-der-Waals theory of phase transitions:

Fε(u) =
∫

Ω

(W (u)
ε

+ ε|∇u|2
)
dx

with X = H1(Ω). Here W is a double-well potential with minima in ±1. In one dimension
this is an example where the limit sharp-interface energy has many local minimizers (actu-
ally, all functions in the domain of the limit are local minimizers), so that a correction of
the Γ-limit may be required to take into account the interaction of interfaces, through an
exponentially decaying term. It must be noted that this corrected energy also provides an
example of an exponentially scaled time-scale at which we have motion of interfaces (which
otherwise stay pinned).

4. Atomistic theories: for a 1D chain of atoms

Fε(u) =
∑
i

J(ui − ui−1),

where J is an interatomic potential (e.g., the Lennard-Jones potential), and ui represent the
position of the i-th atom of a chain of N atoms, ordered with ui > ui−1. Here ε = 1/N .
Starting from Lennard-Jones atomic interactions we show that the resulting Γ-limit in
one dimension (the Mumford-Shah functional or Griffith brittle fracture energy) must be
modified to a Barenblatt cohesive fracture energy to maintain the features of the local
minimizers. Even though these energies are not convex, the Euler scheme commutes with Γ-
convergence. Another feature of the variational motion is the appearance of a rescaled time
scale, in which ‘multiple fractures’ (that correspond to ‘extra’ local minimizers introduced
by the limit process) tend to interact. A similar behavior is shown for Perona-Malik scaled
energies, when J(z) is of the form log(1 + z2).

We believe that the examples and results highlighted provide a rather complex overview
of the type of issues these notes want to be a stimulus to further analyze.
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Chapter 1

Global minimization

The issues related to the behavior of global minimization problems along a sequence of
functionals Fε are by now well understood, and mainly rely on the concept of Γ-limit. In
this chapter we review this notion, which will be the starting point of our analysis. We
will mainly be interested in the properties of Γ-limits with respect to the convergence of
minimization problems; further properties of Γ-limits will be recalled when necessary.

1.1 Upper and lower bounds

Here and afterwards Fε will be functionals defined on a separable metric (or metrizable)
space X, if not further specified.

Definition 1.1.1 (lower bound) We say that F is a lower bound for the family (Fε) if
for all u ∈ X we have

F (u) ≤ lim inf
ε→0

Fε(uε) for all uε → u, (LB)

or, equivalently, F (u) ≤ Fε(uε) + o(1) for all uε → u.

The inequality (LB) is usually referred to as the liminf inequality.
If F is a lower bound we obtain a lower bound also for minimum problems on compact

sets.

Proposition 1.1.2 Let F be a lower bound for Fε and K be a compact subset of X. Then

inf
K
F ≤ lim inf

ε→0
inf
K
Fε. (1.1)

Proof. Let uεk ∈ K be such that uεk → u and

lim
k
Fεk(uεk) = lim inf

ε→0
inf
K
Fε.

15



16 CHAPTER 1. GLOBAL MINIMIZATION

We set
ũε =

{
uεk if ε = εk
u otherwise.

Then by (LB) we have

inf
K
F ≤ F (u) ≤ lim inf

ε→0
Fε(ũε) ≤ lim

k
Fεk(uεk) = lim inf

ε→0
inf
K
Fε, (1.2)

as desired.

Remark 1.1.3 Note that the hypothesis that K be compact cannot altogether be re-
moved. A trivial example on the real line is:

Fε(x) =
{−1 if x = 1/ε

0 otherwise.

Then F = 0 is a lower bound according to Definition 1.1.1, but (1.1) fails if we take R in
place of K.

Remark 1.1.4 The hypothesis that K be compact can be substituted by the hypothesis
that K be closed and the sequence (Fε) be equi-coercive; i.e., that

if supε Fε(uε) < +∞ then (uε) is precompact, (1.3)

the proof being the same.

Definition 1.1.5 (upper bound) We say that F is a upper bound for the family (Fε)
if for all u ∈ X we have

there exists uε → u such that F (u) ≥ lim sup
ε→0

Fε(uε). (UB)

or, equivalently, F (u) ≥ Fε(uε) + o(1).

The inequality (UB) is usually referred to as the limsup inequality.

If F is an upper bound for Fε we obtain an upper bound also for the corresponding
minimum problems on open sets.

Proposition 1.1.6 Let F be an upper bound for Fε and A be an open subset of X. Then

inf
A
F ≥ lim sup

ε→0
inf
A
Fε. (1.4)
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Proof. The proof is immediately derived from the definition after remarking that if u ∈ A
then we may suppose also that uε ∈ A so that

F (u) ≥ lim sup
ε→0

Fε(uε) ≥ lim sup
ε→0

inf
A
Fε

and (1.4) follows by the arbitrariness of u.

Remark 1.1.7 Again, note that the hypothesis that A be open cannot be removed. A
trivial example on the real line is:

Fε(x) =
{ 1 if x = 0

0 otherwise

(independent of ε). Then F = 0 is an upper bound according to Definition 1.1.5 (and also
a lower bound!), but (1.4) fails taking A = {0}.

Note that in the remark above 0 is an upper bound for Fε at 0 even though Fε(0) = 1
for all ε, which trivially shows that an upper bound at a point can be actually (much)
lower that any element of the family Fε at that point.

1.2 Γ-convergence

In this section we introduce the concept of Γ-limit.

Definition 1.2.1 (Γ-limit) We say that F is the Γ-limit of the sequence (Fε) if it is both
a lower and an upper bound according to Definitions 1.1.1 and 1.1.5.

If (LB) and (UB) hold at a point u then we say that F is the Γ-limit at u, and we write

F (u) = Γ- lim
ε→0

Fε(u).

Note that this notation does does not imply that u is in any of the domains of Fε, even if
F (u) is finite.

Remark 1.2.2 (alternate upper bound inequalities) If F is a lower bound then re-
quiring that (UB) holds is equivalent to any of the following

there exists uε → u such that F (u) = lim
ε→0

Fε(uε); (RS)

for all η > 0 there exists uε → u such that F (u) + η ≥ lim sup
ε→0

Fε(uε). (AUB)

The latter is called the approximate limsup inequality, and is more handy in compu-
tations. A sequence satisfying (RS) is called a recovery sequence. The construction of a
recovery sequence is linked to an ansatz on its form. The description of this ansatz gives
an insight of the relevant features of the energies (oscillations, concentration, etc.) and is
usually given on a subclass of u for which it is easier to prove its validity, while for general
u one proceeds by a density argument.
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Example 1.2.3 We analyze some simple examples on the real line.
1. From Remark 1.1.7 we see that the constant sequence

Fε(x) =
{ 1 if x = 0

0 otherwise

Γ-converges to the constant 0; in particular this is a constant sequence not converging to
itself.

2. The sequence

Fε(x) =
{ 1 if x = ε

0 otherwise
again Γ-converges to the constant 0. This is clearly a lower and an upper bound at all
x 6= 0. At x = 0 any sequence xε 6= ε is a recovery sequence.

3. The sequence

Fε(x) =
{−1 if x = ε

0 otherwise
Γ-converges to

F (x) =
{−1 if x = 0

0 otherwise.
Again, F is clearly a lower and an upper bound at all x 6= 0. At x = 0 the sequence xε = ε
is a recovery sequence.

4. Take the sum of the energies in Examples 2 and 3 above. This is identically 0, so is
its limit, while the sum of the Γ-limits is the function F in Example 3. The same function
F is obtained as the Γ-limit by taking the function Gε(x) = Fε(x)+Fε(−x) (Fε in Example
3).

5. Let Fε(x) = sin(x/ε). Then the Γ-limit is the constant −1. This is clearly a lower
bound. A recovery sequence for a fixed x is xε = 2πεbx/(2πε)c − επ/2 (btc is the integer
part of t).

The following fundamental property of Γ-convergence derives directly from its definition

Proposition 1.2.4 (stability under continuous perturbations) Let Fε Γ-converge to
F and Gε converge continuously to G (i.e., Gε(uε) → G(u) if uε → u); then Fε + Gε →
F +G.

Note that this proposition applies to Gε = G if G is continuous, but is in general false
for Gε = G even if G is lower semicontinuous.

Example 1.2.5 The functions sin(x/ε)+x2+1 Γ-converge to x2. In this case we may apply
the proposition above with Fε(x) = sin(x/ε) (see Example 1.2.3(5)) and Gε(x) = x2 + 1.
Note for future reference that Fε has countably many local minimizers, which tend to be
dense in the real line, while F has only one global minimizer.
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It may be useful to define the lower and upper Γ-limits, so that the existence of a
Γ-limit can be viewed as their equality

Definition 1.2.6 (lower and upper Γ-limits) We define

Γ- lim inf
ε→0

Fε(u) = inf{lim inf
ε→0

Fε(uε) : uε → u} (1.5)

Γ- lim sup
ε→0

Fε(u) = inf{lim sup
ε→0

Fε(uε) : uε → u} (1.6)

Remark 1.2.7 1. We immediately obtain that the Γ-limit exists at a point u if and only
if

Γ- lim inf
ε→0

Fε(u) = Γ- lim sup
ε→0

Fε(u).

2. Comparing with the trivial sequence uε = u we obtain

Γ- lim inf
ε→0

Fε(u) ≤ lim inf
ε→0

Fε(u)

(and analogously for the Γ- lim sup). More in general, note that the Γ-limit depends on
the topology on X. If we change topology, converging sequences change and the value
of the Γ-limit changes. A weaker topology will have more converging sequences and the
value will decrease, a stronger topology will have less converging sequences and the value
will increase. The pointwise limit above corresponding to the Γ-limit with respect to the
discrete topology.

3. From the formulas above it is immediate to check that a constant sequence Fε = F
Γ-converges to itself if and only if F is lower semicontinuous; i.e., (LB) holds with Fε = F .
Indeed (LB) equivalent to the validity of (1.5), while F is always an upper bound. More
in general a constant sequence Fε = F converges to the lower-semicontinuous envelope F
of F defined by

F (u) = max{G : G ≤ F,G is lower semicontinuous};

in particular the Γ-limit is a lower-semicontinuous function.
4. It may be convenient to notice that the upper and lower limits are lower-semicontinuous

functions and , with the notation just introduced, that

Γ- lim inf
ε→0

Fε(u) = Γ- lim inf
ε→0

Fε(u) (1.7)

Γ- lim sup
ε→0

Fε(u) = Γ- lim sup
ε→0

Fε(u) ; (1.8)

that is, Γ-limits are unchanged upon substitution of Fε with its lower-semicontinuous en-
velope. These properties are an important observation for the actual computation of the
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Γ-limit, since in many cases lower-semicontinuous envelopes satisfy structural properties
that make them easier to handle. As an example we may consider (homogeneous) integral
functionals of the form

F (u) =
∫

Ω
f(u) dx,

defined on L1(Ω) equipped with the weak topology. Under some growth conditions the
Γ-limits can be computed with respect to the weak topology on bounded sets of L1(Ω),
which is metrizable. In this case, the lower-semicontinuous envelope of F is

F (u) =
∫

Ω
f∗∗(u) dx,

where f∗∗ is the convex and lower-semicontinuous envelope of f ; i.e.,

f∗∗ = max{g : g ≤ f, g is lower-semicontinuous and convex}.

In particular convexity is a necessary condition for Γ-limits of the integral form above.

1.3 Convergence of minimum problems

As we have already remarked, the Γ-convergence of Fε will not imply convergence of min-
imizers if minimizers (or ‘almost minimizers’) do not converge. It is necessary then to
assume a compactness (or ‘mild coerciveness’) property as follows:

there exists a precompact sequence (uε) with Fε(uε) = inf Fε + o(1), (1.9)

which is implied by the following stronger condition

there exists a compact set K such that inf Fε = infK Fε for all ε > 0. (1.10)

This condition is implied by the equi-coerciveness hypothesis (1.3); i.e., if for all c there
exists a compact set K such that the sublevel sets {Fε ≤ c} are all contained in K. To check
that (1.10) is stronger than (1.9) consider Fε(x) = εex on the real line: any converging
sequence satisfies (1.9) but (1.10) does not hold.

By arguing as for Propositions 1.1.2 and 1.1.6 we will deduce the convergence of minima.
This result is further made precise in the following theorem.

Theorem 1.3.1 (Fundamental Theorem of Γ-convergence) Let (Fε) satisfy the com-
pactness property (1.9) and Γ-converge to F . Then

(i) F admits minimum, and minF = lim
ε→0

inf Fε
(ii) if (uεk) is a minimizing sequence for some subsequence (Fεk) (i.e., is such that

Fεk(uεk) = inf Fε + o(1)) which converges to some u then its limit point is a minimizer for
F .
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Proof. By condition (1.9) we can argue as in the proof of Proposition 1.1.2 with K = X
and also apply Proposition 1.1.6 with A = X to deduce that

inf F ≥ lim sup
ε→0

inf Fε ≥ lim inf
ε→0

inf Fε ≥ inf F . (1.11)

We then have that there exists the limit

lim
ε→0

inf Fε = inf F.

Since from (1.9) there exists a minimizing sequence (uε) from which we can extract a
converging subsequence, it suffices to prove (ii). We can then follow the proof of Proposition
1.1.2 to deduce as in (1.2) that

inf F ≤ F (u) ≤ lim
k
Fεk(uεk) = lim

ε→0
inf Fε = inf F ;

i.e., F (u) = inf F as desired.

Corollary 1.3.2 In the hypotheses of Theorem 1.3.1 the minimizers of F are all the limits
of converging minimizing sequences.

Proof. If u is a limit of a converging minimizing sequence then it is a minimizer of F by (ii)
in Theorem 1.3.1. Conversely, if u is a minimizer of F , then every its recovery sequence
(uε) is a minimizing sequence.

Remark 1.3.3 Trivially, it is not true that all minimizers of F are limits of minimizers
of Fε, since this is not true even for (locally) uniformly converging sequences on the line.
Take for example:

1) Fε(x) = εx2 or Fε(x) = εex and F (x) = 0. All points minimize the limit but only
x = 0 minimizes Fε in the first case, and we have no minimizer for the second case;

2) F (x) = (x2 − 1)2 and Fε(x) = F (x) + ε(x − 1)2. F is minimized by 1 and −1, but
the only minimum of Fε is 1. Note however that −1 is the limit of strong local minimizers
for Fε.

1.4 An example: homogenization

The theory of homogenization of integral functional is a very wide subject in itself. We
will refer to monographs on the subject for details if needed. In this context, we want only
to highlight some facts that will be needed in the sequel and give a hint of the behaviour
in the case of elliptic energies.
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We consider a : Rn → [α, β], with 0 < α < β < +∞ 1-periodic in the coordinate
directions, and the integrals

Fε(u) =
∫

Ω
a
(x
ε

)
|∇u|2 dx

defined in H1(Ω), where Ω is a bounded open subset of Rn. The computation of the Γ-
limit of Fε is referred to as their homogenization, implying that a simpler ‘homogeneous’
functional can be used to capture the relevant features of Fε. The limit can be computed
both with respect to the L1- topology, but it can also be improved; e.g., in 1D it coincides
with the limit in the L∞ topology. This means that the liminf inequality holds for uε
converging in the L1 topology, while there exists a recovery sequence with uε tending to u
in the L∞ sense.

An upper bound is given by the pointwise limit of Fε, whose computation in this case
can be obtained by the following non-trivial but well-known result.

Proposition 1.4.1 (Riemann-Lebesgue lemma) The functions aε(x) = a
(x
ε

)
con-

verge weakly∗ in L∞ to their average

a =
∫

(0,1)n
a(y) dy (1.12)

For fixed u the pointwise limit of Fε(u) is then simply a
∫

Ω |∇u|
2 dx, which then gives

an upper bound for the Γ-limit.
In a one-dimensional setting, the Γ-limit is completely described by a, and is given by

Fhom(u) = a

∫
Ω
|u′|2 dx, where a =

(∫ 1

0

1
a(y)

dy
)−1

is the harmonic mean of a. We briefly sketch a proof which gives the ansatz for recovery
sequences. We check the limit inequality by fixing uε → u. Suppose for the sake of
simplicity that N = 1/ε ∈ N, and write

Fε(uε) =
N∑
i=1

∫ εi

ε(i−1)
a
(x
ε

)
|u′ε|2 dx

≥
N∑
i=1

εmin
{∫ 1

0
a(y)|v′|2 dy : v(1)− v(0) =

uε(εi)− uε(ε(i− 1))
ε

}
= a

N∑
i=1

ε
∣∣∣uε(εi)− uε(ε(i− 1))

ε

∣∣∣2
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(the inequality is obtained by minimizing over all functions w with w(ε(i − 1)) = uε(εi)
and w(ε(i − 1)) = uε(εi); the minimum problem in the second line is obtained by scaling
such w and using the periodicity of a, the third line is a direct computation of the previous
minimum). If we define ũε as the piecewise-affine interpolation of uε on εZ then the
estimate above shows that

Fε(uε) ≥ Fhom(ũε).

The functional on the right-hand side is independent of ε and with a convex integrand;
hence, it is lower semicontinuous with respect to the weak H1-convergence. Since ũε → u
we then deduce

lim inf
ε→0

Fε(uε) ≥ lim inf
ε→0

Fhom(ũε) ≥ Fhom(u);

i.e., the liminf inequality. The ansatz for the upper bound is obtained by optimizing the
lower bound: recovery sequences oscillate around the target function in an optimal way. If
the target function is linear (or affine) u(x) = zx then a recovery sequence is obtained by
taking the 1-periodic function v minimizing

min
{∫ 1

0
a(y)|v′ + 1|2 dy : v(0) = v(1) = 0

}
= a,

and setting
uε(x) = z

(
x+ εv

(x
ε

))
.

This construction can be repeated up to a small error if u is piecewise affine, and then
carries over to arbitrary u by density.

As a particular case we can fix θ ∈ [0, 1] and consider the 1-periodic a given on [0, 1)
by

a(y) =
{
α if 0 ≤ y < θ
β if θ ≤ y < 1.

(1.13)

In this case we have
a =

αβ

θβ + (1− θ)α
. (1.14)

Note that the same result is obtained only assuming that |{y ∈ (0, 1) : a(y) = α}| = θ and
|{y ∈ (0, 1) : a(y) = β}| = 1 − θ. Thus in one dimension the limit depends only on the
volume fraction of α.

In the higher-dimensional case the limit can still be described by an elliptic integral, of
the form

Fhom(u) =
∫

Ω
〈A∇u,∇u〉 dx,

where A is a constant symmetric matrix with aI ≤ A ≤ aI (I the identity matrix) with
strict inequalities unless a is constant. If we take in two dimensions a(y1, y2) = a(y1) (a
laminate in the first direction) then A is a diagonal matrix with diag(a, a). Of course, if
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a(y1, y2) = a(y2) then the two values are interchanged. If a takes only the values α and
β in particular this shows that in the higher-dimensional case the results depends on the
geometry of {y ∈ (0, 1) : a(y) = α} (often referred to as the microgeometry of the problem)
and not only on the volume fraction.

In order to make minimum problems meaningful, we may consider the affine space
X = ϕ + H1

0 (Ω) (i.e., we consider only functions with u = ϕ on ∂Ω). It can be proved
that this boundary condition is ‘compatible’ with the Γ-limit; i.e., that the Γ-limit is the
restriction to X of the previous one, or, equivalently that recovery sequences for the first
Γ-limit can be taken satisfying the same boundary data as their limit. As a consequence
of Thorem 1.3.1 we then conclude that oscillating minimum problems for Fε with fixed
boundary data are approximated by a simpler minimum problem with the same boundary
data. Note however that all energies, both Fε and Fhom, are strictly convex, which implies
that they have no local non global minimizer.

Example 1.4.2 We can add some continuously converging perturbation to obtain some
more convergence result. For example, we can add perturbations of the form

Gε(u) =
∫

Ω
g
(x
ε
, u
)
dx.

On g we make the following hypothesis:
g is a Borel function 1-periodic in the first variable and uniformly Lipschitz in the

second one; i.e.,
|g(y, z)− g(y, z′)| ≤ L|z − z′|.

We then have a perturbed homogenization result as follows.

Proposition 1.4.3 The functionals Fε + Gε Γ-converge both in the L1 topology to the
functional Fhom +G, where

G(u) =
∫

Ω
g(u) dx, and g(z) =

∫
(0,1)n

g(y, z) dy

is simply the average of g(·, z).

Proof. By Proposition 1.2.4 it suffices to show that Gε converges continuously with respect
to the L1-convergence. If uε → u in L1 then

|Gε(uε)−G(u)| ≤
∫

Ω

∣∣∣g(x
ε
, uε

)
− g
(x
ε
, u
)∣∣∣ dx+ |Gε(u)−G(u)|

≤ L

∫
Ω
|uε − u| dx+ |Gε(u)−G(u)|.

It suffices then to show thatGε converges pointwise toG. If u is piecewise constant then this
follows immediately from the Riemann-Lebesgue Lemma. Noting that also |g(z)− g(z′)| ≤
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L|z−z′| we easily obtain the convergence for u ∈ L1(Ω) by the density of piecewise-constant
functions.

Note that with a slightly more technical proof we can improve the Lipschitz continuity
condition to a local Lipschitz continuity of the form

|g(y, z)− g(y, z′)| ≤ L(1 + |z|+ |z′|)|z − z′|.

In particular in 1D we can apply the result for g(y, z) = a(y)|z|2 and we have that∫
Ω
a
(x
ε

)
(|u′|2 + |u|2) dx

Γ-converges to ∫
Ω

(a|u′|2 + a|u|2) dx.

As a consequence of Theorem 1.3.1, under the condition of coerciveness

lim
z→±∞

inf g(·, z) = +∞,

we obtain a convergence result as follows.

Proposition 1.4.4 The solutions to the minimum problems

min
{
Fε(u) +Gε(u) : u ∈ H1(Ω)

}
converge (up to subsequences) to a constant function u, whose constant value minimizes g.

Proof. The proof of the proposition follows immediately from Theorem 1.3.1, once we
observe that by the coerciveness and continuity of g a minimizer for that function exists,
and the constant function u defined above minimizes both Fhom and G.

If g is differentiable then by computing the Euler-Lagrange equations of Fε + Gε we
conclude that we obtain solutions of

−
∑
ij

∂

∂xi

(
a
(x
ε

)∂uε
∂xi

)
+

∂

∂u
g
(x
ε
, uε

)
= 0 (1.15)

with Neumann boundary conditions, converging to the constant u.
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1.5 Higher-order Γ-limits and a choice criterion

If the hypotheses of Theorem 1.3.1 are satisfied then we have noticed that every minimum
point of the limit F corresponds to a minimizing sequence for Fε. However, not all points
may be limits of minimizers for Fε, and it may be interesting to discriminate between limits
of minimizing sequences with different speeds of convergence. To this end, we may look at
scaled Γ-limits. If we suppose that, e.g., u is a limit of a sequence (uε) with

Fε(uε) = minF +O(εα) (1.16)

for some α > 0 (but, of course, the rate of convergence may also not be polynomial) then
we may look at the Γ-limit of the scaled functionals

Fαε (u) =
Fε(uε)−minF

εα
. (1.17)

Suppose that Fαε Γ-converges to some Fα not taking the value −∞. Then:
(i) the domain of Fα is contained in the set of minimizers of F (but may as well be

empty);
(ii) Fα(u) 6= +∞ if and only if there exists a recovery sequence for u satisfying (1.16).
Moreover, we can apply Theorem 1.3.1 to Fαε and obtain the following result, which

gives a choice criterion among minimizers of F .

Theorem 1.5.1 Let the hypotheses of Theorem 1.3.1 be satisfied and the functionals in
(1.17) Γ-converge to some Fα not taking the value −∞ and not identically +∞. Then

(i) inf Fε = minF + εα minFα + o(εα);
(ii) if Fε(uε) = minFε + o(εα) and uε → u then u minimizes both F and Fα.

Proof. We can apply Theorem 1.3.1 to a (subsequence of a) converging minimizing sequence
for Fαε ; i.e., a sequence satisfying hypothesis (ii). Its limit point u satisfies

Fα(u) = minFα = lim
ε→0

minFαε = lim
ε→0

minFε −minF
εα

,

which proves (i). Since, as already remarked u is also a minimizer of F , we also have (ii).

Example 1.5.2 Simple examples in the real line:
(1) if Fε(x) = εx2 then F (x) = 0. We have Fα(x) = 0 if 0 < α < 1, F 1(x) = x2 (if

α = 1), and

Fα(x) =
{

0 x = 0
+∞ x 6= 0

if α > 1;
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(2) if Fε(x) = (x2 − 1)2 + ε(x− 1)2 then F (x) = (x2 − 1)2. We have

Fα(x) =
{

0 |x| = 1
+∞ |x| 6= 1

if 0 < α < 1,

F 1(x) =


0 x = 1
4 x = −1
+∞ |x| 6= 1

if α = 1,

Fα(x) =
{

0 x = 1
+∞ x 6= 1

if α > 1.

Remark 1.5.3 It must be observed that the functionals Fαε in Theorem 1.5.1 are often
equicoercive with respect to a stronger topology than the original Fε, so that we can
improve the convergence in (ii).

Example 1.5.4 (Gradient theory of phase transitions) Let

Fε(u) =
∫

Ω
(W (u) + ε2|∇u|2) dx (1.18)

be defined in L1(Ω) with domain in H1(Ω). Here W (u) = (u2 − 1)2 (or a more general
double-well potential; i.e., a non-negative function vanishing exactly at ±1). Then (Fε) is
equicoercive with respect to the weak L1-convergence. Since this convergence is metrizable
on bounded sets, we can consider L1(Ω) equipped with this convergence. The Γ-limit is
then simply

F 0(u) =
∫

Ω
W ∗∗(u) dx,

where W ∗∗ is the convex envelope of W ; i.e. W ∗∗(u) = ((u2 − 1) ∨ 0)2. All functions with
‖u‖∞ ≤ 1 are minimizers of F 0.

We take α = 1 and consider

F 1
ε (u) =

∫
Ω

(W (u)
ε

+ ε|∇u|2
)
dx. (1.19)

Then (F 1
ε ) is equicoercive with respect to the strong L1-convergence, and its Γ-limit is

F 1(u) = cWHn−1(∂{u = 1} ∩ Ω) for u ∈ BV (Ω; {±1}), (1.20)
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and +∞ otherwise, where cW = 8/3 (in general cW = 2
∫ 1
−1

√
W (s) ds). This results states

that recovery sequences (uε) tend to sit in the bottom of the wells (i.e., u ∈ ±1) in order
to make W (uε)

ε finite; however, every ‘phase transition’ costs a positive amount, which is
optimized by balancing the effects of the two terms in the integral. Indeed, by optimizing
the interface between the phases {u = 1} and {u = −1} one obtains the optimal ‘surface
tension’ cW .

In one dimension the ansatz on the recovery sequences around a jump point x0 is that
they are of the form

uε(x) = v
(x− x0

ε

)
,

where v minimizes

min
{∫ +∞

−∞
(W (v) + |v′|2) dx : v(±∞) = ±1

}
= 2

∫ 1

−1

√
W (s) ds.

In more than one dimension the ansatz becomes

uε(x) = v
(d(x, {u = 1})

ε

)
,

where d(·, A) is the signed distance from the set A. This means that around the interface
∂{u = 1} the recovery sequence pass from −1 to +1 following the one-dimensional profile
of v essentially on a O(ε)-neighbourhood of ∂{u = 1}.

Note that
(i) we have an improved convergence of recovery sequences from weak to strong L1-

convergence;
(ii) the domain of F 1 is almost disjoint from that of the F 1

ε , the only two functions in
common being the constants ±1;

(iii) in order to make the Γ-limit properly defined we have to use the space of functions
of bounded variation or, equivalently, the family of sets of finite perimeter if we take as
parameter the set A = {u = 1}. In this context the set ∂{u = 1} is properly defined in a
measure-theoretical way, as well as its (n− 1)-dimensional Hausdorff measure.

Example 1.5.5 (linearized fracture mechanics from interatomic potentials) We now
give an example in which the scaling of the variable, and not only of the energy is part
of the problem. We consider a systems of one-dimensional nearest-neighbour atomistic
interactions through a Lennard-Jones type interaction. Note that by the one-dimensional
nature of the problem we can parameterize the position of the atoms as an increasing
function of the parameter.

Let ψ be a C2 potential as in Figure 1.1, with domain (0,+∞) (we set ψ(z) = +∞ for
z ≤ 0), minimum in 1 with ψ′′(1) > 0, convex in (0, z0), concave in (z0,+∞) and tending
to ψ(∞) < +∞ at +∞. A possible choice is Lennard Jones potential

ψ(z) =
1
z12
− 2
z6
.
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Figure 1.1: a Lennard-Jones potential

We consider the energy

ΨN (v) =
N∑
i=1

ψ(vi − vi−1)

with N ∈ N defined on vi with vi > vi−1. We introduce the small parameter ε = 1/N and
identify the vector (v0, . . . , vN ) is identified with a discrete function defined on εZ ∩ [0, 1].
A non-trivial Γ-limit will be obtained by scaling and rewriting the energy in terms of a
scaled variable

u =
√
ε
(
v − id

ε

)
;

i.e., ui =
√
ε(vi − i). This scaling can be justified noting that (up to additive constants)

vi = i = id/ε is the absolute minimum of the energy. The scaled energies that we consider
are

Fε(u) = ΨN

( id
ε

+
u√
ε

)
−min ΨN =

N∑
i=1

J
(ui − ui−1√

ε

)
,

where
J(w) = ψ(1 + w)−minψ = ψ(1 + w)− ψ(1).

For convenience we extend the function to all R setting J(w) = +∞ if w ≤ 0. Again, the
vector (u0, . . . , uN ) is identified with a discrete function defined on εZ ∩ [0, 1] or with its
piecewise-affine interpolation. With this last identification, Fε can be viewed as functionals
in L1(0, 1), and their Γ-limit computed with respect to that topology.

We denote w0 = 1 + z0. It must be noted that for all w > 0 we have

#
{
i :
ui − ui−1√

ε
> w

}
≤ 1
J(w)

Fε(u),

so that this number of indices is equi-bounded along sequences with equibounded energy.
We may therefore suppose that the corresponding points εi converge to a finite set S ⊂
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[0, 1]. For fixed w, we have J(w) ≥ c|w|2 on (−∞, w] for some c > 0; this gives, if A is
compactly contained in (0, 1) \ S, that

Fε(u) ≥ c
∑
i

(ui − ui−1√
ε

)2
= c

∑
i

ε
(ui − ui−1

ε

)2
≥ c

∫
A
|u′|2 dt

(the sum extended to i such that ui−ui−1√
ε
≤ w). By the arbitrariness of A in this estimate

we then have that if uε → u and Fε(uε) ≤ C < +∞ then u is piecewise-H1; i.e., there
exists a finite set S ⊂ (0, 1) such that u ∈ H1((0, 1) \ S); we denote by S(u) the minimal
set such that u ∈ H1((0, 1) \ S(u)). The reasoning above also shows that

c

∫ 1

0
|u′|2 dt+ J(w)#(S(u))

is a lower bound for the Γ-limit of Fε. The Γ-limit on piecewise-H1(0, 1) functions can be
computed by optimizing the choice of w and c, obtaining

F (u) =
1
2
J ′′(0)

∫ 1

0
|u′|2 dt+ J(∞)#(S(u)) (1.21)

with the constraint that u+ > u− on S(u). This functional is the one-dimensional version
of Griffith’s fracture energy for brittle materials, and coincides with a functional introduced
by Mumford-Shah in the framework of Image Reconstruction (without the constraint u+ >
u−).

Note that the parameterization of vi on εZ would suggest to interpret vi − vi−1 as a
different quotient and hence the change of variables ui = εvi − id. This would give an
energy of the form

F̃ε(u) =
N∑
i=1

J
(ui − ui−1

ε

)
;

it can be shown that F̃ε converges to the energy with domain the set of piecewise-affine
increasing u with u′ = 1 a.e., and for such u

F̃ (u) = J(∞)#(S(u)).

This different choice of the parameterization hence only captures the fracture part of the
energy.

1.6 References to Chapter 1

For an introduction to Γ-convergence we refer to the ‘elementary’ book [9]. More examples,
and an overview of the methods for the computation of Γ-limits can be found in [11].
More detailed information on topological properties of Γ-convergence are found in [21].
Homogenization results are described in [13].



Chapter 2

Parameterized motion driven by
global minimization

Even though dynamic variational problems are in general associated with a local minimiza-
tion procedure, for ‘slow movements’ the notion of a ‘quasi-static’ motion can be defined
starting from a global-minimization criterion. The ingredients are
• a parameter-dependent energy;
• a dissipation satisfying a non-decreasing constraint;
• (time-)parameterized forcing condition.

