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Abstract

We give a new notion of angle in general metric spaces; more precisely, given a triple a
points p, x, q in a metric space (X, d), we introduce the notion of angle cone ∠pxq as being
an interval ∠pxq := [∠−

pxq,∠
+
pxq], where the quantities ∠±

pxq are defined in terms of the
distance functions from p and q via a duality construction of differentials and gradients
holding for locally Lipschitz functions on a general metric space. Our definition in the
Euclidean plane gives the standard angle between three points and in a Riemannian
manifold coincides with the usual angle between the geodesics, if x is not in the cut
locus of p or q. We show that in general the angle cone is not single valued (even in
case the metric space is a smooth Riemannian manifold, if x is in the cut locus of p
or q), but if we endow the metric space with a positive Borel measure m obtaining the
metric measure space (X, d,m) then under quite general assumptions (which include many
fundamental examples as Riemannian manifolds, finite dimensional Alexandrov spaces
with curvature bounded from below, Gromov-Hausdorff limits of Riemannian manifolds
with Ricci curvature bounded from below, and normed spaces with strictly convex norm),
fixed p, q ∈ X, the angle cone at x is single valued for m-a.e. x ∈ X. We prove some
basic properties of the angle cone (such as the invariance under homotheties of the space)
and we analyze in detail the case (X, d,m) is a measured-Gromov-Hausdorff limit of a
sequence of Riemannian manifolds with Ricci curvature bounded from below, showing
the consistency of our definition with a recent construction of Honda [24].
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1 Introduction

The notion of angle, together with the one of distance (which is directly linked with one of
length), is at the basis of geometry from both the conceptual and the historical point of view,
let us just give two fundamental examples.

• Euclidean geometry: the last two of the five classical postulates of Euclid for plane
geometry (see the beginning of the first book of the “Elements”, pp.195-202 in [14]), as
well as the Hilbert’s axiomatization of Euclidean geometry (see [21]), are based on the
notion of angle.

• Riemannian geometry: in the very first definition of a Riemannian manifold one assigns
a scalar product on the tangent spaces, i.e. the length and the angle of tangent vectors.

The natural framework in which it is meaningful to speak of distance between couples of
points is given by the class of metric spaces; the goal of this paper is to give a definition of
angle between three points in a metric space in terms just of the distance.

Some early attempts to give a definition of angle between three points in a metric space
go back to the work of Wilson [33] in the 30’s (see also [32]); the drawback of this approach is
that the definition was given under very particular convexity and embeddability assumptions
(satisfied in linear spaces but, for instance, what Wilson called “the four point property”is at
the base of his definition and does not hold for the round sphere S2 ⊂ R3).

In what are now known as Alexandrov spaces (these are metric spaces satisfying curvature
assumptions, which in case of smooth Riemannian manifolds correspond to upper or lower
bounds on the sectional curvature; there is a huge literature about this argument, the in-
terested reader may see [9]), Alexandrov was able to define the angle between two geodesics
matching at a point as follows: let γ1, γ2 be unit speed geodesics1 such that γ1(0) = γ2(0),
then he set

∠(γ1, γ2) := arccos

(
lim
s,t→0

s2 + t2 − d2(γ1(s), γ2(t))

2st

)
; (1.1)

the crucial observation being that the curvature bounds ensure the existence of the limit above
(fact which may not be true in a general metric space), hence the definition makes sense.

To conclude the brief historical overview, recently, Honda [24] proved that the definition
of angle (1.1) can be suitably adapted to the case the metric space is a Gromov-Hausdorff
limit of a sequence of Riemannian manifolds with Ricci curvature bounded from below (the
theory of such spaces was started by Cheeger and Colding [11]).

Let us stress that our new definition holds in general metric spaces and no curvature
assumption is needed.

Our idea for defining the angle between three points in a metric space is to use the distance
functions and to adapt the duality between differentials and gradients introduced by Gigli in
[15]. Let us start with an example in the smooth case.

Example 1.1 (The angle between three points in a Riemannian manifold). Let (Mn, g) be
a smooth n-dimensional Riemannian manifold and fix p, q ∈ M . The goal is to define, for
x ∈M , the angle ∠pxq between p and q at x in terms of the distance functions rp(·) := d(p, ·)
and rq(·) := d(q, ·), where d(·, ·) is the distance induced by the Riemannian metric.

1in our terminology the geodesics are length minimizing by definition, see (2.1)
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Called Cp the cut locus of the point p, notice that the distance function rp is smooth
on M \ (Cp ∪ {p}) and moreover there is a unique unit speed geodesic1 from x to p, for
x ∈M \ (Cp ∪ {p}); hence, for x ∈M \ (Cp ∪ Cq ∪ {p, q}) we can set

∠pxq := arccos [gx(∇rp(x),∇rq(x))] = arccos [gx(γ̇xp(0), γ̇xq(0))] = ∠(γxp, γxq), (1.2)

where ∇rp(x) is the gradient of the distance function rp computed at the point x, and γxp
(resp. γxq) is the unique unit speed geodesic from x to p (resp. from x to q). Observe that in
the case of the euclidean plane R2, the definition (1.2) gives the usual angle between p and q
at x.

Recall that in general the cut locus is non empty (for instance if M is compact the cut
locus is never empty), but it has null measure with respect to the n-dimensional Riemannian
volume measure (more precisely it is (n− 1)-rectifiable, see for instance [27]), therefore (1.2)
does not hold in general for every x ∈M : indeed if x ∈ Cp∪Cq then the distance functions are
no more differentiable, there can be more geodesic connecting x to p or q, hence definition (1.2)
is no more well posed. Nevertheless we can at least define a notion of “angle cone”between p
and q at x as being the interval ∠pxq := [∠−pxq,∠

+
pxq] where

∠+
pxq = sup{∠(γxp, γxq) : γxp, γxq are unit speed geod. from x to p and q resp.} (1.3)

∠−pxq = inf{∠(γxp, γxq) : γxp, γxq are unit speed geod. from x to p and q resp.}. (1.4)

Summarizing, fixed p, q ∈ M , for every x ∈ M we can define an angle cone ∠pxq between p
and q at x, moreover for a.e. x ∈M the angle cone is single valued and we can speak of angle
between p and q at x. �

Our approach for defining the angle between three points in a general metric space is to
suitably understand the term gx(∇rp(x),∇rq(x)) in (1.2). Notice that in a general metric
space we do not have notions of differential and gradient of a Lipschitz function (which require
a tangent space structure for having a meaning), we have just the local Lipschitz constant
(called also slope, the standard definition being (2.2)) which can be read as “the modulus
of the differential”. The point is that, given two locally Lipschitz functions f and g on the
metric space (X, d), the local Lipschitz constant is enough in order to define “the differential
of g acting on the gradient of f”; since such an object can be multivalued even in normed
spaces if the norm is not strictly convex (see the discussion in the introduction of [15]), what
is actually meaningful is to define “the differential of g acting on the gradient of f”as an
interval [D−g(∇f), D+g(∇f)]. This strategy is strongly inspired from a recent work of Gigli
[15] (done in the different framework of weak upper gradients of Sobolev functions) and it is
described in Subsection 2.1, in particular see Definition 2.1.

With this tool in our hands and inspired by the smooth case (1.2)-(1.3)-(1.4), in Subsection
2.2 we define the angle cone of a triple of points p, x, q ∈ X in the metric space (X, d) as the
interval ∠pxq := [∠−pxq,∠

+
pxq] where

∠−pxq := arccos[D+rp(∇rq)(x)], ∠+
pxq := arccos[D−rp(∇rq)(x)],

being rp := d(p, ·) and rq := d(q, ·) the distance functions from p and q; see Definition 2.3 and
the discussion before it. The relation with the smooth case is discussed in Example 2.5. In
general we cannot expect the angle cone to be single valued since, as explained in Example
1.1, already in the smooth framework this may not be the case. There are at least two reasons
for this non uniqueness behavior:
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• x is in the cut locus of p or q, see Example 2.6.

• Potential lack of strict convexity of the space (X, d), see Example 2.7.

In Subsection 2.3 we prove two fundamental properties of the angle cone:

• If p = q then the angle cone is single valued: for every x ∈ X it holds ∠pxp = {∠pxp}.
If moreover (X, d) is a length space then for every p, x ∈ X we have ∠pxp = {0}. See
Proposition 2.9 and Remark 2.10.

• The angle cone is invariant under homotheties, i.e. rescaling of the distance function
by a positive constant. See Proposition 2.11.

Let us also remark that, in a general metric space, we cannot expect the angle ∠pxp to be
symmetric in p and q. Indeed, already in a smooth Finsler manifold, the symmetry holds if and
only if the manifold is actually Riemannian (see for instance the discussion in [16]-Appendix
B).

After this first part on general metric spaces, in Section 3 we consider the case of metric
measure spaces, i.e. metric spaces endowed with a positive Borel measure m; see (3.1) for the
precise definition.
In Example 1.1 we saw that, already in the smooth case, fixed p, q ∈M , the best we can hope
for in general is that the angle cone ∠pxq is single valued for a.e. x ∈ X. In Section 3 we will
see that in a large class of metric measure spaces, namely the Lipschitz-infinitesimally strictly
convex and the Lipschitz-infinitesimally Hilbertian ones (see Definition 3.1 and Remarks 3.2-
3.3), it is still the case: fixed p, q ∈ X the angle cone ∠pxq is single valued for m-a.e. x ∈ X
(see Theorem 3.5). Moreover, in the Lipschitz-infinitesimally Hilbertian spaces, the angle
∠pxq is symmetric in p and q, for m-a.e. x ∈ X and every p, q ∈ X (see Theorem 3.5).
This class of spaces includes many interesting examples: smooth Riemannian manifolds,
finite dimensional Alexandrov spaces with curvature bounded from below, Gromov-Hausdorff
limits of Riemannian manifolds with Ricci curvature bounded from below (for more details
see Remark 3.4).

Finally, in Subsection 3.2, we analyze the case the metric measure space (X, d,m) is a
Gromov-Hausdorff limit of a sequence of Riemannian manifolds with Ricci curvature bounded
below. In this framework, suitably adapting Alexandrov’s formula for the angles (1.1), Honda
[24] defined the angle between a.e. triple of points. More precisely, fixed p, q ∈ X, for m-a.e.
x ∈ X he defined a unique angle ∠(p, x, q) between p and q at x as the angle formed by the
geodesics from p and q to x. It is essential to observe that the construction of Honda holds
just for m-a.e. x ∈ X; indeed Colding and Naber (see Theorem 1.2 and 1.3 in [12]) gave an
example of a pointed limit space (X, d,m, x̄) (which is even a non collapsed limit space such
that every point is regular, i.e. the unique tangent cone is a euclidean space) such that for
every couple of geodesics γ1, γ2 beginning at x̄ and every θ ∈ [0, π] there exists a sequence
ti ↓ 0 such that

cos θ = lim
i→∞

2t2i − d2(γ1(ti), γ2(ti))

2t2i
.

In Theorem 3.13 we prove that for every fixed p, q ∈ X, the construction of the angle of
Honda coincides with our definition m-a.e.:

∠pxq = {∠(p, x, q)}

4



for m-a.e. x ∈ X. In order to prove the angles equivalence Theorem 3.13, in Lemma 3.7, we
show the m-a.e. equivalence of the infinitesimal Hilbertian structures of the limit spaces in the
sense of Cheeger-Colding [11] and in the sense of Definition 3.1. In case of a finite dimensional
Alexandrov space, along the same lines of arguments and using results of Otsu-Shioya [28],
our notion of angle coincides almost everywhere with the classical Alexandrov one (1.1) (for
more details see Remark 3.11).

Acknowledgment. The author acknowledges the support of the ERC ADG GeMeThNES.
He wishes to express his deep gratitude to Luigi Ambrosio for inspiring discussions on metric
spaces and to Nicola Gigli for his comments on the final manuscript.