Loosely speaking, a quasi static motion derives from some parameterized forcing con-
dition (applied forces, varying boundary conditions or other constraints); the motion is
thought to be so slow so that the solution at a fixed value of the parameter (at fixed
‘time’) minimizes a total energy. This energy is obtained adding some ‘dissipation’ to
some ‘internal energy’. A further condition is that the dissipation increases with time. An
entire general theory (of rate-independent motion) can be developed starting from these
ingredients.

2.1 Damage models

In this section we deal with a simplified example, with the aim of examining its stability
with respect to perturbations.

2.1.1 Damage of a homogeneous material

We consider a one-dimensional setting. Our functions will be parameterized on a fixed
interval (0, 1). In this case we have
• the parameter space will be that of all measurable subsets A of (0, 1). The set A will

be understood as the damage set;

31
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• the energies depending on a set A will be

FA(u) = α

∫
A
|u′|2 dx+ β

∫
(0,1)\A

|u′|2 dx,

where 0 < α < β. In an mechanical interpretation of the variables, u represents the
deformation of a bar, whose elastic constant is β in the undamaged set and α < β in the
damaged set;
• the dissipation is

D(A) = γ|A|,

with γ > 0. The work done to damage a portion A of the material is proportional to the
measure of A;
• the condition that forces the solution to be parameter dependent (‘time-dependent’)

is a boundary condition
u(0) = 0, u(1) = g(t),

where g is a continuous function with g(0) = 0. Here the parameter is t ∈ [0, T ].

Definition 2.1.1 A solution to the evolution related to the energy, dissipation and bound-
ary conditions above is a pair (ut, At) with ut ∈ H1(0, 1), At ⊂ (0, 1), and such that
• (monotonicity) we have As ⊂ At for all s < t
• (minimization) the pair (ut, At) minimizes

min
{
FA(u) +D(A) : u(0) = 0, u(1) = g(t), At ⊂ A

}
(2.1)

• continuity the energy E(t) = FAt(ut) +D(At) is continuous
• homogeneous initial datum u0 is the constant 0 and A0 = ∅.

The continuity assumption allows to rule out trivial solutions as those with At = (0, 1)
for all t > 0. It is usually replaced by a more physical condition of energy conservation. In
our context this assumption is not relevant.

Note that t acts only as a parameter (the motion is ‘rate independent’). Hence, for
example if g is monotone increasing, it suffices to consider g(t) = t. We will construct by
hand a solution in this simplified one-dimensional context.

Remark 2.1.2 Note that the value in the minimum problem

m(t) = min
{
FA(u) +D(A) : u(0) = 0, u(1) = t

}
(2.2)

depends on A only through λ = |A|.
In fact, given A, we can examine the minimum problem

m(A, t) = min
{∫

A
α|u′|2 dx+ β

∫
(0,1)\A

β|u′|2 dx : u(0) = 0, u(1) = t
}
.
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For all test function u we have, by Jensen’s inequality∫
A
α|u′|2 dx+ β

∫
(0,1)\A

β|u′|2 dx ≥ α|A|z1|2 + β(1− |A|)|z2|2,

Where
z1 =

1
|A|

∫
A
u′ dx, z2 =

1
1− |A|

∫
(0,1)\A

u′ dx,

with a strict inequality if u′ is not constant on A and (0, 1)\A. This shows that the unique
minimizer satisfies

u′ = z1χA + z2(1− χA), |A|z1 + (1− |A|)z2 = t,

where the second condition is given by the boundary data. Hence

m(A, t) = min{αλ|z1|2 + β(1− λ)|z2|2 : λz1 + (1− λ)z2 = t} =
αβ

λβ + (1− λ)α
t2.

We conclude that the minimum value (2.2) is given by

αβ

λβ + (1− λ)α
t2 + γλ. (2.3)

By minimizing over λ we obtain the optimal value of the measure of the damaged region

λmin(t) =


0 if |t| ≤

√
αγ

β(β−α)

1 if |t| ≥
√

βγ
α(β−α)

t
√

αβ
γ(β−α) −

α
β−α otherwise

(2.4)

and the minimum value

m(t) =


βt2 if |t| ≤

√
αγ

β(β−α)

αt2 + γ if |t| ≥
√

βγ
α(β−α)

2t
√

αβγ
β−α −

γα
β−α otherwise.

(2.5)

The interpretation of this formula is as follows. For small values of the total displacement t
the material remains undamaged, until it reaches a critical value for the boundary datum.
Then a portion of size λmin(t) of the material damages, lowering the elastic constant of the
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material and the overall value of the sum of the internal energy and the dissipation, until
all the material is damaged. Note that in this case E(t) = m(t).

The solutions for the evolution problem are given by any increasing family of sets At

satisfying |At| = λmin(t) and correspondingly functions ut minimizing m(At, t).

The value in (2.3) is obtained by first minimizing in u. Conversely, we may first
minimize in A. We then have

min
{∫ 1

0
min
A
{χA(α|u′|2 + γ), χ(0,1)\Aβ|u′|2} dx : u(0) = 0, u(1) = g(t)

}
(2.6)

The lower-semicontinuous envelope of the integral energy is given by the integral with
energy function the convex envelope of

f(z) = min{αz2 + γ, βz2}, (2.7)

which is exactly given by formula (2.5); i.e.,

m(t) = f∗∗(t)

(see Fig. 2.1)

Figure 2.1: minimal value m(t) for the damage problem

Irreversibility. An important feature of the monotonicity condition for At is irre-
versibility of damage, which implies that for non-increasing g the values of m(g(t)) will
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depend on the highest value taken by λmin(g(t)) on [0, t]. In particular, for a ‘loading-
unloading’ cycle with g(t) = T

2 − |t−
T
2 |, the value of E(t) is given by

E(t) =


m(t) for 0 ≤ t ≤ T/2

αβ

λmin(T/2)β + (1− λmin(T/2))α
(T − t)2 + γλmin(T/2) for T/2 ≤ t ≤ T .

This formula highlights that once the maximal value λmin(T/2) is reached, then the dam-
aged region At remains fixed, so that the problem becomes a quadratic minimization (plus
the constant value of the dissipation). We plot m′(t) and draw a cycle in Fig. 2.2

In particular, if T
2 ≥

√
βγ

α(β−α) then the material is completely damaged in the ‘unload-
ing’ regime.

Threshold formulation

Note that a solution ut of (2.2) satisfies the Euler-Lagrance equation

((αχA + β(1− χA))u′)′ = 0;

i.e.,
(αχA + β(1− χA))u′ = σt, (2.8)

where σt is a constant parameterized by t. Its plot as a function of g = g(t) along a
‘loading-unloading’ cycle is given in Fig. 2.2.

Figure 2.2: plot of σt along a cycle
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The plateau for σ is obtained at the threshold value

σ =

√
αβγ

β − α
.

We can interpret the g − σ graph as a threshold phenomenon: the material does not
damage until the stress σ reaches the threshold value. At this point, if the material is
loaded further it damages so as to keep the value of σ below the threshold, until all the
material is damaged. If the material is unloaded then σ follows a linear elastic behavior
with the overall effective elastic constant corresponding to the total amount of damage
produced.

2.1.2 Homogenization of damage

We now examine the behaviour of the previous process with respect to Γ-convergence in
the case of homogenization. To that end we introduce the energies

Fε,A(u) =
∫

(0,1)\A
β
(x
ε

)
|u′|2 dx+

∫
A
α
(x
ε

)
|u′|2 dx, (2.9)

where α and β are 1-periodic functions with

α(y) =
{
α1 for 0 ≤ y < 1

2
α2 for 1

2 ≤ y < 1
β(y) =

{
β1 for 0 ≤ y < 1

2
β2 for 1

2 ≤ y < 1

with 0 < αj < βj . Note that for fixed A the functionals Fε,A Γ-converge to

Fhom,A(u) = β

∫
(0,1)\A

|u′|2 dx+ α

∫
A
|u′|2 dx, (2.10)

with
α =

2α1α2

α1 + α2
<

2β1β2

β1 + β2
= β.

This can be easily checked if A is an interval (or a union of intervals), and then for a
general A by approximation. Indeed if A = (0, λ) then the liminf inequality trivially holds
by separately applying the liminf inequality to the two energies∫ λ

0
α
(x
ε

)
|u′|2 dx,

∫ 1

λ
β
(x
ε

)
|u′|2 dx. (2.11)

Conversely, given a target function u ∈ H1(0, 1) we can find recovery sequences (u1
ε) and

(u2
ε) for u on (0, λ) and (λ, 1), respectively, for the energies (2.11) with u1

ε(λ) = u2
ε(λ), so

that the corresponding uε defined as u1
ε on (0, λ) and as u2

ε on (λ, 1) is a recovery sequence
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for Fhom,A(u). Note that the Γ-limit is still of the form examined above with constant α
and β.

We now examine instead the damage process at fixed ε. For simplicity of computation
we suppose that 1

ε ∈ N. The general case can be always reduced to this assumption up to
an error of order ε. The dissipation will be of the form

Dε(A) =
∫
A
γ
(x
ε

)
dx,

where again γ is a 1-periodic function with

γ(y) =
{
γ1 for 0 ≤ y < 1

2
γ2 for 1

2 ≤ y < 1

with γj > 0. In the case γ1 = γ2 we obtain the same dissipation as above, independent of
ε.

In order to compute the minimum value

mε(t) = min
{
Fε,A(u) +Dε(A) : u(0) = 0, u(1) = t, A ⊂ (0, 1)

}
(2.12)

we proceed as in Remark 2.1.2, noticing that the minimum value

mε(A, t) = min
{
Fε,A(u) : u(0) = 0, u(1) = t

}
(2.13)

depends on A only through the volume fraction of each damaged component

λi = 2
∣∣∣{x ∈ A : α

(x
ε

)
= αi

}∣∣∣.
and its value is independent of ε and is given given by

min
{1

2

(
λ1α1z

2
11 + (1− λ1)β1z

2
12

)
+

1
2

(
λ2α2z

2
21 + (1− λ2)β1z

2
22

)
:

1
2

(λ1z11 + (1− λ1)z12) +
1
2

(λ2z21 + (1− λ2)z22) = t
}

We conclude that mε(t) = mhom(t) is independent of ε and satisfies

mhom(t) =
1
2

min
{
m1(t1) +m2(t2) :

t1 + t2
2

= t
}
, (2.14)

where mj is defined as m in (2.2) with αj , βj and γj in the place of α, β and γ (i.e., by the
damage process in the i-th material). Hence, by (2.5)

mj(t) =


βjt

2 if |t| ≤
√

αjγj
βj(βj−αj)

αjt
2 + γj if |t| ≥

√
βjγj

αj(βj−αj)

2t
√

αjβjγj
βj−αj −

γjαj
βj−αj otherwise.

(2.15)
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We can therefore easily compute m(t). In the hypothesis, e.g, that

p2 :=

√
α2β2γ2

β2 − α2
<

√
α1β1γ1

β1 − α1
=: p1, (2.16)

we can write m′(t) as

m′hom(t) =



2βt if |t| ≤ p2
β

2p2 if p2
β < |t| < p2(β1+α2)

2β1α2

4β1α2

β1+α2
t if p2(β1+α2)

2β1α2
≤ |t| ≤ p1(β1+α2)

2β1α2

2p1 if p1(β1+α2)
2β1α2

< |t| < p1
α

2αt if |t| ≥ p1
α .

The outcome is pictured in Fig. 2.3. It highlights that the behaviour is different from the

Figure 2.3: homogenized damage in a periodic microstructure

one computed above: for small values of the total displacement t the overall response is
the same as the one of the homogenized behaviour of the two ‘strong’ materials. At a
first critical value one of the two materials (and only one except for the exceptional case
p1 = p2) starts to damage (this corresponds to the first constant value 2p1 of m′) until it
is completely damaged. With the condition (2.16) the first material to damage is material
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2, and the corresponding damage volume fraction is

λ2,min(t) =


0 if 0 ≤ t ≤ p2

β

2p2
γ2

(
t− p2

β

)
if p2

β < t < p2(β1+α2)
2β1α2

1 if t > p2(β1+α2)
2β1α2

(2.17)

Then the material behaves as a mixture of a strong material 1 and a damaged material 2.
Subsequently, also material 1 starts to damage; the corresponding damage volume fraction
is

λ1,min(t) =


0 if t ≤ p1(β1+α2)

2β1α2

2p1
γ1

(
t− p1(β1+α2)

2β1α2

)
if p1(β1+α2)

2β1α2
< t < p1

α

1 if t ≥ p1
α

(2.18)

After also material 1 has completely damaged, the behaviour is that of the homogenized
energy for two weak materials.

Note that at fixed ε we can define Atε and utε by choosing increasing families of sets Atj,ε
describing the damage in the j-th material with |Atj,ε| = 1

2λj,min(t), setting Atε = At1,ε∪At2,ε
and utε the corresponding solution of mε(At, t). However the sets Atε do not converge to sets
as ε→ 0 except for the trivial cases. In particular this applies for p2(β1+α2)

2β1α2
≤ t ≤ p1(β1+α2)

2β1α2
,

in which case λ2,min(t) = 1 and λ1,min(t) = 0 so that Atε = ε(Z + [1
2 , 1]).

A double-damage-set formulation

The observation above highlights that a weaker notion of convergence of sets must be given
in order to describe the behavior of (some solutions of) the sequence of damage problem.
One way is to choose particular sequences of damaged sets Atj,ε, for examples intersections
of intervals with the j-th material. For simplicity we consider intervals [0, λj,ε(t)] with one
endpoint in 0, so that

At1,ε = [0, λ1,ε(t)] ∩ ε
(
Z +

[
0,

1
2

])
, At2,ε = [0, λ2,ε(t)] ∩ ε

(
Z +

[1
2
, 1
])
.

Note that under hypothesis (2.16) we have λ2,ε(t) ≥ λ1,ε(t) for all t. We haven therefore
to examine problems (2.13) rewritten in the form

mε(λ1,ε, λ2,ε, t) = min
{∫ λ1,ε

0
α
(x
ε

)
|u′|2 dx+

∫ λ2,ε

λ1,ε

a
(x
ε

)
|u′|2 dx+

∫ 1

λ2,ε

β
(x
ε

)
|u′|2 dx :

u(0) = 0, u(1) = t
}
, (2.19)

where a is the 1-periodic function with

a(y) =
{
β1 for 0 ≤ y < 1

2
α2 for 1

2 ≤ y < 1
.
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If λj,ε → λj then these problems converge to

mhom(λ1, λ2, t) = min
{
α

∫ λ1

0
|u′|2 dx+ a

∫ λ2

λ1

|u′|2 dx+ β

∫ 1

λ2

|u′|2 dx : u(0) = 0, u(1) = t
}
.

Taking into account that in this case
∫
A γ(x/ε) dx→ 1

2γ2λ2 + 1
2γ1λ1, the limit of mε(t) can

be written as

mhom(t) = min
{∫ 1

0

(
χ[0,λ1]

(
α|u′|2 +

γ1 + γ2

2

)
+ χ[λ1,λ2]

(
a|u′|2 +

γ2

2

)
+ χ[λ2,1]β|u′|2

)
dx

: u(0) = 0, u(1) = t, 0 ≤ λ1 ≤ λ2 ≤ 1
}
. (2.20)

Minimizing first in λ1 and λ2 we obtain

mhom(t) = min
{∫ 1

0
min

{
α|u′|2 +

γ1 + γ2

2
, a|u′|2 +

γ2

2
, β|u′|2

}
dx : u(0) = 0, u(1) = t

}
.

This observation highlights that the function mhom(t) can be expressed as the convex
envelope of

min
{
βz2,

2α2β1

β1 + α2β2
z2 +

1
2
γ2, α+

1
2

(γ1 + γ2)
}
, (2.21)

which are the three total energy densities corresponding to the mixtures of undamaged
material, equally damaged and undamaged material (in the optimal way determined by
condition (2.16)), and completely damaged material.

The limit damage motion in this case is given in terms of the two sets Atj = [0, λj(t)],
where λj(t) are the minimizers of problem (2.20), and of the corresponding ut. Note that
this is possible thanks to the a particular choice of the damage sets Atj,ε, and does not give
a description of the behavior of an arbitrary family of solutions Atε, u

t
ε.

Double-threshold formulation

Also in this case we note that the damage process takes place when σt reaches some
particular values. In this case the thresholds are two given by p1 and p2 (see Fig. 2.3 as
compared with Fig. 2.2).

2.1.3 Homogenization of damage: dissipations leading to a commutabil-
ity result

We now slightly modify the dissipation in the example of the previous section. This will
produce a ‘commutatibility’ result in the quasi static motion outlined above. The first
such modification is obtained by imposing that the domain of the dissipation be the set of
intervals; i.e.,

Dε(A) = +∞ if A is not an interval,
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while Dε remains unchanged otherwise. In this case in the process described above, at
fixed ε me may remark that the minimal Atε will converge to some interval At for which
we may pass to the limit obtaining the problem

min
{
Fhom,At(u) + γ|At| : u(0) = 0, u(1) = t

}
,

where
γ =

γ1 + γ2

2
,

since
lim
ε→0

Dε(Atε) = γ|At|.

Note that in the previous example this passage was not possible since the Aε thus defined
do not converge to a limit set.

We may conclude then that At minimizes the corresponding

mhom(t) := min
{
Fhom,A(u) + γ|A| : u(0) = 0, u(1) = t, A subinterval of (0, 1)

}
= min

{
Fhom,A(u) + γ|A| : u(0) = 0, u(1) = t, A ⊂ (0, 1)

}
= f∗∗hom(t), (2.22)

where
fhom(z) = min{αz2 + γ, βz2}, (2.23)

which describes the damage process corresponding to the limit homogenized functionals.
Note that in the limit problem we may remove the constraint that A be an interval, since
we have already remarked that solutions satisfying such a constraint exist.

Brutal damage

We consider another dissipation, with

Dε(A) =
∫
A
γ
(x
ε

)
dx+ σ#(∂A ∩ [0, 1]),

so that it is finite only on finite unions of intervals.
We may compute the limit of mε(t) as above, noticing that for a finite union of intervals,

we may pass to the limit (taking possibly into account that the number of intervals may
decrease in the limit process), and conclude that the limit damage process corresponds to
the functionals Fhom,A and the homogenized dissipation

Dhom(A) = γ|A|+ σ#(∂A ∩ [0, 1]).
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Figure 2.4: minimal energy mhom

Correspondingly, we can compute the minima

mhom(t) = min
{
Fhom,A(u)+Dhom(A) : u(0) = 0, u(1) = t, A union of subintervals of (0, 1)

}
,

as
mhom(t) = min

{
m0

hom(t),m1
hom(t)

}
,

where m0
hom corresponds to no damage,

m0
hom(t) = min

{
Fhom,∅(u) : u(0) = 0, u(1) = t)

}
= βt2,

and m1
hom corresponds to A a single interval (not being energetically convenient to have

more than one interval),

m1
hom(t) = inf

{
Fhom,A(u) +Dhom(A) : u(0) = 0, u(1) = t, A subinterval of (0, 1), A 6= ∅

}
= min

{
Fhom,A(u) + γ|A| : u(0) = 0, u(1) = t, A subinterval of (0, 1)

}
+ 2σ

= f∗∗hom(t) + 2σ, (2.24)

with fhom as in (2.23).
The plot of mhom is reproduced in Fig. 2.4. Note that we follow the undamaged curve

until we reach the graph of m1
hom, which corresponds to a positive value of the damage

area; i.e., the damage is ‘brutal’ (once it is convenient to damage, we damage a large
region). Correspondingly, in Fig. 2.5 we plot the value of m′hom and the derivative of the
homogenized energy E along a cycle
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Figure 2.5: plot of m′hom(t) and derivative of the energy along a cycle

2.1.4 Conditions for commutability

Motivated by the examples above, we may derive a criterion of commutability of Γ-
convergence and quasi-static motion, which we state in this particular case but is immedi-
ately generalized to more abstract situations. This easily follows from the remark that in
order to pass to the limit we have to have the convergence of the minimum problems

min
{
Fε,A(u) +Dε(A) : u(0) = 0, u(1) = g(t), Bε ⊂ A

}
(2.25)

with Bε Borel sets converging to B (in (2.1) Bε =
⋃
{As : s < t}) to

min
{
Fhom,A(u) +Dhom(A) : u(0) = 0, u(1) = g(t), B ⊂ A

}
. (2.26)

Proposition 2.1.3 (commutativity criterion) Let Bε → B and let

Gε(u,A) =
{
Fε,A(u) +Dε(A) if Bε ⊂ A
+∞ otherwise

(2.27)

Ghom(u,A) =
{
Fhom,A(u) +Dhom(A) if B ⊂ A
+∞ otherwise.

(2.28)

Suppose that Gε Γ-converges to Ghom with respect to the converge L2×L1-convergence (the
latter is understood as the convergence of the characteristic functions of sets). Then if a
sequence of solutions (utε, A

t
ε) to the evolutions related to the energies Fε,A, dissipation Dε

and boundary conditions given by g is such that (up to subsequences) for all t utε converges
to some ut in L2 and Bt

ε =
⋃
{Asε : s < t} converges to some Bt in L1, then it converges (up

to subsequences) to a solution to the evolution related to the energies Fhom,A, dissipation
Dhom and boundary conditions given by g.
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This criterion follows from the fundamental theorem of Γ-convergence, upon noting
that the boundary conditions are compatible with the convergence of minima regardless to
the constraint Bε ⊂ A.

Remark 2.1.4 We may apply Proposition 2.1.3 to the two examples in Section 2.1.3. In
fact, in both cases the boundedness of the dissipation implies that Atε and hence Bt

ε are
(increasing with t) intervals (or finite union of intervals in the second case), so that the pre
compactness of Bt

ε is guaranteed. The convergence for all t follows from an application of
Helly’s theorem.

We cannot apply Proposition 2.1.3 to the solutions in Section 2.1.2. Indeed, except for
the trivial cases when Atε = ∅ or Atε = (0, 1), these do not converge strongly in L1 but only
weakly.

2.1.5 Relaxed evolution

The criterion above suggests, in case it is not satisfied, to examine the behavior of the
functionals (2.27) with respect to the L2×L1-weak convergence. In this case the limit of a
sequence of characteristic functions may not be a characteristic function itself, so that the
domain of the Γ-limit will be the space of pairs (u, θ), with 0 ≤ θ ≤ 1. This formulation
will necessarily be more complex, but will capture the behavior of all sequences Atε, u

t
ε.

Proposition 2.1.5 (relaxed total energies) If hypothesis (2.16) holds, then the Γ-limit
of the functionals (2.27) with respect to the L2 × L1-weak convergence is given by the
functional (r stands for ‘relaxed’)

Grhom(u, θ) =
∫

(0,1)
fhom(θ, u′) dx+

∫
(0,1)

γhom(θ) dx, (2.29)

where

fhom(θ, z) =


2α2β1β2

2θβ1β2 + (1− 2θ)α2β1 + α2β2
z2 if 0 ≤ θ ≤ 1

2

2α1α2β1

2(1− θ)α1α2 + (2θ − 1)α2β1 + α1β1
z2 if 1

2 ≤ θ ≤ 1

(2.30)

and the dissipation energy density is

γhom(θ) =


γ2θ if 0 ≤ θ ≤ 1

2

1
2γ2 + γ1(θ − 1

2) if 1
2 ≤ θ ≤ 1

(2.31)
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Proof. We do not dwell on this proof, since it is variation of the usual homogenization
theorem. A lower bound is obtained by minimizing on each periodicity cell. Upon scaling
we are led to computing

φ(z, θ) := min
{∫

A
α(y)|u′|2 dy +

∫
(0,1)\A

β(y)|u′|2 dy +
∫
A
γ(y) dy

: |A| = θ, u(0) = 0, u(1) = z
}
.

By a direct computation we get

φ(z, θ) = fhom(θ, z) + γhom(θ) .

Since φ is convex in the pair (z, θ), its integral is lower semicontinuous in L2 × L1-weak,
and hence is a candidate for the Γ-liminf. The proof of the limsup inequality is obtained
by density, first dealing with u piecewise affine and θ piecewise constant.

Remark 2.1.6 The limit of problems (2.25) with Bε converging weakly to some φ will be
of the form

min
{
Grhom(u, θ) : u(0) = 0, u(1) = g(t), φ ≤ θ

}
. (2.32)

As above, we only consider the case g(t) = t, and the problem

mr(t) = min
{
Grhom(u, θ) : u(0) = 0, u(1) = g(t)

}
. (2.33)

We have

mr(t) = min
{∫ 1

0
min

0≤θ≤1

{
fhom(θ, u′) + γhom(θ)

}
dx : u(0) = 0, u(1) = g(t)

}
. (2.34)

A direct computation shows that

min
0≤θ≤1

{
fhom(θ, z) + γhom(θ)

}
= m(z), (2.35)

with m the one in Section 2.1.2; hence, by convexity mr(z) = m(z). Moreover, again using
the convexity of m, a solution is simply given by ut(x) = tx and correspondingly θ = θ(t)
constant equal to the minimizer of (2.35) with z = t; namely

θ(t) =



0 if |t| ≤ p2
β

p22
γ2

(
t
p2
− 1

β

)
if p2

β < |t| < p2(β1+α2)
2β1α2

1
2 if p2(β1+α2)

2β1α2
≤ |t| ≤ p1(β1+α2)

2β1α2

1 + p21
γ1

(
t
p1
− 1

α

)
if p1(β1+α2)

2β1α2
< |t| < p1

α

1 if |t| ≥ p1
α .
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Figure 2.6: value of the damage θ(t)

Note that θ(t) = λ1,min(t)+λ2,min(t)
2 with λj,min given by (2.17) and (2.18). The solution with

θ constant corresponds to equi-distributed damage. Note that we have infinitely many
solutions, among which the ones described above in terms of At1 and At2.

2.2 Mielkian theory of rate-independent evolution

The examples in the previous theory can be framed in a general theory of rate-independent
variational evolution. We introduce some of the concepts of the theory that are relevant
to our presentation, without being precise in the hypotheses on spaces and topologies

Definition 2.2.1 Let F = F(t, ·) be a time-parameterized energy functional and D be a
dissipation functional, which we assume to be positively-homogeneous of degree one; i.e.
D(sU) = sD(U) if s > 0. Then U is an energetic solution for the evolution inclusion

∂D(U̇) + ∂UF(t, U) 3 0

if the following two conditions hold:
(S) global stability for all t and Û we have

F(t, U(t)) ≤ F(t, Û) +D(Û − U(t));

(E) energy inequality for all t

F(t, U(t)) +
∫ t

0
D(U̇) ≤ F(0, U(0)) +

∫ t

0
∂sF(s, U(s)) ds.
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In this formula the integral
∫ t

0 D(U̇) must be understood in the sense of measures, and
can be equivalently defined as

sup
{ n∑
i=1

D(U(ti)− U(ti−1)) : 0 = t0 < t1 < · · · < tn = t
}
. (2.36)

If U is an absolutely continuous function then the integral reduces to
∫ t

0 D(U̇(s)) ds.

Remark 2.2.2 Under mild assumptions from (S) it can be deduced that in (E) the equality
sign holds, so that we have an energy conservation identity. This identity states that the
difference of the energy at a final and an initial state equals the difference of the work of
the applied actions and the total dissipation along the path.

Remark 2.2.3 In the case of damage we have U = (u, v),

F(t, u, v) =


∫ 1

0

(
αv|u′|2 + β(1− v)|u′|2) dx if v ∈ {0, 1} a.e., u(0) = 0, u(1) = g(t)

+∞ otherwise,

and

D(U) =

 γ

∫ 1

0
v dx if v ∈ {0, 1} a.e.

+∞ otherwise.

Condition (S) is meaningful only if Û = (u, v) and U(t) = (ut, vt) satisfy v = χA and
vt = χAt with At ⊂ A, so that (S) implies that ut and At are minimizers for (2.1).
Conversely, it can be checked that the solutions to the damage evolution satisfy the energy
inequality as an identity.

Remark 2.2.4 (rate-independence) The requirement that D be positively homoge-
neous of degree one implies that the solution is rate-independent; i.e., that if we consider a
re-parameterization of the energy F̃(t, U) = F(ϕ(t), U) via an increasing diffeomorphism
ϕ, then the energetic solutions Ũ of the corresponding evolution inclusion are exactly the
Ũ(t) = U(ϕ(t)) with U energetic solutions of the corresponding evolution inclusion for F .

Example 2.2.5 (mechanical play/hysteresis) The prototypical example of an evolu-
tion inclusion is by taking U = x ∈ R and

F(t, x) =
x2

2
− tx, D(x) = |x| .
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In this case we can write explicitly ∂|ẋ|+ x− t 3 0 as{ ẋ > 0 if x = t− 1
ẋ < 0 if x = t+ 1
ẋ = 0 if t− 1 ≤ x ≤ t+ 1.

The solution with x(0) = x0 ∈ [−1, 1] is

x(t) =
{

0 if t ≤ 1 + x0

t− 1 if t > 1 + x0.
(2.37)

If we take a non-monotone load g(t) = T − |t− T | with T > 1 + x0 and

F(t, x) =
x2

2
− g(t)x, D(x) = |x| .

then the solution x is as above for t ≤ T , and given solving ∂|ẋ|+ x− (2T − t) 3 0 by

x(t) =
{
T − 1 if T ≤ t ≤ T + 2
2T − t+ 1 = g(t) + 1 if t ≥ T + 2.

This solution shows a hysteretic behavior of this system, whose trajectory in the g-x plane
is represented in Fig. 2.7

Figure 2.7: hystheretic trajectory

Remark 2.2.6 (solutions obtained by time-discretization) Some energetic solutions
can be obtained as limits of discrete schemes as follows: fix τ > 0 and define U τk recursively
by setting U τ0 = U0, and choosing U τk as a solution of the minimum problem

minbU
{
F(τk, Û) +D(Û − U τk−1)

}
.
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Define the continuous trajectory U τ (t) = U τbt/τc. Under suitable assumptions the limits of
(subsequences of) U τ are energetic solution of the variational inclusion for F and D.

2.2.1 Stability

We can give a stability result with respect to Γ-convergence. As remarked in the case of
damage the separate Γ-convergence of Fε and Dε may not be sufficient to describe the limit
of the corresponding variational motions.

Theorem 2.2.7 Suppose that F and D are lower bounds for Fε and Dε, that Uε are
energetic solutions converging pointwise to some U as ε → 0, that the initial data are
well-prepared; i.e., that

lim
ε→0
Fε(0, Uε(0)) = Fε(0, U(0)),

that we have convergence of the external actions

lim
ε→0

∫ t

0
∂sFε(s, Uε(s)) ds =

∫ t

0
∂sF(s, U(s)) ds for all t,

and that the following mutual recovery sequence existence condition holds: for all t
and all Û there exists a sequence Ûε such that

lim sup
ε→0

(
Fε(t, Ûε)−Fε(t, Uε(t)) +Dε(Ûε − Uε(t))

)
≤ F(t, Û)−F(t, U(t)) +D(Û − U(t)). (2.38)

Then U is an energetic solution for the limit energy and dissipation.

Proof. Let 0 = t0 < t1 < · · · < tn = t; by the liminf inequality for Dε and (2.36) we then
have

n∑
i=1

D(U(ti)− U(ti−1)) ≤ lim inf
ε→0

n∑
i=1

Dε(Uε(ti)− Uε(ti−1)) ≤ lim inf
ε→0

∫ t

0
Dε(U̇ε).

Taking into account the liminf inequality for Fε and the convergence hypotheses on initial
data and external actions we then obtain

F(t, U(t)) +
∫ t

0
D(U̇(s)) ds ≤ lim inf

ε→0

(
Fε(0, Uε(0)) +

∫ t

0
∂sFε(s, Uε(s)) ds

)
= F(0, U(0)) +

∫ t

0
∂sF(s, U(s)) ds

so that (E) holds.
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Take any test Û and use the mutual recovery sequence Ûε to obtain

F(t, Û)−F(t, U(t)) +D(Û − U(t)) ≥ 0;

i.e. the inequality in (S), from the same inequality for Uε.

Proposition 2.2.8 (necessary and sufficient conditions) (i) Let Fε Γ-converge to F
and Dε converge continuously to D. Then the mutual recovery sequence condition is satis-
fied;

(ii) Assume that Fε and Dε Γ-converge to F and D, that Uε(t) is a recovery sequence
for Fε at U(t) and that the mutual recovery sequence condition holds with Ûε → Û . Then
Gε(V ) = Fε(t, V ) +Dε(V − Uε(t)) Γ-converges to G(V ) = F(t, U(t)) +D(V − U(t)).