2 A notion of angle cone in general metric spaces

2.1 Preliminaries and notations

In this fist part of the paper (X, d) is a general metric space, later in the paper we will assume
more structure; the open ball of center x ∈ X and radius r > 0 is denoted with Br(x).
Given two points x0, x1 ∈ X, a continuous curve γ : [0, 1]→ X satisfying γ(0) = x0, γ(1) = x1

is said to be a (constant speed, length minimizing) geodesic if

d(γ(s), γ(t)) = |t− s| d(γ(0), γ(1)) ∀s, t ∈ [0, 1]. (2.1)

We say that (X, d) is a geodesic space if every pair of points x0, x1 ∈ X is joined by a geodesic;
more generally we say that (X, d) is a length space if for every pair of points x0, x1 ∈ X the
infimum of the lengths of continuous curves joining x0 to x1 is equal to d(x0, x1).

The space of real valued Lipschitz functions on (X, d) is denoted with LIP(X). For a
function f : X → R the slope, also called local Lipschitz constant, |Df | : X → [0,+∞] is
defined by

|Df |(x0) := lim sup
y→x

|f(y)− f(x)|
d(y, x)

if x0 is not isolated, 0 otherwise. (2.2)

For f, g : X → R it is easy to check that

|D(αf + βg)| ≤ |α| |Df |+ |β| |Dg| ∀α, β ∈ R, (2.3)

|D(fg)| ≤ |f | |Dg|+ |g| |Df |. (2.4)

Fixed f, g : X → R, observe that (2.3) implies the convexity of the map ε 7→ |D(g + εf)|:

|D(g + (λε0 + (1− λ)ε1)f)| ≤ λ|D(g + ε0f)|+ (1− λ)|D(g + ε1f)|, (2.5)

for any λ ∈ [0, 1], ε0, ε1 ∈ R.
As noticed by N. Gigli (see Section 3.1 in [15]; see also [17]) in the slightly different

framework of weak upper gradients, the convexity property (2.5) is the key for defining the
duality Df(∇g) between the differential of f and the gradient of g (notice that in a metric
space there is no notion of differential or gradient since the notion of tangent vector space is
missing; we have just a notion of “modulus of the differential of a function”, the point is to
exploit just this concept in order to define “the differential of f acting on the gradient of g”).
The idea is the following: notice that if ϕ : R→ R+ is a convex function, the values of

lim inf
ε↓0

ϕ(ε)p − ϕ(0)p

pεϕ(0)p−2
, lim sup

ε↑0

ϕ(ε)p − ϕ(0)p

pεϕ(0)p−2
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are independent of p ∈ (1,+∞), and equal to ϕ(0)ϕ′(0+), ϕ(0)ϕ′(0−) respectively, as soon as
ϕ(0) 6= 0. The convexity also grants that the limits exist and can be substituted by infε>0

and supε<0, respectively. Therefore we can give the following definition.

Definition 2.1 (D±f(∇g)). Let (X, d) be a metric space and f, g : X → R with finite slopes
|Df |, |Dg| : X → [0,+∞). The functions D±f(∇g) : X → R are defined by

D+f(∇g) := lim inf
ε↓0

|D(g + εf)|2 − |Dg|2

2ε
, (2.6)

D−f(∇g) := lim sup
ε↑0

|D(g + εf)|2 − |Dg|2

2ε
, (2.7)

on {|Dg| 6= 0}, and are taken 0 by definition on {|Dg| = 0}.

We remark that the definition of D±f(∇g) is pointwise while the analogous objects defined
in [15] and [17] using weak upper gradients were defined almost everywhere with respect to a
reference measure (this was unavoidable since already the weak upper gradient is an object
defined almost everywhere). Fixed a point x0 ∈ X, notice that for the definitions (2.6) and
(2.7) of D±f(∇g)(x0) to make sense, it is sufficient that |Df | and |Dg| are finite just at the
point x0.

Remark 2.2. Thanks to the discussion before Definition (2.1), it is clear that for every
p ∈ (1,∞) we can equivalently set

D+f(∇g) = lim inf
ε↓0

|D(g + εf)|p − |Dg|p

pε|Dg|p−2
, (2.8)

D−f(∇g) = lim sup
ε↑0

|D(g + εf)|p − |Dg|p

pε|Dg|p−2
. (2.9)

Moreover the limits in the definitions exist and can be substituted by infε>0 (supε<0 respec-
tively �

Notice that the inequality |D(g + εf)| ≤ |Dg|+ |ε| |Df | yields

|D±f(∇g)| ≤ |Df | |Dg|, (2.10)

and in particular if f, g are Lipschitz (resp. locally Lipschitz) then D±f(∇g) is bounded
(resp. locally bounded). Moreover, the convexity of f 7→ |D(g + f)|2 gives

D−f(∇g) ≤ D+f(∇g). (2.11)

Also, from the definition it directly follows that

D±(−f)(∇g) = D±f(∇(−g)), D±(−f)(∇g) = −D∓f(∇g), (2.12)

and that
D±g(∇g) = |Dg|2. (2.13)

6



2.2 The definition of angle cone and some examples

Given a metric space (X, d) and two points p, q ∈ X, consider the distance functions

rp(·) := d(p, ·), rq(·) := d(q, ·). (2.14)

Since both rp and rq are 1-Lipschitz on X, recalling Definition 2.1, for every x ∈ X we can
define

c+
pxq := D+rp(∇rq)(x), c−pxq := D−rp(∇rq)(x). (2.15)

The estimate (2.10) ensures that c+
pxq, c

−
pxq ∈ [−1, 1], hence, as the function arccos : [−1, 1]→

[0, π] is strictly decreasing, it makes sense to set

∠−pxq := arccos c+
pxq,∠

+
pxq := arccos c−pxq, (2.16)

and to define the angle cone between p, x, q as follows.

Definition 2.3. Let (X, d) be a metric space and consider a triple (p, x, q) ∈ X3. The angle
cone of (p, x, q), denoted with ∠pxq, is the interval

∠pxq := [∠−pxq,∠
+
pxq] ⊂ [0, π], (2.17)

where ∠−pxq,∠
+
pxq are defined above in (2.16).

Remark 2.4. The case x = p or x = q is degenerate. Since the geometrically interesting
case is x 6= p, q, we will always make this assumption in the rest of the paper. �

In order to get familiar with the definition, let us discuss immediately some examples
which also show that this notion of angle cone formalizes what the intuition suggests.

Example 2.5 (In a Riemannian manifold the angle is single valued outside the cut locus).
Given a Riemannian n-manifold (Mn, g) and p, x, q ∈ M such that x 6= p, q is not in the
cut locus of p and q, it is clear that the distance functions rp := d(p, ·) and rq := d(q, ·) are
smooth in a neighborhood of x and it is easy to check that

cos(∠−pxq) = cos(∠+
pxq) = gx(∇rp(x),∇rq(x)), (2.18)

∇rp(x),∇rq(x) being the gradients of rp, rq evaluated at x. Since the cut locus has null mea-
sure with respect to the Riemannian volume measure (more precisely it is (n− 1) rectifiable,
see [27]), it follows that given p, q ∈ X the angle between p, q and x is single valued for
a.e.-x ∈M and this value is given by (2.18).

Observe that if (M, g) is a complete, simply connected Riemannian manifold with non
positive sectional curvature (i.e. (M, g) is an Hadamard manifold), then by Hadamard The-
orem (see for instance Theorem 3.1 in [13]) the cut locus of every point is empty; therefore
in this case the angle of any triple of points p, x, q ∈M is single valued and given by formula
(2.18). �

As sketched intuitively in the Introduction, in general the angle between three points can
be multivalued even in the case the metric space (X, d) is a smooth Riemannian manifold, if
x is in the cut locus of p or q. Now, thanks to the introduced concept of angle cone, we can
make rigorous this intuition.
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Example 2.6 (Non uniqueness of the angle caused by the cut locus). Let (X, d) be the
standard 2-dimensional sphere S2 of unit radius centered in the origin of R3 with the distance
induced by the usual round Riemannian metric. Let x = (0, 0, 1) be the north pole, q =
(0, 0,−1) be the south pole and p = (1, 0, 0). Since x is in the cut locus of q, it is natural
to expect that the angle between p, x, q is not single valued; more precisely, since any half
great circle joining x and q is a length minimizing geodesic and since the gradient of rq is
the tangent vector to the minimizing geodesic, then intuitively all the tangent space TxS

2 is
spanned by the different gradients of rq coming from all the different minimizing geodesics.
Therefore it is natural to expect that any angle is in the angle cone of pxq.

Using the introduced notions we can easily make rigorous this intuition: a straightforward
computation using just the definition of slope (2.2) and Definition 2.1 yields (for computing
the first quantity consider variations in the direction from x towards p, for the second one
consider variations in the opposite direction)

D+rp(∇rq) = 1, D−rp(∇rq) = −1;

hence definitions (2.16) and (2.17) give that the angle cone ∠pxq coincides with [0, π], con-
firming the intuition. �

The second cause for the non uniqueness of the angle is the potential lack of strict convexity
of the space, this is best understood with an example.

Example 2.7 (Non uniqueness of the angle caused by the non strict convexity of the norm).
Let (X, d) be R2 endowed with the L∞ norm on its coordinates and take p = (1, 0), q = (0, 1)
and x = (1, 1). Notice that any vector of the form (v1, 1), v1 ∈ [−1, 1], can be called gradient
of rp at x. Indeed all of them have unit norm and the derivative of rp at x along any of them is
1, 1 being also the dual norm of the differential of rp. Analogously, all the vectors of the form
(1, v2), v2 ∈ [−1, 1], can be called gradient of rq at x. Taking the (euclidean) angles between
all the possible pairs (v1, 1), (1, v2) with v1, v2 ∈ [−1, 1], we span all the interval [0, π]; it is
therefore natural to expect that the angle cone ∠pxq is the whole [0, π].

This is confirmed by a straightforward computation: taking variations in the direction of
the vector (1, 1), respectively (1,−1), we obtain using just the definition of slope (2.2) and
Definition 2.1 that

D+rp(∇rq) = 1, D−rp(∇rq) = −1;

hence definitions (2.16) and (2.17) give that the angle cone ∠pxq coincides with [0, π] con-
firming the intuition. �

Since in both the examples the angle cone is completely degenerate, i.e. it is the whole
[0, π], it is a natural question if this is always case when non uniqueness occurs. This is false
in both the situations, i.e. non uniqueness by cut locus and non uniqueness by lack of strict
convexity. In case of Example 2.6 it is enough to replace the whole sphere S2 by a sector
containing p = (1, 0, 0) delimited by two half great circles having x = (0, 0, 1), q = (0, 0,−1)
as endpoints; in this case the angle cone depends on the amplitude and on the position of
the sector with respect to p = (1, 0, 0). In case of Example 2.7, keeping fixed p = (1, 0) and
q = (0, 1) and varying x ∈ R2 it is easy to see that also the angle cone varies.
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2.3 Some properties of the angle cone

In this subsection we prove two basic properties of the angle cone: the first says that for every
p, x ∈ X, the angle cone ∠pxp is single valued, and if moreover (X, d) is a length space then
the angle is actually null; the second says that the angle cone is invariant under homotheties
of the metric. In order to prove the first property we need a lemma concerning the following
property of length spaces: while in a general metric space, using the triangle inequality in
the definition of slope (2.2), one has just |Drp| ≤ 1, in length spaces actually it holds has
|Drp| ≡ 1.

Lemma 2.8. Let (X, d) be a metric space, fix p ∈ X and consider rp(·) := d(p, ·). Then

|Drp| ≤ 1 on X.

In case (X, d) is a length space, then

|Drp| ≡ 1 on X.

Proof. The first part of the lemma is a straightforward application of the triangle inequality
in the definition (2.2) of the slope.