Proof. (i) follows by taking Ûε any recovery sequence for Fε(t, Û).
(ii) is an immediate consequence of the fact that F+D is a lower bound for Fε+Dε, while

the mutual recovery sequence provides a recovery sequence for F(t, U(t)) + D(V − U(t)).

Example 2.2.9 (an example with relaxed evolution) In R2 with U = (x, y), con-
sider the initial datum uε(0) = (0, 0) and the energy and dissipation

Fε(t, U) =
1
2
x2 +

1
2ε2

(y − εx)2 − tx, Dε(U) = |x|+ 1
ε
|y|

with Γ-limits
F(t, U) =

1
2
x2 − tx, D(U) = |x|

with domain {y = 0}.
The solution to the differential inclusion for F and D with initial datum (0, 0) is given

by x(t) as in (2.37) with x0 = 0, and y(t) = 0. On the other hand, the solutions to the
differential inclusions Uε can be computed explicitly, and they tend to U = (x, y) defined
by y(t) = 0 and

x(t) =


0 if t ≤ 1

t− 1
2

if 1 ≤ t ≤ 3

t− 2 if t ≥ 3.
In this case we do not have convergence of the solutions. However, we can compute the

Γ-limit of the sum Fε + Dε, whose domain is {y = 0}. Recovery sequences for (x, 0) can
be looked for of the form (x, εz). By minimizing in z we easily get that this Γ-limit is

G(x) =
1
2
x2 − tx+ |x|+ ψ(x),
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where

ψ(x) = min
{1

2
(z − x)2 + |z|

}
= min

{x2

2
,
1
2

+ ||x| − 1|
}
,

whose derivative is
ψ′(x) = (x ∧ 1) ∨ (−1).

It is easily seen that the function x(t) above is the solution of

∂|ẋ|+ F ′0(x) = ∂|ẋ|+ x− t+ ψ′(x) 3 0,

where F0(x) = G(x)− |x| = 1
2x

2 − tx+ ψ(x). This energy F0 can then be regarded as the
relaxed effective energy describing the limit behavior of the system.

2.3 Francfort and Marigo’s Variational Theory of Fracture

A very interesting application of the theory outline above is to variational models of Frac-
ture following the formulation given by Griffith in the 1920’s. In this case it is maybe
clearer the definition via time-discrete motions (see Remark 2.2.6) given as follows.

We consider the antiplane case where the variable u representing the displacement is
scalar. Ω a bounded open subset of Rn will be the reference configuration of a linearly
elastic material subject to brittle fracture as a consequence of a varying boundary condition
u = g(t) on ∂Ω. K will be a closed set representing the crack location in the reference
configuration. We consider the case g(0) = 0, and set K0 = ∅.

With fixed τ > 0 we define uτ0 = 0, Kτ
0 = K0 and uτk, Kτ

k recursively as minimizers of
the problem

min
{∫

Ω\K
|∇u|2dx+Hn−1(K \Kτ

k−1) : Kτ
k−1 ⊂ K = K ⊂ Ω,

u ∈ H1(Ω \K), u = g(t) on ∂Ω \K
}
. (2.39)

where Hn−1 denotes the (n − 1)-dimensional Hausdorff measure. In this way Kτ
k is an

increasing sequence of closed sets. Note that part of the crack may also lie on the boundary
of Ω, in which case the boundary condition is satisfied only on ∂Ω \K.

In this formulation we have an elastic energy defined by

F(t, u,K) =


∫

Ω\K
|∇u|2dx if u ∈ H1(Ω \K) and u = g(t) on ∂Ω \K

+∞ otherwise,

and a dissipation

D(K) =
{
Hn−1(K) if K = K ⊂ Ω
+∞ otherwise.
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The existence of minimizing pairs for (u,K) is not at all trivial. One way is by using
the theory of SBV functions; i.e., functions of bounded variation u whose distributional
derivative is a measure that can be written as a sum of a measure absolutely continuous
with respect to the Lebesue measure and a measure absolutely continuous with respect
to the restriction of the (n− 1)-dimensional Hausdorff measure to the complement of the
Lebesgue points of u, the latter denoted by S(u). For such functions the approximate
gradient ∇u exists at almost all points. We can therefore define for all closed K the energy

EK(u) =
∫

Ω\K
|∇u|2 dx+Hn−1(S(u) ∩ (Ω \K)). (2.40)

Such energies are L1-lower semicontinuous and coercive, so that existence of weak solutions
in SBV (Ω) are ensured from the direct methods of the Calculus of Variations. Regularity
results give that Hd−1(S(u) \ S(u)) = 0 for minimizing u, so that to a minimizing u ∈
SBV (Ω \Kτ

k−1) of

min
{
EKτ

k−1
(u) : u ∈ SBV (Ω \Kτ

k−1), u = g(t) on ∂Ω \ (S(u) ∪Kτ
k−1)

}
(2.41)

corresponds a minimizing pair Kτ
k = Kτ

k−1∪S(u) and uτk = u|Ω\Kτ
k
∈ H1(Ω\Kτ

k ) for (2.39).
The passage from a discrete trajectory uτ to a continuous one u for all t letting τ → 0

is possible thanks to some monotonicity arguments. The delicate step is the proof that
such u still satisfies the global stability property, which is ensured by a transfer lemma,
which allows to approximate test û in the limit stability estimate with a sequence ûτ that
can be used in the stability estimate holding for uτ (t).

Remark 2.3.1 (existence of fractured solutions) Note that for large enough values
of the boundary condition g(t) we will always have a solution with Kt 6= ∅. Indeed consider
the case g(t) = tg0 with g0 6= 0 on ∂Ω. If Kt = ∅ then the corresponding ut is a minimizer
of

min
{∫

Ω
|∇u|2 dx : u = tg0 on ∂Ω

}
= t2 min

{∫
Ω
|∇u|2 dx : u = g0 on ∂Ω

}
=: t2C0 .

On the other hand we can use as test function u = 0 and as test set K = ∂Ω in (2.39), for
which the total energy is C1 = Hd−1(∂Ω). This shows that for t2C0 > C1 we cannot have
K = ∅.

Remark 2.3.2 (the one-dimensional case) In the one-dimensional case the functional
E reduces to the energy F obtained as a limit in Section 1.5.5 with the normalization
2J ′′(0) = J(∞) = 1, since H0(K) = #(K). Note that in this case the domain of E reduces
to piecewise-H1 functions. If Ω = (0, 1) then the time-continuous solutions are of the form

(ut(x),Kt) =


(g(t)x, ∅) for t ≤ tc(
g(t)χ(x0,1)(x), {x0}

)
for t > tc,
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or

(ut(x),Kt) =


(g(t)x, ∅) for < tc(
g(t)χ(x0,1)(x), {x0}

)
for t ≥ tc,

where x0 ∈ [0, 1] and tc is any value with g(tc) = 1 and g(s) ≤ 1 for s < tc. This non-
uniqueness is due to the fact that for g(t) = 1 we have two possible types of solutions
u(x) = x and u(x) = χ(x0,1)(x).

2.3.1 Homogenization of fracture

The interpretation of fracture energies as functionals defined in SBV allows to consider the
L1-convergence in SBV along sequences with equibounded energy (2.40). With respect to
such a convergence we can consider stability issues for energies and dissipations related to
the oscillating total energy

Eε(u) =
∫

Ω\K
ab

(x
ε

)
|∇u|2 dx+

∫
S(u)∩(Ω\K)

af

(x
ε

)
dHn−1

(here the coefficients ab and af , b for bulk, f for fracture, are periodic functions). In this
case the limit of the total energies Eε is the sum of the energies obtained separately as
limits of the energy and the dissipation parts (with respect to the same convergence), and
has the form

Ehom(u) =
∫

Ω\K
〈Ahom∇u,∇u〉 dx+

∫
S(u)∩(Ω\K)

ϕhom(ν)dHn−1 ,

where ν denotes the measure-theoretical normal to S(u). Note that the homogenized Ahom

is the same given by the homogenization process in H1, while ϕhom is an effective fracture
energies obtained by optimization on oscillating fractures, related to the homogenization
of perimeter functionals. Thanks to this remark it is possible to show that the energetic
solutions for Eε converge to energetic solutions of Ehom. In terms of construction of mutual
recovery sequences this is possible since internal energy and dissipation can be optimized
separately, contrary to what happens for the damage case, where both terms involve bulk
integrals.

2.4 References to Chapter 2

Analyses of damage models linked to our presentation are contained in the work by Franc-
fort and Marigo [26]. The higher-dimensional case is studied in a paper by Francfort and
Garroni [24]. A threshold-based formulation is introduced by Garroni and Larsen [28]. The
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examples in Section 2.1.3 have been part of the course exam of B. Cassano and D. Sarrocco
at Sapienza University in Rome.

An analysis of rate-independent processes is contained in the review article by Mielke
[34]. The definitions given here can be traced back to the works by Mielke, Theil and
Levitas, [37] and [38]. The stability with respect to Γ-convergence is analyzed in the paper
by Mielke, Roubiček, and Stefanelli [36]. Most of Section 2.2 is taken from a lecture given
by Ulisse Stefanelli during the course at the University of Pavia.

An account of the variational theory of fracture (introduced in [27]) is contained in the
book by Bourdin, Francfort, and Marigo [8]. The fundamental transfer lemma is contained
in the seminal paper by Francfort and Larsen [25].



Chapter 3

Local minimization as a selection
criterion

We will now consider some local minimization issues. By a local minimizer of F we mean
a point u such that there exists δ > 0 such that

F (u0) ≤ F (u) if d(u, u0) ≤ δ. (3.1)

The Γ-limit F of a sequence Fε is often taken as a simplified description of the energies Fε,
where unimportant details have been averaged out still keeping the relevant information
about minimum problems. As far as global minimization problems are concerned this is
ensured by the fundamental theorem of Γ-convergence, but this is in general false for local
minimization problems. Nevertheless, if some information on the local minima is known,
we may use the fidelity of the description of local minimizers as a way to ‘correct’ Γ-limits.
In order to so that, we first introduce some notions of equivalence by Γ-convergence, and
then show how to construct simpler equivalent theories as perturbations of the Γ-limit F
in some relent examples.

3.1 Equivalence by Γ-convergence

Definition 3.1.1 Let (Fε) and (Gε) be sequences of functionals on a separable metric space
X. We say that they are equivalent by Γ-convergence (or Γ-equivalent) if there exists a
sequence (mε) of real numbers such that if (Fεj −mεj ) and (Gεj −mεj ) are Γ-converging
sequences, their Γ-limits coincide and are proper (i.e., not identically +∞ and not taking
the value −∞).

Remark 3.1.2 (i) since Γ-convergence is sequentially compact (i.e., every sequence has a
Γ-converging subsequence), the condition in the definition is never empty. On the set of

55
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proper lower-semicontinuous functionals the definition above is indeed an equivalence rela-
tion (in particular any sequence (Fε) is equivalent to itself, regardless to its convergence);

(ii) note that if Fε Γ-converge to F and Gε Γ-converge to G then equivalence amounts
to F = G and F proper, and (Fε) is equivalent to the constant sequence F ;

(iii) the addition of the constants mε allows to consider and discriminate among diverg-
ing sequences (whose limit is not proper). For example the sequences of constants Fε = 1/ε
and Gε = 1/ε2 are not equivalent, even though they diverge to +∞. Note instead that
Fε(x) = x2/ε and Gε(x) = x2/ε2 are equivalent.

Definition 3.1.3 (parameterized and uniform equivalence) For all λ ∈ Λ let (F λε )
and (Gλε ) be sequences of functionals on a separable metric space X. We say that they
are equivalent by Γ-convergence if for all λ they are equivalent according to the definition
above. If Λ is a metric space we say that they are uniformly Γ-equivalent if there exist
(mλ

ε ) such that
Γ- lim

j
(F λjεj −m

λj
εj ) = Γ- lim

j
(Gλjεj −m

λj
εj )

and are proper for all λj → λ and εj → 0.

Remark 3.1.4 Suppose that F λε Γ-converges to F λ and (F λε ) and (F λ) are uniformly Γ-
equivalent as above, and that all functionals are equi-coercive and Λ is compact. Then we
have

sup
λ∈Λ
| inf F λε −minF λ| = o(1)

or, equivalently, that fε(λ) = inf F λε converges uniformly to f(λ) = minF λ on Λ. This
follows immediately from the fundamental theorem of Γ-convergence and the compactness
of Λ.

Example 3.1.5 Take Λ = [−1, 1]

F λε (u) =
∫ 1

0

(W (u)
ε

+ ε|u′|2
)
dt,

∫ 1

0
u dt = λ

with W as in Example 1.5.4. Then we have for fixed λ the Γ-limit

F λ(u) =
{

0 if u(x) = λ
+∞ otherwise

if λ = ±1 and

F λ(u) =
{
cW#(S(u)) if u ∈ BV ((0, 1); {±1}) and

∫ 1
0 u dt = λ

+∞ otherwise.
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Note that fε(λ) = inf F λε is a continuous function, while

f(λ) = minF λ =
{

0 if |λ| = 1
1 otherwise

is not continuous; hence, the convergence fε → f is not uniform, which implies that (F λε )
and (F λ) are not uniformly Γ-equivalent.

3.2 A selection criterion

We use the concept of equivalence as above to formalize a problem of the form: given Fε
find ‘simpler’ Gε equivalent to Fε, which capture the ‘relevant’ features of Fε.

We will proceed as follows:
• compute the Γ-limit F of Fε. This suggests a limit domain and a class of energies (e.g.,

energies with sharp interfaces in place of diffuse ones; convex homogeneous functionals in
place of oscillating integrals, etc.);
• if the description given by F is not ‘satisfactory,’ then ‘perturb’ F so as to obtain a

family (Gε) Γ-equivalent to (Fε).
The same procedure may apply to parameterized families (F λε ).

Of course, the criteria for the construction of Gε as above may be of different types.
In the following example we consider the parameterized family of Example 3.1.5, and the
criterion of uniform equivalence.

Example 3.2.1 We consider the functionals F λ in Example 3.1.5, which have been shown
to be not uniformly equivalent to the sequence F λε . We wish to construct energies of the
same form of F λ; i.e., with domain u ∈ BV ((0, 1); {±1}) with

∫ 1
0 u dt = λ, and uniformly

Γ-equivalent to the sequence F λε . These energies must then depend on ε. Suppose that
W ∈ C2. If we look for energies of the form

Gλε =
{
cλε#(S(u)) if u ∈ BV ((0, 1); {±1}) and

∫ 1
0 u dx = λ

+∞ otherwise,

then it is possible to show that the choice

cλε = min
{W (λ)

ε
, cW

}
.

gives Gλε uniformly Γ-equivalent to F λε . This choice is not unique, even within energies of
the form prescribed; in fact we may also take the Taylor expansions of W at ±1 in place
of W

cλε = min
{W ′′(−1)

2ε
(λ+ 1)2,

W ′′(1)
2ε

(λ− 1)2, cW

}
,
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or any other function with the same Taylor expansion. The form of cλε highlights that
minimizers for F λε can either be close to a sharp interface (in which case their value is cW ),
or close to the constant λ (which gives the energy value W (λ)/ε). When λ = ±1 +O(

√
ε)

the second type of minimizers may have lower energy. Nevertheless they are never detected
by F λ.

We may also take Gλε of a slightly more complex form, defined on piecewise-constant
functions, setting

Gλε =


∫ 1

0

W (u)
ε

dx+ cW#(S(u)) if u piecewise constant and
∫ 1

0 u dx = λ

+∞ otherwise.

This choice gives a better description of the minimizers of F λε .

In the rest of the chapter a ‘unsatisfactory description’ will mean a partial description of
local minimizers. We will then try to perturb the Γ-limits so as to satisfy this requirement.

3.3 A ‘quantitative’ example: phase transitions

We consider the same type of energies as in Examples 1.5.4 and 3.1.5

Fε(u) =
∫ 1

0

(W (u)
ε

+ ε|u′|2
)
dx

with W a double-well potential with wells in ±1. For the sake of simplicity, in the present
example the domain of Fε is restricted to 1-periodic functions (i.e., u such that u(1) = u(0)).
This constraint is compatible with the Γ-limit, which is then given by

F (u) = cW#(S(u) ∩ [0, 1)) u ∈ BV ((0, 1); {±1})

(again, u is extended to a periodic function, so that it may have a jump at 0, which then
is taken into account in the limit energy).
• Note that all functions in BV ((0, 1); {±1}) are L1-local minimizers (even though not

isolated). This is a general fact when we have a lower-semicontinuous function taking
discrete values.
•We now show that Fε has no non-trivial L1-local minimizer. We consider the simplified

case
W (u) = (|u| − 1)2 .

In this case cW = 2. Suppose otherwise that u is a local minimizer. If u ≥ 0 (equivalently,
u ≤ 0) then

Fε(u) =
∫ 1

0

((u− 1)2

ε
+ ε|u′|2

)
dt.
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Since this functional is convex, its only local minimizer is the global minimizer u = 1.
Otherwise, we can suppose, up to a translation, that there exists L ∈ (0, 1) such that
u(±L/2) = 0 and u(x) > 0 for |x| < L/2. Again, using the convexity of

FLε (u) =
∫ L/2

−L/2

((u− 1)2

ε
+ ε|u′|2

)
dx

we conclude that u must be the global minimizer of FL with zero boundary data; i.e., the
solution of 

u′′ =
1
ε2

(u− 1)

u(±L
2 ) = 0.

This gives

u(x) = 1−
(

cosh
( L

2ε

))−1
cosh

(x
ε

)
and

FLε (u) =
sinh

(
L
ε

)
(

cosh
(
L
2ε

))2 .

Note that

d2

dL2
FLε (u) = − 1

ε2

sinh
(
L
2ε

)
(

cosh
(
L
2ε

))3 ;

i.e., this minimum value is a concave function of L. This immediately implies that no
local minimizer may exist with changing sign; in fact, such a minimizer would be a local
minimizer of the function

f(L1, . . . , LK) =
K∑
k=1

sinh
(
Lk
ε

)
(

cosh
(
Lk
2ε

))2 , (3.2)

for some K > 0 under the constraint Lk > 0 and
∑

k Lk = 1, which is forbidden by the
negative definiteness of its Hessian matrix. Note moreover that

FLε (u) = 2− 4e−
L
ε +O(e−

2L
ε )

and that −4e−
L
ε is still a concave function of L.

• We can now propose a ‘correction’ to F by considering in its place

Gε(u) = cW#(S(u))−
∑

x∈S(u)∩[0,1)

4e−
1
ε
|x−max(S(u)∩(−∞,x)|
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defined on periodic functions with u ∈ BV ((0, 1); {±1}). It is easily seen that Gε Γ-
converges to F , and is hence equivalent to Fε; thanks to the concavity of the second term
the same argument as above shows that we have no non-trivial local minimizers. As a
side remark note that this approximation also maintains the stationary points of Fε, which
are functions with K jumps at distance 1/K. This is easily seen after remarking that the
distances between consecutive points must be a stationary point for (3.2). Moreover, the
additional terms can also be computed as a development by Γ-convergence, which extends
this equivalence to ‘higher order’.

Remark 3.3.1 (interaction with the boundary) The case without periodicity condi-
tions can be reduced to the case with periodic boundary conditions upon remarking that
if ũ denotes the even extension of u to (−1, 1) then

Fε(u) =
1
2

∫ 1

−1

(W (ũ)
ε

+ ε|ũ′|2
)
dx

and ũ satisfies periodic boundary conditions. We can then apply the arguments above to
obtain that if x1 < · · · < xn denote the location of points in (0, 1) where u changes sign
as in the computation above (where Lk = xk − xk−1), then we have the corresponding
estimate

Fε(u) ≥
n∑
k=2

sinh
(
xk−xk−1

ε

)
(

cosh
(
xk−xk−1

2ε

))2 +
sinh

(
2x1
ε

)
2
(

cosh
(

2x1
2ε

))2 +
sinh

(
2−2xn
ε

)
2
(

cosh
(

2−2xn
2ε

))2

=
n∑
k=2

sinh
(
xk−xk−1

ε

)
(

cosh
(
xk−xk−1

2ε

))2 + tanh
(x1

ε

)
+ tanh

(1− xn
ε

)
.

The last two terms represent the interaction of the points x0 and xn with the boundary of
(0, 1). The ‘corrected’ Γ-converging sequence in this case can be written as

Gε(u) = cW#(S(u))−
n∑
k=2

4e−
1
ε
|xk−xk−1| − 2e−

2
ε
x1 − 2e−

2
ε

(1−xn)

if S(u) = {x1, . . . , xn} with xk < xk−1.

3.4 A ‘qualitative’ example: Lennard-Jones atomistic sys-
tems

As in Example 1.5.5, we consider a scaled systems of one-dimensional nearest-neighbour
atomistic interactions through a Lennard-Jones type interaction. Let J be a C2 potential
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as in Figure 3.1, with domain (−1,+∞) (we set J(w) = +∞ for w ≤ −1), minimum in 0
with J ′′(0) > 0, convex in (−1, w0), concave in (w0,+∞) and tending to J(∞) < +∞ at
+∞. We consider the energy
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Figure 3.1: a (translation of a) Lennard-Jones potential

F λε (u) =
N∑
i=1

J
(ui − ui−1√

ε

)
with the boundary conditions u0 = 0 and uN = λ ≥ 0. Here ε = 1/N with N ∈ N. The
vector (u0, . . . , uN ) is identified with a discrete function defined on εZ ∩ [0, 1] or with its
piecewise-affine interpolation. With this last identification, F λε can be viewed as functionals
in L1(0, 1), and their Γ-limit computed with respect to that topology.

Taking into account the boundary conditions, we can extend all functions to u(x) = 0
for x ≤ 0 and u(x) = λ for x ≥ λ, and denote by S(u) (set of discontinuity points of u)
the minimal set such that u ∈ H1((−s, 1 + s) \ S(u)) for s > 0. With this notation, the
same arguments as in Example 1.5.5 give that the Γ-limit is defined on piecewise-H1(0, 1)
functions by

F λ(u) =
1
2
J ′′(0)

∫ 1

0
|u′|2 dt+ J(∞)#(S(u) ∩ [0, 1])

with the constraint that u+ > u− on S(u) and the boundary conditions u−(0) = 0, u+(1) =
λ (so that S(u) is understood to contain also 0 or 1 if u+(0) > 0 or u − (1) < λ). For
simplicity of notation we suppose

1
2
J ′′(0) = J(∞) = 1.

• Local minimizers of F λ. By the strict convexity of
∫ 1

0 |u
′|2 dt this part of the energy

is minimized, given the average z =
∫ 1

0 u
′ dt, by the piecewise-constant gradient u′ = z.

From now on we tacitly assume that u′ is constant. We then have two cases depending on
the number of jumps:
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(i) if S(u) = ∅ then z = λ, and this is a strict local minimizer since any L1 perturbation
with a jump of size w and (average) gradient z has energy z2 + 1 independent of w, which
is strictly larger than λ2 if the perturbation is small;

(ii) if #S(u) ≥ 1 then L1 local minimizers are all functions with u′ = 0 (since otherwise
we can strictly decrease the energy by taking a small perturbation v with the same set of
discontinuity points and v′ = su′ with s < 1).

The energy of the local minima in dependence of λ is pictured in Figure 3.2.
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Figure 3.2: local minima for F λ

• Local minimizers of F λε . This is a finite-dimensional problem, whose stationarity
condition is

J ′
(ui − ui−1√

ε

)
= σ for all i,

for some σ > 0. The shape of J ′ is pictured in Figure 3.3; its maximum is achieved for
w = w0. Note that for all 0 < σ < J ′(w0) we have two solutions of J ′(w) = σ, while we
have no solution for σ > J ′(w0).
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Figure 3.3: derivative of J

We have three cases:
(i) we have

ui − ui−1√
ε

≤ w0 (3.3)
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for all i. In this case the boundary condition gives ui−ui−1

ε = λ for all i, so that we have
the constraint.

λ ≤ w0√
ε
. (3.4)

This solution is a local minimum. This is easily checked when λ < w0√
ε

since small per-
turbations maintain the condition (3.3). In the limit case λ = w0√

ε
we may consider only

perturbations where (3.3) is violated at exactly one index (see (ii) below), to which there
corresponds an energy

J(w0 + t) + (N − 1)J
(
w0 −

t

N − 1

)
,

for t ≥ 0, which has a local minimum at 0.
(ii) condition (3.3) is violated by two (or more) indices j and k. Let w be such that

uj − uj−1√
ε

=
uk − uk−1√

ε
= w > w0.

We may perturb ui − ui−1 only for i = j, k, so that the energy varies by

f(s) := J(w + s) + J(w − s)− 2J(w) . (3.5)

We have f ′(0) = 0 and f ′′(0) = 2J ′′(w) < 0, which contradicts the minimality of u.
(iii) condition (3.3) is violated exactly by one index. The value of w = ui−ui−1√

ε
for the

N − 1 indices satisfying (3.3) is obtained by computing local minimizers of the energy on
such functions, which is

fλε (w) := (N − 1)J(w) + J
( λ√

ε
− (N − 1)w

)
defined for 0 ≤ w ≤ min

{
w0,

1
N−1

(
λ√
ε
− w0

)}
. We compute

(fλε )′(w) := (N − 1)
(
J ′(w)− J ′

( λ√
ε
− (N − 1)w

))
.

Note that
fλε (0) = J

( λ√
ε

)
= 1− o(1)

and (fλε )′(0) < 0. If λ > w0/
√
ε then (fλε )′(w) = 0 has a unique solution, which is a local

minimizer, while if λ ≤ w0/
√
ε we have two solutions w1 < w2, of which the first one is a

local minimizer. We then have a unique curve of local minimizers with one jump.
The energy of the local minima in dependence of λ is schematically pictured in Fig. 3.4.
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Figure 3.4: local minima for F λε

• A qualitative comparison of local minimization. First, the local minimizer for F λε
which never exceeds the convexity threshold (corresponding to the minimizer with S(u) = ∅
for F λ) exists only for λ ≤ w0/

√
ε; second, we only have one curve of local minimizers for F λε

which exceed the convexity threshold for only one index (corresponding to the minimizers
with #S(u) = 1 for F λ).
• Γ-equivalent energies. We choose to look for energies defined on piecewise-H1 func-

tions of the form

Gλε (u) =
∫ 1

0
|u′|2 dt+

∑
t∈S(u)

g
(u+ − u−√

ε

)
,

again with the constraint that u+ > u− on S(u) and the boundary conditions u−(0) =
0, u+(1) = λ. In order that local minimizers satisfy #(S(u)) ≤ 1 we require that g :
(0,+∞) → (0,+∞) be strictly concave. In fact, with this condition the existence of two
points in S(u) is ruled out by noticing that given w1, w2 > 0 the function t 7→ g(w1 + t) +
g(w2 − t) is concave. Moreover, we also require that g satisfy

lim
w→+∞

g(w) = 1.

With this condition is is easily seen that we have the Γ-convergence of Gλε to F λ.
In order to make a comparison with the local minimizers of F λε we first consider local

minimizers with S(u) = ∅; i.e., u(t) = λt. Such a function is a local minimizer if it is not
energetically favourable to introduce a small jump of size w; i.e., if 0 is a local minimizer
for

gλε (w) := (λ− w)2 + g
( w√

ε

)
,

where we have extended the definition of g by setting g(0) = 0. Note that if g is not
continuous in 0 then 0 is a strict local minimizer for gλε for all λ. Otherwise, we can
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compute the derivative, and obtain that

d

dw
gλε (0) = −2λ+

1√
ε
g′(0).

For ε small enough, 0 is a (isolated) local minimizer if and only if d
dwg

λ
ε (0) > 0; i.e.,

λ <
1

2
√
ε
g′(0) .

If we choose
g′(0) = 2w0

we obtain the desired constraint on this type of local minimizers. A possible simple choice
of g is

g(w) =
2w0w

1 + 2w0w
.

We finally consider local minimizers with #(S(u)) = 1. If w denotes the size of the
jump then again computing the derivative of the energy, we conclude the existence of a
single local minimizer w with

2(λ− w) =
1√
ε
g′
( w√

ε

)
,

and energy approaching 1 as ε→ 0.
• With the choice above the pictures of the local minimizers for Gλε and for F λε are of

the same type, but may vary in quantitative details. We have not addressed the problem
of the uniformity of this description, for which a refinement of the choice of g could be
necessary.
• As a conclusion, we remark that this example has some modeling implications. The

functional F λ can be seen as a one-dimensional version of the energy of a brittle elastic
medium according to Griffith’s theory of Fracture (S(u) represents the fracture site in the
reference configuration), which is then interpreted as a continuum approximation of an
atomistic model with Lennard Jones interactions. The requirement that also local minima
may be reproduced by the limit theory has made us modify our functional F λ obtaining
another sequence of energies, which maintain an internal parameter ε. Energies of the form
Gλε are present in the literature, and are related to Barenblatt’s theory of ductile Fracture.
Note that in all these considerations the parameter λ appears in the functionals only as a
boundary condition, and does not influence the form of the energy.

3.5 A negative example: oscillating perimeters

The procedure described above cannot be always performed in a simple fashion. This may
happen if the structure of the Γ-limit F cannot be easily modified to follow the pattern of
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the local minimizers of Fε. We include an example where local minimizers if Fε tend to be
a dense set, while functionals with the structure of F have no local minimizers.

Example 3.5.1 We consider the function a : Z2 → {1, 2}

a(x1, x2) =
{

1 if x1 ∈ Z or x2 ∈ Z
2 otherwise,

and the related scaled-perimeter functionals

Fε(A) =
∫
∂A
a
(x
ε

)
dH1

defined on Lipschitz sets A. The energies Fε Γ-converge, with respect to the convergence
Aε → A, understood as the L1 convergence of the corresponding characteristic functions,
to an energy of the form

F (A) =
∫
∂∗A

g(ν)dH1 (3.6)

defined on all sets of finite perimeter (ν denotes the normal to ∂∗A). A direct computation
shows that actually

g(ν) = ‖ν‖1 = |ν1|+ |ν2|.
Furthermore, it is easily seen that the same F is equivalently the Γ-limit of

F̃ε(A) = H1(∂A),

defined on A which are the union of cubes Qεi := ε(i+ (0, 1)2) with i ∈ Z2. We denote by
Aε the family of such A. Note that F̃ε is the restriction of Fε to Aε.

If A ∈ Aε then A is trivially a L1-local minimizer for F̃ε with δ < ε2, since any two
distinct elements of Aε are at least at L1-distance ε2 (the area of a single ε-square). It
can be proved also that all A ∈ Aε are L1-local minimizer for Fε with δ = Cε2 for C > 0
sufficiently small.

3.6 References to Chapter 3

The notion of equivalence by Γ-convergence is introduced and analyzed in the paper by
Braides and Truskinovsky [18].

Local minimizers for Lennard-Jones type potentials (also with external forces) are stud-
ied in the paper by Braides, Dal Maso and Garroni [12]

More details on the derivation of fracture energies from interatomic potentials and the
explanation of the

√
ε-scaling can be found in the paper by Braides, Lew and Ortiz [16]

(see also the quoted paper by Braides and Truskinovsky for an explanation in terms of
uniform Γ-equivalence).

For general reference on sets of finite perimeter and BV functions we refer to [10, 5, 33]



Chapter 4

Convergence of local minimizers

In this section we consider a generalization of the fundamental theorem of Γ-convergence
when we have strict local minimizers of the Γ-limit.

4.1 Convergence to isolated local minimizers

The following theorem shows that we may extend (part of) the fundamental theorem of
Γ-convergence to isolated local minimizers of the Γ-limit F ; i.e. (we suppose that F be
defined on a metric space with distance d), to points u0 such that there exists δ > 0 such
that

F (u0) < F (u) if 0 < d(u, u0) ≤ δ. (4.1)

The proof of this theorem essentially consists in remarking that we may at the same time
apply Proposition 1.1.2 (more precisely, Remark 1.1.4) to the closed ball of center u0 and
radius δ, and Proposition 1.1.6 to the open ball of center u0 and radius δ.

Theorem 4.1.1 Suppose that each Fε is coercive and lower semicontinuous and the se-
quence (Fε) Γ-converge to F and is equicoercive. If u0 is an isolated local minimizer of
F then there exist a sequence (uε) converging to u0 with uε a local minimizer of Fε for ε
small enough.

Proof. Let δ > 0 satisfy (4.1). Note that by the coerciveness and lower semicontinuity of Fε
there exists a minimizer uε of Fε on Bδ(u0), the closure of Bδ(u0) = {u : d(u, u0) ≤ δ}. By
the equicoerciveness of (Fε), upon extracting a subsequence, we can suppose that uε → u.
Since u ∈ Bδ(u0) we then have

F (u0) ≤ F (u) ≤ lim inf
ε→0

Fε(uε) = lim inf
ε→0

min
Bδ(u0)

Fε (4.2)

≤ lim sup
ε→0

inf
Bδ(u0)

Fε ≤ inf
Bδ(u0)

F = F (u0),

67
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where we have used Proposition 1.1.6 in the last inequality. By (4.1) we have that u = u0

and uε ∈ Bδ(u0) for ε small enough, which proves the thesis.

Remark 4.1.2 In the theorem above it is sufficient to require the coerciveness properties
for Fε only on bounded sets, since they are applied to minimization problems on Bδ(u0).

Remark 4.1.3 Clearly, the existence of an isolated (local) minimizer in the limit does not
imply that the converging (local) minimizers are isolated. It suffices to consider Fε(x) =
((x− ε) ∨ 0)2 converging to F (x) = x2.

Remark 4.1.4 In Section 3.4 we have noticed that the limit fracture energy F λ possesses
families of L1-local minimizers with an arbitrary number of jump points, while the approx-
imating functionals F λε have local minimizers corresponding to limit functions with only
one jump point. This cannot directly be deduced from the result above since those limit
local minimizers are not isolated. Anyhow L1-local minimizers with one jump are strict
local minimizers with respect to the distance

d(u, v) =
∫ 1

0
|u− v| dx+

∑
x∈(0,1)

|(u+ − u−)− (v+ − v−)|

=
∫ 1

0
|u− v| dx+

∑
x∈S(u)∩S(v)

|(u+ − u−)− (v+ − v−)|

+
∑

x∈S(u)\S(v)

|u+ − u−|+
∑

x∈S(v)\S(u)

|v+ − v−|,

which penalizes (large) jumps of a competitor v outside S(u). Upon suitably defining
interpolations of discrete functions in SBV (0, 1) (where jumps correspond to difference
quotients above the threshold w0/

√
ε) it can be shown that the Γ-limit remains unchanged

with this convergence, so that we may apply Theorem 4.1.1. Note that for discrete functions
the notion of local minimizers is the same as for the L1-distance since we are in a finite-
dimensional space. Note moreover that L1-local minimizers of F λ with more than one
jump are not strict local minimizers for the distance d above. Indeed, if u′ = 0 and
S(u) = {x1, . . . , xN} with 0 ≤ x1 < · · · < xN and N ≥ 2, then any us = u + sχ(x1,x2) is
still a local minimizer for F λ with F λ(us) = F λ(u) = N and d(u, us) = s(1 + |x2 − x1|).

4.2 Two examples

We use Theorem 4.1.1 to prove the existence of sequences of converging local minima.
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Example 4.2.1 (local minimizers for elliptic homogenization) Consider the func-
tionals in Example 1.4.2. Suppose furthermore that g has an isolated local minimum at z0.
We will show that the constant function u0(x) = z0 is a L1-local minimizer of Fhom + G.
Thanks to Theorem 4.1.1 we then deduce that there exists a sequence of local minimiz-
ers of Fε + Gε (in particular, if g is differentiable with respect to u, of solutions of the
Euler-Lagrange equation (1.15)) converging to u0.

We only prove the statement in the one-dimensional case, for which Ω = (0, L). We
now consider δ > 0 and u such that

‖u− u0‖L1(0,L) ≤ δ.

Since z0 is an isolated local minimum of g there exists h > 0 such that g(z0) < g(z) if
0 < |z− z0| ≤ h. If ‖u− u0‖∞ ≤ h then G(u) ≥ G(u0) with equality only if u = u0 a.e., so
that the thesis is verified. Suppose otherwise that there exists a set of positive measure A
such that |u− u0| > h on A. We then have

h|A| ≤
∫
A
|u− u0| dt ≤ δ,

so that |A| ≤ δ/h. We can then estimate

G(u) ≥ min g|A|+ (L− |A|)g(z0) ≥ G(u0)− g(z0)−min g
h

δ .

On the other hand, there exists a set of positive measure B such that

|u(x)− u0| ≤
δ

L

(otherwise the L1 estimate doe not hold). Let x1 ∈ B and x2 ∈ A, we can estimate (we
can assume x1 < x2)

Fhom(u) ≥ α
∫

[x1,x2]
|u′|2 dt ≥ α(u(x2)− u(x1))2

x2 − x1
≥ α

(
h− δ

L

)2

L

(using Jensen’s inequality). Summing up we have

Fhom(u) +G(u) ≥ Fhom(u0) +G(u0) + α

(
h− δ

L

)2

L
− g(z0)−min g

h
δ

= Fhom(u0) +G(u0) + α
h2

L
+O(δ)

> Fhom(u0) +G(u0)

for δ small as desired.
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Example 4.2.2 (Kohn-Sternberg) In order to prove the existence of L1 local minimiz-
ers for the energies Fε in (1.18) by Theorem 1.4.2 it suffices to prove the existence of
isolated local minimizers for the minimal interface problem related to the energy (1.20). In
order for this to hold we need some hypothesis on the set Ω (for example, it can be proved
that no non-trivial local minimizer exists when Ω is convex).

We treat the two-dimensional case only. We suppose that Ω is bounded, regular, and
has an ‘isolated neck’; i.e., it contains a straight segment whose endpoints meet ∂Ω per-
pendicularly, and ∂Ω is strictly concave at those endpoints (see Fig. 4.1). We will show

Figure 4.1: a neck in the open set Ω

that the set with boundary that segment (we can suppose that the segment disconnets Ω)
is an isolated local minimizer for the perimeter functional.

We can think that the segment is (0, L)×{0}. By the strict concavity of ∂Ω there exist
h > 0 such that in a rectangular neighbourhood of the form (a, b) × (−2h, 2h) the lines
x = 0 and x = L meet ∂Ω only at (0, 0) and (0, L) respectively. The candidate strict local
minimizer is A0 = {(x, y) ∈ Ω;x > 0}, which we identify with the function u0 = −1+2χA0 ,
taking the value +1 in A0 and −1 in Ω \A0.

Take another test set A. The L1 closeness condition for functions translates into

|A4A0| ≤ δ.

We may suppose that A is sufficiently regular (some minor extra care must be taken when
A is a set of finite perimeter, but the proof may be repeated essentially unchanged).

Consider first the case that A contains a horizontal segment y = M with M ∈ [h, 2h]
and its complement contains a horizontal segment y = m with m ∈ [−2h, h]. Then a
portion of the boundary ∂A is contained in the part of Ω in the strip |y| ≤ 2h, and its
length is strictly greater than L, unless it is exactly the minimal segment (see Fig. 4.2).

If the condition above is not satisfied then A must not contain, e.g., any horizontal
segment y = t with t ∈ [h, 2h] (see Fig. 4.3). In particular, the length of the portion of ∂A
contained with h ≤ y ≤ 2h is not less than h. Consider now the one-dimensional set

B = {t ∈ (0, L) : ∂A ∩ ({t} × (−h, h)) = ∅}.
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h

2h
M

m

Figure 4.2: comparison with a uniformly close test set

h

2h

Figure 4.3: comparison with a L1-close test set

We have
δ ≥ |A4A0| ≥ h|B|,

so that |B| ≤ δ/h, and the portion of ∂A with h ≤ y ≤ 2h is not less than L − δ/h.
Summing up we have

H1(∂A) ≥ h+ L− δ

h
= H1(∂A0) + h− δ

h
,

and the desired strict inequality for δ small enough.

4.3 Generalizations

We can give some generalizations of Theorem 4.1.1 in terms of scaled energies.
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Proposition 4.3.1 Let Fε satisfy the coerciveness and lower-semicontinuity assumptions
of Theorem 4.1.1. Suppose furthermore that a bounded positive function f : (0,+∞) →
(0,+∞) exists and constants mε such that the scaled functionals

F̃ε(u) =
Fε(u)−mε

f(ε)
(4.3)

are equicoercive and Γ-converge on Bδ(u0) to F̃0 given by

F̃0(u) =
{

0 if u = u0

+∞ otherwise
(4.4)

in Bδ(u0). Then there exists a sequence (uε) converging to u0 of local minimizers of Fε.

Remark 4.3.2 (i) First note that the functionals Fε in Theorem 4.1.1 satisfy the hypothe-
ses of the above proposition, taking, e.g., f(ε) = ε and mε equal to the minimum of Fε in
Bδ(u0);

(ii) Note that the hypothesis above is satisfied if there exist constants mε such that
(a) Γ-lim sup

ε→0
(Fε(u0)−mε) = 0;

(b) Γ-lim inf
ε→0

(Fε(u)−mε) > 0 on Bδ(u0) \ {u0}.
Indeed condition (a) implies that we may change the constants mε so that the Γ-limit

exists, is 0 at u0, and we have a recovery sequence with Fε(uε) = mε, while (b) is kept
unchanged. At this point is suffices to chose, e.g., f(ε) = ε.

Proof. The proof follows that of Theorem 4.1.1. Again, let uε be a a minimizer of Fε on
Bδ(u0); we can suppose that uε → u ∈ Bδ(u0) we then have

0 = F̃0(u0) ≤ F̃0(u) ≤ lim inf
ε→0

F̃ε(uε) = lim inf
ε→0

min
Bδ(u0)

F̃ε (4.5)

≤ lim sup
ε→0

inf
Bδ(u0)

F̃ε ≤ inf
Bδ(u0)

F̃0 = 0, .

so that u = u0 and uε ∈ Bδ(u0) for ε small enough, which proves the thesis after remarking
that (local) minimization of Fε and F̃ε are equivalent up to additive and multiplicative
constants.

Proposition 4.3.3 Let Fε satisfy the coerciveness and lower-semicontinuity assumptions
of Theorem 4.1.1. Suppose furthermore that there exist a bounded positive function f :
(0,+∞)→ (0,+∞), constants mε and ρε with ρε > 0 and ρε → 0, and ũε → u0 such that
the scaled functionals

F̃ε(v) =
Fε(ũε + ρεv)−mε

f(ε)
(4.6)
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are equicoercive and Γ-converge on Bδ(v0) to F̃0 with v0 an isolated local minimum. Then
there exists a sequence (uε) converging to u0 of local minimizers of Fε.

Proof. We can apply Theorem 4.1.1 to the functionals F̃ε(v) concluding that there exist
local minimizers vε of F̃ε converging to v0. The corresponding uε = ũε + ρεvε are local
minimizers for Fε converging to u0.

Example 4.3.4 We illustrate the proposition with the simple example

Fε(x) = sin
(x
ε

)
+ x,

whose Γ-limit F (x) = x− 1 has no local (or global) minimizers. Take any x0 ∈ R, xε → x0

any sequence with sin(xε/ε) = −1, mε = xε − 1, ρε = εβ with β ≥ 1, and f(ε) = εα with
α ≥ 0, so that

F̃ε(t) =
sin
(
xε+εβt

ε

)
+ 1

εα
+ εβ−αt

=
sin
(
εβ−1t− π

2

)
+ 1

εα
+ εβ−αt =

1− cos(εβ−1t)
εα

+ εβ−αt.

In this case the Γ-limit F̃ coincides with the pointwise limit of F̃ε. If β = 1 and 0 ≤ α ≤ 1
then we have (local) minimizers of F̃ at all points of 2πZ; indeed if α = 0 then the sequence
converges to F̃ (x) = 1− cosx, if 0 < α < 1 we have

F̃ (x) =
{

0 if x ∈ 2πZ
+∞ otherwise,

and if α = 1

F̃ (x) =
{
x if x ∈ 2πZ
+∞ otherwise.

In the case 2 > β > 1 we have two possibilities: if α = 2β − 2 then F̃ (x) = 1
2 t

2; if
β ≥ α > 2β − 2 then

F̃ (x) =
{

0 if x = 0
+∞ otherwise.

If α = β = 2 then F̃ (x) = 1
2 t

2 + t. In all these cases we have isolated local minimizers in
the limit.

Note that in this computation xε are not themselves local minimizers of Fε.

We now consider an infinite-dimensional example in the same spirit as the one above.
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Example 4.3.5 (existence of infinitely many local minima for oscillating metrics)
Let the 1-periodic coefficient a : R2 → {1, 2} be defined on [0, 1]2 as

a(v1, v2) =
{

1 if either (v1 − v2)(v1 + v2 − 1) = 0 or
4 otherwise.

(4.7)

Let

F 0
ε (u) =

∫ 1

0
a
(x
ε
,
u

ε

)
(1 + |u′|2) dx

defined on
X = {u ∈W 1,∞((0, 1); R2), u(0) = 0, u(1) = 1}

equipped with the L2-convergence. It may be useful to remark that F 0
ε can be rewritten

in terms of the curve γ(x) = (x, u(x)) as the energy∫ 1

0
a
(γ
ε

)
|γ′(x)|2 dx,

of an inhomogeneous Riemannian metric which favors curves lying on the network where
a = 1 (we will call that the 1-network), which is a sort of opus reticolatum as pictured in
Fig. 4.4.

The Γ-limit of F 0
ε is of the form

F 0
hom(u) =

∫ 1

0
ϕ(u′) dx .

with domain X. It can be shown that ϕ(z) =
√

2 if |z| ≤ 1, and that for functions with
|u′| ≤ 1 recovery sequences for F 0

hom(u) are functions with a(x/ε, uε(x)/ε) = 1 a.e. (i.e.,
that follow the lines of the 1-network). This will also follow from the computations below.

We consider the functionals

Fε(u) = F 0
ε (u) +G(u), where G(u) =

∫ 1

0
|u|2 dx

(perturbation more general than G can be added). Since G is a continuous perturbation
the Γ-limit of Fε is simply F = F 0

hom +G. Since G is strictly convex, then F is also strictly
convex, and hence admits no local minimizers other than the absolute minimizer u = 0.
We will show that Fε admit infinitely many local minimizers. To that end we make some
simplifying hypotheses: we suppose that ε are of the form 2−k. In this way both (0, 0)
and (1, 0) (corresponding to the boundary conditions) belong to the 1-network for all ε,
and 1-networks are decreasing (in the sense of inclusion) with ε. We consider any function
u0 ∈ X such that a(x2k0 , u0(x)2k0) = 1 a.e. for some k0, and hence for all k ≥ k0; i.e., a
function following the lines of the 1-network for all ε sufficiently small. We will prove that
every such u0 is a local minimum for Fε if ε is small enough.
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We consider the scaled functionals

F̃ε(v) =
Fε(u0 + ε2v)− Fε(u0)

ε2
.

We note that the term deriving from G still gives a continuously converging term, and can
be dealt with separately, since

G(u0 + ε2v)−G(u0)
ε2

= 2
∫ 1

0
u0v dx+ ε2

∫ 1

0
|v|2 dx.

We concentrate our analysis on the term of F̃ε coming from F 0
ε : let ṽε be such that

‖ṽε − u0‖L2 ≤ ε2δ; (4.8)

i.e., that ṽε = u0 + ε2vε with ‖vε‖L2 ≤ δ, and F̃ε(ṽε) ≤ C1 < +∞.
We denote γ̃ε(x) = (x, ṽε(x)) and γ0(x) = (x, u0(x)). Note that if we set e1 = ( 1√

2
, 1√

2
)

and e2 = ( 1√
2
,− 1√

2
) then x 7→ 〈γ0(x), e1〉 and x 7→ 〈γ0(x), e2〉 are both non decreasing. We

may then suppose that the same holds for γ̃ε. We also denote

‖z‖1 = |〈z, e1〉|+ |〈z, e2〉|.

For each ε fixed we consider points 0 = x0 < x1 < . . . < xN = 1 such that

a
( γ̃ε
ε

)
= 1 a.e. or a

( γ̃ε
ε

)
= 4 a.e. alternately on [xk−1, xk] ;

we can suppose that the first case occurs for e.g. k odd and the second one for k even. In
the first case, by convexity and taking into account that the image of γ̃ε is contained in
the 1-network, we have∫ xk

xk−1

a
( γ̃ε
ε

)
|γ̃ε|2 dx ≥ (xk − xk−1)

∥∥∥ γ̃ε(xk)− γ̃ε(xk−1)
xk − xk−1

∥∥∥2

1

In the second case, again by convexity and by the inequality ‖z‖1 ≤
√

2|z|,∫ xk

xk−1

a
( γ̃ε
ε

)
|γ̃′ε|2 dx ≥ 4(xk − xk−1)

∣∣∣ γ̃ε(xk)− γ̃ε(xk−1)
xk − xk−1

∣∣∣2
≥ 2(xk − xk−1)

∥∥∥ γ̃ε(xk)− γ̃ε(xk−1)
xk − xk−1

∥∥∥2

1
.

As a first consequence, we deduce that

F 0
ε (γ̃ε) ≥

N∑
k=1

(xk − xk−1)
∥∥∥ γ̃ε(xk)− γ̃ε(xk−1)

xk − xk−1

∥∥∥2

1
+

∑
k even

(xk − xk−1)
∥∥∥ γ̃ε(xk)− γ̃ε(xk−1)

xk − xk−1

∥∥∥2

1
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≥
∥∥∥ N∑
k=1

γ̃ε(xk)− γ̃ε(xk−1)
∥∥∥2

1
+

∑
k even

1
xk − xk−1

‖γ̃ε(xk)− γ̃ε(xk−1)‖21

= ‖γ̃ε(1)− γ̃ε(0)‖21 +
∑

k even

1
xk − xk−1

‖γ̃ε(xk)− γ̃ε(xk−1)‖21

= F 0
ε (u0) +

∑
k even

1
xk − xk−1

‖γ̃ε(xk)− γ̃ε(xk−1)‖21.

From the energy bound we then deduce that for each k even

(xk − xk−1)
(

1 +
( ṽε(xk)− ṽε(xk−1)

xk − xk−1

))
≤ Cε2 .

so that both (xk − xk−1) ≤ Cε2 and |ṽε(xk)− ṽε(xk−1)| ≤ Cε. This implies that γ̃ε can be
deformed with a perturbation with o(ε2) L2-norm to follow the 1-network between xk−1

and xk. Hence, possible competitors essentially follow the 1-network (see Fig. 4.4). If δ is

Figure 4.4: a local minimizer and a competitor

small enough then in order that (4.8) hold we must have vε → 0. This shows that the limit
of F̃ε is finite only at v = 0 on Bδ(0) as desired.

As a consequence of the computation above we deduce that for all u ∈ X with ‖u′‖∞ ≤
1 we have a sequence {uε} of local minimizers of Fε converging to u.

Example 4.3.6 (density of local minima for oscillating distances) We may consider
a similar example to the one above for oscillating distances; i.e., length functionals defined
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on curves. Let the 1-periodic coefficient a : R2 → {1, 2} be defined as

a(v1, v2) =
{ 1 if either v1 or v2 ∈ Z

4 otherwise.
(4.9)

This is the same type of coefficient as in the previous example up to a rotation and a
scaling factor. Let

Fε(u) =
∫ 1

0
a
(u
ε

)
|u′| dx

be defined on
X = {u ∈W 1,1((0, 1); R2), u(0) = v0, u(1) = v1}

equipped with the L1-convergence.
The Γ-limit of Fε is

F (u) =
∫ 1

0
‖u′‖1dx,

where
‖z‖1 = |z1|+ |z2|.

This is easily checked after remarking that recovery sequences (uε) are such that a(uε(t)/ε) =
1 a.e. (except possibly close to 0 and 1 if a(v0/ε) 6= 1 or a(v1/ε) 6= 1) and then that
|u′ε| = |(uε)′1|+ |(uε)′2|. For example, if both components of (uε) are monotone, then

Fε(uε) =
∫ 1

0
a
(uε
ε

)
|u′| dx =

∫ 1

0
|u′ε| dx+ o(1)

=
∫ 1

0
(|(uε)′1|+ |(uε)′2|) dx+ o(1)

=
∣∣∣(v1)1 − (v0)1

∣∣∣+
∣∣∣(v1)2 − (v0)2

∣∣∣+ o(1)

=
∫ 1

0
(|u′1|+ |u′2|) dx+ o(1) = F (u) + o(1).

For all these energies there are no strict local minimizers since energies are invariant
with respect to reparameterization. Anyhow, if we consider equivalence classes with respect
to reparameterization (e.g., by taking only functions in

X1 = {u ∈ X : ‖u′‖1 constant a.e.})

then an argument similar to the one in the previous example shows that local minimizers
are L1 dense, in the sense that for all u ∈ X1 there exists a sequence of local minimizers
of Fε (restricted to X1) converging to u.

As a technical remark, we note that in order to have coercivity the limit F should be
extended to the space of curves with bounded variations. Anyhow, since functionals are
invariant by reparameterization, it suffices to consider bounded sequences in W 1,∞ after a
change of variables.
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4.4 References to Chapter 4

The use of Theorem 4.1.1 for proving the existence of local minimizers, together with
Example 4.2.2 are due to Kohn and Sternberg [30].



Chapter 5

Small-scale stability

The notion of local minimizer is ‘scale-independent’; i.e., it does not depend on the rate at
which energies converge, so that it does not discriminate, e.g., between energies

Fε(x) = x2 + sin2
(x
ε

)
or Fε(x) = x2 +

√
ε sin2

(x
ε

)
.

We now examine a notion of stability such that, loosely speaking, a point is stable if it is not
possible to reach a lower energy state from that point without crossing an energy barrier
of a specified height. In this case the local minimizers in the first of the two sequence of
energies are stable as ε→ 0, while those in the second sequence are not.

5.1 Larsen’s stable points

We first introduce a notion of stability that often can be related to notions of local mini-
mality.

Definition 5.1.1 (slide) Let F : X → [0,+∞] and δ > 0. A continuous function φ :
[0, 1]→ X is a δ-slide for F at u0 ∈ X if
• φ(0) = u0 and F (φ(1)) < F (φ(0)) = F (u0);
• there exits δ′ < δ such that F (φ(t)) ≤ F (φ(s)) + δ′ if 0 ≤ s ≤ t ≤ 1.

Definition 5.1.2 (stability) Let F : X → [0,+∞] and δ > 0. A point u0 ∈ X is δ-stable
for F if no δ-slide exists for F at u0.

A point u0 ∈ X is stable for F if it is δ-stable for some δ > 0 (and hence for all δ
small enough).

Let Fε : X → [0,+∞]. A sequence of points (uε) in X is uniformly stable for (Fε) if
there exists δ > 0 such that all uε are δ-stable for ε small.

79
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Example 5.1.3 (1) F (x) =

{
0 x = 0
sin
(1
x

)
otherwise. The point 0 is not a local minimizer

but it is δ-stable for δ < 1;

(2) Similarly for F (x) =

{
0 x = 0
−x2 + sin2

(1
x

)
otherwise;

(3) Let X = C and F (z) = F (ρeiθ) =
{
θρ |z| ≤ 1
−1 otherwise,

where we have chosen the representation z = ρeiθ with 0 < θ ≤ 2π. Then 0 is an isolated
local minimum, but it is not stable; e.g., taking φ(t) = 2teiδ/2. Note in fact that φ(0) = 0,
F (φ(1)) = −1 < 0, and supF (φ(t)) = F (φ(1/2)) = δ/2;

(4) We can generalize example (3) to an infinite-dimensional example. Take X =
L2(−π, π) and

F (u) =


∑
k

1
k2
|ck|2 if u =

∑
k cke

ikx and ‖u‖L2 < 1

−1 otherwise.

The constant 0 is an isolated minimum point. F is lower semicontinuous, and continuous
in {‖u‖L2 < 1}. Note that F (eikx) = 1

k2 so that φk(t) = 2teikx is a δ-slide for k2 > 1/δ;

(5) Fε(x) = x2 + sin2
(x
ε

)
. Each bounded sequence of local minimizers is uniformly

stable;

(6) Fε(x) = x2 + εα sin2
(x
ε

)
with 0 < α < 1. No bounded sequence of local minimizers

is uniformly stable (except the constant sequence of global minimizers xε = 0).

Remark 5.1.4 (local minimality and stability) (i) If F : X → R is continuous and u
stable; then u is a local minimizer;

(ii) Let F be lower semicontinuous and coercive. Then every isolated local minimizer
of F is stable.

(iii) if u is just a local minimizer then u may not be stable.

To check (i) suppose that u is not a local minimum for F . Then let ρ be such that
|F (u) − F (w)| < δ/2 if w ∈ Bρ(u), and let uρ ∈ Bρ(u) be such that F (uρ) < F (u). Then
it suffices to take φ(t) = u+ t(uρ − u).

To check (ii), let η > 0 be such that u0 is an isolated minimum point in Bη(u0). If u0

is not stable then there exist 1/k slides φk with final point outside Bη(u0). This implies
that there exist uk = φk(tk) for some tk with uk ∈ ∂Bη(u0), so that F (uk) ≤ F (u0) + 1/k.
By coerciveness, upon extraction of a subsequence uε → u ∈ ∂Bη(u0), and by lower
semicontinuity F (u) ≤ lim infk F (uk) ≤ F (u0), which is a contradiction.

For (iii) take for example u = 0 for F (u) = (1− |u|) ∧ 0 on R.
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5.2 Stable sequences of functionals

We now give a notion of stability of parameterized functionals.

Definition 5.2.1 (relative (sub)stability) We say that a sequence (Fε) is (sub)stable
relative to F if the following holds
• if u0 has a δ-slide for F and uε → u0, then each uε has a δ-slide for Fε (for ε small

enough).

Remark 5.2.2 (relative (super)stability) The condition of sub-stability above can be
compared to the lower bound for Γ-convergence. With this parallel in mind we can intro-
duce a notion of (super)stability relative to F by requiring that
• if u0 is an isolated local minimum for F then there exists uε → u such that (uε) is

uniformly stable for Fε.

Remark 5.2.3 (i) Note that if F is a constant then all (Fε) are stable relative to F ;
(ii) In general if Fε = F for all ε then (Fε) may not be stable relative to F . Take for

example

Fε(x) = F (x) =

{
sin
(1
x

)
if x > 0

x if x ≤ 0;

then x0 = 0 has δ-slides for all δ > 0, while taking xε = (2πb1
εc −

π
2 )−1 we have xε → x0

and xε has no δ-slide for δ < 2.

The following proposition is in a sense the converse of Theorem 4.1.1 with Γ-convergence
substituted with stability.

Proposition 5.2.4 Let (Fε) be (sub)stable relative to F and uε be a sequence of uniformly
stable points for Fε with uε → u. Then u is stable for F .

Proof. If uε → u and uε is uniformly stable then it is stable for some δ > 0. By the
(sub)stability of (Fε) then u is δ′ stable for all 0 < δ′ < δ; i.e., it is stable.

Remark 5.2.5 The main drawback of the notion of stability of energies is that it is not
in general compatible with the addition of (continuous) perturbations. Take for example
Fε(x) = sin2

(x
ε

)
and F = 0. Then Fε is stable relative to F , but Gε(x) = Fε(x) + x is

not stable with respect to G(x) = x: each x has a δ-slide for all δ > 0, but if xε → x is a
sequence of local minimizers of Gε then they are δ-stable for δ < 1.
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5.3 Stability and Γ-convergence

In this section we will couple stability with Γ-convergence, and try to derive some criteria
in order to guarantee the compatibility with respect to the addition of continuous pertur-
bations. The main issue is to construct δ-slides for the approximating functionals starting
from δ-slides for the Γ-limit.

Example 5.3.1 We consider the one-dimensional energies

Fε(u) =
∫ 1

0
a
(x
ε

)
|u′|2 dx,

where a is a 1-periodic function with 0 < inf a < sup a < +∞, so that Fε Γ-converge to
the Dirichlet integral

F (u) = a

∫ 1

0
|u′|2 dx .

We will also consider a perturbation of Fε with

G(u) =
∫ 1

0
g(x, u) dx,

where g is a Carathéodory function with |g(x, u)| ≤ C(1 + |u|2) (this guarantees that G is
L2-continuous).

We want to check that Fε +G is stable relative to F +G. To this end consider a point
u0 such that a δ-slide φ for F +G exists at u0, and points uε → u0. We wish to construct
a δ-slide for Fε +G at uε.

With fixed K ∈ N we consider points xKi = i/K for i = 0, . . .K and denote for every t
with φK(t) the piecewise affine interpolation of φ(t) on the points xKi . Note that we have
• for all K we have F (φK(t)) ≤ F (φ(t)) by Jensen’s inequality;
• F (φK(t))→ F (φ(t)) as K → +∞;
• for fixedK the map t 7→ φK(t) is continuous with respect to the strongH1-convergence.

Indeed its gradient is piecewise constant and is weakly continuous in t, hence it is strongly
continuous.

We fix δ′ < δ such that

F (φ(t)) +G(φ(t)) ≤ F (φ(s)) +G(φ(s)) + δ′ if 0 ≤ s ≤ t ≤ 1,

choose δ′′ > 0 such that δ′ + 2δ′′ < δ and

F (φ(1)) +G(φ(1)) < F (u0) +G(u0)− 2δ′.

Let K be large enough so that (if uK0 = φK(0) denotes the interpolation of u0)

F (uK0 ) +G(uK0 ) ≥ F (u0) +G(u0)− δ′′
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and
|G(φK(t))−G(φ(t))| < δ′′

for all t. We then have

F (φK(t)) +G(φK(t)) ≤ F (φ(t)) +G(φ(t)) + δ′′ .

We then claim that, up to a reparameterization, φK is a δ-slide for F +G from uK0 .
Indeed, let M = inf{t : F (φK(t))+G(φK(t)) < F (uK0 )+G(uK0 )}. This set is not empty

since it contains the point 1. If 0 ≤ s ≤ t ≤M then we have

F (φK(t)) +G(φK(t))− F (φK(s)) +G(φK(s))
≤ sup{F (φK(r)) +G(φK(r)) : 0 ≤ r ≤M} − F (uK0 ) +G(uK0 )
≤ sup{F (φ(r)) +G(φ(r)) : 0 ≤ r ≤M}+ 2δ′′ − F (u0) +G(u0)
≤ δ′ + 2δ′′ < δ

By the continuity of t 7→ F (φK(t))+G(φK(t)) we can then find t > M such that F (φK(t))+
G(φK(t)) < F (uK0 ) + G(uK0 ) and s 7→ ΦK(st) is a δ-slide. For the following, we suppose
that t = 1, so that we do not need any reparameterization.

Next, we construct a δ-slide for Fε + G. To this end, for the sake of simplicity, we
assume that N = 1

εK ∈ N. Let v be a function in H1
0 (0, 1) such that∫ 1

0
a(y)|v′ + 1|2 dy = min

{∫ 1

0
a(y)|w′ + 1|2 dy : w ∈ H1

0 (0, 1)
}

= a.

Note that we also have∫ N

0
a(y)|v′ + 1|2 dy = min

{∫ N

0
a(y)|w′ + 1|2 dy : w ∈ H1

0 (0, 1)
}

= Na.

We then define the function φKε (t) by setting on [xKi , x
K
i+1]

φKε (t)(xKi + s) = φ(t)(xKi ) +K(φ(t)(xKi+1)− φ(t)(xKi ))
(
s+ εv(

s

ε
)
)
, 0 ≤ s ≤ 1

K
,

so that
Fε(φKε (t)) = F (φK(t)).

Note again that we may suppose ε small enough so that |G(φKε (t)) − G(φK(t))| = o(1)
uniformly in t so that φKε is a δ-slide for Fε +G at φKε (0).

It now remains to construct a L2-continuous function ψε : [0, 1] → H1(0, 1) with
ψε(0) = uε and ψε(1) = φKε (0) such that concatenating ψε with φKε we have a δ-slide.
This is achieved by taking the affine interpolation (in t) of uε and uKε defined by setting
on [xKi , x

K
i+1]

uKε (xKi + s) = uε(xKi ) +K(uε(xKi+1)− uε(xKi ))
(
s+ εv(

s

ε
)
)
, 0 ≤ s ≤ 1

K
,

on (0, 1/2) and of uKε and φKε (0) on (1/2, 1).
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Example 5.3.2 We consider the oscillating perimeter functionals Fε and F of Example
3.5.1 We now show that if A has a δ-slide for F and Aε → A, then each Aε has a (δ+o(1))-
slide for Fε (and so a δ-slide for ε sufficiently small). If is easily checked that the same
argument can be used if we add to Fε a continuous perturbation

G(A) =
∫
A
f(x) dx,

where f is a (smooth) bounded function, so that the stability can be used also for Fε +G.
We first observe that an arbitrary sequence Aε of Lipschitz sets converging to a set A can

be substituted by a sequence in Aε with the same limit. To check this, consider a connected
component of ∂Aε. Note that for ε small enough every portion of ∂Aε parameterized by a
curve γ : [0, 1]→ R2 such that a(γ(0)/ε) = a(γ(1)/ε) = 1 and a(γ(t)/ε) = 2 for 0 < t < 1
can be deformed continuously to a curve lying on εa−1(1) and with the same endpoints.
If otherwise a portion of ∂Aε lies completely inside a cube Qεi it can be shrunk to a point
or expanded to the whole cube Qεi . In both cases this process can be obtained by a O(ε)-
slide, since either the lengths of the curves are bounded by 2ε, or the deformation can be
performed so that the lengths are decreasing.