Let us first give the proof of the second claim in the easy case when (X, d) is a geodesic
space; the idea in the more general case of length spaces is the same, the technique being a
bit more involved. Let γ : [0, 1]→ X be a length minimizing geodesic from p to x, then

|Drp|(x) = lim sup
y→x

|d(p, x)− d(p, y)|
d(x, y)

≥ lim sup
t→1

|d(p, x)− d(p, γ(t))|
d(x, γ(t))

= lim sup
t→1

d(x, γ(t))

d(x, γ(t))
= 1,

where the first equality is just the definition of slope (2.2) applied to the function rp(·) :=
d(p, ·), the inequality comes from the fact that by construction limt→1 γ(t) = x, and finally
we used that every segment of a length minimizing geodesic minimizes the length. Hence, in
this case, |Drp|(x) = 1.

Now we prove the lemma in case (X, d) is a length space. For every n ∈ N let γn ∈
C([0, 1], X) be such that

γn(0) = p, γn(1) = x and length(γn) ≤ d(p, x) +
1

n
. (2.19)

Observe that, by a standard continuity argument, for every n ≥ 1
d(p,x) there exists tn ∈ (0, 1)

such that

d(x, γn(tn)) =
1√
n

. (2.20)

Since by construction γn(tn)→ x, by the very definition of slope we then have

|Drp|(x) := lim sup
y→x

|d(p, x)− d(p, y)|
d(x, y)

≥ lim sup
n→∞

d(p, x)− d(p, γn(tn))

d(x, γn(tn))

≥ lim sup
n→∞

length(γn)− 1
n − length(γn|[0,tn])

d(x, γn(tn))
, (2.21)

where, in the last estimate, we used (2.19) and the trivial inequality d(p, γn(tn)) ≤ length
(
γn|[0,tn]

)
.

To conclude, observe that

length(γn)− length
(
γn|[0,tn]

)
= length

(
γn|[tn,1]

)
≥ d(γn(tn), x);
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which, plugged in (2.21) together with (2.20), gives

|Drp|(x) ≥ lim sup
n→∞

d(γn(tn), x)− 1
n

d(γn(tn), x)
≥ 1− lim

n→∞

1/n

1/
√
n

= 1.

Proposition 2.9 (In length spaces ∠pxp = {0}). Let (X, d) be a metric space. Then for any
p, x ∈ X the angle cone ∠pxp reduces to a single angle: ∠pxp = {θ} ⊂ [0, π]. If moreover
(X, d) is a length space then ∠pxp = {0}

Proof. Recalling the definition of c±pxq in (2.15) and the property (2.13), we have

c+
pxp = c−pxp = |Drp|2(x). (2.22)

By Lemma 2.8, if (X, d) is a general metric space one has just |Drp| ≤ 1; but if (X, d) is a
length space then |Drp|(x) = 1. The conclusion follows recalling that from the definition of
angle cone (2.17) (see also (2.16)) one has

∠pxp = {arccos(|Drp|2(x))}.

Remark 2.10. Proposition 2.9 suggests that the natural class of metric spaces for which our
definition of angle cone has a geometric relevance are the length spaces. �

A desirable property of the angles is the invariance under homothety, i.e. under constant
rescaling of the metric; this is the content of the next proposition.

Proposition 2.11 (Invariance of the angle cone under constant rescaling of the metric). Let
(X, d) be a metric space, fix λ > 0 and consider the new metric dλ(·, ·) := λd(·, ·) on X. Then
for every triple of points p, q, x ∈ X, the angle cones evaluated with respect the two different
metrics d(·, ·) and dλ(·, ·) coincide:

∠pxq = ∠λpxq,

where ∠λpxq is the angle cone of the triple (p, x, q) ∈ X3 computed in the metric space (X, dλ).

Proof. Called rλp (·) := dλ(p, ·) and |Drλp |λ the slope of rλp in the metric space (X, dλ), directly
from the definition of slope (2.2), for any x ∈ X we get

|Drλp |λ(x) = lim sup
y→x

|rλp (x)− rλp (y)|
dλ(x, y)

= lim sup
y→x

λ|rp(x)− rp(y)|
λ d(x, y)

= |Drp|(x).

Since the definition of angle cone (2.17) (recall also Definition 2.1, (2.15) and (2.16)) involves
just the slopes of rp, rq, and rλp , r

λ
q respectively, the conclusion follows.
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3 The notion of angle in metric measure spaces

Let us start this section by some motivations coming from the smooth case. Let (M, g) be
a smooth Riemannian manifold and p, x, q ∈ M , let us denote with Cp, Cq ⊂ M the cut loci
of p and q respectively and with mg the Riemannian volume measure associated to g. As
discussed in the previous examples 2.5 and 2.6 the following holds:

• if x /∈ (Cp ∪ Cq ∪ {p, q}) then the angle cone ∠pxq is single valued,

• if x ∈ Cp ∪ Cq we cannot expect the angle cone ∠pxq to be single valued,

• mg(Cp ∪ Cq ∪ {p, q}) = 0.

Therefore, fixed p and q in M , the best we can expect is that the angle cone ∠pxq is single
valued for a.e. x ∈M .

This observation suggests that, for studying the uniqueness of the angle among three
points, it is natural to endow the metric space (X, d) with a measure m, obtaining the metric
measure space, m.m.s. for short, (X, d,m). In this section we will always assume that

(X, d) is a complete separable metric space and

m is a Borel locally finite non negative measure on X with suppm = X,
(3.1)

where by local finiteness we mean that for every x ∈ X there exists a neighborhood Ux of x
such that m(Ux) <∞, and suppm denotes the smallest closed subset where m is concentrated.
Notice that the assumption suppm = X can be always fulfilled by replacing X with suppm,
but we make it in order to simplify some statements in the sequel.