We can therefore assume that Aε ∈ Aε and that there exist a δ-slide for E at A obtained
by a continuous family A(t) with 0 ≤ t ≤ 1.

We fix N ∈ N and set tNj = j/N . For all j ∈ {1, . . . , N} let AN,jε be a recovery sequence
in Aε for A(tNj ). Furthermore we set AN,0n = Aε. Note that, since AN,jε → A(tNj ) and
A(t) is continuous, we have |AN,jε 4AN,j+1

ε | = o(1) as N → +∞. We may suppose that the
set AN,j+1

ε is the union of AN,jε and a family of cubes QN,ji . We may order the indices i
and construct a continuous family of sets AN,j,i(t) such that AN,j,i(0) = AN,jε ∪

⋃
k<iQ

N,j
k ,

AN,j,i(1) = AN,jε ∪
⋃
k≤iQ

N,j
k ,(

H1(AN,jε ) ∧H1(AN,j+1
ε )

)
− Cε ≤ H1(AN,j,i(t)) ≤

(
H1(AN,jε ) ∨H1(AN,j+1

ε )
)

+ Cε.

Since also |AN,j,i(t)| differs from |AN,jε | and |AN,j+1
ε | by at most o(1) as N → +∞, by

concatenating all these families, upon reparametrization we obtain a family ANn (t) such
that ANn (0) = Aε, ANn (1) = Aε(1), and, if s < t then we have, for some j < k

Fε(ANn (s)) ≥ F (A(tNj ))− Cε− o(1),

Fε(ANn (t)) ≤ F (A(tNk )) + Cε+ o(1).

Since A(t) is a δ-slide for E we have

F (A(tNk )) ≤ F (A(tNj )) + ε,

so that
Fε(ANn (t)) ≤ Fε(ANn (s)) + δ + Cε+ o(1).

By choosing N large enough and ε small enough we obtain the desired (δ + o(1))-slide.
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The previous example suggests a criterion for ‘strong’ stability (i.e., compatible with
continuous perturbations), which is sometimes satisfied by Γ-converging sequences. We
have constructed δ-slides for the approximating functionals in two steps: one in which we
have transformed a limit δ-slide φ(t) considering recovery sequences (essentially, setting
φε(t) = utε, where (utε) is a recovery sequence for φ(t)), another where we have constructed
an ‘almost-decreasing’ path from uε to φε(0). Note that this step, conversely, is possible
thanks to the liminf inequality.

Theorem 5.3.3 (a criterion of strong stability) Suppose that Fε and F satisfy the
following requirements:

if φ is a path from u (i.e., φ : [0, 1]→ X, φ(0) = u, and φ is continuous) and uε → u,
then there exist paths ψε from uε and φε from ψε(1) such that

(i) τ 7→ Fε(ψε(τ)) is decreasing up to o(1) as n→ +∞; i.e.,

sup
0≤τ1<τ2≤1

(
Fε(ψε(τ2))− Fε(ψε(τ1))

)
→ 0 as n→∞

(ii) supτ∈[0,1]dist(φε(τ), φ(τ)) = o(1)
(iii) there exist 0 = τ ε1 < τ ε2 < ... < τ εε = 1 with maxi[τ εi − τ εi−1] = o(1) such that

maxi |Fε(φε(τ εi ))− F (φ(τ εi ))| = o(1) and Fε(φε(τ)) is between Fε(φε(τ εi )) and Fε(φε(τ εi+1))
for τ ∈ (τ εi , τ

ε
i+1), up to o(1); i.e., there exist infinitesimal βn > 0 such that

min
{
Fε(φε(τ εi )), Fε(φε(τ εi+1))

}
− βn ≤ Fε(φε(τ)) ≤ max

{
Fε(φε(τ εi )), Fε(φε(τ εi+1))

}
+ βn

Then (Fε +G) is stable relative to (E +G) for every continuous G such that (Fε +G)
is coercive.

Proof. Suppose that u has a δ-slide φ for F + G (and therefore a (δ − δ′)-slide for some
δ′ > 0) and uε → u. Then we choose ψε, φε as in (i)–(iii) above and set φ′ε(τ) := ψε(τ)
for τ ∈ [0, 1], and φ′ε(τ) := φε(τ − 1) for τ > 1. We then consider τ1 < τ2 ∈ [0, T ]. If
τ1, τ2 ∈ [0, 1], then

Fε(φ′ε(τ2))− Fε(φ′ε(τ1)) = Fε(ψε(τ2))− Fε(ψε(τ1)) ≤ o(1).

If τ1, τ2 > 1, then

Fε(φ′ε(τ2))− Fε(φ′ε(τ1)) = Fε(φε(τ2))− Fε(φε(τ1)) ≤ E(φ(τ εj ))− E(φ(τ εi )) + o(1)

for some τ εi ≤ τ εj . If τ1 < 1 < τ2, then

Fε(φ′ε(τ2))− Fε(φ′ε(τ1)) = Fε(φε(τ2))− Fε(ψε(τ1)) ≤ E(φ(τ εi ))− E(φ(0)) + o(1)
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for some τ εi , so that in any case

(Fε(φ′ε(τ2)) + G(φ′ε(τ2)))− (Fε(φ′ε(τ1)) +G(φ′ε(τ1)))

≤ (E(φ(τj)) +G(φ(τj)))− (E(φ(τi)) +G(φ(τi))) + o(1)

< δ − δ′ + o(1)

(5.1)

for some τi ≤ τj , where we used the continuity of G together with (ii) and (iii), as well as
the fact that φ is a δ-slide for u. The same argument gives

(Fε +G)(φ′ε(1))− (Fε +G)(φ′ε(0)) ≤ (E +G)(φ(1))− (E +G)(φ(0)) + o(1),

so that φ′ε is a δ-slide for Fε +G, for ε sufficiently small.

5.4 Delta-stable evolution

The notion of δ-slide (or some of its modification) can be used to define evolutions in a
similar way as in the case of quasi static motion, in cases when the presence of energy
barriers may be relevant in the model under consideration. To that end, one can proceed
by discrete approximation as in Remark 2.2.6:
• with fixed F(t, U) and D(U) energy and dissipation as in Section 2.2, time step τ > 0

and maximal barrier height δ > 0, define U τk recursively by setting U τ0 = U0, and choosing
U τk as a solution of the minimum problem

min
U

{
F(τk, U) +D(U − U τk−1)

}
on the class of U such that there exists a path φ from U τk−1 to U such that

F(τk, φ(t)) +D(φ(s)− U τk−1) ≤ F(τk, φ(s)) +D(φ(s)− U τk−1) + δ (5.2)

if 0 ≤ s < t ≤ 1.
• define the continuous trajectory U δ,τ (t) = U τbt/τc;
• define the δ-stable evolutions as the limits U δ of (subsequences of) U δ,τ (which exists

under suitable assumptions).

In order to ensure the existence of the minimizer U τk some additional properties of the
functionals

Fk(U) = F(τk, U) +D(U − U τk−1)

must be assumed; namely, that if Uj is a sequence converging to U and Fk(Uj) < Fk(U τk−1)−
C for some positive constant C such that there exists paths φj from U τk−1 to Uj satisfying
(5.2) then there exists a path φ satisfying (5.2) from U τk−1 to U .
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Remark 5.4.1 It must be noted that stable evolution gives a different notion from the
global minimization approach even when D = 0, in which case the quasistatic approach
just gives a parameterized choice of minimizers of F (t, ·).

As a simple example take the one-dimensional energy

F (t, x) = min{x2, (x− 1)2} − 2tx,

and x0 = 0. Then the trajectory of parameterized minimizers of F (t, x) from x0 is

u(t) =
{

0 if t = 0
1 + t if t > 0.

On the contrary, the limit u as δ → 0 of the corresponding δ-stable evolutions uδ(t) is

u(t) =


t if t < 1

2

1 + t if t ≥ 1
2 .

Example 5.4.2 (the long-bar paradox in Fracture Mechanics) As shown in Remark
2.3.2, for one-dimensional fracture problems with applied boundary displacement; i.e., for
the energies and dissipations

F(t, u) =
∫ 1

0
|u′|2 dt, D(S(u)) = #(S(u))

defined on piecewise-H1 functions u with u(0−) = 0 and u(1+) = t (and S(u) denotes the
set of discontinuity points of u), fracture is brutal and appears at a critical value of the
displacement t. If instead of a bar of unit length we take a bar of length L and we consider
the normalized boundary conditions u(0−) = 0 and u(L+) = tL, then the critical value for
fracture is t = 1√

L
for which the energy of the (unfractured) linear solution u(t) = tx equals

the energy of a piecewise-constant solution with one discontinuity. In other words a long
bar fractures at lower values of the strain (the gradient of the linear solution). In order
to overcome this drawback of the theory one may consider δ-stable evolutions, or, rather,
a small variation from it necessary due to the fact that the domains of the functionals
F(t, ·) are disjoint for different t. In the iterated minimization scheme above we consider
minimization among functions u such that there exists a L2-continuous path φ from the
elastic solution ukτ (x) = kτx (we again consider only the case L = 1) to u such that
φ(t)(0) = 0, φ(t)(1) = kτ for all t and

F(τk, φ(t)) + #(S(φ(t)) ≤ F(τk, φ(s)) + #(S(φ(s)) + δ (5.3)
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if 0 ≤ s < t ≤ 1. This set of u is contained in H1. Indeed, otherwise there would be a
t ∈ (0, 1] such that #(S(φ(tj)) ≥ 1 for a non-increasing sequence of tj converging to t, and
φ(t) ∈ H1 for t ≤ t. By the lower semicontinuity of F and the minimality of ukτ we have

F(kτ, ukτ ) ≤ F(kτ, φ(t)) ≤ F(kτ, φ(tj)) + o(1),

which gives
F(kτ, φ(0)) + 1 ≤ F(kτ, φ(tj)) + #(S(φ(tj)) + o(1)

contradicting (5.3) for s = 0 and t = tj if δ < 1.
We conclude that for all k the minimizer is exactly ukτ , and we may pass to the limit

obtaining the elastic solution u(t, x) = tx. As a conclusion we have that no fracture
appears, and this conclusion is clearly independent of the length of the bar.

5.5 References to Chapter 5

The notion of stable points has been introduced by Larsen in [32], where also stable fracture
evolution has been studied; in particular there it is shown that the scheme in Section 5.4
can be applied to Griffith fracture energies.

The notions of stability for sequences of functionals have been analyzed by Braides and
Larsen in [15], and are further investigated by Focardi in [23].



Chapter 6

Minimizing movements

6.1 An energy-driven implicit-time discretization

We now introduce a notion of energy-based motion which generalizes an implicit-time
scheme for the approximation of solutions of gradient flows to general (also non differen-
tiable) energies. We will use the terminology of minimizing movements, introduced by De
Giorgi, even though we will not use the precise notation used in the literature.

Definition 6.1.1 (minimizing movements) Let X be a separable Hilbert space and let
F : X → [0,+∞] be coercive and lower semicontinuous. Given x0 and τ > 0 we define
recursively xk as a minimizer for the problem

min
{
F (x) +

1
2τ
‖x− xk−1‖2

}
, (6.1)

and the piecewise-constant trajectory uτ : [0,+∞)→ X given by

uτ (t) = xbt/τc . (6.2)

A minimizing movement for F from x0 is any limit of a subsequence uτj uniform on compact
sets of [0,+∞).

As in the rest of these notes we are not focusing on the general topological assumptions
on function spaces and convergences. In this definition we have taken F ≥ 0 and X Hilbert
for the sale of simplicity. More in general, we can take X a metric space and the (power
of the) distance in place of the squared norm. In addition the topology on X with respect
to which F is lower semicontinuous can be weaker than the one of the related distance.

Remark 6.1.2 A heuristic explanation of the definition above is given when F is smooth.
In this case, with the due notation, a minimizer for (6.1) solves the equation

xk − xk−1

τ
= −∇F (uk); (6.3)

89
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i.e., uτ solves the equation

uτ (t)− uτ (t− τ)
τ

= −∇F (uτ (t)). (6.4)

If we may pass to the limit in this equation as uτ → u then

∂u

∂t
= −∇F (u). (6.5)

This is easily shown if X = Rn and F ∈ C2(Rn). In this case by taking any ϕ ∈
C∞0 ((0, T ); Rn) we have

−
∫ T

0
〈∇F (uτ ), ϕ〉dt =

∫ T

0

〈uτ (t)− uτ (t− τ)
τ

, ϕ
〉
dt = −

∫ T

0

〈
uτ (t),

ϕ(t)− ϕ(t+ τ)
τ

〉
dt,

from which, passing to the limit∫ T

0
〈∇F (u), ϕ〉dt =

∫ T

0
〈u, ϕ′〉dt;

i.e., (6.5) is satisfied in the sense of distributions, and hence in the classical sense.

Remark 6.1.3 (stationary solutions) Let x0 be a local minimizer for F , then the only
minimizing movement for F from x0 is the constant function u(t) = x0.

Indeed, if x0 is a minimizer for F when ‖x− x0‖ ≤ δ by the positiveness of F it is the
only minimizer of F (x) + 1

2τ ‖x− x0‖2 for τ ≤ δ2/F (x0) if F (x0) > 0 (any τ if F (x0) = 0).
So that xk = x0 for all k for these τ .

Proposition 6.1.4 (existence of minimizing movements) For all F and x0 as above
there exists a minimizing movement u ∈ C1/2([0,+∞);X).

Proof. By the coerciveness and lower semicontinuity of F we obtain that uk are well defined
for all k. Moreover, since

F (xk) +
1
2τ
‖xk − xk−1‖2 ≤ F (xk−1),

we have F (xk) ≤ F (xk−1) and

‖xk − xk−1‖2 ≤ 2τ(F (xk−1)− F (xk)), (6.6)
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so that for t > s

‖uτ (t)− uτ (s)‖ ≤
bt/τc∑

k=bs/τc+1

‖xk − xk−1‖

≤
√
bt/τc − bs/τc

√√√√√ bt/τc∑
k=bs/τc+1

‖xk − xk−1‖2

≤
√
bt/τc − bs/τc

√√√√√2τ
bt/τc∑

k=bs/τc+1

(F (xk−1)− F (xk))

=
√
bt/τc − bs/τc

√
2τ(F (xbs/τc)− F (xbt/τc))

≤
√

2F (x0)
√
τ(bt/τc − bs/τc)

≤
√

2F (x0)
√
t− s+ τ

This shows that the functions uτ are (almost) equicontinuous and equibounded in
C([0,+∞);X). Hence, they converge uniformly. Moreover, passing to the limit we obtain

‖u(t)− u(s)‖ ≤
√

2F (x0)
√
|t− s|

so that u ∈ C1/2([0,+∞);X).

Remark 6.1.5 (growth conditions) The positiveness of F can be substituted by the
requirement that for all x the functionals

x 7→ F (x) +
1
2τ
‖x− x‖2

be bounded from below; i.e., that there exists C > 0 such that

x 7→ F (x) + C‖x− x‖2

be bounded from below.

Example 6.1.6 (non-uniqueness of minimizing movements) If F is not C2 we may
have more than one minimizing movement.

(i) Bifurcation at times with multiple minimizers. A simple example is F (x) = − 1
α |x|

α

with 0 < α < 2, which is not C2 at x = 0. In this case, for x0 = 0 we have a double choice
for minimum problem (6.1); i.e.,

x1 = ±τ1/(2−α).
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Once x1 is chosen all other valued are determined, and it can be seen that either xk > 0
for all k or xk < 0 for all k (for α = 1, e.g., we have xk = ±kτ), and that in the limit we
have the two solutions of {

u′ = |u|(α−2)u
u(0) = 0

with u(t) 6= 0 for t > 0. Note in particular that we do not have the trivial solution u = 0.
In this example we do not have to pass to a subsequence of τ .

(i) Different movements depending on subsequences of τ . Discrete trajectories can be
different depending on the time step τ . We give an explicit example, close in spirit to the
previous one. In this example the function F is asymmetric, so that x1 is unique but may
take positive or negative values depending on τ .

We define F as the Lipschitz function taking value 0 at x = 0, for x > 0

F ′(x) =
{
−1 if 2−2k−1 < x < 2−2k, k ∈ N
−2 otherwise for x > 0

and F ′(x) = 3 + F ′(−x) for x < 0. It is easily seen that for x0 = 0 we may have a unique
minimizer x1 with x1 > 0 or x1 < 0 depending on τ . In particular we have x1 = −2−2k < 0
for τ = 2−2k−1 and x1 = 2−2k+1 > 0 for τ = 2−2k. In the two cases we then have again the
solutions to {

u′ = −F (u)
u(0) = 0

with u(t) < 0 for all t > 0 or u(t) > 0 for all t > 0, respectively.

Example 6.1.7 (heat equation) Taking X = L2(Ω) and the Dirichlet integral F (u) =
1
2

∫
Ω |∇u|

2 dx, with fixed u0 ∈ H1(Ω) and τ > 0 we can solve iteratively

min
{1

2

∫
Ω
|∇u|2 dx+

1
2τ

∫
Ω
|u− uk−1|2 dx

}
,

whose unique minimizer uk solves the Euler-Lagrange equation

uk − uk−1

τ
= ∆uk,

∂uk
∂ν

= 0 on ∂Ω, (6.7)

where ν is the inner normal to Ω. We then set uτ (x, t) = ubt/τc(x), which converges, up to
subsequences, to u(x, t). We can then pass to the limit in (6.7) in the sense of distributions
to obtain the heat equation

∂u

∂t
= ∆u,

∂u

∂ν
= 0 on ∂Ω, (6.8)

combined with the initial datum u(x, 0) = u0(x). Due to the uniqueness of the solution to
the heat equation we also obtain that the whole sequence converges as τ → 0.
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Example 6.1.8 (one-dimensional fracture energies) In dimension one, we still con-
sider X = L2(0, 1) and the Griffith (or Mumford-Shah) energy

F (u) =
1
2

∫ 1

0
|u′|2 dx+ #(S(u))

with domain piecewise-H1 functions. We fix u0 piecewise-H1 and τ > 0. In this case we
solve iteratively

min
{1

2

∫ 1

0
|u′|2 dx+ #(S(u)) +

1
2τ

∫ 1

0
|u− uk−1|2 dx

}
.

This problem is not convex, and may have multiple minimizers. Nevertheless in this simpler
case we can prove iteratively that for τ small enough we have S(uk) = S(u0) for all k, and
hence reduce to the independent iterated minimization problems of the Dirichlet integral
on each component of (0, 1)\S(u0), giving the heat equation in (0, 1)\S(u0) with Neumann
boundary conditions on 0, 1 and S(u0). The description holds until the first time T such
that u(x−, T ) = u(x+, T ) at some point x ∈ S(u(·, T )).

We check this with some simplifying hypotheses:
(1) that

∫ 1
0 |u

′
0|2dx < 2. This implies that #(S(uk)) ≤ #S(u0) since by the monotonic-

ity of the energy we have #(S(uk)) ≤ F (uk) ≤ F (u0) < #S(u0) + 1. This hypothesis can
be removed with a localization argument;

(2) that there exists η > 0 such that |u0(x) − u0(x′)| ≥ η if (x, x′) ∩ S(u0) 6= ∅. This
will imply that |uk(x+) − uk(x−)| ≥ η at all x ∈ S(uk) so that T = +∞ in the notation
above.

Furthermore, we suppose that S(u0) = {x0} (a single point) and u0(x+
0 ) > u0(x−0 ), for

simplicity of notation.
We reason by induction. We first examine the properties of u1; checking that it has

a jump point close to x0. Suppose otherwise that there exists δ > 0 such that u ∈
H1(x0 − δ, x0 + δ). We take δ small enough so that

u0(x) ≤ u(x−0 ) +
1
4

(u(x+
0 )− u(x−0 )) for x0 − δ < x < x0

u0(x) ≥ u(x+
0 )− 1

4
(u(x+

0 )− u(x−0 )) for x0 < x < x0 + δ.

In this case

1
2

∫ x0+δ

x0−δ
|u′1|2 dx+

1
2τ

∫ x0+δ

x0−δ
|u1 − u0|2dx

≥ 1
2

min
{∫ δ

0
|v′|2 dx+

1
τ

∫ δ

0
|v|2dx : v(δ) =

1
4

(u(x+
0 )− u(x−0 ))

}
=

(u(x+
0 )− u(x−0 ))2

8
√
τ

tanh
( δ√

τ

)
,
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the last equality easily obtained by computing the solution of the Euler-Lagrange equation.
This shows that for each such δ > 0 fixed we have (x0−δ, x0+δ)∩S(u1) 6= ∅ for τ sufficiently
small. Note that the smallness of τ depends only on the size of u(x+

0 ) − u(x−0 ) (which is
larger than η). Since #S(u1) ≤ #S(u0) we then have (x0 − δ, x0 + δ) ∩ S(u1) = {x1}; we
may suppose that x1 ≥ x0.

We now check that x1 = x0. Suppose otherwise; then note that by the Hölder continuity
of u1 we have that for δ small enough (depending only on the size of u(x+

0 ) − u(x−0 )) we
have

u1(x) ≤ u0(x−0 ) +
1
8

(u(x+
0 )− u(x−0 )) for x0 < x < x1

and

u1(x+
1 ) ≥ u0(x+

1 )− 1
8

(u(x+
0 )− u(x−0 )).

We may then consider the function ũ coinciding with u1 on (0, x0), with ũ′ − U ′1 and
S(ũ) = {x0}. Then F (ũ) = F (u1) and∫ 1

0
|ũ− u0|2 dx <

∫ 1

0
|u1 − u0|2 dx,

contradicting the minimality of u1. Hence, we have S(u1) = S(u0).
Note that u1 is obtained by separately minimizing the problems with the Dirichlet

integral on (0, x0) and (x0, 1), and in particular that on each such interval supu1 ≤ supu0

and inf u1 ≥ inf u0, so that the condition that |u1(x) − u1(x′)| ≥ η if (x, x′) ∩ S(u1) 6= ∅
still hold. This shows that we can iterate the scheme obtaining uk which satisfy inf u0 ≤
uk ≤ supu0 on each component of (0, 1) \ S(u0) and u′k = 0 on 0, 1 and S(u0). In
particular |u+

k − u
−
k | ≥ η on S(u0), which shows that the limit satisfies the heat equation

with Neumann conditions on S(u0) for all times.

Remark 6.1.9 (higher-dimensional fracture energies: an open problem) In dimen-
sion higher than one, we may apply the minimizing-movement scheme to the Mumford-Shah
functional (which can also be interpreted as a Griffith energy in anti-plane setting). To
this scheme we may also add the constraint of increasing crack in the same way as in
Section 2.3. We then obtain a minimizing movement u in L2(Ω) from an initial datum u0.
The solution u solves a weak form of the heat equation almost everywhere in Ω, and in
some cases it can be proved that Neumann boundary conditions still holds on S(u), but it
remains open the characterization of the (possible) motion of the crack set. As compared
with the Francfort and Marigo quasistatic theory, here an analog of the Francfort-Larsen
transfer lemma is missing.
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6.2 Time-dependent minimizing movements

We can generalize the definition of minimizing movement to include forcing terms or varying
boundary conditions, by considering time-parameterized energies F (x, t) and, given τ and
an initial datum x0, define xk recursively by choosing xk as a minimizer of

min
{
F (x, kτ) +

1
2τ
‖x− xk−1‖2

}
, (6.9)

and eventually define uτ (t) = xbt/τc. We may define, up to subseqences, a limit u of uτ as
τ → 0 if some technical hypothesis is added to F . One such is that in the scheme above

F (uk, kτ) +
1
2τ
‖xk − xk−1‖2 ≤ (1 + Cτ)F (uk−1, (k − 1)τ) + Cτ, (6.10)

for some C (at least if kτ remains bounded). With such a condition we can repeat the
convergence argument as for the time-independent case and obtain a limit minimizing
movement u.

Indeed, with such a condition we have

‖xk − xk−1‖2 ≤ 2τ
(

(1 + Cτ)F (uk−1, (k − 1)τ)− F (uk, kτ) + Cτ
)
, (6.11)

and the inequality (for τ small enough)

F (uk, kτ) ≤ (1 + Cτ)F (uk−1, (k − 1)τ) + Cτ ≤ (1 + Cτ)(F (uk−1, (k − 1)τ) + 1) (6.12)

that implies that F (uk, kτ) is equibounded for kτ bounded. We fix T > 0; from (6.11) we
obtain (for 0 ≤ s ≤ t ≤ T )

‖uτ (t)− uτ (s)‖ ≤
bt/τc∑

k=bs/τc+1

‖xk − xk−1‖

≤
√
bt/τc − bs/τc

√√√√√ bt/τc∑
k=bs/τc+1

‖xk − xk−1‖2

≤
√
bt/τc − bs/τc

√√√√√2τ
bt/τc∑

k=bs/τc+1

(
F (xk−1, (k − 1)τ)− F (xk, kτ) + CT τ)

)
=

√
bt/τc − bs/τc

√
2τF (x0, 0) + CT τ(bt/τc − bs/τc))

≤
√

2F (x0, 0)(t− s+ τ) + CT (t− s+ τ)2,

which gives an equicontinuity condition sufficient to pass to the limit as τ → 0.
Note that from (6.12) for s < t we obtain the estimate

F (uτ (t), bt/τcτ) ≤ eC(t−s+τ)(F (uτ (s), bs/τcτ) + Cτ). (6.13)
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Example 6.2.1 (heat equation with varying boundary conditions) We can take

F (u, t) =
1
2

∫ 1

0
|u′|2 dx,

with domain all H1-functions with u(0) = 0 and u(1) = t.
Then if we can test the problem defining uk with the function ũ = uk−1 + τx. We then

have

F (uk, kτ) +
1
2τ
‖uk − uk−1‖2 ≤ F (ũ, kτ) +

1
2τ
‖ũ− uk−1‖2

=
1
2

∫ 1

0
|u′k−1 + τ |2 dx+

1
6
τ2

≤ (1 + τ)
1
2

∫ 1

0
|u′k−1|2 dx+ τ +

1
6
τ2

≤ (1 + τ)
1
2
F (uk−1, (k − 1)τ) +

(
1 +

1
6
τ
)
τ.

which gives (6.10).
We then have the convergence of uτ to the solution u of the equation

∂u

∂t
=
∂2u

∂x2

u(0, t) = 0, u(1, t) = t

u(x, 0) = u0(x).

(6.14)

Clearly in this example we may take any Lipschitz function g(t) in place of t as boundary
condition.

Example 6.2.2 (minimizing movements vs quasi static evolution for fracture) We
can take

F (u, t) =
1
2

∫ 1

0
|u′|2 dx+ #S(u),

with domain all piecewise-H1-loc functions with u(x) = 0 if x ≤ 0 and u(x) = t for x ≥ 1,
so that S(u) ⊂ [0, 1], and the fracture may also appear at the boundary points 0 and
1. As in the previous example we can test the problem defining uk with the function
ũ = uk−1 + τx since #S(ũ) = #S(uk−1), to obtain (6.10).

We consider the initial datum u0 = 0. Note that the minimum problems for F (·, t)
correspond to the definition of quasi static evolution in Remark 2.3.2. We now show that
for problems (6.9) the solution does not develop fracture.
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Indeed, consider
kτ = min{k : uk 6∈ H1

loc(R)},

and suppose that τkτ → t ∈ [0,+∞). Then we have that uτ converges on [0, t] to u
described by (6.14) in the previous example. Moreover we may suppose that

lim
τ→0

∫ 1

0
|u′kτ−1|2 dx =

∫ 1

0
|u′(x, t)|2 dx,

and since also ukτ → u(·, t) as τ → 0, we have∫ 1

0
|u′(x, t)|2 dx ≤ lim inf

τ→0

∫ 1

0
|u′kτ |

2 dx.

We deduce that
F (ukτ , kττ) ≥ F (ukτ−1, (kτ − 1)τ) + 1 + o(1)

as τ → 0, which contradicts (6.12).

From the analysis above we can compare various ways to define the evolutive response
of a brittle elastic material to applied increasing boundary displacements (at least in a
one-dimensional setting):
• (quasistatic motion) the response is purely elastic until a threshold (depending on

the size of the specimen) is reached, after which we have brutal fracture;
• (stable evolution) the response is purely elastic, and corresponds to minimizing the

elastic energy at fixed boundary displacement. No fracture occurs;
• (minimizing movement) in this case the solution does not develop fracture, but

follows the heat equation with given boundary conditions.

6.3 References to Chapter 6

The terminology ‘(generalized) minimizing movement’ has been introduced by De Giorgi
in a series of papers devoted to mathematical conjectures (see [22]). We also refer to the
original treatment by L. Ambrosio [3].

A theory of gradient flows in metric spaces using minimizing movements is described in
the book by Ambrosio, Gigli and Savaré [7]. L. Ambrosio, N. Gigli and G. Savaré, Gradient
flows in metric spaces and in the space of probability measures, Lectures in Mathematics
ETH Zürich. Birkhäuser, Basel, 2005.

Minimizing movements for the Mumford-Shah functional in more that one space di-
mension (and hence also for the Griffith fracture energy) with the condition of increasing
fracture have been defined by Ambrosio and Braides [4], and partly analyzed in a two-
dimensional setting by Chambolle and F. Doveri [20].
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Chapter 7

Minimizing movements along a
sequence of functionals

Gradient flows, and hence minimizing movements, trivially do not commute even with
uniform convergence. As a simple example, take X = R and

Fε(x) = x2 − ρ sin
(x
ε

)
,

with ρ = ρε → 0 as ε→ 0, uniformly converging to F (x) = x2. If also

ε << ρ,

then for fixed x0 the solutions uε to the equation{
u′ε = −2uε +

ρ

ε
cos
(uε
ε

)
uε(0) = x0

converge to the constant function u0(t) = x0 as ε→ 0, which does not solve{
u′ = −2u
u(0) = x0 .

This is easily seen by studying the stationary solutions of

−2x+
ρ

ε
cos
(x
ε

)
= 0 .

With the remark above in mind, in order to give a meaningful limit for the energy-
driven motion along a sequence of functionals it may be useful to vary the definition of
minimizing movement as in the following section.

99
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7.1 Minimizing movements along a sequence

Definition 7.1.1 (minimizing movements along a sequence) Let X be a separable
Hilbert space, Fε : X → [0,+∞] equicoercive and lower semicontinuous and xε0 → x0 with

Fε(xε0) ≤ C < +∞, (7.1)

and τε > 0 converging to 0 as ε→ 0. Fixed ε > 0 we define recursively xεk as a minimizer
for the problem

min
{
Fε(x) +

1
2τ
‖x− xεk−1‖2

}
, (7.2)

and the piecewise-constant trajectory uε : [0,+∞)→ X given by

uε(t) = xbt/τεc . (7.3)

A minimizing movement for Fε from xε0 is any limit of a subsequence uεj uniform on
compact sets of [0,+∞).

After remarking that the Hölder continuity estimates in Proposition 6.1.4 only depend
on the bound on Fε(xε0), with the same proof we can show the following result.

Proposition 7.1.2 For every Fε and xε0 as above there exist minimizing movements for
Fε from xε0 in C1/2([0,+∞);X).

Remark 7.1.3 (growth conditions) The positiveness of Fε can be substituted by the
requirement that for all x the functionals

x 7→ Fε(x) +
1
2τ
‖x− x‖2

be bounded from below; i.e., that there exists C > 0 such that

x 7→ Fε(x) + C‖x− x‖2

be bounded from below.

Example 7.1.4 We give a simple example that shows how the limit minimizing movement
may depend on the choice of the mutual behavior of ε and τ . We consider the functions

Fε(x) =


−x if x ≤ 0
0 if 0 ≤ x ≤ ε
ε− x if x ≥ ε,
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which converge uniformly to F (x) = −x. Note the that the energies are not bounded
from below, but their analysis falls within the framework in the previous remark. For this
example a direct computation is immediately carried on. We consider a fixed initial datum
x0.

If x0 > 0, then for ε < x0 we have xεk = xεk−1 + τ for all k ≥ 0.
If x0 ≤ 0 then we have xεk = xεk−1 + τ if xεk−1 ≤ −τ . If 0 ≥ xεk−1 > −τ then xεk − xεk−1

is obtained by minimizing the function

f(y) =



−y +
1
2τ
y2 if 0 ≤ y ≤ −xεk−1

xεk−1 +
1
2τ
y2 if −xεk−1 ≤ y ≤ −xεk−1 + ε

ε− y +
1
2τ
y2 if y ≥ −xεk−1 + ε,

whose minimizer is always y = τ + xεk−1 if ε− xεk−1 > τ . In this case xεk = 0. If otherwise
ε− xεk−1 ≤ τ the other possible minimizer is y = τ . We then have to compare the values

f(−xεk−1) = xεk−1 +
1
2τ

(xεk−1)2, f(τ) = ε− 1
2
τ.

We have three cases:
(a) ε− 1

2τ > 0. In this case we have xεk = 0 (and this holds for all subsequent steps);
(b) ε− 1

2τ < 0. In this case we either have f(τ) < f(−xεk−1), in which case xεk = xεk−1+τ
(and this then holds for all subsequent steps); otherwise xεk = 0 and xεk+1 = xεk + τ (and
this holds for all subsequent steps);

(c) ε− 1
2τ = 0. If xεk−1 < 0 then xεk = 0 (otherwise we already have xεk−1 = 0). Then,

since we have the two solutions y = 0 and y = τ , we have xεj = 0 for k ≤ j ≤ k0 for some
k0 ∈ N ∪+∞ and xεj = xεj−1 + τ for j > k0.

We can summarize the possible minimizing movements with initial datum x0 ≤ 0 as
follows:

(i) if τ < 2ε then the unique minimizing movement is x(t) = min{x0 + t, 0};
(ii) if τ > 2ε then the unique minimizing movement is x(t) = x0 + t;
(iii) if τ = 2ε then we have the minimizing movements x(t) = max{min{x0+t, 0}, x1+t}

for x1 ≤ x0.
For x0 > 0 we always have the only minimizing movement x(t) = x0 + t.

7.2 Commutability along ‘fast-converging’ sequences

We now show that by suitably choosing the ε-τ regimes the minimizing movement along
the sequence Fε from xε converges to a minimizing movement for the limit F from x0
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(‘fast-converging ε’), while for other choices (‘fast-converging τ ’) the minimizing movement
converges to a limit of minimizing movements for Fε as ε→ 0. The heuristic statement is
that minimizing movements for all other regimes are ‘trapped’ between these two extrema.

Theorem 7.2.1 Let Fε be a equi-coercive sequence of (non-negative) lower-semicontinuous
functionals on a Hilbert space X Γ-converging to F , let xε → x0. Then

(i) there exists a choice of ε = ε(τ) such that every minimizing movement along Fε
(and with time-step τ) with initial data xε is a minimizing movement for F from x0 on
[0, T ] for all T ;

(ii) there exists a choice of τ = τ(ε) such that every minimizing movement along Fε (and
with time-step τ) with initial data xε is a the limit of a sequence of minimizing movements
for Fε (for ε fixed) from xε on [0, T ] for all T .

Proof. (i) Note that if yε → y0 then the solutions of

min
{
Fε(x) +

1
2τ
‖x− yε‖2

}
(7.4)

converge to solutions of

min
{
F (x) +

1
2τ
‖x− y0‖2

}
(7.5)

since we have a continuously converging perturbation of a Γ-converging sequence.
Let now xε → x0. Let τ be fixed. We consider the sequence {xτ,εk } defined by iterated

minimization of Fε with initial point xε. Since xε → x0, up to subsequences we have
xτ,ε1 → xτ,01 , which minimizes

min
{
F (x) +

1
2τ
‖x− x0‖2

}
. (7.6)

The point xτ,ε2 converge to xτ,02 . Since they minimize

min
{
Fε(x) +

1
2τ
‖x− xτ,ε1 ‖

2
}

(7.7)

and xτ,ε1 → xτ,01 their limit is a minimizer of

min
{
F (x) +

1
2τ
‖x− xτ,01 ‖

2
}
. (7.8)

This operation can be repeated iteratively, obtaining (upon subsequences) xτ,εk → xτ,0k ,
and {xτ,0k } iteratively minimizes F with initial point x0. Since up to subsequences the
trajectories {xτ,0k } converge to a minimizing movement for F with initial datum x0 the
thesis follows by a diagonal argument.

(ii) For fixed ε the piecewise-constant functions uε,τ (t) = xε,τbt/τc converge uniformly to a
minimizing movement uε for Fε with initial datum xε. By compactness, these uε converge
uniformly to some function u as ε→ 0. Again, a diagonal argument gives the thesis.
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Remark 7.2.2 Note that, given xε and Fε, if F has more than one minimizing movement
from x0 then the approximation gives a choice criterion. As an example take F (x) = −|x|,
Fε(x) = −|x+ ε| and x0 = xε = 0.

Remark 7.2.3 (the convex case) If all Fε are convex then it can be shown that actually
the minimizing movement along the sequence Fε always coincides with the minimizing
movement for their Γ-limit. This (exceptional) case will be dealt with in detail separately
in Section 10.

Example 7.2.4 In dimension one we can take

Fε(x) =
1
2
x2 + εW

(x
ε

)
,

where W is a one-periodic odd Lipschitz function with ‖W ′‖∞ = 1. Up to addition of a
constant is not restrictive to suppose that the average of W is 0. We check that the critical
regime for the minimizing movements along Fε is ε ∼ τ . Indeed, if ε << τ then from the
estimate ∣∣∣Fε(x)− 1

2
x2
∣∣∣ ≤ ε

2
we deduce that

xk − xk−1

τ
= −xk +O

( ε
τ

)
,

and hence that the limit minimizing movement satisfies u′ = −u, so that it corresponds to
the minimizing movement of the limit F0(x) = 1

2x
2.

Conversely, if τ << ε then it may be seen that for |x0| ≤ 1 the motion is pinned; i.e.,
the resulting minimizing movement is trivial u(t) = x0 for all t. If W ∈ C1 this is easily
seen since in this case the stationary solutions, corresponding to x satisfying

x+W ′
(x
ε

)
= 0

tend to be dense in the interval [−1, 1] as ε → 0. Moreover, it is easily seen that in this
regime the minimizing movement corresponds to the limit as ε → 0 to the minimizing
movements of Fε for ε fixed; i.e., solutions uε of the gradient flow

u′ε = −uε −W ′
(uε
ε

)
.

Integrating between t1 and t2 we have∫ uε(t2)

uε(t1)

1
s+W ′(s/ε)

ds = t1 − t2.
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By the uniform convergence uε → u we can pass to the limit, recalling that the integrand
weakly converges to the function 1/g defined by

1
g(s)

=
∫ 1

0

1
s+W ′(σ)

dσ,

and obtain the equation
u′ = −g(u).

This equation corresponds to the minimizing movement for the even energy F̃0 given for
x ≥ 0

F̃0(x) =


0 if x ≤ 1∫ x

1
g(w) dw if x ≥ 1.

The plot of the derivatives of Fε, F0 and F̃0 is reproduced in Fig. 7.1

Figure 7.1: derivatives of Fε, F0 and F̃0

We can explicitly compute the minimizing movement for τ << ε in the case W (x) =
|x− 1

2 |−
1
4 for 0 ≤ x ≤ 1. Here, the solutions with initial datum x0 > 1 satisfy the equation

u′ =
1
u
− u.

Integrating this limit equation we conclude that the minimizing movement along Fε corre-
spond to that of the effecitve energy

F̃0(x) =
(1

2
x2 − log |x| − 1

2

)+
.
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7.2.1 Relaxed evolution

In Theorem 7.2.1 we have considered as usual by simplicity the Γ-convergence with respect
to the topology in X. In this way we characterize the convergence of solutions to problems
(7.4) to solutions of problems (7.5) in terms of the Γ-limit. This is the only argument where
we have used the definition of F in the proof of Theorem 7.2.1(i). We may consider the
Γ-limits with respect to weaker topologies, for which we have coerciveness but the distance
term is not a continuous perturbation. In analogy with what already observed for quasi
static motions in Chapter 2 (see, e.g., Section 2.1.5) the proof of Theorem 7.2.1(i) can be
repeated, upon defining a relaxed limit motion, where the minimizing movement for F is
replaced by the limit of uτ , defined by successive minimizing

min
X
Fxk−1
τ (x) ,

where
Fyτ (x) = Γ- lim

ε→0

(
Fε(x) +

1
2τ
‖x− y‖2

)
. (7.9)

The study of this more general minimizing movements is beyond the scope of these notes.
We only give a simple example.

Example 7.2.5 Consider X = L2(0, 1) and

Fε(u) =
∫ 1

0
a
(x
ε

)
u2 dx,

where a is 1-periodic and 0 < α ≤ a(y) ≤ β < +∞ for some constants α and β. Then
Fε is equicoercive with respect to the weak-L2 topology, and its limit is a

∫ 1
0 u

2 dx (a the
harmonic mean of a). However, the perturbations with the L2-distance are not continuous,
and the limits in (7.9) with respect to the weak topology are easily computed as

Fvτ (u) = Γ- lim
ε→0

(
Fε(u) +

1
2τ
‖u− v‖2

)
= Γ- lim

ε→0

∫ 1

0

((
a
(x
ε

)
+

1
2τ

)
u2 +

(v2 − 2uv)
2τ

)
dx

=
∫ 1

0

(
aτu

2 +
(v2 − 2uv)

2τ

)
dx

=
∫ 1

0

(
aτ −

1
2τ

)
u2 dx+

1
2τ
‖u− v‖2,

where

aτ =

(∫ 1

0

1(
a(y) + 1

2τ

) dy)−1

.
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A series expansion argument easily yields that

aτ =
1
2τ

(∫ 1

0

1
2τa(y) + 1

dy

)−1

=
1
2τ

(∫ 1

0

(
1− 2τa(y) +O(τ2)

)
dy

)−1

=
1
2τ

(
1 + 2τ

∫ 1

0
a(y) dy +O(τ2)

)
=

1
2τ

+ a+O(τ),

where a is the arithmetic mean of a. We then obtain that the limit of uτ coincides with
the minimizing motion for F̃ given by

F̃ (u) = a

∫ 1

0
u2 dx.

The same argument leading to an effective motion can be applied to varying distances
as in the following example.

Example 7.2.6 We consider Xε = X = L2(0, 1) equipped with the distance dε given by

d2
ε(u, v) =

∫ 1

0
a
(x
ε

)
|u− v|2 dx,

and Fε(u) = F (u) =
∫ 1

0 |u
′|2 dx. For fixed v the square distances can be seen as functionals

depending on v, weakly equicoercive in L2 and Γ-converging to a‖u−v‖2 (‖u‖ the L2-norm).
Nevertheless, in this case the functionals Fε(u)+ 1

2τ d
2
ε(u, v) are coercive with respect to the

strong L2-norm and Γ-converge to F (u) + 1
2τ a‖u − v‖

2. As a conclusion, the minimizing
movement coincide with the minimizing movement for F with respect to the norm

√
a‖u‖

or, equivalently, with the minimizing movement for 1
aF with respect to the L2-norm.

7.3 An example: ‘overdamped dynamics’ of Lennard-Jones
interactions

We now give an example of a sequence of non-convex energies which commute with the
minimizing movement procedure.

Let J be as in Section 3.4 and 1
ε = N ∈ N. We consider the energies

Fε(u) =
N∑
i=1

J
(ui − ui−1√

ε

)
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with the periodic boundary condition uN = u0. As proved in Section 3.4, after identification
of u with a piecewise-constant function on [0, 1], these energies Γ-converge to the energy

F (u) =
∫ 1

0
|u′|2 dt+ #(S(u) ∩ [0, 1)), u+ > u−,

defined on piecewise-H1 functions, in this case extended 1-periodically on the whole real
line.

In this section we apply the minimizing movements scheme to Fε as a sequence of
functionals in L2(0, 1). In order to have initial data uε0 with equibounded energy, we may
suppose that these are the discretization of a single piecewise-H1 function u0 (with a slight
abuse of notation we will continue to denote all these discrete functions by u0).

With fixed ε and τ , the time-discretization scheme consists in defining recursively uk

as a minimizer of

u 7→
N∑
i=1

J
(ui − ui−1√

ε

)
+

1
2τ

N∑
i=1

ε|ui − uk−1
i |2. (7.10)

By Proposition 7.1.2, upon extraction of a subsequence, the functions uτ (t) = ubt/τc con-
verge uniformly in L2 to a function u ∈ C1/2([0,+∞);L2(0, 1)). Moreover, since we have
F (u(t)) ≤ F (u0) < +∞, u(t) is a piecewise-H1 function for all t.

We now describe the motion of the limit u. For the sake of simplicity we suppose that
u0 is a piecewise-Lipschitz function and that S(u0) ∩ {εi : i ∈ {1, . . . , N}} = ∅ (so that we
do not have any ambiguity in the definition of the interpolations of u0)..

We first write down the Euler-Lagrange equations for uk, which amount to a simple
N -dimensional system of equations obtained by deriving (7.10) with respect to ui

1√
ε

(
J ′
(uki − uki−1√

ε

)
− J ′

(uki+1 − uki√
ε

))
+
ε

τ
(uki − uk−1

i ) = 0. (7.11)

• With fixed i ∈ {1, . . . , N} let vk be defined by

vk =
uki − uki−1

ε
.

For simplicity of notation we set

Jε(w) =
1
ε
J(
√
εw).

By (7.11) and the corresponding equation for i− 1, which can be rewritten as

J ′ε

(uki−1 − uki−2

ε

)
− J ′ε

(uki − uki−1

ε

)
+
ε

τ
(uki−1 − uk−1

i−1 ) = 0.
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we have

vk − vk−1

τ
=

1
τ

(uki − uki−1

ε
−
uk−1
i − uk−1

i−1

ε

)
=

1
ε

(uki − uk−1
i

τ
−
uki−1 − u

k−1
i−1

τ

)
=

1
ε2

((
J ′ε

(uki−1 − uki−2

ε

)
− J ′ε

(uki − uki−1

ε

))
−
(
J ′ε

(uki − uki−1

ε

)
− J ′ε

(uki+1 − uki
ε

)))
,

so that

vk − vk−1

τ
− 2
ε2
J ′ε(vk) = − 1

ε2

(
J ′ε

(uki−1 − uki−2

ε

)
+ J ′ε

(uki+1 − uki
ε

))
≥ − 2

ε2
J ′ε

(w0√
ε

)
. (7.12)

We recall that we denote by w0 the maximum point of J ′.
We can interpret (7.12) as an inequality for the difference system

vk − vk−1

η
− 2J ′ε(vk) ≥ −2J ′ε

(w0√
ε

)
,

where η = τ/ε2 is interpreted as a discretization step. Note that vk = w0/
√
ε for all k is a

stationary solution of the equation

vk − vk−1

η
− 2J ′ε(vk) = −2J ′ε

(w0√
ε

)
and that J ′ε are equi-Lipschitz functions on [0,+∞). If η << 1 this implies that if vk0 ≤
w0/
√
ε for some k0 then

vk ≤
w0√
ε

for k ≥ k0,

or, equivalently, that if τ << ε2 the set

Skε =
{
i ∈ {1, . . . , N} :

uki − uki−1

ε
≥ w0√

ε

}
is decreasing with k. By our assumption on u0, for ε small enough we then have

S0
ε =

{
i ∈ {1, . . . , N} : [ε(i− 1), εi] ∩ S(u0) 6= ∅

}
,



7.3 LENNARD-JONES INTERACTIONS 109

so that, passing to the limit

S(u(t)) ⊆ S(u0) for all t ≥ 0. (7.13)

• Taking into account that we may define

uτ (t, x) = u
bt/τc
bx/εc,

we may choose functions φ ∈ C∞0 (0, T ) and ψ ∈ C∞0 (x1, x2), with (x1, x2)∩S(u0) = ∅, and
obtain from (7.11)∫ T

0

∫ x2

x1

uτ (t, x)
(φ(t)− φ(t+ τ)

τ

)
ψ(x) dx dt

= −
∫ T

0

∫ x2

x1

( 1√
ε
J ′
(√

ε
uτ (t, x)− uτ (t, x− ε)

ε

))
φ(t)

(ψ(x)− ψ(x+ ε)
ε

)
dx dt .

Taking into account that

lim
ε→0

1√
ε
J ′(
√
εw) = 2w,

we can pass to the limit and obtain that

−
∫ T

0

∫ x2

x1

u(t, x)φ′(t)ψ(x) dx dt =
∫ T

0

∫ x2

x1

2
∂u

∂x
φ(t)ψ′(x) dx dt ;

i.e., that
∂u

∂t
= −2

∂2u

∂x2
(7.14)

in the sense of distributions (and hence also classically) in (0, T )×(x1, x2). By the arbitrari-
ness of the interval (x1, x2) we have that equation (7.14) is satisfied for x in (0, 1) \ S(u0).
•We now derive boundary conditions on S(u(t)). Let i0 + 1 belong to S0

ε , and suppose
that u+(t, x)− u−(t, x) ≥ c > 0. Then we have

lim
τ→0

1√
ε
J ′

(
u
bt/τc
i0

− ubt/τci0−1√
ε

)
= 0 .

If i < i0, from (7.11) it follows, after summing up the indices from i to i0, that

i0∑
j=i

ε

τ
(ukj − uk−1

j ) = − 1√
ε
J ′
(uki − uki−1√

ε

)
. (7.15)

We may choose i = iε such that εiε → x and we may deduce from (7.15) that∫ x0

x

∂u

∂t
dx = −2

∂u

∂x
(x),
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where x0 ∈ S(u(t)) is the limit of εi0. Letting x→ x−0 we obtain

∂u

∂x
(x−0 ) = 0.

Similarly we obtain the homogeneous Neumann condition at x+
0 .

Summarizing, the minimizing movement of the scaled Lennard-Jones energies Fε from
a piecewise-H1 function consists in a piecewise-H1 motion, following the heat equation on
(0, 1) \ S(u0), with homogeneous Neumann boundary conditions on S(u0) (as long as u(t)
has a discontinuity at the corresponding point of S(u0)).

Note that for ε→ 0 sufficiently fast Theorem 7.2.1 directly ensures that the minimizing
movement along Fε coincides with the minimizing movement for the functional F . The
computation above shows that this holds also for τ << ε2 (i.e., ε → 0 ‘sufficiently slow’),
which then must be regarded as a technical condition.

7.4 Homogenization of minimizing movements

We now examine minimizing movements along oscillating sequences (with many local min-
ima), treating two model cases in the real line.

7.4.1 Minimizing movements for piecewise-constant energies

We apply the minimizing-movement scheme to the functions

Fε(x) = −
⌊x
ε

⌋
ε

converging to F (x) = −x (see Fig. 7.2). This is a prototype of a function with many local

ε

Figure 7.2: the function Fε
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minimizers (actually, in this case all points are local minimizers) converging to a function
with few local minimizers (actually, none).

Note that, with fixed ε, for any initial datum x0 the minimizing movement for Fε is
trivial: u(t) = x0, since all points are local minimizers. Conversely the corresponding
minimizing movement for the limit is u(t) = x0 + t.

We now fix an initial datum x0, the space scale ε and the time scale τ , and examine
the successive-minimization scheme from x0. Note that it is not restrictive to suppose that
0 ≤ x0 < 1 up to a translation in εZ.

The first minimization, giving x1 is

min
{
Fε(x) +

1
2τ

(x− x0)2
}
. (7.16)

The function to minimize is pictured in Figure 7.3 in normalized coordinates (ε = 1); note
that it equals −x+ 1

2τ (x− x0)2 if x ∈ εZ.

-3 -2 -1 0 1 2 3 4 5 6 7

-5

-2,5

2,5

5

7,5

10

12,5

15

Figure 7.3: the function in the minimization problem (7.16)

Except for some exceptional cases that we deal separately below, we have two possibil-
ities:

(i) if τ
ε <

1
2 then the motion is trivial. The value 1/2 is the pinning threshold.

If we set x0 = sε with 0 ≤ s < 1. Then we have two sub-cases:
(a) the minimizer x1 belongs to [0, ε). This occurs exactly if Fε(ε) + 1

2τ (ε − x0)2 > 0;
i.e.,

τ <
(s− 1)2ε

2
. (7.17)

In this case the only minimizer is still x0. This implies that we have xk = x0 for all k.
Otherwise, we have that x1 = ε. This implies that, up to a translation we are in the case
x0 = 0 with s = 0, and (7.17) holds since τ < ε

2 . Hence, xk = x1 for all k ≥ 1;
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(ii) if τ
ε > 1

2 then for ε small the minimum is taken on εZ. So that again we may
suppose that x0 = 0.

Note that we are leaving out for now the case when x0 = 0 and τ
ε = 1

2 . In this case we
have a double choice for the minimizer; such situations will be examined separately.

If x0 = 0 then x1 is computed by solving

min
{
Fε(x) +

1
2τ
x2 : x ∈ εZ

}
, (7.18)

and is characterized by

x1 −
1
2
ε ≤ τ ≤ x1 +

1
2
ε.

We then have
x1 =

⌊τ
ε

+
1
2

⌋
ε if

τ

ε
+

1
2
6∈ Z

(note again that we have two solutions for τ
ε + 1

2 ∈ Z, and we examine this case separately).
The same computation is repeated at each k giving

xk − xk−1

τ
=
⌊τ
ε

+
1
2

⌋ ε
τ
.

-3 -2 -1 0 1 2 3 4 5 6 7 8 9

-2,4

-1,6

-0,8

0,8

1,6

2,4

Figure 7.4: the velocity v in terms of w

We can now choose τ and ε tending to 0 simultaneously and pass to the limit. The
behaviour of the limit minimizing movements is governed by the quantity

w = lim
ε→0

τ

ε
, (7.19)

which we may suppose exists up to subsequences. If w + 1
2 6∈ Z then the minimizing

movement along Fε from x0 is uniquely defined by

u(t) = x0 + vt, with v =
⌊
w +

1
2

⌋ 1
w
, (7.20)
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so that the whole sequence converges if the limit in (7.19) exists. Note that

• (pinning) we have v = 0 exactly when τ
ε <

1
2 for ε small. In particular this holds

for τ << ε (i.e., for w = 0);
• (limit motion for slow times) if ε << τ then the motion coincides with the gradient

flow of the limit, with velocity 1;
• (discontinuous dependence of the velocity) the velocity is a discontinuous func-

tion of w at points of 1
2 + Z. Note moreover that it may be actually greater than the limit

velocity 1. The graph of v is pictured in Figure 7.4
• (non-uniqueness at w ∈ 1

2 + Z) in these exceptional cases we may have either of
the two velocities 1 + 1

2w or 1 − 1
2w in the cases ε

τ + 1
2 > w or ε

τ + 1
2 < w for all ε small

respectively, but we may also have any u(t) with

1− 1
2w
≤ u′(t) ≤ 1 +

1
2w

if we have precisely ε
τ + 1

2 = w for all ε small, since in this case at every time step we
may choose any of the two minimizers giving the extremal velocities, and then obtain any
such u′ as a weak limit of piecewise constant functions taking only those two values. Note
therefore that in this case the limit is not determined only by w, and in particular it may
depend on the subsequence even if the limit (7.19) exists.

Figure 7.5: other potentials giving the same homogenization pattern

We remark that the functions Fε above can be substituted by functions with isolated
local minimizers; e.g. by taking (α > 0)

Fε(x) = −
⌊x
ε

⌋
ε+ α

(
x−

⌊x
ε

⌋
ε
)
,
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with isolated local minimizers at εZ (for which the computations run exactly as above), or

Fε(x) = −x+ (1 + α)ε sin
(x
ε

)
.

Note that the presence of an energy barrier between local minimizers does not influence the
velocity of the final minimizing movement, that can always be larger than 1 (the velocity
as ε << τ).

We also remark that the same result can be obtained by a ‘discretization’ of F ; i.e.,
taking

Fε(x) =
{
−x if x ∈ εZ
+∞ otherwise.

(7.21)

7.4.2 A heterogeneous case

We briefly examine a variation of the previous example introducing a heterogeneity pa-
rameter 1 ≤ λ ≤ 2 and defining

F λ(x) =


−2
⌊x

2

⌋
if 2
⌊x

2

⌋
≤ x < 2

⌊x
2

⌋
+ λ

−2
⌊x

2

⌋
− λ if 2

⌊x
2

⌋
+ λ ≤ x < 2

⌊x
2

⌋
+ 1.

(7.22)

If λ = 1 we are in the previous situation; for general λ the function F λ is pictured in
Fig. 7.6.

2

Figure 7.6: the function F λ
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We apply the minimizing-movement scheme to the functions

Fε(x) = F λε (x) = ε F λ
(x
ε

)
.

Arguing as above, we can reduce to the two cases

(a) xk ∈ 2εZ, or (b) xk ∈ 2εZ + ελ.

Taking into account that xk+1 is determined as the point in 2εZ ∪ (2εZ + ελ) closer to
τ (as above, we only consider the cases when we have a unique solution to the minimum
problems in the iterated procedure), we can characterize it as follows.

In case (a) we have the two sub cases:
(a1) if we have

2n <
τ

ε
− λ

2
< 2n+ 1

for some n ∈ N then
xk+1 = xk + (2n+ λ)ε.

In particular xk+1 ∈ 2εZ + ελ;
(a2) if we have

2n− 1 <
τ

ε
− λ

2
< 2n

for some n ∈ N then
xk+1 = xk + 2nε.

In particular xk+1 ∈ 2εZ. Note that xk+1 = xk (pinning) if
τ

ε
<
λ

2
.

In case (b) we have the two sub cases:
(b1) if we have

2n <
τ

ε
+
λ

2
< 2n+ 1

for some n ∈ N then
xk+1 = xk + 2nε.

In particular xk+1 ∈ 2εZ + ελ. Note that xk+1 = xk (pinning) if
τ

ε
< 1 − λ

2
, which is

implied by the pinning condition in (a2);
(b2) if we have

2n− 1 <
τ

ε
+
λ

2
< 2n

for some n ∈ N then
xk+1 = xk + 2nε− ελ.

In particular xk+1 ∈ 2εZ.
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Eventually, we have the two cases:
(1) when ∣∣∣τ

ε
− 2n

∣∣∣ < λ

2

for some n ∈ N then, after possibly one iteration, we are either in the case (a2) or (b1).
Hence, either xk ∈ 2εZ or xk ∈ 2εZ + ελ for all k. The velocity in this case is then

xk+1 − xk
τ

= 2n
ε

τ
;

(2) when ∣∣∣τ
ε
− (2n+ 1)

∣∣∣ < 1− λ

2

for some n ∈ N then we are alternately in case (a1) or (b2). In this case we have an
• averaged velocity: the speed of the orbit {xk} oscillates between two values with

a mean speed given by

xk+2 − xk
2τ

=
2nε+ λε

2τ
+

2(n+ 1)ε− λε
2τ

= (2n+ 1)
ε

τ
.

This is an additional feature with respect to the previous example.

1 2

2 -

Figure 7.7: The function f describing the effective velocity
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Summarizing, if we define w as in (7.19) then (taking into account only the cases with
a unique limit) the minimizing movement along the sequence Fε with initial datum x0 is
given by x(t) = x0 + vt with v = f(w) 1

w , and f is given by

f(w) =


2n if |w − 2n| ≤ λ

2
, n ∈ N

2n+ 1 if |w − (2n+ 1)| < 1− λ

2
, n ∈ N

(see Fig. 7.7). Note that the pinning threshold is now λ/2.

1 2

2 -

Figure 7.8: comparison with the homogeneous case

We can compare this minimizing movement with the one given in (7.20) by examining
the graph of w 7→ bw + 1/2c − f(w) in Fig. 7.8. For 2n + 1/2 < w < 2n + λ/2 the new
minimizing movement is slower, while for 2n+ 2− λ/2 < w < 2n+ 2− 1/2 it is faster.

7.4.3 A proposal for some random models

From the heterogeneous example above we may derive two possible random models, of
which we may then study the corresponding minimizing movement. We only give a heuristic
proposal, which can then be correctly formalized by introducing suitable random variables.

1. Random environment. Let λ ∈ (1/2, 1) and p ∈ [0, 1]. We consider a random
array of points {xωi } in R such that, e.g.,

xωi − xωi−1 =


λ with probability p

2− λ with probability 1− p.
(7.23)

With fixed ω we may consider the minimizing movement related to

Fωε (x) =
{
−x if x ∈ {εxωi : i ∈ Z}
+∞ otherwise,
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or equivalently (as in the definition (7.21)

Fωε (x) = −εxωi if x ∈ [εxωi , εx
ω
i+1), i ∈ Z.

In the case p = 0 or p = 1 we almost surely have a homogeneous environment as in Section
7.4.1. For p = 1/2 we have a random version of the heterogeneous model of Section 7.4.2.
Note that is this case for all p ∈ (0, 1) the pinning threshold for the ratio τ/ε is almost
surely λ/2, since below that value, the motion will be pinned at the first index i with
xωi − xωi−1 = λ; i.e., almost surely after a finite number of steps. For τ/ε = λ/2 and
λ < 2/3 (with this condition we always move of one index) then the (maximal) velocity
after pinning is v = λp+ (1− p) (for λ > 2/3 the computation of the velocity involves the
probability of m-consecutive points xωi at distance 2− λ);

2. Random movements. Let λ ∈ (1/2, 1) and p ∈ [0, 1]. Contrary to the model
above, at every time step k we may make a random choice of points {xωki } satisfying (7.23)
such that xεk ∈ {x

ωk
i }; i.e., this choice now represents the random possibility of motion

of the point itself (and not a characteristic of the medium). Note that in this case for
p ∈ (0, 1) the pinning threshold for the ratio τ/ε is almost surely the lower value 1 − λ

2 ,
and the (maximal) velocity after pinning is v = (2− λ)(1− p).

7.5 Time-dependent minimizing movements

Following the arguments of Section 6.2 we can define a minimizing movement along a time-
dependent sequence of energies Fε(x, t), upon some technical assumptions as in (6.10). In
this case we fix a sequence of initial data xε0 and τ = τε → 0, and define recursively xεk as
minimizing

min
{
Fε(x, kτ) +

1
2τ
‖x− xεk−1‖2

}
. (7.24)

A minimizing movement is then any limit u of uε defined uε(t) = xbt/τc.

We only give a simple one-dimensional example with a time-dependent forcing term.

Example 7.5.1 We consider

Fε(x, t) = εW
(x
ε

)
− tx

with W as in Example 7.2.4. Similarly to that example we can check that ε ∼ τ is the
critical case, and we can explicitly describe the minimizing movement in the extreme cases:
• (ε << τ) the minimizing movement is that corresponding to F0(x, t) = −tu; i.e., to

the equation u′ = t;
• (τ << ε) the minimizing movement is that corresponding to the function

F̃0(t, x) =
{

0 if t ≤ 1
g(t)u if t ≥ 1,
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where g is now defined by
1
g(t)

=
∫ 1

0

1
W ′(σ)− t

dσ.

7.6 References to Chapter 7

The definition of minimizing movement along a sequence of functionals formalizes a natural
extension to the notion of minimizing movement, and follows the definition given in the
paper by Braides, Gelli and Novaga [14].

The energies in Examples 7.2.4 and 7.5.1 have been taken as a prototype to model
plastic phenomena by Puglisi and Truskinovsky [40]. More recently that example has been
recast in the framework of quasi static motion in the papers by Mielke and Truskinovsky
[39, 35].

The example of the minimizing movement for Lennard Jones interactions is original,
and is part of ongoing work with A. Defranceschi and E. Vitali. It is close in spirit to a
semi-discrete approach (i.e., the study of the limit of the gradient flows for the discrete
energies) by Gobbino [29].
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Chapter 8

Geometric minimizing movements

We now examine some minimizing movements describing the motion of sets. Such a motion
can be framed in the setting of the previous chapter after identification of a set A with
its characteristic function u = χA. The energies we are going to consider are of perimeter
type; i.e., with

F (A) = Hn−1(∂A) (8.1)

as a prototype in the notation of the previous chapter.

8.1 Motion by mean curvature

The prototype of a geometric motion is motion by mean curvature; i.e., a family of sets A(t)
whose boundary moves in the normal direction with velocity proportional to its curvature
(inwards in convex regions and outwards in concave regions). In the simplest case of initial
datum a ball A(0) = A0 = BR0(0) in R2 the motion is given by concentric balls with radii
satisfying R′ = − c

R

R(0) = R0;
(8.2)

i.e., R(t) =
√
R2

0 − 2ct, valid until the extinction time t = R2
0/2c, when the radius vanishes.

A heuristic arguments suggests that the variation of the perimeter be linked to the
notion of curvature; hence, we expect to be able to obtain motion by mean curvature
as a minimizing movement for the perimeter functional. We will see that in order to
obtain geometric motions as minimizing movements we will have to modify the procedure
described in the previous chapter.

Example 8.1.1 (pinning for the perimeter motion) Let n = 2. We apply the mini-
mizing-movement procedure to the perimeter functional (8.1) and the initial datum A0 =
BR0(0) in R2.