The measure m is said to be doubling if for some constant C > 0 it holds

m(B2r(x)) ≤ Cm(Br(x)), ∀x ∈ X, r > 0. (3.2)

Let p0 ≥ 1. We say that (X, d,m) supports a weak local (1, p0)-Poincaré inequality (or more
briefly a p0-Poincaré inequality) if there exist constants CPI and λ ≥ 1 such that for all
x ∈ X, r > 0 and Lipschitz functions f : X → R it holds

1

m(Br(x))

∫
Br(x)

|f − fBr(x)|dm ≤ CPI 2r

(
1

m(Bλr(x))

∫
Bλr(x)

|Df |p0 dm

) 1
p0

, (3.3)

where fBr(x) := 1
m(Br(x))

∫
Br(x) f dm. Notice that typically the Poincaré inequality is required

to hold for integrable functions f and upper gradients G (see for instance Definition 4.1 in [8]),
rather than for Lipschitz functions and their slope. Since the slope is an upper gradient, it is
obvious that the second formulation implies the one we gave, but also the converse implication
holds, as a consequence of the density in energy of Lipschitz functions in the Sobolev spaces
proved in [7] for the case p0 > 1 and in [3] for p0 = 1. Therefore the definition we chose
is equivalent to the standard one. Let us remark that this equivalence was proven earlier
in [20] for proper, quasiconvex and doubling metric measure spaces, while in [25] (choosing
X = Rn \ E for suitable compact sets E) it is proven that completeness of the space cannot
be dropped.
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3.1 The case of infinitesimally strictly convex and infinitesimally Hilber-
tian spaces

The notions of infinitesimally strictly convex and infinitesimally Hilbertian m.m.s. have been
introduced in [15] and [6] respectively (see also [4], [5] and [17]) in the framework of weak
upper gradients, here we give a more elementary definition involving just the slope of Lipschitz
functions. In doubling m.m.s. satisfying a p0-Poincaré inequality, for some p0 ∈ (1, 2), our
definitions in terms of the slope are equivalent to the corresponding ones in terms of the weak
upper gradients; for a discussion see Remark 3.3. In order not to create ambiguity in literature,
we call Lipschitz-infinitesimally strictly convex and Lipschitz-infinitesimally Hilbertian the
notions in terms of the slope; the precise definition follows.

Definition 3.1. Let (X, d,m) be a m.m.s. as in (3.1).

• We say that (X, d,m) is Lipschitz-infinitesimally strictly convex if for every f, g ∈
LIP(X) it holds

D+f(∇g) = D−f(∇g) m-a.e. in X. (3.4)

the objects D±f(∇g) being defined in (2.1).

• (X, d,m) is said Lipschitz-infinitesimally Hilbertian if for every f, g ∈ LIP(X) it holds

D+f(∇g) = D−f(∇g) = D−g(∇f) = D+g(∇f) m-a.e. in X; (3.5)

in this case the common value above is denoted with ∇f · ∇g.

Notice that, in particular, Lipschitz-infinitesimally Hilbertian spaces are Lipschitz-infinitesimally
strictly convex. Observe also that from inequality (2.11) it follows that the m-a.e. equality
(3.6) is equivalent to the integral inequality∫ (

D+f(∇g)−D−f(∇g)
)

dm ≤ 0. (3.6)

Remark 3.2 (A condition equivalent to Lipschitz-Inf. Hilbertianity). Following the argu-
ments in the proof of Proposition 4.20 in [15] (which in turns is an adaptation of Section 4.3
of [6]) it is not difficult to see that (X, d,m) is Lipschitz-infinitesimally Hilbertian if and only
if the map f 7→ 1

2

∫
|Df |2 dm from {f ∈ LIP(X) : |Df | ∈ L2(X,m)} to R+ is quadratic, which

in turn is equivalent to ask that such a map satisfies the parallelogram identity. �

The following remark was suggested by Luigi Ambrosio and Nicola Gigli, let me express
my gratitude to them.

Remark 3.3 (Relationship with the notions of inf. strict convexity and inf. Hilbertianity
already present in literature). As mentioned above, the notions of infinitesimally strictly
convex and infinitesimally Hilbertian m.m.s. have been introduced in [15] and [6] respectively,
using the language of weak upper gradients; the definition we propose here involves just the
more elementary concept of slope of a Lipschitz function. Here we briefly comment on the
relationship between the two approaches; we are not introducing all the terminology in order
to keep the presentation short, the interested reader is referred to the aforementioned papers.

Inf. Hilbertianity. For a general m.m.s. space (X, d,m) as in (3.1), our definition of
Lipschitz-infinitesimal Hilbertianity is slightly stronger than the corresponding one in [6]-
[15] in terms of weak upper gradients. This is because the two definitions are equivalent to
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ask that the squared L2(X,m) norm of the slope (resp. of the weak upper gradient), called
Cheeger energy, satisfy the parallelogram identity (see Remark 3.2 above, Definition 4.18 and
Proposition 4.20 in [15]). Since the Cheeger energy in terms of weak upper gradients is the
L2(X,m)-lower semicontinuous relaxation of the corresponding one in terms of the slopes (see
Section 4 in [5]), it is not difficult to see that the parallelogram identity at the level of slopes
passes to the limit to the level of weak upper gradients. Then our definition using slopes
implies the one in terms of weak upper gradients.

The converse implication in general is not clear, but in case (X, d,m) is a doubling m.m.s.
space as in (3.1), (3.2) satisfying a p0-Poincaré inequality (3.3) for some p0 ∈ (1, 2), then
the definitions are equivalent. This is a straightforward consequence of a celebrated result
of Cheeger (Theorem 6.1 in [10], see also Theorem A.7 in [8] and the recent revisitation of
this part Cheeger’s paper given in [1]) telling that, for locally Lipschitz functions, the slope
coincides with the weak upper gradient m-a.e..

Inf. strict convexity. In case (X, d,m) is a doubling m.m.s. satisfying a p0-Poincaré in-
equality, p0 ∈ (1, 2), for the same argument above the definition in terms of weak upper
gradients implies our definition in terms of slope of Lipschitz functions; the converse implica-
tion, again in doubling&Poincaré spaces, follows by the aforementioned Theorem of Cheeger
together with the Lusin approximation of Sobolev functions via locally Lipschitz functions
(for the proof see for instance Theorem 5.1 in [8]; see also Theorem 2.5 in [17] for the precise
statement we are referring to). Both the implications are open in general m.m.s..