121
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With fixed τ , since ∫
R2

|χA − χB|2 dx = |A4B|,

the minimization to determine A1 is

min
{
H1(∂A) +

1
2τ
|A4A0|

}
. (8.3)

We note that we can restrict our attention to sets A contained in A0, since otherwise
taking A ∩ A0 as test sets in their place would decrease both terms in the minimization.
Once this is observed, we also note that, given A ⊂ A0, if BR(x) ⊂ A0 has the same
measure as A then it decreases the perimeter part of the energy (strictly, if A itself is
not a ball) while keeping the second term fixed. Hence, we can limit our analysis to balls
BR(x) ⊂ A0, for which the energy depends only on R. The incremental problem is then
given by

min
{

2πR+
π

2τ
(R2

0 −R2) : 0 ≤ R ≤ R0

}
, (8.4)

whose minimizer is either R = 0 (with value π
2τR

2
0) or R = R0 (with value 2πR0) since in

(8.4) we are minimizing a concave function of R. For τ small the minimizer is then R0.
This means that the motion is trivial: Ak = A0 for all k, and hence also the resulting
minimizing movement is trivial.

8.2 A first (unsuccessful) generalization

We may generalize the scheme of the minimizing movements by taking a more general
distance term in the minimization; e.g., considering xk as a minimizer of

min
{
F (x) +

1
τ

Φ(‖x− xk−1‖)
}
, (8.5)

where Φ is a continuous increasing function with Φ(0) = 0. As an example, we can consider

Φ(z) =
1
p
|z|p .

Note that in this case we obtain the estimate

‖xk − xk−1‖p ≤ p τ(F (xk−1)− F (xk))

for the minimizer xk. Using Hölder’s inequality as in the case p = 2, we end up with (for
j > h)

‖xj − xh‖ ≤ (j − h)(p−1)/p
( j∑
k=h+1

‖xk − xk−1‖p
)1/p

≤ (pF (x0))1/p(τ1/(p−1)(j − h))(p−1)/p.



8.2. A FIRST (UNSUCCESSFUL) GENERALIZATION 123

In order to obtain a (1− 1
p) Hölder continuity for the interpolated function uτ we have to

define it as
uτ (t) = ubt/τ1/(p−1)c.

Note that we may use the previous definition uτ (t) = ubt/τc for the interpolated function
if we change the parameter τ in (8.5) and consider instead the problem

min
{
F (x) +

1
τp−1

Φ(‖x− xk−1‖)
}

(8.6)

to define xk.

Example 8.2.1 ((non-)geometric minimizing movements) We use the scheme above,
with a slight variation in the exponents since we will be interested in the description of
the motion in terms of the radius of a ball in R2 (which is the square root of the L2-
norm and not the norm itself). As in the previous example, we take the initial datum
A0 = BR0 = BR0(0), and consider Ak defined recursively as a minimizer of

min
{
H1(∂A) +

1
pτp−1

|A4A0|p
}
, (8.7)

with p > 1. As above, at each step the minimizer is given by balls

BRk(xk) ⊂ BRk−1
(xk−1). (8.8)

The value of Rk is determined by solving

min
{

2πR+
πp

pτp−1
(R2

k−1 −R2)p : 0 ≤ R ≤ Rk−1

}
, (8.9)

which gives
Rk −Rk−1

τ
= − 1

πR
1/(p−1)
k (Rk +Rk−1)

. (8.10)

Note that in this case the minimum value is not taken at Rk = Rk−1 (this can be checked,
e.g., by checking that the derivative of the function to be minimized in (8.9) is positive at
Rk−1). By passing to the limit in (8.10) we deduce the equation

R′ = − 1
2πRp/(p−1)

(8.11)

(valid until the extinction time).
Despite having obtained an equation for R we notice that this approach is not satisfac-

tory, since we have
• (non-geometric motion) in (8.8) we have infinitely many solutions; namely, all

balls centered in xk with
|xk−1 − xk| ≤ Rk−1 −Rk.
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This implies that we may have moving centres x(t) provided that |x′| ≤ R′ and x(0) = 0;
in particular we may choose x(t) = (R0−R(t))z for any z ∈ B1(0) which converges to R0z;
i.e., the point where the sets concentrate at the vanishing time may be any point in BR0

at the extinction time. This implies that the motion is not a geometric one: sets do not
move according to geometric quantities.
• (failure to obtain mean-curvature motion) even if we obtain an equation for R

we never obtain the mean curvature flow since p/(p− 1) > 1.

8.3 A variational approach to curvature-driven motion

In order to obtain motion by curvature Almgren, Taylor and Wang have introduced a vari-
ation of the implicit-time scheme described above, where the term |A4Ak| is substituted
by an integral term which favours variations which are ‘uniformly distant’ to the boundary
of Ak. The problem defining Ak is then

min
{
H1(∂A) +

1
τ

∫
A4Ak−1

dist(x, ∂Ak−1) dx
}
. (8.12)

We will not prove a general convergence result for an arbitrary initial datum A0, but we
will check the convergence to mean-curvature motion for A = BR0 in R2.

In this case we note that if Ak−1 is a ball centered in 0 then we have
• Ak is contained in Ak−1. To check this note that, given a test set A, considering

A ∩Ak−1 as a test set in its place decreases the energy in (8.12), strictly if A \Ak−1 6= ∅;
• Ak is convex and with baricenter in 0. To check this, first, note that each connected

component of Ak is convex. Otherwise, considering the convex envelopes decreases the
energy (strictly, if one of the connected components if not convex). Then note that if 0
is not the baricenter of a connected component of Ak then a small translation towards 0
strictly decreases the energy (this follows by computing the derivative of the volume term
along the translation). In particular, we only have one (convex) connected component;

From these properties we can conclude that Ak is indeed a ball centered in 0. Were it
not so, there would be a line through 0 such that the boundary of Ak does not intersect
perpendicularly this line. By a reflection argument we then obtain a non-convex set Ãk with
total energy not greater than the one of Ak (note that the line considered subdivides Ak
into two subsets with equal total energy). Its convexification would then strictly decrease
the energy. This shows that each Ak is of the form

Ak = BRk = BRk(0).

We can now compute the equation satisfied by Rk, by minimizing (after passing to
polar coordinates)

min
{

2πR+
2π
τ

∫ Rk−1

R
(Rk−1 − ρ)ρ dρ

}
, (8.13)
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which gives
Rk −Rk−1

τ
= − 1

Rk
. (8.14)

Passing to the limit gives the desired mean curvature equation (8.2).

8.4 Homogenization of flat flows

We now consider geometric functionals with many local minimizers (introduced in Example
3.5.1) which give a more refined example of homogenization. The functionals we consider
are defined on (sufficiently regular) subsets of R2 by

Fε(A) =
∫
∂A
a
(x
ε

)
dH1, (8.15)

where
a(x1, x2) =

{ 1 if x1 ∈ Z or x2 ∈ Z
2 otherwise.

The Γ-limit of the energies Fε is the crystalline perimeter energy

F (A) =
∫
∂A
‖ν‖1dH1, (8.16)

with ‖(ν1, ν2)‖1 = |ν1|+ |ν2|. A minimizing movement for F is called a flat flow. We will
first briefly describe it, and then compare it with the minimizing movements for Fε.

8.4.1 Motion by crystalline curvature

The incremental problems for the minimizing-movement scheme for F in (8.16) are of the
form

min
{
F (A) +

1
τ

∫
A4Ak−1

dist∞(x, ∂Ak−1) dx
}
, (8.17)

where for technical reasons we consider the ∞-distance

dist∞(x,B) = inf{‖x− y‖∞ : y ∈ B} .

However, in the simplified situation below this will not be relevant in our computations.
We only consider the case of an initial datum A0 a rectangle, which plays the role

played by a ball for motion by mean curvature. Note that, as in Section 8.3, we can prove
that if Ak−1 is a rectangle, then we can limit the computation in (8.17) to
• A contained in Ak−1 (otherwise A ∩Ak−1 strictly decreases the energy)
• A with each connected component a rectangle (otherwise taking the least rectangle

containing a given component would decrease the energy, strictly if A is not a rectangle);



126 CHAPTER 8. GEOMETRIC MINIMIZING MOVEMENTS

Figure 8.1: incremental crystalline minimization

• A connected and with the same center as A0 (since translating the center towards 0
decreases the energy).

Hence, we may suppose that

Ak =
[
−
Lk,1

2
,
Lk,1

2

]
×
[
−
Lk,2

2
,
Lk,2

2

]
for all k. In order to iteratively determine Lk we have to minimize the energy

min
{

2(Lk,1 + ∆L1) + 2(Lk,2 + ∆L2) +
1
τ

∫
A4Ak−1

dist∞(x, ∂Ak−1) dx
}
. (8.18)

In this computation it is easily seen that for τ small the integral term can be substituted
by

Lk,1
4

(∆L2)2 +
Lk,2

4
(∆L1)2.

This argument amounts to noticing that the contribution of the small rectangles at the
corners highlighted in Figure 8.1 is negligible as τ → 0. The optimal increments (more
precisely, decrements) ∆Lj are then determined by the conditions

1 +
Lk,2
4τ

∆L1 = 0

1 +
Lk,1
4τ

∆L2 = 0.
(8.19)

Hence, we have the difference equations

∆L1

τ
= − 4

Lk,2
,

∆L2

τ
= − 4

Lk,1
, (8.20)
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which finally gives the system of ODEs for the limit rectangles, with edges of length L1(t)
and L2(t) respectively, 

L′1 = − 4
L2

L′2 = − 4
L1
.

(8.21)

Geometrically, each edge of the rectangle moves inwards with velocity inversely pro-
portional to its length; more precisely, equal to twice the inverse of its length (so that the
other edge contracts with twice this velocity). Hence, the inverse of the length of an edge
plays the role of the curvature in this context (crystalline curvature).

It is worth noticing that by (8.21) all rectangles are homothetic, since d
dt
L1
L2

= 0, and
with area satisfying

d

dt
L1L2 = −8,

so that L1(t)L2(t) = L0,1L0,2 − 8t, which gives the extinction time t = L0,1L0,2/8. In the
case of an initial datum a square of side length L0, the sets are squares whose side length
at time t is given by L(t) =

√
L2

0 − 8t in analogy with the evolution of balls by mean
curvature flow.

8.5 Homogenization of oscillating perimeters

We consider the sequence Fε in (8.15). Note that for any (sufficiently regular) initial datum
A0 we have that A′ε ⊂ A0 ⊂ A′′ε , where A′ε and A′′ε are such that Fε(A′ε) = H1(∂A′ε) and
Fε(A′′ε) = H1(∂A′′ε) and |A′′ε \A′ε| = O(ε). Such sets are local minimizers for Fε and hence
the minimizing movement of Fε from either of them is trivial. As a consequence, if Aε(t)
is a minimizing movement for Fε from A0 we have

A′ε ⊂ Aε(t) ⊂ A′′ε

This shows that for any set A0 the only limit limε→0Aε(t) of minimizing movements for
Fε from A0 is the trivial motion A(t) = A0.

We now compute the minimizing movements along the sequence Fε with initial datum
a rectangle, and compare it with the flat flow described in the previous section.

For simplicity of computation we deal with a constrained case, when
• for every ε the initial datum A0 = Aε0 is a rectangle centered in 0 such that Fε(A) =

H1(∂A) (i.e., its edge lengths L0,j belong to 2εZ). In analogy with x0 in the example in
Section 7.4, if this does not hold then either it does after one iteration or we have a pinned
state Ak = A0 for all k;
• all competing A are rectangles with Fε(A) = H1(∂A) centered in 0. The fact that

all competing sets are rectangles follows as for the flat flow in the previous section. The
fact that Fε(Ak) ≤ Fε(Ak−1) then implies that the minimal rectangles satisfy Fε(Ak) =
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H1(∂Ak). The only real assumption at this point is that they are centered in 0. This
hypothesis can be removed, upon a slightly more complex computation, which would only
make the arguments less clear.

After this simplifications, the incremental problem is exactly as in (8.17) since for
competing sets we have Fε(A) = F (A), the only difference being that now Lk,1, Lk,2 ∈ 2εZ.
The problem in terms of 4Lj , using the same simplification for (8.18) as in the previous
section, is then

min
{

2(Lk,1 + ∆L1) + 2(Lk,2 + ∆L2) +
Lk,1
4τ

(∆L2)2 +
Lk,2
4τ

(∆L1)2 : ∆Lj ∈ 2εZ
}
. (8.22)

This is a minimization problem for a parabola as the ones in Section 7.4 that gives

∆L1 = −
⌊ 4τ
εLk,2

+
1
2

⌋
ε if

4τ
εLk,2

+
1
2
6∈ Z (8.23)

(the other cases giving two solutions), and an analogous equation for ∆L2. Passing to the
limit we have the system of ODEs, governed by the parameter

w = lim
ε→0

τ

ε

(which we may suppose up to subsequences), which reads as
L′1 = − 1

w

⌊4w
L2

+
1
2

⌋
L′2 = − 1

w

⌊4w
L1

+
1
2

⌋
.

(8.24)

Note that the right-hand side is a discontinuous function of Lj , so some care must be taken
at times t when 4w

Lj(t)
+ 1

2 ∈ Z. However, apart some exceptional cases, this condition holds
only for a countable number of t, and is therefore negligible.

We can compare the resulting minimizing movements with the crystalline curvature
flow, related to F .
• (total pinning) if τ << ε (w = 0) then we have A(t) = A0;
• (crystalline curvature flow) if ε << τ then we have the minimizing movements

described in the previous section;
• (partial pinning/asymmetric curvature flow) if 0 < w < +∞ then we have
(i) (total pinning) if both L0,j > 8w then the motion is trivial A(t) = A0;
(ii) (partial pinning) if L0,1 > 8w, L0,2 < 8w and 4w

L0,2
+ 1

2 6∈ Z then the horizontal edges
do not move, but they contract with constant velocity until L1(t) = 8w;

(iii) (asymmetric curvature flow) if L0,1 ≤ 8w and L0,2 < 8w then we have a unique
motion with A(t) ⊂⊂ A(s) if t > s, up to a finite extinction time. Note however that the
sets A(s) are nor homothetic, except for the trivial case when A0 is a square.
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Some cases are not considered above, namely those when we do not have uniqueness
of minimizers in the incremental problem. This may lead to a multiplicity of minimizing
movements, as remarked in Section 7.4.

It is worthwhile to highlight that we may rewrite the equations for L′j as a variation of
the crystalline curvature flow; e.g., for L′1 we can write it as

L′1 = −f
(L2

w

) 4
L2
, with f(z) =

z

4

⌊4
z

+
1
2

⌋
.

This suggests that the ‘relevant’ homogenized problem is the one obtained for τ
ε = 1, as

all the others can be obtained from this one by a scaling argument.
We note that the scheme can be applied to the evolution of more general sets, but

the analysis of the rectangular case already highlights the new features deriving from the
microscopic geometry.

8.6 Flat flow with oscillating forcing term

We now consider another minimizing-movement scheme linked to the functional F in (8.16).
In this case the oscillations are given by a lower-order forcing term. We consider, in R2,

Gε(A) =
∫
∂A
‖ν‖1dH1 +

∫
A
g
(x1

ε

)
dx, (8.25)

where g is 1-periodic and even, given by

g(s) =
{
α if dist(x,Z) < 1

4
β otherwise,

with α, β ∈ R and α < β. Note that the additional term may be negative, so that
this functional is not positive; however, the minimizing-movement scheme can be applied
unchanged.

Since the additional term converges continuously in L1 as ε→ 0, the Γ-limit is simply

G(A) =
∫
∂A
‖ν‖1dH1 +

α+ β

2
|A|. (8.26)

8.6.1 Flat flow with forcing term

We now consider minimizing movements for G. As in Section 8.4.1 we only deal with a
constrained problem, when both the initial datum and the competing sets are rectangles
centered in 0. With the notation of Section 8.4.1 we are led to the minimum problem

min
{

2(Lk,1+∆L1+Lk,2+∆L2)+
Lk,1
4τ

(∆L2)2+
Lk,2
4τ

(∆L1)2+
α+ β

2
(Lk,1+∆L1)(Lk,2+∆L2)

}
.

(8.27)
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The minimizing pair (∆L1,∆L2) satisfies

∆L1

τ
= −

( 4
Lk,2

+ (α+ β)
(

1 +
∆L2

Lk,2

))
(8.28)

and the analogous equation for ∆L2
τ . Passing to the limit we have
L′1 = −

(
4
L2

+ α+ β
)

L′2 = −
(

4
L1

+ α+ β
)
,

(8.29)

so that each edge moves with velocity 2
L2

+ α+β
2 , with the convention that it moves inwards

if this number is positive, outwards if it is negative.
Note that if α + β ≥ 0 then L1 and L2 are always decreasing and we have finite-time

extinction, while if α + β < 0 then we have an equilibrium for Lj = 4
|α+β| , and we have

expanding rectangles, with an asymptotic velocity of each side of |α+β|
2 as the side length

diverges.

8.6.2 Homogenization of forcing terms

In order to highlight new homogenization phenomena, we treat the case τ << ε only.
Again, we consider the constrained case when both the initial datum and the competing
sets are rectangles centered in 0 and adopt the notation of Section 8.4.1.

Taking into account that τ << ε the incremental minimum problem can be approxi-
mated by

min
{

2(Lk,1 + ∆L1 + Lk,2 + ∆L2) +
Lk,1
4τ

(∆L2)2 +
Lk,2
4τ

(∆L1)2

+
α+ β

2
Lk,1Lk,2 +

α+ β

2
Lk,1∆L2 + g

(Lk,1
2ε

)
Lk,2∆L1

}
. (8.30)

In considering the term g
(
Lk,1
2ε

)
we assume implicitly that τ is so small that both Lk,1

2ε and
Lk,1+∆L1

2ε belong to the same interval where g is constant. This can be assumed up to a
number of k that is negligible as τ → 0.

For the minimizing pair of (8.30) we have
2 +

Lk,2
2τ

∆L1 + g
(Lk,1

2ε

)
Lk,2 = 0

2 +
Lk,1
2τ

∆L2 +
α+ β

2
Lk,1 = 0;

(8.31)
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that is, 
∆L1

τ
= −

(
4
Lk,2

+ 2g
(Lk,1

2ε

))
∆L2

τ
= −

( 4
Lk,1

+ (α+ β)
)
.

(8.32)

This systems shows that the horizontal edges move with velocity 2
Lk,1

+ α+β
2 , while the

velocity of the vertical edges depends on the location of the edge and is

2
Lk,2

+ g
(Lk,1

2ε

)
.

We then deduce that the limit velocity for the horizontal edges of length L1 is

2
L1

+
α+ β

2
(8.33)

As for the vertical edges, we have:
• (mesoscopic pinning) if L2 is such that( 2

L2
+ α

)( 2
L2

+ β
)
< 0

then the vertical edge is eventually pinned in the minimizing-movement scheme. This
pinning is not due to the equality Lk+1,1 = Lk,1 in the incremental problem, but to the
fact that the vertical edge move in different directions depending on the value of g;
• (homogenized velocity) if on the contrary the vertical edge length satisfies( 2

L2
+ α

)( 2
L2

+ β
)
> 0

then we have a limit effective velocity of the vertical edge given by the harmonic mean of
the two velocities 2

L2
+ α and 2

L2
+ β; namely,

(2 + αL2)(2 + βL2)

L2

(
2 + α+β

2 L2

) . (8.34)

We finally examine some cases explicitly.
(i) Let α = −β. Then we have

L′2 = − 4
L1

L′1 = −2
(2− βL2) ∨ 0

L2
;
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i.e., the vertical edges are pinned if their length is larger than 2/β. In this case, the
horizontal edges move inwards with constant velocity 2

L0,1
. In this way the vertical edges

shrink with rate 4
L0,1

until their length is 2/β. After this, the whole rectangle shrinks in
all directions.

(ii) Let α < β < 0. Then for the vertical edges we have an interval of ‘mesoscopic
pinning’ corresponding to

2
|β|
≤ L2 ≤

2
|α|

(8.35)

-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

-5

-2,5

2,5

5

Figure 8.2: velocity with an interval of mesoscopic pinning

The velocity of the vertical edges in dependence of their length is then given by

v =


0 if (8.35) holds

(2 + αL2)(2 + βL2)

L2(2 + α+β
2 L2)

otherwise

and is pictured in Figure 8.2. Instead, the velocity of the horizontal edges is given by
(8.33), so that they move inwards if

L1 <
4

|α+ β|
,

and outwards if L1 >
4

|α+β| .
In this case we can consider as initial datum a square of side length L0.
If L0 ≤ 2

|β| then all edges move inwards until a finite extinction time;

if 2
|β| < L0 <

4
|α+β| then first only the horizontal edges move inwards until the vertical

edge reaches the length 2
|β| , after which all edges move inwards;
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if 4
|α+β| < L0 <

2
|α| then first only the horizontal edges move outwards until the vertical

edge reaches the length 2
|α| , after which all edges move outwards;

if L0 ≥ 2
|α| then all edges move outwards, and the motion is defined for all times. The

asymptotic velocity of the vertical edges as the length of the edges diverges is∣∣∣ 2αβ
α+ β

∣∣∣ ,
lower than

∣∣∣α+β
2

∣∣∣ (the asymptotic velocity for the horizontal edges).

The critical case can be shown to be ε ∼ τ , so that for ε << τ we have the flat flow with
averaged forcing term described in Section 8.6.1. The actual description in the case ε ∼ τ
would involve a homogenization argument for the computation of the averaged velocity of
vertical sides.

8.7 References to Chapter 8

The variational approach for motion by mean curvature is due to Almgren, Taylor, and
Wang [2]. The variational approach for crystalline curvature flow is contained in a paper
by Almgren and Taylor [1].

The homogenization of the flat flow essentially follows the discrete analog contained in
the paper by Braides, Gelli, and Novaga [14]. In that paper more effects of the microscopic
geometry are described for more general initial sets. The homogenization with forcing term
is part of ongoing work with M. Novaga.

Geometric motions with a non-trivial homogenized velocity are described in the paper
by Braides and Scilla [17].
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Chapter 9

Different time scales

In this chapter we treat some variations on the minimizing-movement scheme motivated
by some time-scaling argument.

9.1 Long-time behaviour

We will consider a new parameter λ > 0 and follow the iterative minimizing scheme from
an initial datum x0 by considering xk defined recursively as a minimizer of

min
{ 1
λ
Fε(x) +

1
2τ
‖x− xk−1‖2

}
, (9.1)

and setting uτ (t) = uτ,λ(t) = xbt/τc. Equivalently, we may view this as applying the
minimizing-movement scheme to

min
{
Fε(x) +

λ

2τ
‖x− xk−1‖2

}
. (9.2)

Note that we may compare this scheme with the usual one where xi are defined as min-
imizers of the minimizing-movement scheme with time scale η = τ/λ giving uη as a dis-
cretization with lattice step η. Then we have

uτ (t) = xbt/τc = xbt/ληc = uη
( t
λ

)
.

Hence, the introduction of λ corresponds to a scaling of time.

Remark 9.1.1 Note that the process described above may be meaningful also if Fε = F
is independent of ε. In this case, as τ → 0 we obtain the minimizing movement along
Fλ = 1

λF with λ in place of ε in the notation used hitherto (of course, being a matter of
notation, up to a change of parameters; i.e., considering 1/λ in place of λ, we can always
suppose that λ→ 0).

135
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Conversely, if Fε Γ-converges to F and λ = λε is a scale along which there exists a
non-trivial Γ-development; i.e., the limit

F (1)(x) = Γ- lim
ε→0

Fε(x)−minF
λε

then from (9.1) we argue that such λε is a meaningful scale (which may be related to
minimizing movements for F (1)). More in general, such a scale is that suggested by the
existence of a non-trivial

Γ- lim
ε→0

Fε(x)−mε

λε

for some choice of mε.
Finally, if Fε = F , taking λ = 0 in (9.2) we obtain a global minimum problem for F ,

while the trajectories uτ (t/λ) may remain uniformly distant from a global minimizer for τ
small (e.g., if the initial datum x0 is a local minimizer for F ). Similarly, for time-depending
minimizing movements time-scaling in general does not lead to a quasistatic motion (as in
Example 6.2.2)

We now first give some simple examples which motivate the study of time-scaled prob-
lems, also when the unscaled problems already give a non trivial minimizing movement.

Example 9.1.2 Consider in R2 the energy

Fε(x, y) =
1
2

(x2 + εy2).

The corresponding gradient flow is then{
x′ = −x
y′ = −εy,

with solutions of the form

(xε(t), yε(t)) = (x0e
−t, y0e

−εt).

These solutions converge to (x(t), y(t)) = (x0e
−t, y0), solving{

x′ = −x
y′ = 0,

which is the gradient flow of the limit F (x, y) = 1
2x

2. Note that

lim
t→+∞

(xε(t), yε(t)) = (0, 0) 6= (0, y0) = lim
t→+∞

(x(t), y(t)).
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Figure 9.1: trajectories of the solutions, and their pointwise limit

The trajectories of the solutions (xε, yε) lie on the curves

y

y0
=
( x
x0

)ε
and are pictured in Fig. 9.1.

The solutions can be seen as superposition of (x(t), y(t)) and ε(x∞(t), y∞(t)), where

(x∞(t), y∞(t)) := (0, e−t)

is the solution of 
x′ = 0
y′ = −y
(x(0), y(0)) = (0, y0).

The solution (x∞, y∞) can be obtained by scaling (xε, yε); namely,

(x∞(t), y∞(t)) = lim
ε→0

(xε(t/ε), yε(t/ε)).

In this case the scaled time-scale is λ = ε. Note that the limit of the scaled solutions does
not satisfy the original initial condition, but its ‘projection’ on the set of (local) minimizers
of the limit energy F (or, in other words, the domain of the limit of the energies 1

εFε).

Example 9.1.3 A similar example can be constructed in one dimension, taking, e.g.,

Fε(x) =
ε

2
x2 +

1
2

((|x| − 1) ∨ 0)2 .

If x0 < −1 then the corresponding solutions xε satisfy:
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• the limit x(t) = limε→0 xε(t) solves{
x′ = −x+ 1
x(0) = x0,

which corresponds to the gradient flow of the energy

F (x) =
1
2

((|x| − 1) ∨ 0)2 .

• the scaled limit x∞(t) = limε→0 xε(t/ε) solves{
x′ = −x
x(0) = −1,

which corresponds to the gradient flow of the energy

F∞(x) = lim
ε→0

1
ε
Fε(x) .

In this case the initial datum is the projection of x0 on the domain of F∞.

Remark 9.1.4 In the previous examples we faced the problem of defining a minimizing
movement for a sequence of functionals Fε (Γ-)converging to a limit F when the initial data
xε0 converge to a point x0 6∈domF . Note that in this case the approximating trajectories
uε are always defined if one can define xε1; i.e., a solution of

min
{
Fε(x) +

1
2τ
‖x− x0‖2

}
,

or equivalently of
min{2τFε(x) + ‖x− x0‖2 : x ∈ domF},

after which xτ1 ∈ domF and we apply the theory already studied. Note that if domF is a
closed set in X then xτ1 converge to the projection x1 of x0 on dom F , so it may be mean-
ingful to directly study the minimizing movements from that point. Note however that,
as always, the choice of initial data xτ1 → x1 may provide a choice among the minimizing
movements from x1.

We now give more examples with families of energies Fε Γ-converging to a limit F .
Since we are mainly interested in highlighting the existence of a time scale λ = λε at which
the scaled motion is not trivial, we will make some simplifying assumptions, one of which
is that the initial datum be a local minimizer for F , so that the (unscaled) minimizing
movement for the limit from that point is trivial.
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Example 9.1.5 We take as F the 1D Mumford-Shah functional on (0, 1) defined by

F (u) =
∫ 1

0
|u′|2dt+ #(S(u)),

with domain the set of piecewise-H1 functions. We take

Fε(u) =
∫ 1

0
|u′|2dt+

∑
S(u)

g
( |u+ − u−|

ε

)
,

where g is a positive concave function with

lim
z→+∞

g(z) = 1.

We also consider the boundary conditions

u(0−) = 0, u(1+) = 1.

We suppose that
• u0 is a local minimizer for F ; i.e., it is piecewise constant;
• #(S(u0)) = {x0, x1} (the simplest non-trivial local minimizer) with 0 ≤ x0 < x1 ≤ 1;
• competing functions are also piecewise constant.

With these conditions, all minimizers uk obtained by iterative minimization satisfy:
• S(uk) ⊂ {x0, x1}.
We may use the constant value zk of uk on (x0, x1) as a one-dimensional parameter.

The minimum problem defining zk is then (supposing that z0 > 0 so that all zk > 0)

min
{ 1
λ

(
g
(z
ε

)
+ g
(1− z

ε

))
+

1
2τ

(x1 − x0)(z − zk−1)2
}
,

which gives

(x1 − x0)
zk − zk−1

τ
= − 1

ελ

(
g′
(zk
ε

)
− g′

(1− zk
ε

))
.

As an example, we may take
g(z) =

z

1 + z
,

so that the equation for zk becomes

(x1 − x0)
zk − zk−1

τ
= − ε

λ

( 1
ε2 + z2

k

− 1
ε2 + (zk − 1)2

))
.

This suggests the scale
λ = ε,
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and with this choice gives the limit equation for z(t)

z′ = − 1− 2z
(x1 − x0)z2(z − 1)2

.

In this time scale, unless we are in the equilibrium z = 1
2 the middle value moves towards

the closest value between 0 and 1.
As a side remark, note that a simple qualitative study of this equation shows that if

the initial datum is not 1/2 then z = 0 or z = 1 after a finite time, after which the motion
is trivial. Note that the limit state is a local minimum with only one jump.

Example 9.1.6 We consider the same functionals F and Fε as in Example 9.1.5 with
an initial datum with three jumps satisfying the same Dirichlet boundary conditions
u(0−) = 0, u(1+) = 1 and the same assumptions as before.

With the notation used above, the minimum problem is

min
{ 1
λ

(
g

(
z0 − 0
ε

)
+ g

(
z1 − z0

ε

)
+ g

(
1− z1

ε

))
+

1
2τ

(
(x1 − x0)|z0 − zk−1

0 |2 + (x2 − x1)|z1 − zk−1
1 |2

)}
. (9.3)

Differently from the previous case, now we have to compute a gradient as a function of
z0 and z1, the constant values of u respectively on (x0, x1) and (x1, x2). Hence, the Euler
equations for (9.3) give the following system for zk0 and zk1 :

(x1 − x0)
zk0 − z

k−1
0

τ
= − 1

λε

(
g′
(
zk0
ε

)
− g′

(
zk1 − zk0

ε

))
, (9.4)

(x2 − x1)
zk1 − z

k−1
1

τ
= − 1

λε

(
g′
(
zk1 − zk0

ε

)
− g′

(
1− zk1
ε

))
. (9.5)

For the sake of illustration, we may take the same g as in the previous example, so that
equations (9.4) and (9.5) become

(x1 − x0)
zk0 − z

k−1
0

τ
= − ε

λ

(
1

(ε+ zk0 )2
− 1

(ε+ zk1 − zk0 )2

)
, (9.6)

(x2 − x1)
zk1 − z

k−1
1

τ
= − ε

λ

(
1

(ε+ zk1 − zk0 )2
− 1

(ε+ 1− zk1 )2

)
. (9.7)

This suggests the scale
λ = ε, (9.8)
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and with this choice the limit equations for z0(t) and z1(t) are

z′0 = − z1(z1 − 2z0)
(x1 − x0)z2

0(z1 − z0)2
, (9.9)

z′1 = − 1− z2
0 − 2z1(1− z0)

(x2 − x1)(z1 − z0)2(1− z1)2
. (9.10)

In this time scale, it is easy to see that the gradient is zero when (z0, z1) = ( z12 ,
1+z0

2 ),
so we can have the following different behaviors:

• Equilibrium point. For the initial datum (z0, z1) = (1
3 ,

2
3) the motion is trivial;

• If z0 is larger than the equilibrium point, then z′0 > 0 and the constant value z0 will
increase towards z1, otherwise it will decrease towards zero. The same holds for z1

between z0 and 1.

It must be noted that if the initial datum is not an equilibrium point then after a finite
time one of the jump sizes vanishes, after which we are back to the previous example. In
Figures 9.2–9.5 we picture four stages of the evolution computed numerically.