Recall that measured-Gromov-Hausdorff limits of Riemannian manifolds with Ricci cur-
vature bounded from below, and more generally the metric spaces satisfying the Curvature
Dimension condition CD(K,N) for someK ∈ R, N ∈ R+, satisfy the aforementioned doubling
and Poincaré conditions on bounded subsets (see [11], Corollary 2.4 in [31] and Theorem 1.2 in
[30]); hence on such spaces, the definition of infinitesimal strict convexity and of infinitesimal
Hilbertianity in terms of the slope of Lipschitz functions is equivalent to the corresponding
one in terms of weak upper gradients. �

Remark 3.4 (Relevant examples of Lipschitz-inf. strictly convex and Lipschitz-inf. Hilber-
tian spaces). Many important classes of metric spaces are Lipschitz-inf. strictly convex or
Lipschitz-inf. Hilbertian:

• Smooth Riemannian manifolds are Lipschitz-infinitesimally Hilbertian.

• In [26], using key results of [28] and [29] it has been proved that finite dimensional
Alexandrov spaces with curvature bounded from below are Lipschitz-infinitesimally
Hilbertian.

• Measured Gromov-Hausdorff limits of Riemannian manifolds with Ricci curvature bounded
from below are Lipschitz-infinitesimally Hilbertian, see Section 6.3 in [6] and [18] for a
deeper discussion on stability issues.

• In case of normed spaces, Lipschitz-infinitesimal strict convexity is equivalent to strict
convexity of the norm, which in turn is equivalent to the differentiability of the dual
norm in the cotangent space.

�
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The following theorem is a direct consequence of the definition of angle cone (2.17) which
in turn is given by (2.15) and (2.16), and of Definition 3.1.

Theorem 3.5. Let (X, d,m) be a m.m.s. as in (3.1), and let p, q ∈ X.
If (X, d,m) is Lipschitz-infinitesimally strictly convex then, for m-a.e. x ∈ X, the angles

∠pxq and ∠qxp are single valued; i.e.

∠pxq = {∠pxq}, ∠qxp = {∠qxp}.

If moreover (X, d,m) is Lipschitz-infinitesimally Hilbertian then, for m-a.e. x ∈ X, not
only the angles ∠pxq and ∠qxp are single valued but they also coincide; i.e.

∠pxq = {∠pxq} = {∠qxp} = ∠qxp.

3.2 The case (X, d,m) is a measured-Gromov-Hausdorff limit of Riemannian
manifolds with Ricci curvature bounded from below

In [24], Honda gave a definition of angle on a Gromov-Hausdorff limit space of a sequence of
complete n-dimensional Riemannian manifolds with a lower Ricci curvature bound and used
that notion to introduce a weak second order differentiable structure on such spaces. The
goal of the present subsection is to briefly recall the construction of Honda and to prove the
equivalence almost everywhere with our definition.

Throughout this subsection, (X, d,m, x̄) is a m.m.s. as in (3.1) which moreover is a pointed
measured-Gromov-Hausdorff limit space of a sequence of pointed complete n-dimensional
Riemannian manifolds {(Mi, gi, x̄i)}i∈N with Ric(Mi,gi) ≥ −(n − 1). One of the main results
in [23] and [24] is the following theorem.

Theorem 3.6 (Theorem 1.2 in [24] and Theorem 3.2 in [23]). Let p, q ∈ X \ {x̄} with
x̄ /∈ Cp ∪ Cq. Then one can define the angle ∠(p, x̄, q) between p and q at x as

cos(∠(p, x̄, q)) := lim
t→0

2t2 − d2(γx̄,p(t), γx̄,q(t))

2t2
, (3.7)

for any unit speed geodesic γx̄,p from x̄ to p and γx̄,q from x̄ to q, where Cp is the cut locus of
p defined by Cp := {x ∈ X : d(p, x) + d(x, z) > d(p, z) for every z ∈ X \ {x}}.
Moreover, the measure of the cut locus of any point of X is null with respect to any limit
measure m, therefore m(Cp ∪ Cq) = 0 and the angle ∠(p, x, q) is well defined for m-a.e.
x ∈ X \ {p, q}.

Notice that the definition of angle (3.7) between p and q at x is inspired by the corre-
sponding notion in Alexandrov spaces (1.1) discussed in the Introduction, but a priori (3.7)
is slightly weaker since Alexandrov definition asks that the joint limit for s, t→ 0 exists.

Honda also proved (see Corollary 4.3 in [24]) that for p, q ∈ X and x̄ ∈ X\(Cp∪Cq∪{p, q})
the limit

lim
r→0

1

m(Br(x̄))

∫
Br(x̄)

< drp, drq > dm

exists and, by using the Splitting Theorem, he shows that (see Theorem 4.4 in [24])

cos(∠(p, x̄, q)) = lim
r→0

1

m(Br(x̄))

∫
Br(x̄)

< drp,drq > dm, (3.8)
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∠(p, x̄, q) being defined in (3.7). Before proceeding with the discussions, let us briefly explain
the meaning of the expression < drp, drq > appearing in the last two formulas (for more
details the interested reader may consult [10], [11] and [22]).

From the works of Cheeger [10] and Cheeger-Colding [11] we know that (X, d,m, x̄), being
a limit space as before, admits a cotangent bundle T ∗X endowed with a canonical scalar
product (see Section 10 in [10] and Section 6 in [11]; for a brief survey see also Section 2 in
[22]). The cotangent bundle T ∗X satisfies the following properties:

1. T ∗X is a topological space.

2. There exists a Borel map π : T ∗X → X such that m(X \ π(T ∗X)) = 0.

3. π−1(x) is a finite-dimensional real vector space with a canonical scalar product < ., . >x
for every x ∈ π(T ∗X).

4. For every open subset U ⊂ X and every Lipschitz function f on U , there exist a Borel
subset V ⊂ U , and a Borel map df (called the differential of f) from V to T ∗X such
that m(U \ V ) = 0,

π ◦ df(x) = x and |df |(x) = |Df |(x) for every x ∈ V, (3.9)

where |v|(x) =
√
< v, v >x and |Df | is the slope defined in (2.2).