Figure 9.2: Initial conditions Figure 9.3: Iteration n. 30

A further simplified example is obtained by taking symmetric initial data x2 − x1 =
x1 − x0 =: L and z0(0) = 1

2 − w0 and z1(0) = 1
2 + w0 with 0 < w0 < 1/2, for which the

motion is described by a single parameter w(t) satisfying

w′ =
3(1

2 + w)(w − 1
6)

4L(1
2 − w)w2

,

in which case the equilibrium point corresponds to w0 = 1/6, and otherwise after a finite
either we have w = 0 (which gives z0 = z1 = 1/2; i.e., the equilibrium point with two
jumps) or w = 1

2 (which gives z0 = 0 and z1 = 1; i.e., a final state with only one jump
point
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Figure 9.4: Iteration n. 60 Figure 9.5: Iteration n. 100

Example 9.1.7 We consider another approximation of the Mumford-Shah functional: the
(scaled) Perona-Malik functional. In the notation for discrete functionals (see Section 3.4),
we may define

Fε(u) =
N∑
i=1

1
| log ε|

log
(

1 + ε| log ε|
∣∣∣ui − ui−1

ε

∣∣∣2) .
Note that also the pointwise limit on piecewise-H1 functions gives the Mumford-Shah
functional since

lim
ε→0

1
ε| log ε|

log
(

1 + ε| log ε|z2
)

= z2

and

lim
ε→0

1
| log ε|

log
(

1 + | log ε|w
2

ε

)
= 1

for all w 6= 0.
As in the Example 9.1.5, we consider the case when competing functions are non-

negative piecewise constants with S(u) ⊂ S(u0) = {x0, x1} and with the boundary con-
ditions u(0−) = 0, u(1+) = 1. The computation is then reduced to a one-dimensional
problem with unknown the constant value zk defined by the minimization

min
{ 1
λ| log ε|

(
log
(

1 + | log ε|z
2

ε

)
+ log

(
1 + | log ε|(z − 1)2

ε

))
+

1
2τ

(x1 − x0)(z − zk−1)2
}
,

which gives the equation

(x1 − x0)
zk − zk−1

τ
= − 2

λ

( z

ε+ | log ε|z2
+

z − 1
ε+ | log ε|(z − 1)2

)
.

This suggests the time scale

λ =
1

| log ε|
,
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and gives the equation for z(t)

z′ = − 2
(x1 − x0)

· 1− 2z
z(1− z)

,

which provides a qualitative behaviour of z similar to the previous example.

Example 9.1.8 We now consider the sharp-interface model with

F (u) = #(S(u) ∩ [0, 1))

defined on all piecewise-constant 1-periodic functions with values in ±1. For F all functions
are local minimizers.

We take
Fε(u) = #(S(u) ∩ [0, 1))−

∑
xi∈[0,1)∩S(u)

e−
xi+1−xi

ε ,

where {xi} = S(u) is a numbering of S(u) with xi < xi+1.
We take as initial datum u0 with #(S(u0)) = 2; hence, S(u0) = {x0, y0}, and, after

identifying u0 with A0 = [x0, y0], apply the Almgren-Taylor-Wang variant of the iterative
minimization process, where the distance term 1

2τ ‖u− uk−1‖2 is substituted by

1
τ

∫
A4Ak−1

dist(x, ∂Ak−1) dx.

The computation of A1 = [x1, y1] is obtained by the minimization problem

min
{
− 1
λ

(
e−

(y−x)
ε + e−

(1+x−y)
ε

)
+

1
2τ

((x− x0)2 + (y − y0)2)
}
,

which gives

x1 − x0

τ
=

1
ελ

(
e−

(y1−x1)
ε − e−

(1+x1−y1)
ε

)
y1 − y0

τ
= − 1

ελ

(
e−

(y1−x1)
ε − e−

(1+x1−y1)
ε

)
.

Let y0 − x0 < 1/2; we argue that the scaled time scale is

λ =
1
ε
e−

y0−x0
ε ,

for which we have
x1 − x0

τ
=

(
e−

(y1−y0−x1+x0)
ε − e−

(1+x1−x0−y1+y0)
ε

)
y1 − y0

τ
= −

(
e−

(y1−y0−x1+x0)
ε − e−

(1+x1−x0−y1+y0)
ε

)
.
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In terms of Lk = yk − xk this can be written as

L1 − L0

τ
= −2

(
e−

(L1−L0)
ε − e−

(1+L0−L1)
ε

)
.

Under the assumption τ << ε we have in the limit

L′ = −2
(
eo(1) − e−

1
ε

+o(1)
)

= −2 ,

which shows that the two closer interfaces move towards each other shortening linearly
their distance.

9.2 Reversed time

In a finite-dimensional setting a condition to be able to define a minimizing movement for
F is that

u 7→ F (u) +
1
2τ
|u− u|2 (9.11)

be lower semicontinuous and coercive for all u and for τ sufficiently small. This is not in
contrast with requiring that also

u 7→ −F (u) +
1
2τ
|u− u|2 (9.12)

satisfy the same conditions; for example if F is continuous and of quadratic growth. Note
that this can be seen as a further extension of the time-scaling argument in the previous
sections with λ = −1. If the iterative scheme gives a solution for the gradient flow, a
minimizing movement u for the second scheme produces a solution v(t) = u(−t) to the
backward problem {

v′(t) = −F (v(t)) for t ≤ 0
v(0) = u0

In an infinite-dimensional setting the two requirements of being able to define both the
minimizing movement (9.11) and (9.12) greatly limits the choice of F , and rules out all
interesting cases. A possible approach to the definition of a backward minimizing movement
is then to introduce a (finite-dimensional) approximation Fε to F , for which we can define
a minimizing motion along −Fε.

We now give an example in the context of crystalline motion, where we consider a
negative scaling of time.

Example 9.2.1 We consider in R2

F (A) =
∫
∂A
‖ν‖1dH1,
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and Fε the restriction of F to the sets of the form⋃{
εi+

(
−ε

2
,
ε

2

)2
: i ∈ B

}
,

where B is a subset of Z2. Hence, we may identify these union of ε-cubes with the corre-
sponding B. Even though this is not a finite-dimensional space, we will be able to apply
the Almgren-Taylor-Wang scheme.

We choose (with the identifications with subsets of Z2) as initial datum

Aε0 = {(0, 0)} =
(
−ε

2
,
ε

2

)2
,

and solve iteratively

min
{
− 1
λ
Fε(A) +

1
τ

∫
A\Aεk−1

dist∞(x, ∂Aεk−1) dx
}
.

with λ = λε > 0 to be determined. In the interpretation as a reversed-time scheme, this
means that we are solving a problem imposing the extinction at time 0.

Note that taking F in place of Fε would immediately give the value −∞ in the minimum
problem above; e.g., by considering sets of the form (in polar coordinates)

Aj = {(ρ, θ) : ρ ≤ 3ε+ ε sin(jθ)},

which contain Aε0, are contained in B4ε(0) and have a perimeter larger than 4jε.
Under the assumption that ε << τ all minimizing sets are the checkerboard structure

corresponding to indices i ∈ Z2 with i1 + i2 even contained in a square Qk centered in 0
(see Fig. 9.6). We may take the sides Lk of those squares as unknown. The incremental

Figure 9.6: enucleating sets

problems can be rewritten as

min
{
− 2
ελ

((Lk−1 + ∆L)2 − L2
k−1) +

1
τ

(Lk−1(∆L)2 + rk(∆L)2)
}
,
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with rk negligible as τ → 0. For the interfacial part, we have taken into account that for
ε small the number of squares contained in a rectangle is equal to its area divided by 2ε2

and each of the squares gives an energy contribution of 4ε; for the distance part, we note
that the integral can be equivalently taken on half of Qk \Qk−1. Minimization in ∆L gives

∆L
τ

=
2
ελ

(
1 +

∆L
Lk−1

)
.

Choosing λ = 1
ε , we obtain a linear growth

L(s) = 2s .

What we have obtained is the description of the structure of ε-squares (the checkerboard
one) along which the increase of the perimeter is maximal (and, in a sense, the decrease of
the perimeter is maximal for the reverse-time problem).

9.3 Reference to Chapter 9

The literature on long-time behaviour and backward equations, even though not by the
approach by minimizing movements, is huge. The long-time motion of interfaces in one
space dimension by energy methods has been studied in a paper by Bronsard and Kohn
[19].

Example 9.1.6 has been part of the course exam of C. Sorgentone and S. Tozza at
Sapienza University in Rome.

It is a pleasure to acknowledge the suggestion of J.W. Cahn to use finite-dimensional
approximations to define backward motion of sets.



Chapter 10

Stability theorems

We now face the problem of determining conditions under which the minimizing-movement
scheme commutes with Γ-convergence. Let Fε Γ-converge to F with initial data xε converg-
ing to x0. We have seen in Section 7.2 that by choosing suitably ε = ε(τ) the minimizing
movement along the sequence Fε from xε converges to a minimizing movement for the limit
F from x0. A further issue is whether, by assuming some further properties on Fε we may
deduce that the same thing happens for any choice of ε. In order to give an answer we will
use results from the theory of gradient flows recently elaborated by Ambrosio, Gigli and
Savaré, and by Sandier and Serfaty.

10.1 Stability for convex energies

We now use the theory of gradient flows to deduce stability results if the functionals satisfy
some convexity assumptions. For the sake of simplicity we will assume that X is a Hilbert
space and all Fε are convex.

10.1.1 Convergence estimates

We first recall some results on minimizing movements for a single convex functional F .

Proposition 10.1.1 Let F be convex, z ∈ X and let w be a minimizer of

min
{
Fε(x) +

1
2η
‖x− z‖2

}
. (10.1)

Then
‖x− w‖2 − ‖x− z‖2 ≤ 2η(F (x)− F (w)) (10.2)

for all x ∈ X.

147
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Proof. We recall that the inequality

‖sx+ (1− s)w − z‖2 ≤ s‖x− z‖2 + (1− s)‖w − z‖2 − s(1− s)‖x− w‖2 (10.3)

holds for all x,w, z ∈ X and s ∈ [0, 1]. Using this property and the convexity of F , thanks
to the minimality of w we have

F (w) +
1
2η
‖w − z‖2 ≤ F (sx+ (1− s)w) +

1
2η
‖sx+ (1− s)w − z‖2

≤ sF (x) + (1− s)F (w)

+
1
2η

(s‖x− z‖2 + (1− s)‖w − z‖2 − s(1− s)‖x− w‖2).

After regrouping and dividing by s, from this we have

1
2η

(‖w − z‖2 + (1− s)‖x− w‖2 − ‖x− z‖2) ≤ F (x)− F (w)

and then the desired (10.2) after letting s→ 0 and dropping the positive term ‖w− z‖2.

Remark 10.1.2 Let {zk} = {zηk} be a minimizing scheme for F from z0 with time-step η.
Then (10.2) gives

‖x− zk+1‖2 − ‖x− zk‖2 ≤ 2η(F (x)− F (zk+1)) (10.4)

for all x ∈ X.

We now fix τ > 0 and two initial data x0 and y0 and want to compare the resulting
{xk} = {xτk} obtained by iterated minimization with time-step τ and initial datum x0

and {yk} = {yτ/2k } with time-step τ/2 and initial datum y0. Note that the corresponding
continuous-time interpolations are

uτ (t) := xbt/τc, vτ/2(t) = yb2t/τc, (10.5)

so that the comparison must be performed between xk and y2k.

Proposition 10.1.3 For all j ∈ N we have

‖xj − y2j‖2 − ‖x0 − y0‖2 ≤ 2τF (x0) .

Proof. We first give an estimate between x1 and y2. We first apply (10.4) with η = τ ,
zk = x0, zk+1 = y1 and x = y2 which gives

‖y2 − x1‖2 − ‖y2 − x0‖2 ≤ 2τ(F (y2)− F (x1)) . (10.6)
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If instead we apply (10.4) with η = τ/2, zk = y0, zk+1 = y1 and x = x0, or zk = y1,
zk+1 = y2 and x = x0 we get, respectively,

‖x0 − y1‖2 − ‖x0 − y0‖2 ≤ τ(F (x0)− F (y1))
‖x0 − y2‖2 − ‖x0 − y1‖2 ≤ τ(F (x0)− F (y2)),

so that, summing up,

‖x0 − y2‖2 − ‖x0 − y0‖2 ≤ 2τF (x0)− τF (y1)− F (y2) ≤ 2τ(F (x0)− F (y2)), (10.7)

where we have used that F (y2) ≤ F (y1) in the last inequality. Summing up (10.6) and
(10.7) we obtain

‖x1 − y2‖2 − ‖x0 − y0‖2 ≤ 2τ(F (x0)− F (x1)). (10.8)

We now compare the later indices. We can repeat the same argument with x0 and y0

substituted by x1 and y2, so that by (10.8) we get

‖x2 − y4‖2 − ‖x1 − y2‖2 ≤ 2τ(F (x1)− F (x2)), (10.9)

and, summing (10.8),

‖x2 − y4‖2 − ‖x0 − y0‖2 ≤ 2τ(F (x0)− F (x2)). (10.10)

Iterating this process we get

‖xj − y2j‖2 − ‖x0 − y0‖2 ≤ 2τ(F (x0)− F (xj)) ≤ 2τF (x0) (10.11)

as desired.

Theorem 10.1.4 Let F be convex and let F (x0) < +∞. Then there exists a unique
minimizing movement u for F from x0 such that, if uτ is defined by (10.5), then

‖uτ (t)− u(t)‖ ≤ 6
√
F (x0)

√
τ

for all t ≥ 0.

Proof. With fixed τ we first prove the convergence of u2−jτ as j → +∞. By Proposition
10.1.3 applied with y0 = x0 and 2−jτ in place of τ we have

‖u2−jτ (t)− u2−j−1τ (t)‖ ≤ 2−j/2
√

2τ
√
F (x0) (10.12)

for all t. This shows the convergence to a limit uτ (t), which in particular satisfies

‖uτ (t)− uτ (t)‖ ≤
√

2
∞∑
j=0

2−j/2
√
τ
√
F (x0) ≤ 6

√
F (x0)

√
τ . (10.13)
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The limit uτ can be characterized as follows: with fixed x, inequality (10.4) applied to
zk = u2−jτ ((k − 1)2−jτ) (k ≥ 1) can be seen as describing in the sense of distribution the
derivative

d

dt

1
2
‖x− u2−jτ (t)‖2 ≤

∞∑
k=1

(
F (x)− F

(
u2−jτ ((k − 1)2−jτ)

))
2−jτ δk2−jτ . (10.14)

Note in fact that x 7→ 1
2‖x − u

2−jτ‖2 is a piecewise-constant function with discontinuities
in 2−jτZ, whose size is controlled by (10.4). Since the measures

µj =
∞∑
k=1

2−jτ δk2−jτ

converge to the Lebesgue measure, and u2−jτ (t) → uτ (t) for all t, so that by the lower
semicontinuity of F

F (uτ (t)) ≤ lim inf
j→+∞

F
(
u2−jτ (t)

)
,

we deduce that
d

dt

1
2
‖x− uτ (t)‖2 ≤ F (x)− F (uτ (t)) (10.15)

for all x. Equation (10.15) is sufficient to characterize uτ . We only sketch the argument:
suppose otherwise that (10.15) is satisfied by some other v(t). Then we have

〈x− uτ ,∇uτ 〉 ≤ F (x)− F (uτ ) and 〈x− v,∇v〉 ≤ F (x)− F (v)

for all x. Inserting x = v(t) and x = uτ (t) respectively, and summing the two inequalities
we have

d

dt

1
2
‖v(t)− uτ (t)‖2 = 〈v − uτ ,∇v −∇uτ 〉 ≤ 0 .

Since v(0) = uτ (0) we then have v = uτ .
This argument shows that u = uτ does not depend on τ . We then have the convergence

of the whole sequence, and (10.13) gives the desired estimate of ‖uτ − u‖.

10.1.2 Stability along sequences of convex energies

From the estimates in the previous section, and the convergence argument in Section 7.2
we can deduce the following stability results.

Theorem 10.1.5 Let Fε be a sequence of lower-semicontinuous coercive positive convex
energies Γ-converging to F , and let xε0 → x0 with supε Fε(xε0) < +∞. Then

(i) for every choice of τ and ε converging to 0 the family uε introduced in Definition
7.1.1 converges to the unique u given by Theorem 10.1.4;

(ii) the sequence of minimizing movements uε for Fε from xε0 (given by Theorem 10.1.4
with Fε in place of F ) also converge to the same minimizing movement u.
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Proof. We first show (ii). Indeed, by the estimate in Theorem 10.1.4 we have that, after
defining uτε following the notation of that theorem,

‖uτ − u‖∞ ≤M
√
τ , ‖uτε − uε‖∞ ≤M

√
τ ,

where
M = 6 sup

ε
Fε(xε0).

In order to show that uε → u it suffices to show that uτε → uτ for fixed τ . That has already
been noticed to hold in Section 7.2.

In order to prove (i) it suffices to use the triangular inequality

‖uτε − u‖ ≤ ‖uτε − uε‖+ ‖uε − u‖ ≤M
√
τ + o(1)

by Theorem 10.1.4 and (ii).

Remark 10.1.6 (compatible topologies) We may weaken the requirement that Fε be
equi-coercive with respect to the X-convergence. It suffices to require that the Γ-limit
be performed with respect to a topology compatible with the X-norm; i.e., such that the
Γ-convergence Fε → F ensures that Fε(x) +C‖x−x0‖2 Γ-converges to F (x) +C‖x−x0‖2
for fixed C and x0, and with respect to which these energies are equi-coercive. In this way
we still have uτε → uτ in the proof above.

Example 10.1.7 (parabolic homogenization) We can consider X = L2(0, T ),

Fε(u) =
∫ T

0
a
(x
ε

)
|u′|2 dx, F (u) = a

∫ T

0
|u′|2 dx

with the notation of Section 1.4. We take as initial datum u0 independent of ε. Since
all functionals are convex, lower semicontinuous and coercive, from Theorem 10.1.5 we
deduce the converge of the corresponding minimizing movements. From this we deduce
the convergence of the solutions of the parabolic problem with oscillating coefficients

∂uε
∂t

=
∂

∂x

(
a
(x
ε

)∂uε
∂x

)
uε(x, 0) = u0(x)

to the solution of the heat equation
∂u

∂t
= a

∂2u

∂x2

uε(x, 0) = u0(x) .
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Example 10.1.8 (high-contrast media) We consider a discrete system parameterized
on {0, . . . , N} with N even. We set ε = 1/N and consider the energies

Fε(u) =
1
2

N/2∑
l=1

ε
∣∣∣u2l − u2l−2

ε

∣∣∣2 +
cε
2

N∑
j=1

ε
∣∣∣uj − uj−1

ε

∣∣∣2
with a periodic boundary condition uN = u0.

This is a simple model where two elliptic energies interact possibly on different scales.
The critical scale is when

cε = ε2,

condition that will be assumed in the rest of the example. The first sum is a strong
next-to-nearest-neighbor interaction between even points, and the second one is a weak
nearest-neighbor interaction between all points.

Upon identifying ui with the piecewise-constant function u ∈ L2(0, 1) with u(x) = ubx/εc
we may regard Fε as defined on X = L2(0, 1) and consider the minimizing movement of
Fε with respect to the L2-norm, which we can write

‖u‖2 =
N∑
j=1

ε|ui|2

on the domain of Fε, so that the iterated minimum problem giving uk reads

min

{
1
2

N/2∑
l=1

ε
∣∣∣u2l − u2l−2

ε

∣∣∣2 +
1
2

N∑
j=1

ε3
∣∣∣uj − uj−1

ε

∣∣∣2 +
1
2τ

N∑
j=1

ε(uj − uk−1
j )2

}
.

We consider as initial datum (the sampling on εZ ∩ [0, 1] of) a smooth 1-periodic datum
u0 (for simplicity independent of ε).

Since all Fε are convex, we may describe their minimizing movement through the gra-
dient flow of their Γ-limit. Since Fε is not equi-coercive with respect to the L2 norm, we
have to choose a different topology for the Γ-limit.

Among the different choices we may consider the following two.
(1) We choose the strong L2-convergence of the even piecewise-constant interpolations
only; i.e.,

‖u− v‖2even =
N∑
j=1

ε|u2j − v2j |2.

Note that Fε are equi-coercive and their Γ-limit is simply

F s(u) =
∫ 1

0
|u′|2 dx.
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To check this it suffices to remark that, if we consider the even piecewise-affine interpolation
ũ of ui, then we have

N/2∑
l=1

ε
∣∣∣u2l − u2l−2

ε

∣∣∣2 = 2
N/2∑
l=1

2ε
∣∣∣u2l − u2l−2

2ε

∣∣∣2 = 2
∫ 1

0
|ũ′|2 dx,

so that F s is a lower bound, while a recovery sequence is simply obtained by taking uε the
interpolation of u, for which

Fε(uε) =
∫ 1

0
|u′|2 dx+

ε2

2

∫ 1

0
|u′|2 dx+ o(1).

(2) We choose the strong L2-convergence of the even piecewise-constant interpolations and
the weak L2-convergence of the odd piecewise-constant interpolations. A function u is then
identified with a pair (ue, uo) (even and odd piecewise-constant interpolations), so that

Fε(u) = Fw(ue, uo) :=
∫ 1

0
|u′e|2 dx+

1
2

∫ 1

0
|ue − uo|2 dx.

The functional Fw thus defined is the Γ-limit in this topology, which is compatible with the
L2-distance (interpreted as the sum of the L2-distances of the even/odd piecewise-constant
interpolations).

We can apply Theorem 10.1.5, together with Remark 10.1.6, and deduce that the
minimizing movement for Fε is given by the solution (ue, uo) = (ue(x, t), uo(x, t)) of the
gradient flow for Fw, which is

∂ue
∂t

= 2
∂2ue
∂x2

− ue + uo

∂uo
∂t

= uo − ue

uo(x, 0) = ue(x, 0) = u0(x)

,

with periodic boundary conditions for ue.
Note that F s is not compatible with the L2-norm since it does not contain the odd

interpolations, and its gradient flow is simply a heat equation. Note however that we may
use ue as a single parameter with respect to which to describe the minimizing movement
of Fε, as suggested by the choice of F s as Γ-limit. Indeed, we may integrate the second
equation of the system above expressing uo in terms of ue. Plugging its expression in the
first equation we obtain the integro-differential problem satisfied by ue

∂u(x, t)
∂t

= 2
∂2u(x, t)
∂x2

− u(x, t) + u0(x)e−t +
∫ t

0
es−tu(x, s) ds

u(x, 0) = u0(x)
with periodic boundary conditions.
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10.2 Sandier-Serfaty theory

We have already remarked that for some non-convex problems minimizing movements
commute with Γ-convergence, as for approximations of the Mumford-Shah functional. We
conclude this section by giving a brief (and simplified) account of another very fruitful
approach to gradient flows that allows to prove the stability of certain solutions with
respect to Γ-convergence related to non-convex energies.

10.2.1 Convergence of gradient flows

We consider a family of Hilbert spaces Xε and functionals Fε : Xε → (−∞,+∞], which
are C1 on their domain. We denote by ∇XεFε the gradient of Fε in Xε.

Definition 10.2.1 Let T > 0; we say that uε ∈ H1([0, T );Xε) is a a.e. solution for the
gradient flow of Fε if

∂uε
∂t

= −∇XεFε(uε)

almost everywhere on (0, T ). Such solution for the a gradient flow is conservative if

Fε(uε(0))− Fε(uε(s)) =
∫ s

0

∥∥∥∂uε
∂t

∥∥∥2

Xε
dt

for all τ ∈ (0, T ).

We suppose that there exists a Hilbert space X and a notion of metrizable convergence
xε → x of families of elements of Xε to an element of X. With respect to that convergence,
we suppose that Fε Γ-converge to a functional F , which is also C1 on its domain.

Theorem 10.2.2 (Sandier-Serfaty Theorem) Let Fε and F be as above with Fε Γ-
converging to F , let uε be a family of conservative solutions for the gradient flow of Fε with
initial data uε(0) = uε converging to u0. Suppose furthermore that
• (well-preparedness of initial data) uε is a recovery sequence for F (u0);
• (lower bound) upon subsequences uε converges to some u ∈ H1((0, T );X) and

lim inf
ε→0

∫ s

0

∥∥∥∂uε
∂t

∥∥∥2

Xε
dt ≥

∫ s

0

∥∥∥∂u
∂t

∥∥∥2

X
dt (10.16)

lim inf
ε→0

‖∇XεFε(uε(s))‖
2
Xε
≥ ‖∇XF (u(s))‖2X (10.17)

for all s ∈ (0, T ).
Then u is a solution for the gradient flow of F with initial datum u0, uε(t) is a recovery

sequence for F (u(t) for all t and the inequalities in (10.16) and (10.17) are equalities.
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Proof. Using the fact that uε is conservative and that for all t∥∥∥∇XεFε(uε) +
∂uε
∂t

∥∥∥2

Xε
= 0,

and hence

−
〈
∇XεFε(uε(t)),

∂uε
∂t

〉
=

1
2

(
‖∇XεFε(uε(t))‖

2
Xε

+
∥∥∥∂uε
∂t

∥∥∥2

Xε

)
.

We then get

Fε(uε(0))− Fε(uε(t)) =
∫ t

0

∥∥∥∂uε
∂t

∥∥∥2

Xε
ds

= −
∫ t

0

〈
∇XεFε(uε),

∂uε
∂t

〉
Xε
ds

=
1
2

∫ t

0

(
‖∇XεFε(uε)‖

2
Xε

+
∥∥∥∂uε
∂t

∥∥∥2

Xε

)
ds

By the lower-bound assumption then we have

lim inf
ε→0

(Fε(uε(0))− Fε(uε(t))) ≥
1
2

∫ t

0

(
‖∇XF (u)‖2X +

∥∥∥∂u
∂t

∥∥∥2

X

)
ds

≥ −
∫ t

0

〈
∇XF (u),

∂u

∂t

〉
X
ds. (10.18)

The last term equals

−
∫ t

0

d

dt
F (u) ds = F (u(0))− F (u(t)),

so that we have

lim inf
ε→0

(Fε(uε(0))− Fε(uε(t))) ≥ F (u(0))− F (u(t)).

Since uε(0) is a recovery sequence for F (u(0)) we then have

F (u(t)) ≥ lim sup
ε→0

Fε(uε(t)), (10.19)

so that uε(t) is a recovery sequence for u(t) and indeed we have equality in (10.19) and
hence both inequalities in (10.18) are equalities. The second one of those shows that∥∥∥∇XF (u) +

∂u

∂t

∥∥∥2

X
= 0,

for all t, and hence the thesis.
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Example 10.2.3 (Ginzburg-Landau vortices) The theory outlined above has been
successfully applied by Sandier and Serfaty to obtain the motion of vortices as the limit of
the gradient flows of Ginzburg-Landau energies. We give a short account of their setting
without entering into details.

Let Ω be a bounded regular open subset of R2 and N ∈ N; the Hilbert spaces Xε and
X are chosen as

Xε = L2(Ω; R2), X = R2N

with scalar products

〈u, v〉Xε =
1

| log ε|

∫
Ω
〈u(x), v(x)〉R2 dx, 〈x, y〉X =

1
π
〈x, y〉R2N ,

respectively.
The energies Fε : H1(Ω; R2)→ R are defined as

Fε(u) =
1
2

∫
Ω

(
|∇u|2 +

1
ε2

(1− |u|2)2
)
dx.

The convergence of uε is defined as follows: if we write in polar coordinates

uε(x) = ρε(x)eiϕε(x)

then uε → (x1, . . . , xN ) if we have

lim
ε→0

curl(ρ2
ε∇ϕε) = 2π

N∑
j=1

djδxj

weak∗ in the sense of measures for some integers dj , where curl(A1, A2) = ∂A1
∂x2
− ∂A2

∂x1
.

This convergence describes the location of vortices at the points xj with a degree dj . For
uε(x)→ x/|x| we have N = 1, x1 = 0 and d1 = 1.

It can be proved that there exists a function W = W(d1,...,dN ) such that

Γ- lim
ε→0

(
Fε(u)− πN | log ε|

)
= W (x1, . . . , xN ).

The function W can be characterized in terms of the Green function of Ω. Its precise
definition is not relevant to this example.

The well-preparedness condition for the initial data amounts to requiring that

u0
ε → (x1

0, . . . , x
N
0 ) and dj ∈ {−1, 1}.
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Under these conditions we may apply Theorem 10.2.2 to the scaled energies Fε −
πN | log ε|. This yields solutions uε = uε(x, t) to the equation

1
| log ε|

∂uε
∂t

= ∆u+
1
ε2
uε(1− |uε|2) in Ω

∂uε
∂n

= 0 on ∂Ω

uε(x, 0) = u0
ε(x)

converging to x(t) = (x1(t), . . . , xN (t)) = (x1(t), . . . , x2N (t)). The limit vortices move
following the system of ODE

dxi
dt

= − 1
π

∂W (x)
∂xi

.

This description is valid until the first collision time T ∗ when xj(T ∗) = xk(T ∗) for some j
and k with j 6= k.

10.2.2 Convergence of stable critical points

The Sandier-Serfaty approach can be extended to analyze the convergence of critical points,
for which Theorem 10.2.2 is trivial.

Theorem 10.2.4 Let uε be a family of critical points of Fε with uε → u, such that the
following holds: for any V ∈ X, we can find vε(t) defined in a neighborhood of t = 0, such
that ∂tvε(0) depends on V in a linear and one-to-one manner, and

vε(0) = uε(0) (10.20)

lim
ε→0

d

dt
Fε(vε(t))|t=0 =

d

dt
F (u+ tV )|t=0 = 〈dF (u), V 〉 (10.21)

lim
ε→0

d2

dt2
Fε(vε(t))|t=0 =

d2

dt2
F (u+ tV )|t=0 = Q(u)(V ). (10.22)

Then
- if (10.20)-(10.21) are satisfied, then u is a critical point of F
- if (10.20)-(10.21)-(10.22) are satisfied, then if uε are critical points of Eε with positive
Hessian, u is a critical point of F with positive Hessian.

We do not enter in the details of this result, but only remark that in this case the Γ-
convergence of Fε to F is not required, in analogy to the conditions analyzed in Section 5.
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10.3 References to Chapter 10

The results in Section 10.1.1 and part (ii) of Theorem 10.1.4 are a simplified version of the
analogous results for geodesic-convex energies in metric spaces that can be found in the
notes by Ambrosio and Gigli [6].

The result by Sandier and Serfaty (with weaker hypotheses than those reported here)
is contained in the seminal paper [41]. An account of their approach is contained in the
notes by Serfaty [43]. The convergence of stable points has been considered by Serfaty in
[42] and further analyzed by Jerrard and Sternberg in [31].
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2008.

[8] B. Bourdin, G.A. Francfort, and J.-J. Marigo. The Variational Approach to Fracture.
Journal of Elasticity 91 (2008), 5–148.

[9] A. Braides. Γ-convergence for Beginners. Oxford University Press, 2002.

[10] A. Braides. Approximation of Free-Discontinuity Problems. Lecture Notes in Mathe-
matics 1694, Springer Verlag, Berlin, 1998.

[11] A. Braides. A Handbook of Γ-convergence. In Handbook of Partial Differential Equa-
tions. Stationary Partial Differential Equations, Volume 3 (M. Chipot and P. Quittner,
eds.). Elsevier, 2006, p. 101–213.

[12] A. Braides, G. Dal Maso and A. Garroni. Variational formulation of softening phe-
nomena in fracture mechanics: the one-dimensional case. Arch. Rational Mech. Anal.
146 (1999), 23–58.

159



160 BIBLIOGRAPHY

[13] A. Braides A. and A. Defranceschi. Homogenization of Multiple Integrals. Oxford Uni-
versity Press, Oxford, 1998.

[14] A. Braides, M.S. Gelli, and M. Novaga. Motion and pinning of discrete interfaces.
Arch. Ration. Mech. Anal. 95 (2010), 469–498.

[15] A. Braides and C.J. Larsen. Γ-convergence for stable states and local minimizers. Ann.
Scuola Norm. Sup. Pisa 10 (2011), 193–206

[16] A. Braides, A.J. Lew and M. Ortiz. Effective cohesive behavior of layers of interatomic
planes. Arch. Ration. Mech. Anal.180 (2006), 151–182.

[17] A. Braides and G. Scilla. Motion of discrete interfaces in periodic media. Preprint,
2013.

[18] A. Braides and L. Truskinovsky. Asymptotic expansions by Gamma-convergence.
Cont. Mech. Therm. 20 (2008), 21–62

[19] L. Bronsard and R.V. Kohn. On the slowness of phase boundary motion in one space
dimension. Comm. Pure Appl. Math. 43 (1990), 983–997.

[20] A. Chambolle and F. Doveri. Minimizing movements of the Mumford and Shah energy.
Discr. Cont. Dynamical Syst. 3 (1997), 153–174.

[21] G. Dal Maso. An Introduction to Γ-convergence. Birkhäuser, Boston, 1993.
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