5. For every open subset U ⊂ X and every couple of Lipschitz functions f, g on U , called
V ⊂ U with m(U \ V ) = 0, df,dg the differentials of f and g from V to T ∗X given
by the previous point, the following holds: for every α, β ∈ R the differential of the
function αf + βg is defined on V and moreover

d(αf + βg)(x) = αdf(x) + βdg(x) for every x ∈ V. (3.10)

Now we are in position to prove an easy but fundamental lemma about the equivalence m-a.e.
of the infinitesimal Hilbertian structure of Cheeger-Colding with the one of Definition 3.1.
Recall that, being a limit space, (X, d,m) is Lipschitz-infinitesimally Hilbertian (see Remark
3.4) so that for every f, g ∈ LIP(X) we have

Df ·Dg := D+f(∇g) = D−f(∇g) = D+g(∇f) = D−g(∇f) m− a.e., (3.11)

the object D±f(∇g) being introduced in Definition 2.1.

Lemma 3.7 (Equivalence of the infinitesimal Hilbertian structures). Let (X, d,m, x̄) be a
m.m.s. as in (3.1) which moreover is a pointed measured-Gromov-Hausdorff limit space of
a sequence of pointed complete n-dimensional Riemannian manifolds {(Mi, gi, x̄i)}i∈N with
Ric(Mi,gi) ≥ −(n− 1). Then for every f, g : X → R locally Lipschitz it holds

< df,dg >x= Df ·Dg(x) for m-a.e. x ∈ X. (3.12)

Proof. For simplicity of notation let us prove the Lemma for f, g ∈ LIP(X), for the general
case the arguments are analogous. By the property 4 of the cotangent bundle, given f, g ∈
LIP(X) we know that there exist V ⊂ X with m(X \V ) = 0 and df,dg differentials of f and
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g from V to T ∗X satisfying (3.9). Up to a further m-negligible subset, we can assume that
on V also the equalities (3.11) hold. So for every x ∈ V we have

Df ·Dg(x) = D+f(∇g)(x) = lim inf
ε↓0

|D(f + εg)|2(x)− |Df |2(x)

2ε

= lim inf
ε↓0

|d(f + εg)|2(x)− |df |2(x)

2ε
= lim inf

ε↓0

|df + εdg|2(x)− |df |2(x)

2ε

= < df,dg >x ,

where the second equality is just Definition 2.1 with p = 2, the third equality comes from
property 5 of T ∗X together with (3.9) applied to the functions f and f + εg, the fourth
equality is a consequence of (3.10), and the last equality follows by the Hilbertianity of the
norm, i.e. |df |2(x) =< df,df >x, stated in property 4 of T ∗X.

In order to prove the equivalence of the definitions of the angles we need the following
lemma (for the proof see Theorem 1.8 in [19])

Lemma 3.8 (Lebesgue’s differentiation in doubling metric measure spaces). If f is a locally
integrable function on a doubling m.m.s. (X, d,m), then

lim
r→0

1

m(Br(x))

∫
Br(x)

f dm = f(x) for m-a.e. x ∈ X.

Now we are ready to prove the m-a.e. equivalence of the definitions of angles.

Theorem 3.9 (m-a.e. equivalence of the definition of angles). Let (X, d,m, x̄) be a m.m.s. as
in (3.1) which moreover is a pointed measured-Gromov-Hausdorff limit space of a sequence
of pointed complete n-dimensional Riemannian manifolds {(Mi, gi, x̄i)}i∈N with Ric(Mi,gi) ≥
−(n− 1).

Then, fixed p, q ∈ X, for m-a.e. x ∈ X\{p, q} our notion of angle ∠pxq given in Definition
2.3 coincides with the one of Honda given in (3.7):

∠pxq = {∠(p, x, q)}. (3.13)

Proof. It is well known that limit spaces are doubling on bounded subsets (a possible way
to see this, maybe not the shortest, is that limit spaces are CD(K,N) for some K,N ∈ R
and then they are doubling by [31] Corollary 2.4), so the Lebesgue differentiation Lemma 3.8
holds.

Fix p, q ∈ X. Combining Theorem 3.6 and formula (3.8), we get that for m-a.e. x ∈
X \ {p, q} the “Honda”-angle ∠(p, x, q) is given by the following expression

cos(∠(p, x, q)) = lim
r→0

1

m(Br(x))

∫
Br(x)

< drp,drq > dm. (3.14)

By the equivalence of the infinitesimal Hilbertian structures stated in Lemma 3.7, we also
know that < drp,drq >= Drp ·Drq m-a.e.; hence we can rewrite (3.14) as

cos(∠(p, x, q)) = lim
r→0

1

m(Br(x))

∫
Br(x)

Drp ·Drq dm.
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From (2.10) the function |Drp ·Drq| is bounded by 1 hence, being m locally finite by assump-
tion, locally integrable. By Lemma 3.8 and recalling the definition of angle cone (2.17) (see
also (2.15) (2.16) and (3.11)) we finally obtain

cos(∠(p, x, q)) = lim
r→0

1

m(Br(x))

∫
Br(x)

Drp ·Drq dm = Drp ·Drq(x) = cos(∠pxq),

for m-a.e. x ∈ X \ {p, q} as desired.

Remark 3.10. Fix p, q ∈ X. Let us remark that, even if by Theorem 3.13 our notion of angle
is equivalent to the Honda’s one for m-a.e. x ∈ X, the latter does not work for x ∈ Cp ∪ Cq;
on the contrary our Definition 2.3 permits to define an angle cone for every x ∈ X, so in
particular also for x ∈ Cp ∪ Cq. �

Remark 3.11. As suggested by the anonymous referee (we thank him sincerely for the careful
reading), Theorem 3.13 holds analogously in Alexandrov spaces. More precisely, if (X, d) is an
m-dimensional Alexandrov space and m is the associated m-dimensional Hausdorff measure,
then for every fixed couple of points p, q ∈ X, for m-a.e. x ∈ X, the Alexandrov angle (1.1)
coincide with our angle ∠pxq (which we already know to be m-a.e. single valued thanks to
Remark 3.4). The argument can be performed along the same lines of the proof of Theorem
3.13 once recalled that thanks to the work of Otsu and Shioya [28], outside an m-negligible
singular set, the Alexandrov space (X, d) admits a C0 (even C1/2) Riemannian structure
compatible with the original metric structure. �
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